1
|
Zhang S, Zhu G, Xu X, Luo F, Tian D, Liu Y, Wang Q, Chen Q, Jiang Y, Qi J, Xu J, Wu F, Feng X, Tang Q, Guo W, Lu Y. Two all-biomass cellulose/amino acid spherical nanoadsorbents based on a tri-aldehyde spherical nanocellulose II amino acid premodification platform for the efficient removal of Cr(VI) and Cu(II). Int J Biol Macromol 2024; 258:128748. [PMID: 38104693 DOI: 10.1016/j.ijbiomac.2023.128748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Adsorbents consisting of spherical nanoparticles exhibit superior adsorption performance and hence, have immense potential for various applications. In this study, a tri-aldehyde spherical nanoadsorbent premodification platform (CTNAP), which can be grafted with various amino acids, was synthesized from corn stalk. Subsequently, two all-biomass spherical nanoadsorbents, namely, cellulose/l-lysine (CTNAP-Lys) and cellulose/L-cysteine (CTNAP-Cys), were prepared. The morphologies as well as chemical and crystal structures of the two adsorbents were studied in detail. Notably, the synthesized adsorbents exhibited two important characteristics, namely, a spherical nanoparticle morphology and cellulose II crystal structure, which significantly enhanced their adsorption performance. The mechanism of the adsorption of Cr(VI) onto CTNAP-Lys and that of Cu(II) onto CTNAP-Cys were studied in detail, and the adsorption capacities were determined to be as high as 361.69 (Cr(VI)) and 252.38 mg/g (Cu(II)). Using the proposed strategy, it should be possible to prepare other all-biomass cellulose/amino acid spherical nanomaterials with high functional group density for adsorption, medical, catalytic, analytical chemistry, corrosion, and photochromic applications.
Collapse
Affiliation(s)
- Shaobo Zhang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Gaolu Zhu
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xueju Xu
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Fanghan Luo
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Dong Tian
- College of Environmental Sciences, Sichuan Agricultural University, Chengdu, China
| | - Yaxi Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qingjun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qi Chen
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yongze Jiang
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jinqiu Qi
- Wood Industry and Furniture Engineering Key Laboratory of Sichuan Provincial Department of Education, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jie Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fengkai Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuanjun Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qi Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China; Maize Research Institute, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
2
|
Tang T, Shen Z, Wang J, Xu S, Jiang J, Chang J, Guo M, Fan Y, Xiao Y, Dong Z, Huang H, Li X, Zhang Y, Wang D, Chen LQ, Wang K, Zhang S, Nan CW, Shen Y. Stretchable polymer composites with ultrahigh piezoelectric performance. Natl Sci Rev 2023; 10:nwad177. [PMID: 37485000 PMCID: PMC10359065 DOI: 10.1093/nsr/nwad177] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Flexible piezoelectric materials capable of withstanding large deformation play key roles in flexible electronics. Ferroelectric ceramics with a high piezoelectric coefficient are inherently brittle, whereas polar polymers exhibit a low piezoelectric coefficient. Here we report a highly stretchable/compressible piezoelectric composite composed of ferroelectric ceramic skeleton, elastomer matrix and relaxor ferroelectric-based hybrid at the ceramic/matrix interface as dielectric transition layers, exhibiting a giant piezoelectric coefficient of 250 picometers per volt, high electromechanical coupling factor keff of 65%, ultralow acoustic impedance of 3MRyl and high cyclic stability under 50% compression strain. The superior flexibility and piezoelectric properties are attributed to the electric polarization and mechanical load transfer paths formed by the ceramic skeleton, and dielectric mismatch mitigation between ceramic fillers and elastomer matrix by the dielectric transition layer. The synergistic fusion of ultrahigh piezoelectric properties and superior flexibility in these polymer composites is expected to drive emerging applications in flexible smart electronics.
