1
|
Zhu L, Liu YP, Yuan-Wang, Sun BX, Huang YT, Zhao JK, Liu JF, Yu LM, Wang HS. E3 ubiquitin ligase SYVN1 as a promising therapeutic target for diverse human diseases. Pharmacol Res 2025:107603. [PMID: 39818260 DOI: 10.1016/j.phrs.2025.107603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Numerous studies conducted in recent years indicate that mammalian E3 ubiquitin ligases serve as key regulators in the maintenance of cellular homeostasis by targeting the ubiquitination of substrate proteins and activating downstream signaling pathways. SYVN1, an E3 ubiquitin ligase, is characterized by its significant functions in regulating various biological processes, including molecular mechanisms related to gene expression, signaling pathways, and cell death, among others. Consequently, SYVN1 plays a crucial role in both normal human physiology and the pathogenesis of various diseases, such as oncogenesis, cardiovascular disorders, immune regulation, skeletal anomalies, and neurological diseases. This review synthesizes recent findings regarding the physiological and pathophysiological roles of SYVN1, offering new insights into potential strategies for the prevention and treatment of human diseases, as well as suggesting avenues for future drug development. In this Review, we summarize the latest findings regarding the physiological and pathophysiological roles of SYVN1, elucidating the mechanisms by which SYVN1 can regulate the progression of various diseases in humans. These important findings provide new avenues for further investigation of SYVN1 protein, new insights into potential strategies to prevent and treat human diseases, and new directions for future drug development.
Collapse
Affiliation(s)
- Li Zhu
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yong-Ping Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Yuan-Wang
- Graduate School of Dalian Medical University, Dalian 116000, Liaoning, China; State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Bo-Xuan Sun
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Yu-Ting Huang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Ji-Kai Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China
| | - Jian-Feng Liu
- First School of Clinical Medicine, Shenyang Medical College, Shenyang 110034, Liaoning, China
| | - Li-Ming Yu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| | - Hui-Shan Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Cardiovascular Surgery, General Hospital of Northern Theater Command, Shenyang 110016, Liaoning, China.
| |
Collapse
|
2
|
Tan Y, Li J, Zhang S, Zhang Y, Zhuo Z, Ma X, Yin Y, Jiang Y, Cong Y, Meng G. Cryo-EM structure of PML RBCC dimer reveals CC-mediated octopus-like nuclear body assembly mechanism. Cell Discov 2024; 10:118. [PMID: 39587079 PMCID: PMC11589706 DOI: 10.1038/s41421-024-00735-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/12/2024] [Indexed: 11/27/2024] Open
Abstract
Promyelocytic leukemia protein (PML) nuclear bodies (NBs) are essential in regulating tumor suppression, antiviral response, inflammation, metabolism, aging, and other important life processes. The re-assembly of PML NBs might lead to an ~100% cure of acute promyelocytic leukemia. However, until now, the molecular mechanism underpinning PML NB biogenesis remains elusive due to the lack of structural information. In this study, we present the cryo-electron microscopy (cryo-EM) structure of the PML dimer at an overall resolution of 5.3 Å, encompassing the RING, B-box1/2 and part of the coiled-coil (RBCC) domains. The integrated approach, combining crosslinking and mass spectrometry (XL-MS) and functional analyses, enabled us to observe a unique folding event within the RBCC domains. The RING and B-box1/2 domains fold around the α3 helix, and the α6 helix serves as a pivotal interface for PML dimerization. More importantly, further characterizations of the cryo-EM structure in conjugation with AlphaFold2 prediction, XL-MS, and NB formation assays, help unveil an unprecedented octopus-like mechanism in NB assembly, wherein each CC helix of a PML dimer (PML dimer A) interacts with a CC helix from a neighboring PML dimer (PML dimer B) in an anti-parallel configuration, ultimately leading to the formation of a 2 µm membrane-less subcellular organelle.
