1
|
Yu L, Cui Y, Xing M, Sun Y, Li Z, Liu Y, Qu X, Chen S. Crystallization-Driven Controlled 2D Self-Assemblies via Aqueous RAFT Emulsion Polymerization. Macromol Rapid Commun 2024:e2400549. [PMID: 39137300 DOI: 10.1002/marc.202400549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Aqueous emulsion polymerization is a robust technique for preparing nanoparticles of block copolymers; however, it typically yields spherical nanoassemblies. The scale preparation of nanoassemblies with nonspherical high-order morphologies is a challenge, particularly 2D core-shell nanosheets. In this study, the polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are combined to demonstrate the preparation of 2D nanosheets and their aggregates via aqueous reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization. First, the crucial crystallizable component for CDSA, hydroxyethyl methacrylate polycaprolactone (HPCL) macromonomer is synthesized by ring opening polymerization (ROP). Subsequently, the RAFT emulsion polymerization of HPCL is conducted to generate crystallizable nanomicelles by a grafting-through approach. This PISA process simultaneously prepared spherical latices and bottlebrush block copolymers comprising poly(N',N'-dimethylacrylamide)-block-poly(hydroxyethyl methacrylate polycaprolactone) (PDMA-b-PHPCL). The latexes are now served as seeds for inducing the formation of 2D hexagonal nanosheets, bundle-shaped and flower-like aggregation via the CDSA of PHPCL segments and unreacted HPCL during cooling. Electron microscope analysis trace the morphology evolution of these 2D nanoparticles and reveal that an appropriate crystallized component of PHPCL blocks play a pivotal role in forming a hierarchical structure. This work demonstrates significant potential for large-scale production of 2D nanoassemblies through RAFT emulsion polymerization.
Collapse
Affiliation(s)
- Li Yu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yuhong Cui
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Mingxue Xing
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yuemeng Sun
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Zhengxiao Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Yingchun Liu
- Jinghua Plastics Industry Co. Ltd., Langfang, 065800, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Shengli Chen
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Science, Hebei University of Technology, Tianjin, 300401, P. R. China
| |
Collapse
|
2
|
Yamaguchi N, Morisako S, Isoda K. Facile Synthesis and Photoluminescent Properties of Asymmetric Perylene Diimides Capable of Tuning Emission Colors in Polymeric Matrices. Chem Asian J 2024; 19:e202400422. [PMID: 38757349 DOI: 10.1002/asia.202400422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
We report the facile synthesis of asymmetric perylene diimides (asym-PDIs) using readily available reagents, demonstrating their distinct photoluminescent properties. In CHCl3, asym-PDIs exhibit higher solubility compared to traditional perylene dyes, of which solubilities can be varied by substituent selections. Among them, UV-vis absorption spectra of CPE in CHCl3 solution displayed no aggregate peaks in the ground state, maintaining high photoluminescent quantum yields. Also, CPE can be readily dispersed into poly(methyl methacrylate) PMMA (CPE-PMMA), forming thin films without aggregate formation. Importantly, the emission color of CPE-PMMA thin films significantly changes with the addition of polycyclic aromatic hydrocarbons (PAHs). These color changes should be strongly correlated with the HOMO level of the added PAHs.
Collapse
Affiliation(s)
- Natsuki Yamaguchi
- Organic Materials Chemistry Group, Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shogo Morisako
- Organic Materials Chemistry Group, Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan
| | - Kyosuke Isoda
- Organic Materials Chemistry Group, Sagami Chemical Research Institute, 2743-1 Hayakawa, Ayase, Kanagawa, 252-1193, Japan
| |
Collapse
|
3
|
Effenberg C, Gaitzsch J. Stretched or wrinkled? Looking into the polymer conformation within polymersome membranes. SOFT MATTER 2024; 20:4127-4135. [PMID: 38726767 DOI: 10.1039/d4sm00239c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Self-assembly of amphiphilic block-copolymers into polymersomes is a well-established concept. In this membrane, the hydrophilic part is considered to be loosely assembled towards the solvent, and the hydrophobic part on the inside of the membrane is considered to be more densely packed. Within the membrane, this hydrophobic part could now have a stretched conformation or be a random coil, depending on the available space and also on the chemical nature of the polymer. We now analysed the literature for works on polymersomes that determined the membrane thickness via cryo-TEM and analysed the hydrophobic part of their polymers for their conformation. Over all available block-copolymers, a variety of trends became obvious: the longer a hydrophobic block, the more coiled the conformation and the bulkier the side chains, the more stretched the polymer became. Polymers with less conformational freedom like semi-crystalline ones were present in a more stretched conformation. Both trends could be exemplified on various occasions in this cross-literature meta-study. This overview hence provides additional insight into the physical chemistry of block-copolymer membranes.