Collapse
Affiliation(s)
- Tongxiang Tang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhonghui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Shiqi Xu
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaxi Jiang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jiahui Chang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Mengfan Guo
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Youjun Fan
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Yao Xiao
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Zhihao Dong
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Houbing Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyan Li
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Danyang Wang
- School of Materials Science and Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, State College, PA 16802, USA
| | - Ke Wang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
3
|
Liu B, Cheng L, Yuan Y, Hu J, Zhou L, Zong L, Duan Y, Zhang J. Liquid-crystalline assembly of spherical cellulose nanocrystals. Int J Biol Macromol 2023; 242:124738. [PMID: 37169056 DOI: 10.1016/j.ijbiomac.2023.124738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023]
Abstract
Rod-shaped cellulose nanocrystals (CNCs), also called cellulose nanorods (CNRs), possess anisotropic properties that allow for their self-organization into chiral nematic liquid crystals. Interestingly, spherical cellulose nanocrystals (cellulose nanospheres, CNSs) have also been shown to form a chiral liquid-crystalline phase in recent years. Herein, to understand how the similar assembly takes places as particle dimension changes, the organization features of CNSs were investigated. Results of this study demonstrate that above a critical concentration in suspension, CNSs organize into a liquid-crystal phase consisting of periodically parallel-aligned layer structures. This structure persists after suspension drying. In comparison with CNRs, the alignment of CNSs exhibits a shorter layer distance, lower order degree, and weaker long-range orientation. To explain the early stages of tactoid formation, a "caterpillar-like" model was proposed, which was captured by freezing the CNS suspension in an intermediate aggregation state. This structure serves as the fundamental unit for further liquid-crystal assembly.
Collapse
Affiliation(s)
- Bingrui Liu
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li Cheng
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yuan Yuan
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Jian Hu
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lijuan Zhou
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lu Zong
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongxin Duan
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
4
|
Pan L, Xie Y, Yang H, Li M, Bao X, Shang J, Li RW. Flexible Magnetic Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:4083. [PMID: 37112422 PMCID: PMC10141728 DOI: 10.3390/s23084083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
With the merits of high sensitivity, high stability, high flexibility, low cost, and simple manufacturing, flexible magnetic field sensors have potential applications in various fields such as geomagnetosensitive E-Skins, magnetoelectric compass, and non-contact interactive platforms. Based on the principles of various magnetic field sensors, this paper introduces the research progress of flexible magnetic field sensors, including the preparation, performance, related applications, etc. In addition, the prospects of flexible magnetic field sensors and their challenges are presented.
Collapse
Affiliation(s)
- Lili Pan
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yali Xie
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Huali Yang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Mengchao Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xilai Bao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
5
|
Song M, Yang SC. Investigation of Ferromagnetic and Ferroelectric Properties in Binderless Cellulose/Ni Laminates for Magnetoelectric Applications. Polymers (Basel) 2022; 14:polym14245347. [PMID: 36559712 PMCID: PMC9784961 DOI: 10.3390/polym14245347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
According to reported polymer-based magnetoelectric (ME) laminates, which generate voltage via an external magnetic field, a binder is indispensable for the adhesion between phases. However, if the binder is excluded, the ME response is expected to improve via efficient strain transfer from the magnetostrictive phase to the piezoelectric phase. Nevertheless, an understanding of the binderless state has not yet been addressed in polymer-based ME laminates. In this study, cellulose/Ni (CN) laminates were designed to obtain binderless polymer-based ME laminates. The surface properties of Ni foil desirable for the anchoring effect and the electrostatic interactions required for binderless states were determined via heat treatment of the Ni substrate. Moreover, to confirm the potential of the binderless laminate in ME applications, the ferromagnetic and ferroelectric properties of the CN laminates were recorded. Consequently, the CN laminates exhibited remnant and saturation magnetizations of 29.5 emu/g and 55.2 emu/g, respectively. Furthermore, the significantly increased remnant and saturation polarization of the CN laminates were determined to be 1.86 µC/cm2 and 0.378 µC/cm2, an increase of approximately 35-fold and 5.56-fold, respectively, compared with a neat cellulose film. The results indicate that multiferroic binderless CN laminates are excellent candidates for high-response ME applications.