Collapse
Affiliation(s)
- Yangxia Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Li
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shiyan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yonglei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Zhiyi Zhuo
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaodan Ma
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yue Yin
- National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, China
| | - Yanling Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yao Cong
- Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Rui-Jin Hospital, School of Medicine and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Geriatrics and Medical Center on Aging, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
3
|
Moghadam RK, Daraei A, Haddadi M, Mardi A, Karamali N, Rezaiemanesh A. Casting Light on the Janus-Faced HMG-CoA Reductase Degradation Protein 1: A Comprehensive Review of Its Dualistic Impact on Apoptosis in Various Diseases. Mol Neurobiol 2024; 61:6842-6863. [PMID: 38356096 DOI: 10.1007/s12035-024-03994-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Nowadays, it is well recognized that apoptosis, as a highly regulated cellular process, plays a crucial role in various biological processes, such as cell differentiation. Dysregulation of apoptosis is strongly implicated in the pathophysiology of numerous disorders, making it essential to comprehend its underlying mechanisms. One key factor that has garnered significant attention in the regulation of apoptotic pathways is HMG-CoA reductase degradation protein 1, also known as HRD1. HRD1 is an E3 ubiquitin ligase located in the endoplasmic reticulum (ER) membrane. Its primary role involves maintaining the quality control of ER proteins by facilitating the ER-associated degradation (ERAD) pathway. During ER stress, HRD1 aids in the elimination of misfolded proteins that accumulate within the ER. Therefore, HRD1 plays a pivotal role in the regulation of apoptotic pathways and maintenance of ER protein quality control. By targeting specific protein substrates and affecting apoptosis-related pathways, HRD1 could be an exclusive therapeutic target in different disorders. Dysregulation of HRD1-mediated processes contributes significantly to the pathophysiology of various diseases. The purpose of this review is to assess the effect of HRD1 on the pathways related to apoptosis in various diseases from a therapeutic perspective.
Collapse
Affiliation(s)
- Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Arshia Daraei
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Maryam Haddadi
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Karamali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Daneshgah Street, Shahid Shiroudi Boulevard, PO-Box: 6714869914, Kermanshah, Iran.
| |
Collapse
|
4
|
Sun LL, Zhao LN, Sun J, Yuan HF, Wang YF, Hou CY, Lv P, Zhang HH, Yang G, Zhang NN, Zhang XD, Lu W. Inhibition of USP7 enhances CD8 + T cell activity in liver cancer by suppressing PRDM1-mediated FGL1 upregulation. Acta Pharmacol Sin 2024; 45:1686-1700. [PMID: 38589688 PMCID: PMC11272784 DOI: 10.1038/s41401-024-01263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Lymphocyte activation gene 3 (LAG3), an immune checkpoint molecule expressed on activated T cells, functions as a negative regulator of immune responses. Persistent antigen exposure in the tumor microenvironment results in sustained LAG3 expression on T cells, contributing to T cell dysfunction. Fibrinogen-like protein 1 (FGL1) has been identified as a major ligand of LAG3, and FGL1/LAG3 interaction forms a novel immune checkpoint pathway that results in tumor immune evasion. In addition, ubiquitin-specific peptidase 7 (USP7) plays a crucial role in cancer development. In this study we investigated the role of USP7 in modulation of FGL1-mediated liver cancer immune evasion. We showed that knockdown of USP7 or treatment with USP7 inhibitor P5091 suppressed liver cancer growth by promoting CD8+ T cell activity in Hepa1-6 xenograft mice and in HepG2 or Huh7 cells co-cultured with T cells, whereas USP7 overexpression produced the opposite effect. We found that USP7 upregulated FGL1 in HepG2 and Huh7 cells by deubiquitination of transcriptional factor PR domain zinc finger protein 1 (PRDM1), which transcriptionally activated FGL1, and attenuated the CD8+ T cell activity, leading to the liver cancer growth. Interestingly, USP7 could be transcriptionally stimulated by PRDM1 as well in a positive feedback loop. P5091, an inhibitor of USP7, was able to downregulate FGL1 expression, thus enhancing CD8+ T cell activity. In an immunocompetent liver cancer mouse model, the dual blockade of USP7 and LAG3 resulted in a superior antitumor activity compared with anti-LAG3 therapy alone. We conclude that USP7 diminishes CD8+ T cell activity by a USP7/PRDM1 positive feedback loop on FGL1 production in liver cancer; USP7 might be a promising target for liver cancer immunotherapy.