Collapse
Affiliation(s)
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e. V., Germany.
| |
Collapse
|
4
|
Li W, Zhang S, Sun M, Kleuskens S, Wilson DA. Shape Transformation of Polymer Vesicles. ACCOUNTS OF MATERIALS RESEARCH 2024; 5:453-466. [PMID: 38694189 PMCID: PMC11059097 DOI: 10.1021/accountsmr.3c00253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/29/2024] [Indexed: 05/04/2024]
Abstract
Life activities, such as respiration, are accomplished through the continuous shape modulation of cells, tissues, and organs. Developing smart materials with shape-morphing capability is a pivotal step toward life-like systems and emerging technologies of wearable electronics, soft robotics, and biomimetic actuators. Drawing inspiration from cells, smart vesicular systems have been assembled to mimic the biological shape modulation. This would enable the understanding of cellular shape adaptation and guide the design of smart materials with shape-morphing capability. Polymer vesicles assembled by amphiphilic molecules are an example of remarkable vesicular systems. The chemical versatility, physical stability, and surface functionality promise their application in nanomedicine, nanoreactor, and biomimetic systems. However, it is difficult to drive polymer vesicles away from equilibrium to induce shape transformation due to the unfavorable energy landscapes caused by the low mobility of polymer chains and low permeability of the vesicular membrane. Extensive studies in the past decades have developed various methods including dialysis, chemical addition, temperature variation, polymerization, gas exchange, etc., to drive shape transformation. Polymer vesicles can now be engineered into a variety of nonspherical shapes. Despite the brilliant progress, most of the current studies regarding the shape transformation of polymer vesicles still lie in the trial-and-error stage. It is a grand challenge to predict and program the shape transformations of polymer vesicles. An in-depth understanding of the deformation pathway of polymer vesicles would facilitate the transition from the trial-and-error stage to the computing stage. In this Account, we introduce recent progress in the shape transformation of polymer vesicles. To provide an insightful analysis, the shape transformation of polymer vesicles is divided into basic and coupled deformation. First, we discuss the basic deformation of polymer vesicles with a focus on two deformation pathways: the oblate pathway and the prolate pathway. Strategies used to trigger different deformation pathways are introduced. Second, we discuss the origin of the selectivity of two deformation pathways and the strategies used to control the selectivity. Third, we discuss the coupled deformation of polymer vesicles with a focus on the switch and coupling of two basic deformation pathways. Last, we analyze the challenges and opportunities in the shape transformation of polymer vesicles. We envision that a systematic understanding of the deformation pathway would push the shape transformation of polymer vesicles from the trial-and-error stage to the computing stage. This would enable the prediction of deformation behaviors of nanoparticles in complex environments, like blood and interstitial tissue, and access to advanced architecture desirable for man-made applications.
Collapse
Affiliation(s)
- Wei Li
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Shaohua Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Mingchen Sun
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Sandra Kleuskens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
5
|
Wang F, Liu X, Yang W, Chen Y, Liu L. Responses of assembled structures of block polyelectrolytes to electrostatic interaction strength. J Chem Phys 2024; 160:144903. [PMID: 38591688 DOI: 10.1063/5.0194617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
In this paper, the responses of assembled behaviors of block polyelectrolytes (PEs) to the strength of electrostatic interactions are studied through molecular dynamic simulations. The results show that the assembled structures closely depend on the electrostatic strength. It should be noted that PE coacervation can outweigh the nucleation of hydrophobic blocks and invert the micelle structures at strong electrostatic strengths, leading to the formation of inverted micelles of PE cores and hydrophobic coronas. In the poor solvent condition for neutral block, diverse anisotropic micelles are presented; candy-like conventional micelles of hydrophobic cores and PE patches coexist with inverted candy-like micelles of PE cores and hydrophobic patches and with Janus micelles of semi-neutral aggregate and semi-PE cluster in the presence of divalent and trivalent counterions. The formation of conventional or inverted micelle is largely determined by the type of micellar fusion, which results from the nucleation competition between electrostatic correlation and hydrophobic interaction. The merge of micelles mediated by hydrophobic attraction leads to conventional hydrophobic cores, and the fusion induced by electrostatic correlations results in PE cores micelles. At strong electrostatic strengths, the PE chains exhibit rich conformations at trivalent counterions, ranging from a fully collapsed state to a rod-like state, and parallel alignment of PE chains is found.