Collapse
|
6
|
Zhang JW, Mahmood U, Fu G, Xu F, Li T, Liu Y. A Sandwich Metal-Insulation-Metal Composite for Magnetoelectric Memory: Experiment and Modeling. ACS OMEGA 2021; 6:35023-35029. [PMID: 34963983 PMCID: PMC8697597 DOI: 10.1021/acsomega.1c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Driven by the development of internet technology, higher requirements on information materials and data storage devices were demanded. To improve the work efficiency and performance of the new generation of information materials and data storage devices, the magnetoelectric (ME) coupling and storage mechanism of magnetoelectric composites deserve more attention. Here, we explored the influence of applied magnetic fields on the output voltage on a metal-insulation-metal (MIM) sandwich composite for realizing the magnetoelectric memory by experiments and modeling. It is found that the DC magnetic field (H dc) and the output voltage of the polyvinylidene fluoride film are linearly correlated. At a frequency of 1 kHz, the magnetoelectric voltage coefficient is 60.71 mV cm-1 Oe-1, which is evidently larger than that of other film materials. From this work, we can conclude that the MIM sandwich composite could generate higher magnetoelectric voltage under the AC magnetic field (H ac) with higher frequency, which could be used as the magnetoelectric memory device, and provides significant support for improving the performance of magnetoelectric memory devices and the whole internet system.
Collapse
Affiliation(s)
- Jia-wei Zhang
- School
of Electrical Engineering, Xi’an
University of Technology, Xi’an 710048, China
| | - Usama Mahmood
- School
of Electrical Engineering, Xi’an
University of Technology, Xi’an 710048, China
| | - Geng Fu
- School
of Electrical Engineering, Xi’an
University of Technology, Xi’an 710048, China
| | - Fan Xu
- School
of Electrical Engineering, Xi’an
University of Technology, Xi’an 710048, China
| | - Tianhao Li
- Chengde
State Grid Corporation of China, Chengde 067000, China
| | - Yifan Liu
- School
of Electrical Engineering, Xi’an
Jiaotong University, Xi’an 710049, China
| |
Collapse
|
7
|
Merazzo KJ, Lima AC, Rincón-Iglesias M, Fernandes LC, Pereira N, Lanceros-Mendez S, Martins P. Magnetic materials: a journey from finding north to an exciting printed future. MATERIALS HORIZONS 2021; 8:2654-2684. [PMID: 34617551 DOI: 10.1039/d1mh00641j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential implications/applications of printing technologies are being recognized worldwide across different disciplines and industries. Printed magnetoactive smart materials, whose physical properties can be changed by the application of external magnetic fields, are an exclusive class of smart materials that are highly valuable due to their magnetically activated smart and/or multifunctional response. Such smart behavior allows, among others, high speed and low-cost wireless activation, fast response, and high controllability with no relevant limitations in design, shape, or dimensions. Nevertheless, the printing of magnetoactive materials is still in its infancy, and the design apparatus, the material set, and the fabrication procedures are far from their optimum features. Thus, this review presents the main concepts that allow interconnecting printing technologies with magnetoactive materials by discussing the advantages and disadvantages of this joint field, trying to highlight the scientific obstacles that still limit a wider application of these materials nowadays. Additionally, it discusses how these limitations could be overcome, together with an outlook of the remaining challenges in the emerging digitalization, Internet of Things, and Industry 4.0 paradigms. Finally, as magnetoactive materials will play a leading role in energy generation and management, the magnetic-based Green Deal is also addressed.
Collapse
Affiliation(s)
- K J Merazzo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - A C Lima
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- INL - International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - M Rincón-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - L C Fernandes
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
| | - N Pereira
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- Algoritmi Center, Minho University, 4800-058 Guimarães, Portugal
| | - S Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain.