Collapse
Affiliation(s)
- Lin-Lin Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Li-Na Zhao
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jiao Sun
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China
| | - Hong-Feng Yuan
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu-Fei Wang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Chun-Yu Hou
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pan Lv
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui-Hui Zhang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guang Yang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Ning-Ning Zhang
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China.
| | - Xiao-Dong Zhang
- National Key Laboratory of Drug ability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer / Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Wei Lu
- Department of Hepatobiliary Oncology, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, 300060, China.
| |
Collapse
|
5
|
Zhao M, Huang C, Yang L, Pan B, Yang S, Chang J, Jin Y, Zhao G, Yue D, Qie S, Ren L. SYVN1-mediated ubiquitylation directs localization of MCT4 in the plasma membrane to promote the progression of lung adenocarcinoma. Cell Death Dis 2023; 14:666. [PMID: 37816756 PMCID: PMC10564934 DOI: 10.1038/s41419-023-06208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 09/09/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Tumour cells mainly generate energy from glycolysis, which is commonly coupled with lactate production even under normoxic conditions. As a critical lactate transporter, monocarboxylate transporter 4 (MCT4) is highly expressed in glycolytic tissues, such as muscles and tumours. Overexpression of MCT4 is associated with poor prognosis for patients with various tumours. However, how MCT4 function is post-translationally regulated remains largely unknown. Taking advantage of human lung adenocarcinoma (LUAD) cells, this study revealed that MCT4 can be polyubiquitylated in a nonproteolytic manner by SYVN1 E3 ubiquitin ligase. The polyubiquitylation facilitates the localization of MCT4 into the plasma membrane, which improves lactate export by MCT4; in accordance, metabolism characterized by reduced glycolysis and lactate production is effectively reprogrammed by SYVN1 knockdown, which can be reversed by MCT4 overexpression. Biologically, SYVN1 knockdown successfully compromises cell proliferation and tumour xenograft growth in mouse models that can be partially rescued by overexpression of MCT4. Clinicopathologically, overexpression of SYVN1 is associated with poor prognosis in patients with LUAD, highlighting the importance of the SYVN1-MCT4 axis, which performs metabolic reprogramming during the progression of LUAD.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chen Huang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lexin Yang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Boyu Pan
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Shuting Yang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jiao Chang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yu Jin
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Gang Zhao
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Dongsheng Yue
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Lung Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Shuo Qie
- National Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Pathology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- National Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Prevention and Therapy (Tianjin), Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
| |
Collapse
|
6
|
Mouawad N, Capasso G, Ruggeri E, Martinello L, Severin F, Visentin A, Facco M, Trentin L, Frezzato F. Is It Still Possible to Think about HSP70 as a Therapeutic Target in Onco-Hematological Diseases? Biomolecules 2023; 13:biom13040604. [PMID: 37189352 DOI: 10.3390/biom13040604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The search for molecules to be targeted that are involved in apoptosis resistance/increased survival and pathogenesis of onco-hematological malignancies is ongoing since these diseases are still not completely understood. Over the years, a good candidate has been identified in the Heat Shock Protein of 70kDa (HSP70), a molecule defined as “the most cytoprotective protein ever been described”. HSP70 is induced in response to a wide variety of physiological and environmental insults, allowing cells to survive lethal conditions. This molecular chaperone has been detected and studied in almost all the onco-hematological diseases and is also correlated to poor prognosis and resistance to therapy. In this review, we give an overview of the discoveries that have led us to consider HSP70 as a therapeutic target for mono- or combination-therapies in acute and chronic leukemias, multiple myeloma and different types of lymphomas. In this excursus, we will also consider HSP70 partners, such as its transcription factor HSF1 or its co-chaperones whose druggability could indirectly affect HSP70. Finally, we will try to answer the question asked in the title of this review considering that, despite the effort made by research in this field, HSP70 inhibitors never reached the clinic.