Collapse
Affiliation(s)
- Fujia Wang
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Xinyi Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Yang
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Yao Chen
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| | - Liyan Liu
- College of Science, Civil Aviation University of China, Tianjin 300300, China
| |
Collapse
|
6
|
Yang H, Luo Y, Jin B, Chi S, Li X. Convoluted micellar morphological transitions driven by tailorable mesogenic ordering effect from discotic mesogen-containing block copolymer. Nat Commun 2024; 15:2968. [PMID: 38580629 PMCID: PMC10997646 DOI: 10.1038/s41467-024-47312-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
Solution-state self-assemblies of block copolymers to form nanostructures are tremendously attractive for their tailorable morphologies and functionalities. While incorporating moieties with strong ordering effects may introduce highly orientational control over the molecular packing and dictate assembly behaviors, subtle and delicate driving forces can yield slower kinetics to reveal manifold metastable morphologies. Herein, we report the unusually convoluted self-assembly behaviors of a liquid crystalline block copolymer bearing triphenylene discotic mesogens. They undergo unusual multiple morphological transitions spontaneously, driven by their intrinsic subtle liquid crystalline ordering effect. Meanwhile, liquid crystalline orderedness can also be built very quickly by doping the mesogens with small-molecule dopants, and the morphological transitions are dramatically accelerated and various exotic micelles are produced. Surprisingly, with high doping levels, the self-assembly mechanism of this block copolymer is completely changed from intramolecular chain shuffling and rearrangement to nucleation-growth mode, based on which self-seeding experiments can be conducted to produce highly uniform fibrils.
Collapse
Affiliation(s)
- Huanzhi Yang
- School of Materials Science and Engineering. Beijing Institute of Technology, 100081, Beijing, China
| | - Yunjun Luo
- School of Materials Science and Engineering. Beijing Institute of Technology, 100081, Beijing, China
- Key Laboratory of High Energy Density Materials, MOE. Beijing Institute of Technology, 100081, Beijing, China
| | - Bixin Jin
- School of Materials Science and Engineering. Beijing Institute of Technology, 100081, Beijing, China.
| | - Shumeng Chi
- School of Materials Science and Engineering. Beijing Institute of Technology, 100081, Beijing, China
- Experimental Center of Advanced Materials, Beijing Institute of Technology, 100081, Beijing, China
| | - Xiaoyu Li
- School of Materials Science and Engineering. Beijing Institute of Technology, 100081, Beijing, China.
- Key Laboratory of High Energy Density Materials, MOE. Beijing Institute of Technology, 100081, Beijing, China.
- Experimental Center of Advanced Materials, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
7
|
Zhu Y, Cao S, Huo M, van Hest JCM, Che H. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. Chem Sci 2023; 14:7411-7437. [PMID: 37449076 PMCID: PMC10337762 DOI: 10.1039/d3sc01707a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Polymersomes are vesicular nanostructures enclosed by a bilayer-membrane self-assembled from amphiphilic block copolymers, which exhibit higher stability compared with their biological analogues (e.g. liposomes). Due to their versatility, polymersomes have found various applications in different research fields such as drug delivery, nanomedicine, biological nanoreactors, and artificial cells. However, polymersomes prepared with high molecular weight components typically display low permeability to molecules and ions. It hence remains a major challenge to balance the opposing features of robustness and permeability of polymersomes. In this review, we focus on the design and strategies for fabricating permeable polymersomes, including polymersomes with intrinsic permeability, the formation of nanopores in the membrane bilayers by protein insertion, and the construction of stimuli-responsive polymersomes. Then, we highlight the applications of permeable polymersomes in the fields of biomimetic nanoreactors, artificial cells and organelles, and nanomedicine, to underline the challenges in the development of polymersomes as soft matter with biomedical utilities.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Meng Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| |
Collapse
|
8
|
Sun J, Kleuskens S, Luan J, Wang D, Zhang S, Li W, Uysal G, Wilson DA. Morphogenesis of starfish polymersomes. Nat Commun 2023; 14:3612. [PMID: 37330564 PMCID: PMC10276845 DOI: 10.1038/s41467-023-39305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 06/06/2023] [Indexed: 06/19/2023] Open
Abstract
The enhanced membrane stability and chemical versatility of polymeric vesicles have made them promising tools in micro/nanoreactors, drug delivery, cell mimicking, etc. However, shape control over polymersomes remains a challenge and has restricted their full potential. Here we show that local curvature formation on the polymeric membrane can be controlled by applying poly(N-isopropylacrylamide) as a responsive hydrophobic unit, while adding salt ions to modulate the properties of poly(N-isopropylacrylamide) and its interaction with the polymeric membrane. Polymersomes with multiple arms are fabricated, and the number of arms could be tuned by salt concentration. Furthermore, the salt ions are shown to have a thermodynamic effect on the insertion of poly(N-isopropylacrylamide) into the polymeric membrane. This controlled shape transformation can provide evidence for studying the role of salt ions in curvature formation on polymeric membranes and biomembranes. Moreover, potential stimuli-responsive non-spherical polymersomes can be good candidates for various applications, especially in nanomedicine.