| | - P Martins
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- IB-S Institute of Science and Innovation for Sustainability, Universidade do Minho, 4710-057, Braga, Portugal
| |
Collapse
|
8
|
Feng R, Zhu Z, Liu Y, Song S, Zhang Y, Yuan Y, Han T, Xiong C, Dong L. Magnetoelectric effect in flexible nanocomposite films based on size-matching. NANOSCALE 2021; 13:4177-4187. [PMID: 33576760 DOI: 10.1039/d0nr08544h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flexible magnetoelectric (ME) nanocomposites with a strong coupling between ferromagnetism and ferroelectricity are of significant importance from the point of view of next-generation flexible electronic devices. However, a high loading of magnetic nanomaterials is needed to achieve preferable ME response due to the size mismatch of the magnetostrictive phase and piezoelectric phase. In this work, ultra-small CoFe2O4 nanoparticles were prepared to match the size of the polar crystal in poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) is introduced to enhance the interplay between P(VDF-TrFE) and CoFe2O4. The above multiple effects promote a good connection between the magnetostrictive phase and the piezoelectric phase. Therefore, an effective transference of stress from CoFe2O4 to P(VDF-TrFE) can be achieved. The as-prepared P(VDF-TrFE)/CoFe2O4@POTS exhibits a high ME coupling coefficient of 34 mV cm-1 Oe-1 when the content of CoFe2O4@POTS is 20 wt%. The low loading of fillers ensures the flexibility of ME nanocomposite films.
Collapse
Affiliation(s)
- Rui Feng
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhengwang Zhu
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Yang Liu
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Shaokun Song
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Yang Zhang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Ye Yuan
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Ting Han
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Chuanxi Xiong
- School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
| | - Lijie Dong
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China. and School of Materials Science and Engineering, Wuhan University of Technology, 430070, Wuhan, China
| |
Collapse
|
9
|
Cellulose supported promising magnetic sorbents for magnetic solid-phase extraction: A review. Carbohydr Polym 2021; 253:117245. [DOI: 10.1016/j.carbpol.2020.117245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
|
10
|
Pereira N, Lima AC, Lanceros-Mendez S, Martins P. Magnetoelectrics: Three Centuries of Research Heading towards the 4.0 Industrial Revolution. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4033. [PMID: 32932903 PMCID: PMC7558578 DOI: 10.3390/ma13184033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022]
Abstract
Magnetoelectric (ME) materials composed of magnetostrictive and piezoelectric phases have been the subject of decades of research due to their versatility and unique capability to couple the magnetic and electric properties of the matter. While these materials are often studied from a fundamental point of view, the 4.0 revolution (automation of traditional manufacturing and industrial practices, using modern smart technology) and the Internet of Things (IoT) context allows the perfect conditions for this type of materials being effectively/finally implemented in a variety of advanced applications. This review starts in the era of Rontgen and Curie and ends up in the present day, highlighting challenges/directions for the time to come. The main materials, configurations, ME coefficients, and processing techniques are reported.
Collapse
Affiliation(s)
- Nélson Pereira
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal; (N.P.); (A.C.L.)
- Algoritmi Center, Minho University, 4800-058 Guimarães, Portugal
| | - Ana Catarina Lima
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal; (N.P.); (A.C.L.)
- INL—International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Universidad del País Vasco/Euskal Herriko Unibertsitatea, Science Park, 48940 Leioa, Spain
- Basque Foundation for Science (Ikerbasque), 48013 Bilbao, Spain
| | - Pedro Martins
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal; (N.P.); (A.C.L.)
- IB-S Institute of Science and Innovation for Bio-sustainability, Universidade do Minho, 4710-057 Braga, Portugal
| |
Collapse
|
11
|
Qiu S, Ren X, Zhou X, Zhang T, Song L, Hu Y. Nacre-Inspired Black Phosphorus/Nanofibrillar Cellulose Composite Film with Enhanced Mechanical Properties and Superior Fire Resistance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36639-36651. [PMID: 32687704 DOI: 10.1021/acsami.0c09685] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural nacre offers an optimized guiding principle for the assembly of lightweight and high-strength nanocomposites with excellent mechanical properties. Inspired by the "brick-and-mortar" layered structure of natural nacre, we present a cohort of bioinspired nanocomposites consisting of nanofibrillar cellulose (NFC) and few-layer hydroxyl functionalized black phosphorus (BP-OH) via a vacuum-assisted filtration self-assembly procedure. Owing to the well dispersed two-dimensional (2D) BP-OH in one-dimensional (1D) NFC and strong interfacial hydrogen bonding between them, these novel nacre-like BP-OHx/NFC composite films show excellent mechanical performance with tensile strength up to 214.0 MPa, 300% increase compared to pure NFC and tensile fracture strain up to 23.8%, 1.8 times higher than that of pure NFC. Moreover, these nacre-like composite films bare good fire resistance and high thermal stability. This nacre-inspired approach demonstrates a promising strategy for designing high-performance BP-OHx/NFC composite film, and the obtained bioinspired material could be a potential candidate in the application of flexible construction materials and flame retarded insulation materials.