Collapse
|
7
|
Heat-Shock Proteins in Leukemia and Lymphoma: Multitargets for Innovative Therapeutic Approaches. Cancers (Basel) 2023; 15:cancers15030984. [PMID: 36765939 PMCID: PMC9913431 DOI: 10.3390/cancers15030984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Heat-shock proteins (HSPs) are powerful chaperones that provide support for cellular functions under stress conditions but also for the homeostasis of basic cellular machinery. All cancer cells strongly rely on HSPs, as they must continuously adapt to internal but also microenvironmental stresses to survive. In solid tumors, HSPs have been described as helping to correct the folding of misfolded proteins, sustain oncogenic pathways, and prevent apoptosis. Leukemias and lymphomas also overexpress HSPs, which are frequently associated with resistance to therapy. HSPs have therefore been proposed as new therapeutic targets. Given the specific biology of hematological malignancies, it is essential to revise their role in this field, providing a more adaptable and comprehensive picture that would help design future clinical trials. To that end, this review will describe the different pathways and functions regulated by HSP27, HSP70, HSP90, and, not least, HSP110 in leukemias and lymphomas.
Collapse
|
8
|
Karamali N, Ebrahimnezhad S, Khaleghi Moghadam R, Daneshfar N, Rezaiemanesh A. HRD1 in human malignant neoplasms: Molecular mechanisms and novel therapeutic strategy for cancer. Life Sci 2022; 301:120620. [PMID: 35533759 DOI: 10.1016/j.lfs.2022.120620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
In tumor cells, the endoplasmic reticulum (ER) plays an essential role in maintaining cellular proteostasis by stimulating unfolded protein response (UPR) underlying stress conditions. ER-associated degradation (ERAD) is a critical pathway of the UPR to protect cells from ER stress-induced apoptosis and the elimination of unfolded or misfolded proteins by the ubiquitin-proteasome system (UPS). 3-Hydroxy-3-methylglutaryl reductase degradation (HRD1) as an E3 ubiquitin ligase plays an essential role in the ubiquitination and dislocation of misfolded protein in ERAD. In addition, HRD1 can target other normal folded proteins. In various types of cancer, the expression of HRD1 is dysregulated, and it targets different molecules to develop cancer hallmarks or suppress the progression of the disease. Recent investigations have defined the role of HRD1 in drug resistance in types of cancer. This review focuses on the molecular mechanisms of HRD1 and its roles in cancer pathogenesis and discusses the worthiness of targeting HRD1 as a novel therapeutic strategy in cancer.
Collapse
Affiliation(s)
- Negin Karamali
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Samaneh Ebrahimnezhad
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Reihaneh Khaleghi Moghadam
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Niloofar Daneshfar
- Student Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Rezaiemanesh
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Chen YF, Shao GC, Li J, Yang AQ, Li J, Ye XS. O-GlcNAcylation of Blimp-1 in lymphocytes inhibits its transcriptional function and is associated with migration and invasion of breast cancer cells. Mol Cancer Res 2021; 20:650-660. [PMID: 34907035 DOI: 10.1158/1541-7786.mcr-21-0405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
Lymphocyte infiltration is an important feature of cancer. There is a complex network of chemokines that influence the degree and phenotype of lymphocyte infiltration, as well as the growth, survival, migration and angiogenesis of tumor cells. High heterogeneity metastasis is a major obstacle to the treatment of breast cancer. Herein, we showed that O-GlcNAcylation of B lymphocyte-induced maturation protein-1 (Blimp-1) in lymphocytes inhibited the migration and invasion of breast cancer cells. It was found that Blimp-1 O-GlcNAcylation at Ser448 and Ser472 in lymphocytes promoted its nuclear localization, and blocked the bindings to three regions upstream of the ccl3l1 promoter to inhibit its expression. Decreased expression of CCL3L1 in lymphocytes not only decreased CCR5 expression in breast cancer cells, but also inhibited the membrane localization and activation of CCR5, thus blocking the migration and invasion of breast cancer cells in vitro. Therefore, O-GlcNAcylation of Blimp-1 in lymphocytes may serve as a new target for the treatment of metastatic breast cancer. Implications: This study reveals a new mechanism by which the lymphatic system promotes breast cancer cell metastasis.