Collapse
Affiliation(s)
- Jiawei Sun
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Sandra Kleuskens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Jiabin Luan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Danni Wang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Shaohua Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Wei Li
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Gizem Uysal
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
9
|
Priyadarshani J, Awasthi P, Das S, Chakraborty S. Thermally-modulated shape transition at the interface of soft gel filament and hydrophobic substrate. J Colloid Interface Sci 2023; 640:246-260. [PMID: 36863181 DOI: 10.1016/j.jcis.2023.02.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
A liquid filament may pinch off into different shapes on interacting with a soft surface, as modulated by the interplay of inertial, capillary, and viscous forces. While similar shape transitions may intuitively be realized for more complex materials such as soft gel filaments as well, their intricate controllability towards deriving precise and stable morphological features remains challenging, as attributed to the complexities stemming from the underlying interfacial interactions over the relevant length and time scales during the sol-gel transition process. Circumventing these deficits in the reported literature, here we report a new means of precisely-controlled fabrication of gel microbeads via exploiting thermally-modulated instabilities of a soft filament atop a hydrophobic substrate. Our experiments reveal that abrupt morphological transitions of the gel material set in at a threshold temperature, resulting in spontaneous capillary thinning and filament breakup. We show that this phenomenon may be precisely modulated by an alteration in the hydration state of the gel material that may be preferentially dictated by its intrinsic glycerol content. Our results demonstrate that the consequent morphological transitions give rise to topologically-selective microbeads as an exclusive signature of the interfacial interactions of the gel material with the deformable hydrophobic interface underneath. Thus, intricate control may be imposed on the spatio-temporal evolution of the deforming gel, facilitating the inception of highly ordered structures of specific shapes and dimensionalities on demand. This is likely to advance the strategies of long shelf-life analytical biomaterial encapsulations via realizing one-step physical immobilization of bio-analytes on the bead surfaces as a new route to controlled materials processing, without demanding any resourced microfabrication facility or delicate consumable materials.
Collapse
Affiliation(s)
- Jyotsana Priyadarshani
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Mechanical Engineering, KU Leuven, Leuven 3001, Belgium
| | - Prasoon Awasthi
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Soumen Das
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
10
|
Gouveia MG, Wesseler JP, Ramaekers J, Weder C, Scholten PBV, Bruns N. Polymersome-based protein drug delivery - quo vadis? Chem Soc Rev 2023; 52:728-778. [PMID: 36537575 PMCID: PMC9890519 DOI: 10.1039/d2cs00106c] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Indexed: 12/24/2022]
Abstract
Protein-based therapeutics are an attractive alternative to established therapeutic approaches and represent one of the fastest growing families of drugs. While many of these proteins can be delivered using established formulations, the intrinsic sensitivity of proteins to denaturation sometimes calls for a protective carrier to allow administration. Historically, lipid-based self-assembled structures, notably liposomes, have performed this function. After the discovery of polymersome-based targeted drug-delivery systems, which offer manifold advantages over lipid-based structures, the scientific community expected that such systems would take the therapeutic world by storm. However, no polymersome formulations have been commercialised. In this review article, we discuss key obstacles for the sluggish translation of polymersome-based protein nanocarriers into approved pharmaceuticals, which include limitations imparted by the use of non-degradable polymers, the intricacies of polymersome production methods, and the complexity of the in vivo journey of polymersomes across various biological barriers. Considering this complex subject from a polymer chemist's point of view, we highlight key areas that are worthy to explore in order to advance polymersomes to a level at which clinical trials become worthwhile and translation into pharmaceutical and nanomedical applications is realistic.
Collapse
Affiliation(s)
- Micael G Gouveia
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Justus P Wesseler
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Jobbe Ramaekers
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Christoph Weder
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Philip B V Scholten
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | - Nico Bruns
- Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, UK
- Department of Chemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
11
|
Zhang S, Li W, Luan J, Srivastava A, Carnevale V, Klein ML, Sun J, Wang D, Teora SP, Rijpkema SJ, Meeldijk JD, Wilson DA. Adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) host for programmable surface functionalization. Nat Chem 2023; 15:240-247. [PMID: 36411361 PMCID: PMC9899690 DOI: 10.1038/s41557-022-01090-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/17/2022] [Indexed: 11/22/2022]
Abstract
Covalent and non-covalent molecular binding are two strategies to tailor surface properties and functions. However, the lack of responsiveness and requirement for specific binding groups makes spatiotemporal control challenging. Here, we report the adaptive insertion of a hydrophobic anchor into a poly(ethylene glycol) (PEG) host as a non-covalent binding strategy for surface functionalization. By using polycyclic aromatic hydrocarbons as the hydrophobic anchor, hydrophilic charged and non-charged functional modules were spontaneously loaded onto PEG corona in 2 min without the assistance of any catalysts and binding groups. The thermodynamically favourable insertion of the hydrophobic anchor can be reversed by pulling the functional module, enabling programmable surface functionalization. We anticipate that the adaptive molecular recognition between the hydrophobic anchor and the PEG host will challenge the hydrophilic understanding of PEG and enhance the progress in nanomedicine, advanced materials and nanotechnology.