Collapse
Affiliation(s)
- Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xiyun Ren
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Xia Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Tao Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
Schofield Z, Meloni GN, Tran P, Zerfass C, Sena G, Hayashi Y, Grant M, Contera SA, Minteer SD, Kim M, Prindle A, Rocha P, Djamgoz MBA, Pilizota T, Unwin PR, Asally M, Soyer OS. Bioelectrical understanding and engineering of cell biology. J R Soc Interface 2020; 17:20200013. [PMID: 32429828 PMCID: PMC7276535 DOI: 10.1098/rsif.2020.0013] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
The last five decades of molecular and systems biology research have provided unprecedented insights into the molecular and genetic basis of many cellular processes. Despite these insights, however, it is arguable that there is still only limited predictive understanding of cell behaviours. In particular, the basis of heterogeneity in single-cell behaviour and the initiation of many different metabolic, transcriptional or mechanical responses to environmental stimuli remain largely unexplained. To go beyond the status quo, the understanding of cell behaviours emerging from molecular genetics must be complemented with physical and physiological ones, focusing on the intracellular and extracellular conditions within and around cells. Here, we argue that such a combination of genetics, physics and physiology can be grounded on a bioelectrical conceptualization of cells. We motivate the reasoning behind such a proposal and describe examples where a bioelectrical view has been shown to, or can, provide predictive biological understanding. In addition, we discuss how this view opens up novel ways to control cell behaviours by electrical and electrochemical means, setting the stage for the emergence of bioelectrical engineering.
Collapse
Affiliation(s)
- Zoe Schofield
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Gabriel N. Meloni
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Peter Tran
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Christian Zerfass
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Giovanni Sena
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Yoshikatsu Hayashi
- Department of Biomedical Engineering, School of Biological Sciences, University of Reading, Reading RG6 6AH, UK
| | - Murray Grant
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Sonia A. Contera
- Clarendon Laboratory, Physics Department, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, Utah 84112, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA 30322, USA
| | - Arthur Prindle
- Department of Chemical and Biological Engineering, Northwestern University, Chicago, IL 60611, USA
| | - Paulo Rocha
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio), Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Mustafa B. A. Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Teuta Pilizota
- Systems and Synthetic Biology Centre and School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| | - Patrick R. Unwin
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Orkun S. Soyer
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
13
|
Pereira N, Lima AC, Correia V, Peřinka N, Lanceros-Mendez S, Martins P. Magnetic Proximity Sensor Based on Magnetoelectric Composites and Printed Coils. MATERIALS 2020; 13:ma13071729. [PMID: 32272728 PMCID: PMC7212752 DOI: 10.3390/ma13071729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Magnetic sensors are mandatory in a broad range of applications nowadays, being the increasing interest on such sensors mainly driven by the growing demand of materials required by Industry 4.0 and the Internet of Things concept. Optimized power consumption, reliability, flexibility, versatility, lightweight and low-temperature fabrication are some of the technological requirements in which the scientific community is focusing efforts. Aiming to positively respond to those challenges, this work reports magnetic proximity sensors based on magnetoelectric (ME) polyvinylidene fluoride (PVDF)/Metglas composites and an excitation-printed coil. The proposed magnetic proximity sensor shows a maximum resonant ME coefficient (α) of 50.2 Vcm−1 Oe−1, an AC linear response (R2 = 0.997) and a maximum voltage output of 362 mV, which suggests suitability for proximity-sensing applications in the areas of aerospace, automotive, positioning, machine safety, recreation and advertising panels, among others.