Collapse
Affiliation(s)
- Yan-Fang Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences,, Peking University
| | | | - Jie Li
- Capital Normal University
| | | | | | - Xin-Shan Ye
- School of Pharmaceutical Sciences, Peking University
| |
Collapse
|
10
|
Ji F, Zhou M, Sun Z, Jiang Z, Zhu H, Xie Z, Ouyang X, Zhang L, Li L. Integrative proteomics reveals the role of E3 ubiquitin ligase SYVN1 in hepatocellular carcinoma metastasis. Cancer Commun (Lond) 2021; 41:1007-1023. [PMID: 34196494 PMCID: PMC8504139 DOI: 10.1002/cac2.12192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/29/2020] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
Background Tumor metastasis is a major factor for poor prognosis of hepatocellular carcinoma (HCC), but the relationship between ubiquitination and metastasis need to be studied more systematically. We analyzed the ubiquitinome of HCC in this study to have a more comprehensive insight into human HCC metastasis. Methods The protein ubiquitination levels in 15 HCC specimens with vascular invasion and 15 without vascular invasion were detected by ubiquitinome. Proteins with significantly different ubiquitination levels between HCCs with and without vascular invasion were used to predict E3 ubiquitin ligases associated with tumor metastasis. The topological network of protein substrates and corresponding E3 ubiquitin ligases was constructed to identify the key E3 ubiquitin ligase. Besides, the growth, migration and invasion ability of LM3 and HUH7 hepatoma cell lines with and without SYVN1 expression interference were measured by cell proliferation assay, subcutaneous tumor assay, umphal vein endothelium tube formation assay, transwell migration and invasion assays. Finally, the interacting proteins of SYVN1 were screened and verified by protein interaction omics, immunofluorescence, and immunoprecipitation. Ubiquitin levels of related protein substrates in LM3 and HUH7 cells were compared in negative control, SYVN1 knockdown, and SYVN1 overexpression groups. Results In this study, our whole‐cell proteomic dataset and ubiquitinomic dataset contained approximately 5600 proteins and 12,000 ubiquitinated sites. We discovered increased ubiquitinated sites with shorter ubiquitin chains during the progression of HCC metastasis. In addition, proteomic and ubiquitinomic analyses revealed that high expression of E3 ubiquitin‐protein ligase SYVN1 is related with tumor metastasis. Furthermore, we found that SYVN1 interacted with heat shock protein 90 (HSP90) and impacted the ubiquitination of eukaryotic elongation factor 2 kinase (EEF2K). Conclusions The ubiquitination profiles of HCC with and without vascular invasion were significantly different. SYVN1 was the most important E3 ubiquitin‐protein ligase responsible for this phenomenon, and it was related with tumor metastasis and growth. Therefore, SYVN1 might be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Feiyang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Menghao Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Zhengyi Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Huihui Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, Zhejiang, 310003, P. R. China
| |
Collapse
|
11
|
Fan Y, Wang J, Xu Y, Wang Y, Song T, Liang X, Jin F, Su D. Anti-Warburg effect by targeting HRD1-PFKP pathway may inhibit breast cancer progression. Cell Commun Signal 2021; 19:18. [PMID: 33588886 PMCID: PMC7883444 DOI: 10.1186/s12964-020-00679-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Our previous studies have shown that the E3 ubiquitin ligase of HMG-CoA reductase degradation 1 (HRD1) functions as a tumor suppressor, as overexpression of HRD1 suppressed breast cancer proliferation and invasion. However, its role in breast cancer cell glucose metabolism was unclear. Here, our aim was to uncover the role and molecular mechanisms of HRD1 in regulating aerobic glycolysis in breast cancer. METHODS The effect of HRD1 on robic glycolysis in breast cancer cells were assessed. Then the proliferation, colony formation ability, invasion and migration of breast cancer cells were evaluated. The relationship between HRD1 and PFKP was validated by Mass spectrometry analysis, immunofluorescence and co-immunoprecipitation. The level of PFKP ubiquitination was measured using ubiquitylation assay. Furthermore, the tumor growth and metastasis in mice xenografts were observed. RESULTS We found that upregulation of HRD1 clearly decreased aerobic glycolysis, and subsequently inhibited breast cancer proliferation and invasion. Mass spectrometry analysis results revealed a large HRD1 interactome, which included PFKP (platelet isoform of phosphofructokinase), a critical enzyme involved in the Warburg Effect in breast cancer. Mechanistically, HRD1 interacted and colocalized with PFKP in the cytoplasm, targeted PFKP for ubiquitination and degradation, and ultimately reduced PFKP expression and activity in breast cancer cells. HRD1 inhibited breast cancer growth and metastasis in vivo through a PFKP-dependent way CONCLUSIONS: Our findings reveal a new regulatory role of HRD1 in Warburg effect and provide a key contributor in breast cancer metabolism. Video abstract.