Collapse
Affiliation(s)
- Shaohua Zhang
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Wei Li
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Jiabin Luan
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Abhinav Srivastava
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine (iGEM) and Department of Biology, Temple University, Philadelphia, PA USA ,grid.264727.20000 0001 2248 3398Institute for Computational Molecular Science, Temple University, Philadelphia, PA USA
| | - Vincenzo Carnevale
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine (iGEM) and Department of Biology, Temple University, Philadelphia, PA USA ,grid.264727.20000 0001 2248 3398Institute for Computational Molecular Science, Temple University, Philadelphia, PA USA
| | - Michael L. Klein
- grid.264727.20000 0001 2248 3398Institute for Computational Molecular Science, Temple University, Philadelphia, PA USA
| | - Jiawei Sun
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Danni Wang
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Serena P. Teora
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Sjoerd J. Rijpkema
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| | - Johannes D. Meeldijk
- grid.5477.10000000120346234Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, the Netherlands
| | - Daniela A. Wilson
- grid.5590.90000000122931605Institute for Molecules and Materials, Radboud University, Nijmegen, the Netherlands
| |
Collapse
|
12
|
Moorthy H, Datta LP, Samanta S, Govindaraju T. Multifunctional Architectures of Cyclic Dipeptide Copolymers and Composites, and Modulation of Multifaceted Amyloid-β Toxicity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56535-56547. [PMID: 36516435 DOI: 10.1021/acsami.2c16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Alzheimer's disease (AD) is a major neurodegenerative disorder primarily characterized by the β-amyloid (Aβ42) misfolding and aggregation-associated multifaceted amyloid toxicity encompassing oxidative stress, neuronal death, and severe cognitive impairment. Modulation of Aβ42 aggregation via various structurally anisotropic macromolecular systems is considered effective in protecting neuronal cells. In this regard, we have developed a cyclic dipeptide (CDP)-based copolymer (CP) and explored its material and biomedical properties. Owing to the structural versatility, CDP-CP forms solvent-dependent anisotropic architectures ranging from dense fibers and mesosheets to vesicles, which are shown to interact with dyes and nanoparticles and mimic synthetic protocells, providing a conceptually new approach to achieve advanced functional materials with the hierarchical organization. CP upon interaction with gold nanoparticles (GNP) and polyoxometalate (POM) generated faceted architectures (CP-GNP) and the nanocomposite (CP-POM), respectively. CP-GNP and CP-POM have shown remarkable ability to inhibit Aβ42 aggregation, dissolve the preformed aggregates, and scavenge reactive oxygen species (ROS) to ameliorate multifaceted amyloid toxicity. In cellulo studies show that CP-GNP and CP-POM protect neuronal cells from Aβ42-induced toxicity and reduce lipopolysaccharide (LPS)-activated neuroinflammation at sub-micromolar concentration. To our knowledge, this is the first report on the hierarchical organization of CDP-CP into 1D-to-2D architectures and their organic-inorganic hybrid nanocomposites to combat the multifaceted amyloid toxicity.
Collapse
Affiliation(s)
- Hariharan Moorthy
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Lakshmi Priya Datta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Sourav Samanta
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit and the School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bengaluru 560064, Karnataka, India
| |
Collapse
|
13
|
Gao F, Yu B, Cong H, Shen Y. Delivery process and effective design of vectors for cancer therapy. J Mater Chem B 2022; 10:6896-6921. [PMID: 36048171 DOI: 10.1039/d2tb01326f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, the efficacy of nano-drugs has not been significantly better than that of the drugs themselves, mainly because nano-drugs enter the tumor vasculature, stay near the blood vessels, and cannot enter the tumor tissues or tumor cells to complete the drug delivery process. Although intratumor injection can significantly decrease this risk, the side effects are strong. The advent of drug delivery carrier materials offers an opportunity to avoid the side effects of systemic drug delivery and the damage caused by tumor resection, holding great promise for the future of cancer therapy. Here, we systematically review recent research advances in the classification of drug delivery carrier materials and the delivery process in drug delivery systems. This review is divided into several main sections, first, we summarize the classification of tumor drug carrier materials, including drug delivery vectors and gene delivery vectors, etc., which are introduced in detail, respectively. Then we describe the carrier materials to deliver the drug cascade and the transition pathways for drug delivery, including stabilization transitions, charge inversions, and size changes. Finally, we discuss the current design strategies and research progress of drug vectors and provide a summary and outlook. This review aims to summarize different drug delivery vehicles and delivery processes to provide ideas for effective cancer therapy.