Collapse
Affiliation(s)
- Nélson Pereira
- Centre/Department of Physics, Minho University, 4710-057 Braga, Portugal; (N.P.); (A.C.L.); (V.C.); (S.L.-M.)
- Algoritmi Center, Minho University, 4800-058 Guimarães, Portugal
| | - Ana Catarina Lima
- Centre/Department of Physics, Minho University, 4710-057 Braga, Portugal; (N.P.); (A.C.L.); (V.C.); (S.L.-M.)
- INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Vitor Correia
- Centre/Department of Physics, Minho University, 4710-057 Braga, Portugal; (N.P.); (A.C.L.); (V.C.); (S.L.-M.)
- INL-International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Nikola Peřinka
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, University of the Basque Country Science Park, 48940 Leioa, Spain;
| | - Senentxu Lanceros-Mendez
- Centre/Department of Physics, Minho University, 4710-057 Braga, Portugal; (N.P.); (A.C.L.); (V.C.); (S.L.-M.)
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, University of the Basque Country Science Park, 48940 Leioa, Spain;
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Pedro Martins
- Centre/Department of Physics, Minho University, 4710-057 Braga, Portugal; (N.P.); (A.C.L.); (V.C.); (S.L.-M.)
- IB-S Institute of Science and Innovation for Sustainability, Minho University, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
14
|
Wang Y, Wen X, Jia Y, Huang M, Wang F, Zhang X, Bai Y, Yuan G, Wang Y. Piezo-catalysis for nondestructive tooth whitening. Nat Commun 2020; 11:1328. [PMID: 32165627 PMCID: PMC7067860 DOI: 10.1038/s41467-020-15015-3] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
The increasing demand for a whiter smile has resulted in an increased popularity for tooth whitening procedures. The most classic hydrogen peroxide-based whitening agents are effective, but can lead to enamel demineralization, gingival irritation, or cytotoxicity. Furthermore, these techniques are excessively time-consuming. Here, we report a nondestructive, harmless and convenient tooth whitening strategy based on a piezo-catalysis effect realized by replacement of abrasives traditionally used in toothpaste with piezoelectric particles. Degradation of organic dyes via piezo-catalysis of BaTiO3 (BTO) nanoparticles was performed under ultrasonic vibration to simulate daily tooth brushing. Teeth stained with black tea, blueberry juice, wine or a combination thereof can be notably whitened by the poled BTO turbid liquid after vibration for 3 h. A similar treatment using unpoled or cubic BTO show negligible tooth whitening effect. Furthermore, the BTO nanoparticle-based piezo-catalysis tooth whitening procedure exhibits remarkably less damage to both enamel and biological cells.
Collapse
Affiliation(s)
- Yang Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China
| | - Xinrong Wen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China
| | - Yanmin Jia
- School of Science, Xi'an University of Posts and Communications, 710121, Xi'an, China
| | - Ming Huang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China
| | - Feifei Wang
- Key Laboratory of Optoelectronic Material and Device, Department of Physics, Shanghai Normal University, 200234, Shanghai, China
| | - Xuehui Zhang
- Department of Dental Materials, NMPA Key Laboratory for Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 100081, Beijing, China
| | - Guoliang Yuan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China
| | - Yaojin Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, 210094, Nanjing, Jiangsu, China.