Collapse
Affiliation(s)
- Ya Fan
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Jia Wang
- Department of Breast Surgery, Institute of Breast Disease, The Second Hospital of Dalian Medical University, Dalian, Liaoning People’s Republic of China
| | - Yuemei Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu People’s Republic of China
| | - Yipin Wang
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Tao Song
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xiubin Liang
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province People’s Republic of China
| | - Dongming Su
- Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Center of Pathology and Clinical Laboratory, Sir Run Run Hospital of Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| |
Collapse
|
12
|
He Y, Khan S, Huo Z, Lv D, Zhang X, Liu X, Yuan Y, Hromas R, Xu M, Zheng G, Zhou D. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. J Hematol Oncol 2020; 13:103. [PMID: 32718354 PMCID: PMC7384229 DOI: 10.1186/s13045-020-00924-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022] Open
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that utilize the ubiquitin proteasome system (UPS) to degrade proteins of interest (POI). PROTACs are potentially superior to conventional small molecule inhibitors (SMIs) because of their unique mechanism of action (MOA, i.e., degrading POI in a sub-stoichiometric manner), ability to target "undruggable" and mutant proteins, and improved target selectivity. Therefore, PROTACs have become an emerging technology for the development of novel targeted anticancer therapeutics. In fact, some of these reported PROTACs exhibit unprecedented efficacy and specificity in degrading various oncogenic proteins and have advanced to various stages of preclinical and clinical development for the treatment of cancer and hematologic malignancy. In this review, we systematically summarize the known PROTACs that have the potential to be used to treat various hematologic malignancies and discuss strategies to improve the safety of PROTACs for clinical application. Particularly, we propose to use the latest human pan-tissue single-cell RNA sequencing data to identify hematopoietic cell type-specific/selective E3 ligases to generate tumor-specific/selective PROTACs. These PROTACs have the potential to become safer therapeutics for hematologic malignancies because they can overcome some of the on-target toxicities of SMIs and PROTACs.
Collapse
Affiliation(s)
- Yonghan He
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Sajid Khan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Zhiguang Huo
- Department of Biostatistics, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xingui Liu
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Robert Hromas
- Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, College of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
13
|
Min X, Zhang X, Li Y, Cao X, Cheng H, Li Y, Li C, Kong Q, Mao Q, Peng P, Ni Y, Li J, Duan Y, Liu L, Ding Z. HSPA12A unstabilizes CD147 to inhibit lactate export and migration in human renal cell carcinoma. Am J Cancer Res 2020; 10:8573-8590. [PMID: 32754264 PMCID: PMC7392002 DOI: 10.7150/thno.44321] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Metastasis accounts for 90% of cancer-associated mortality in patients with renal cell carcinoma (RCC). However, the clinical management of RCC metastasis is challenging. Lactate export is known to play an important role in cancer cell migration. This study investigated the role of heat shock protein A12A (HSPA12A) in RCC migration. Methods: HSPA12A expression was examined in 82 pairs of matched RCC tumors and corresponding normal kidney tissues from patients by immunoblotting and immunofluorescence analyses. The proliferation of RCC cells was analyzed using MTT and EdU incorporation assays. The migration of RCC cells was evaluated by wound healing and Transwell migration assays. Extracellular acidification was examined using Seahorse technology. Protein stability was determined following treatment with protein synthesis inhibitor cycloheximide and proteasome inhibitor MG132. Mass spectrometry, immunoprecipitation, and immunoblotting were employed to examine protein-protein interactions. Results: RCC tumors from patients showed downregulation of HSPA12A, which was associated with advanced tumor node metastasis stage. Intriguingly, overexpression of HSPA12A in RCC cells inhibited migration, whereas HSPA12A knockdown had the opposite effect. Lactate export, glycolysis rate, and CD147 protein abundance were also inhibited by HSPA12A overexpression but promoted by HSPA12A knockdown. An interaction of HSPA12A with HRD1 ubiquitin E3 ligase was detected in RCC cells. Further studies demonstrated that CD147 ubiquitination and proteasomal degradation were promoted by HSPA12A overexpression whereas inhibited by HSPA12A knockdown. Notably, the HSPA12A overexpression-induced inhibition of lactate export and migration were abolished by CD147 overexpression. Conclusion: Human RCC shows downregulation of HSPA12A. Overexpression of HSPA12A in RCC cells unstabilizes CD147 through increasing its ubiquitin-proteasome degradation, thereby inhibits lactate export and glycolysis, and ultimately suppresses RCC cell migration. Our results demonstrate that overexpression of HSPA12A might represent a viable strategy for managing RCC metastasis.