Collapse
Affiliation(s)
- Fengyuan Gao
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China. .,Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
14
|
Thermoresponsive Polymer Assemblies: From Molecular Design to Theranostics Application. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Wong S, Cao C, Lessio M, Stenzel MH. Sugar-induced self-assembly of curcumin-based polydopamine nanocapsules with high loading capacity for dual drug delivery. NANOSCALE 2022; 14:9448-9458. [PMID: 35735130 DOI: 10.1039/d2nr01795d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many drug delivery carriers reported in the literature require multistep assembly or often have very low drug loading capacities. Here, we present a simple sugar-based strategy that feeds the increased interest in high-loading nanomedicine. The driving force of the supramolecular nanocapsule formation is the interaction between curcumin (CCM) and the monosaccharide fructose. Drug and sugar are simply mixed in an aqueous solution in an open vessel, followed by coating the nanocapsules with polydopamine (PDA) to maintain structural integrity. We show that nanocapsules can still be obtained when other drugs are added, producing dual-drug nanoparticles with sizes of around 150-200 nm and drug loading contents of around 90% depending on the thickness of the PDA shell. This concept is widely applicable for a broad variety of drugs, as long as the drug has similar polarities to CCM. The key to success is the interaction of CCM and the second drug as shown in computational studies. The drug was able to be released from the nanocapsule at a release rate that could be fine-tuned by adjusting the thickness of the PDA layer.
Collapse
Affiliation(s)
- Sandy Wong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Cheng Cao
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Martina Lessio
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
16
|
Butler CSG, Giles LW, Sokolova AV, de Campo L, Tabor RF, Tuck KL. Structure-Performance Relationships for Tail Substituted Zwitterionic Betaine-Azobenzene Surfactants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7522-7534. [PMID: 35678153 DOI: 10.1021/acs.langmuir.2c00523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Azobenzene-containing surfactants (azo-surfactants) have garnered significant attention for their use in generating photoresponsive foams, interfaces, and colloidal systems. The photoresponsive behavior of azo-surfactants is driven by the conformational and electronic changes that occur when the azobenzene chromophore undergoes light-induced trans ⇌ cis isomerization. Effective design of surfactants and targeting of their properties requires a robust understanding of how the azobenzene functionality interacts with surfactant structure and influences overall surfactant behavior. Herein, a library of tail substituted azo-surfactants were synthesized and studied to better understand how surfactant structure can be tailored to exploit the azobenzene photoswitch. This work shows that tail group structure (length and branching) has a profound influence on the critical micelle concentration of azo-surfactants and their properties once adsorbed to an air-water interface. Neutron scattering studies revealed the unique role that intermolecular π-π azobenzene interactions have on the self-assembly of azo-surfactants, and how the influence of these interactions can be tuned using tail group structure to target specific aqueous aggregate morphologies.
Collapse
Affiliation(s)
- Calum S G Butler
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Anna V Sokolova
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
17
|
Tunable and scalable fabrication of block copolymer-based 3D polymorphic artificial cell membrane array. Nat Commun 2022; 13:1261. [PMID: 35273189 PMCID: PMC8913694 DOI: 10.1038/s41467-022-28960-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Owing to their excellent durability, tunable physical properties, and biofunctionality, block copolymer-based membranes provide a platform for various biotechnological applications. However, conventional approaches for fabricating block copolymer membranes produce only planar or suspended polymersome structures, which limits their utilization. This study is the first to demonstrate that an electric-field-assisted self-assembly technique can allow controllable and scalable fabrication of 3-dimensional block copolymer artificial cell membranes (3DBCPMs) immobilized on predefined locations. Topographically and chemically structured microwell array templates facilitate uniform patterning of block copolymers and serve as reactors for the effective growth of 3DBCPMs. Modulating the concentration of the block copolymer and the amplitude/frequency of the electric field generates 3DBCPMs with diverse shapes, controlled sizes, and high stability (100% survival over 50 days). In vitro protein–membrane assays and mimicking of human intestinal organs highlight the potential of 3DBCPMs for a variety of biological applications such as artificial cells, cell-mimetic biosensors, and bioreactors. In this manuscript, an electric-field-assisted self-assembly technique that can allow controllable and scalable fabrication of 3-dimensional block copolymer (BCP)-based artificial cell membranes (3DBCPMs) immobilized on predefined locations is presented. Topographically and chemically structured microwell array templates facilitate uniform patterning of BCPs and serve as reactors for the effective growth of 3DBCPMs, which diverse shapes, sizes and stability can be tuned by modulating the BCP concentration and the amplitude/frequency of the electric field. The potential of 3DBCPMs for a variety of biological applications is highlighted by performance of in vitro protein-membrane assays and mimicking of human intestinal organs.