| |
Collapse
|
15
|
Rincón-Iglesias M, Lizundia E, Lanceros-Méndez S. Water-Soluble Cellulose Derivatives as Suitable Matrices for Multifunctional Materials. Biomacromolecules 2019; 20:2786-2795. [DOI: 10.1021/acs.biomac.9b00574] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikel Rincón-Iglesias
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Erlantz Lizundia
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), 48013 Bilbao, Spain
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
16
|
Li D, Zhao XM, Zhao HX, Dong XW, Long LS, Zheng LS. Construction of Magnetoelectric Composites with a Large Room-Temperature Magnetoelectric Response through Molecular-Ionic Ferroelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803716. [PMID: 30370676 DOI: 10.1002/adma.201803716] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Magnetoelectric materials with a large magnetoelectric response, a low operating magnetic (or electric) field, and a room-temperature (or higher) operating temperature are of key importance for practical applications. However, such materials are extremely rare because a large magnetoelectric response often requires strong coupling between spins and electric dipoles. Herein, an example of a magnetoelectric composite is prepared by using a room-temperature multiaxial molecular-ionic ferroelectric, tetramethylammonium tetrachlorogallate(III) (1). Investigation of the magnetoelectric effect of the magnetoelectric laminate composite indicates that its room-temperature magnetoelectric voltage coefficient (αME ) is as high as 186 mV cm-1 Oe-1 at HDC = 275 Oe and at the HAC frequency of ≈39 kHz, providing a valid approach for the preparation of magnetoelectric materials and adding a new member to the magnetoelectric material family.
Collapse
Affiliation(s)
- Dong Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xue-Mei Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Xia Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xin-Wei Dong
- Department of Physics, Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, 361005, P. R. China
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
17
|
Zong Y, Yue Z, Martins P, Zhuang J, Du Y, Lanceros-Mendez S, Higgins MJ. Magnetoelectric coupling in nanoscale 0-1 connectivity. NANOSCALE 2018; 10:17370-17377. [PMID: 30203827 DOI: 10.1039/c8nr05182h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The strain-mediated magnetoelectric (ME) coupling between piezoelectric (PE) and magnetostrictive (MS) components are established in various connectivities. Discovering new ME connectivity and elucidating the key factors governing the performance of ME composite are of critical importance to find advanced materials for modern electronics. Reported here is a novel ME coupling in 0-1 connectivity. The unique self-assembling ability of 1-dimension crystalline nanocellulose (CNC) nanowhiskers enables the establishment of ME coupling with 0-dimension cobalt ferrite (CFO) nanoparticles without the use of binder. The developed CFO/CNC 0-1 ME composites display a significant ME voltage coefficient (αME) as high as 0.135 mV cm-1 Oe-1. The CFO nanoparticles are also modified with a cationic surfactant, cetyltrimethylammonium bromide (CTAB), to reduce their dispersion ability. A ME response related to the rearrangement of aggregated MS nanoparticles is observed in the CTAB-CFO/CNC composites, which differs from the typical magnetostriction induced ME effect in nanoparticulate ME composites.
Collapse
Affiliation(s)
- Yan Zong
- ARC Centre for Electromaterials Science (ACES), Intelligent Polymer Research Institute/AIIM Faculty, Innovation Campus, Squires Way, University of Wollongong, NSW 2522, Australia.
| | | | | | | | | | | | | |
Collapse
|
18
|
Correia DM, Martins P, Tariq M, Esperança JMSS, Lanceros-Méndez S. Low-field giant magneto-ionic response in polymer-based nanocomposites. NANOSCALE 2018; 10:15747-15754. [PMID: 30094455 DOI: 10.1039/c8nr03259a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The future of magnetoelectric (ME) materials is closely linked to the optimization of the ME response on nanocomposites or to the introduction of new effects to achieve higher ME performance from low magnetic fields. Here, we report a P(VDF-TrFE)/[C4mim][FeCl4] nanocomposite with a magneto-ionic response that produces giant magnetoelectric coefficients up to ≈10 V cm-1 Oe-1. This response comprises a magnetically triggered ionic/charge movement within the porous structure of the polymer, being this a novel phenomenon never experimentally observed or explored in magnetoelectric composites. This work successfully demonstrates the concept of exploring magnetic ionic liquids, such as [C4mim][FeCl4], in polymer-based magnetoelectric nanocomposites, suitable for low-field magnetic sensing devices. Such nanocomposites have remarkable potential for applications, not only because they exhibit a high ME response with scalable production and with good reproducibility but also because this coupling between magnetic order and electric order via ionic effects can lead to additional novel effects.
Collapse
Affiliation(s)
- Daniela M Correia
- Departamento de Química e CQ-VR, Universidade de Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal
| | | | | | | | | |
Collapse
|