Collapse
|
14
|
Aissani B, Martinez-Maza O, Kaslow RA, Wiener HW, Bream JH, Stosor V, Martinson JJ, Jacobson LP, Shrestha S. Increasing Levels of Serum Heat Shock Protein 70 Precede the Development of AIDS-Defining Non-Hodgkin Lymphoma Among Carriers of HLA-B8-DR3. J Acquir Immune Defic Syndr 2019; 81:266-273. [PMID: 31026237 PMCID: PMC6587227 DOI: 10.1097/qai.0000000000002027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 02/13/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND We hypothesized that carriage of presumably high Hsp70-producing gene variants on a specific human major histocompatibility complex haplotype, the 8.1 ancestral haplotype (8.1AH), may predispose HIV-infected individuals to AIDS-non-Hodgkin lymphoma (NHL). SETTING We compared serum Hsp70 levels in the years preceding the diagnosis of AIDS-NHL in a matched case-control study (n = 151 pairs) nested in the Multicenter AIDS Cohort Study. METHODS We tested the impact of 8.1AH-specific single-nucleotide polymorphism (SNP) and joint SNP-human leukocyte antigen extended haplotypes previously associated with AIDS-NHL in the Multicenter AIDS Cohort Study on the circulating Hsp70 levels in mixed linear models. RESULTS We report elevated serum levels of Hsp70 in the 4 years preceding the diagnosis of AIDS-NHL in cases that carry 8.1AH, but not in noncarrier cases and not in carrier- or non-carrier-matched controls. The strongest predictor of higher serum Hsp70 was the haplotype A-G-A-C formed by SNPs rs537160(A) and rs1270942(G) in the complement factor CFB gene cluster, and rs2072633(A) and rs6467(C) in nearby RDBP and CYP21A2 located 70 Kb apart from the Hsp70 gene cluster. The association with A-G-A-C haplotype (beta = 0.718; standard error = 0.182; P = 0.0002) and with other 8.1AH-specific haplotypes including the high-producing tumor necrosis factor-alpha haplotype rs909253(G)-rs1800629(A) (beta = 0.308; standard error = 0.140; P = 0.032) were observed only with NHL identified as an AIDS-defining condition, but not as a post-AIDS condition, nor in combined AIDS and post-AIDS cases. CONCLUSION Our combined genetic and functional approach suggests that the altered level of Hsp70 is a correlate of 8.1AH-mediated AIDS-NHL. Further investigation of the Hsp70 gene cluster and nearby loci that are tagged by A-G-A-C could better elucidate the genetic determinants of the malignancy.
Collapse
Affiliation(s)
- Brahim Aissani
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Otoniel Martinez-Maza
- Departments of Obstetrics and Gynecology
- Microbiology, Immunology & Molecular Genetics; and
- Epidemiology, University of California at Los Angeles, Los Angeles, CA
| | - Richard A. Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL
- Currently Professor Emeritus of Epidemiology
| | - Howard W. Wiener
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| | - Jay H. Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | | | - Jeremy J. Martinson
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA; and
| | - Lisa P. Jacobson
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Sadeep Shrestha
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|