Collapse
|
18
|
Panwar A, Sk MM, Lee BH, Tan LP. Synthesis and fabrication of gelatin-based elastomeric hydrogels through cosolvent-induced polymer restructuring. RSC Adv 2022; 12:7922-7934. [PMID: 35424739 PMCID: PMC8982264 DOI: 10.1039/d1ra09084d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
Hydrogels have a wide range of applications in tissue engineering, drug delivery, device fabrication for biological studies and stretchable electronics. For biomedical applications, natural polymeric hydrogels have general advantages such as biodegradability and non-toxic by products as well as biocompatibility. However, applications of nature derived hydrogels have been severely limited by their poor mechanical properties. For example, most of the protein derived hydrogels do not exhibit high stretchability like methacrylated gelatin hydrogel has ∼11% failure strain when stretched. Moreover, protein derived elastomeric hydrogels that are fabricated from low molecular weight synthetic peptides require a laborious process of synthesis and purification. Biopolymers like gelatin, produced in bulk for pharma and the food industry can provide an alternative for the development of elastomeric hydrogels. Here, we report the synthesis of ureidopyrimidinone (Upy) functionalized gelatin and its fabrication into soft elastomeric hydrogels through supramolecular interactions that could exhibit high failure strain (318.73 ± 44.35%). The hydrogels were fabricated through a novel method involving co-solvent optimization and structural transformation with 70% water content. It is anticipated that the hydrogel fabrication method involves the formation of hydrophobic cores of ureidopyrimidinone groups inside the hydrogel which introduced elastomeric properties to the resulting hydrogel.
Collapse
Affiliation(s)
- Amit Panwar
- School of Materials Science & Engineering, Nanyang Technological University Singapore
- Singapore Centre for 3D Printing (SC3DP) Singapore
| | - Md Moniruzzaman Sk
- School of Materials Science & Engineering, Nanyang Technological University Singapore
| | - Bae Hoon Lee
- Wenzhou Institute, University of Chinese Academy of Sciences China
| | - Lay Poh Tan
- School of Materials Science & Engineering, Nanyang Technological University Singapore
- Singapore Centre for 3D Printing (SC3DP) Singapore
| |
Collapse
|
19
|
Zhang N, Fan Y, Chen H, Trépout S, Brûlet A, Li MH. Polymersomes with a smectic liquid crystal structure and AIE fluorescence. Polym Chem 2022. [DOI: 10.1039/d1py01686e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Fluorescent smectic polymersomes with aggregation-induced emission are prepared from an amphiphilic block copolymer containing a liquid crystal hydrophobic block and a tetraphenylethene-bearing unit between hydrophilic and hydrophobic blocks.
Collapse
Affiliation(s)
- Nian Zhang
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Yujiao Fan
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Hui Chen
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Chaoyang District, 100029 Beijing, China
| | - Sylvain Trépout
- Institut Curie, Université Paris-Saclay, Inserm US43, CNRS UMS2016, Centre Universitaire, Bât. 101B-110-111-112, Rue Henri Becquerel, CS 90030, 91401 ORSAY Cedex, France
| | - Annie Brûlet
- Laboratoire Léon Brillouin, Université Paris-Saclay, UMR12 CEA-CNRS, CEA Saclay, 91191 Gif sur Yvette cedex, France
| | - Min-Hui Li
- Chimie ParisTech, PSL Université Paris, CNRS, Institut de Recherche de Chimie Paris, UMR8247, 11 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
20
|
Chen T, Zhang Y, Li X, Li C, Lu T, Xiao S, Liang H. Curvature-Mediated Pair Interactions of Soft Nanoparticles Adhered to a Cell Membrane. J Chem Theory Comput 2021; 17:7850-7861. [PMID: 34865469 DOI: 10.1021/acs.jctc.1c00897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The curvature-mediated interactions by cell membranes are crucial in many biological processes. We systematically studied the curvature-mediated wrapping of soft nanoparticles (NPs) by a tensionless membrane and the underlying pair interactions between NPs in determining it. We found that there are three types of wrapping pathways, namely, independence, cooperation, and tubulation. The particle size, adhesion strength, and softness are found to be strongly related with the wrapping mechanism. Reducing the adhesion strength transforms the wrapping pathway from cooperation to independence, while enhancing the NP softness requires a stronger adhesion to achieve the cooperative wrapping. This transformation of the wrapping pathway is controlled by the curvature-mediated interactions between NPs. For either soft or rigid NPs, the pair interactions are repulsive at short-ranged distances between NPs, while at long-ranged distances, a larger adhesion between NPs and a membrane is needed to generate attraction between NPs. Moreover, an enhancement of NP softness weakens the repulsion between NPs. These distinct behaviors of soft NPs are ascribed to the gentler deformation of the membrane at the face-to-face region between NPs due to the flattening and spreading of soft NPs along the membrane, requiring a reduced energy cost for soft NPs to approach each other. Our results provide a mechanistic understanding in detail about the membrane-mediated interactions between NPs and their interactions with cell membranes, which is helpful to understand the curvature-mediated assemblies of adhesive proteins or NPs on membranes, and offer novel possibilities for designing an effective NP-based vehicle for controlled drug delivery.
Collapse
Affiliation(s)
- Tongwei Chen
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yunhan Zhang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou 310027, P. R. China
| | - Chengxu Li
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Teng Lu
- Computer Network Information Center of the Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Shiyan Xiao
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Haojun Liang
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, P. R. China.,Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
21
|
Yang H, Zheng X, Zheng Z, He J, Kong D, Ding K, Zhou S. Precise Control of Shape-Variable Nanomicelles in Nanofibers Reveals the Enhancement Mechanism of Passive Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54715-54726. [PMID: 34757716 DOI: 10.1021/acsami.1c15858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nowadays, the development of nanoparticles is known to be mainly associated with enhancement of the targeted delivery of the active component to solid tumors. However, the lack of understanding of the nanoparticle morphology restricts the transport efficiency of various nanocarriers, especially offers no consistent mechanism for the delivery. Here, we demonstrate the principles of enhancement of passive delivery utilizing the precise control and analysis of shape-switchable nanomicelles without any functional addition. We successfully regulated the nanomicelle shape with various aspect ratios in the electrospun nanofiber matrix and devised a stretching phase diagram. Using the vascular leakage model, visual laser spectrum, and image analysis in the simulated scene, we found that the deformed nanomicelles with high aspect ratios along with lower equivalent volumes were significantly beneficial to the passive delivery. Further, the enhanced permeability of the shape-variable nanomicelles in the recovering state was up to 4 times of that observed before recovery. Our results challenge the current consensus of passive targeting and provide an important guidance for the design of nanoparticle morphology and active addition in cancer nanomedicine.
Collapse
Affiliation(s)
- Huikai Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaotong Zheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhiwen Zheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Jing He
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Degang Kong
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Kai Ding
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
22
|
Cao S, Wu H, Pijpers IAB, Shao J, Abdelmohsen LKEA, Williams DS, van Hest JCM. Cucurbit-Like Polymersomes with Aggregation-Induced Emission Properties Show Enzyme-Mediated Motility. ACS NANO 2021; 15:18270-18278. [PMID: 34668368 PMCID: PMC8613902 DOI: 10.1021/acsnano.1c07343] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/18/2021] [Indexed: 06/06/2023]
Abstract
Polymersomes that incorporate aggregation-induced emission (AIE) moieties are attractive inherently fluorescent nanoparticles with biomedical application potential for cell/tissue imaging and tracking, as well as phototherapeutics. An intriguing feature that has not been explored yet is their ability to adopt a range of asymmetric morphologies. Structural asymmetry allows nanoparticles to be exploited as active (motile) systems. Here, we present the design and preparation of AIE fluorophore integrated (AIEgenic) cucurbit-shaped polymersome nanomotors with enzyme-powered motility. The cucurbit scaffold was constructed via morphology engineering of biodegradable fluorescent AIE-polymersomes, followed by functionalization with enzymatic machinery via a layer-by-layer (LBL) self-assembly process. Because of the enzyme-mediated decomposition of chemical fuel on the cucurbit-like nanomotor surface, enhanced directed motion was attained, when compared with the spherical counterparts. These cucurbit-shaped biodegradable AIE-nanomotors provide a promising platform for the development of active delivery systems with potential for biomedical applications.
Collapse
Affiliation(s)
- Shoupeng Cao
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Imke A. B. Pijpers
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - David S. Williams
- School
of Cellular and Molecular Medicine, University
of Bristol, University
Walk, Bristol BS8 1TD, U.K.
| | - Jan C. M. van Hest
- Bio-Organic
Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
23
|
Feng W, Huang Z, Kang X, Zhao D, Li H, Li G, Xu J, Wang X. Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules 2021; 22:4871-4882. [PMID: 34636237 DOI: 10.1021/acs.biomac.1c01164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing safe and efficient delivery vehicles for chemotherapeutic drugs has been a long-standing demanding. Amino acid-based polymers are promising candidates to address this challenge due to their excellent biocompatibility and biodegradation. Herein, a series of well-defined amphiphilic block copolymers were prepared by PET-RAFT polymerization of N-acryloyl amino acid monomers. By altering monomer types and the block ratio of the copolymers, the copolymers self-assembled into nanostructures with various morphologies, including spheres, rod-like, fibers, and lamellae via hydrophobic and hydrogen bonding interactions. Significantly, the nanoparticles (NPs) assembled from amphiphilic block copolymers poly(N-acryloyl-valine)-b-poly(N-acryloyl-aspartic acid) (PV-b-PD) displayed an appealing cargo loading efficiency (21.8-32.6%) for a broad range of drugs (paclitaxel, doxorubicin (DOX), cisplatin, etc.) due to strong interactions. The DOX-loaded PV-b-PD NPs exhibited rapid cellular uptake (within 1 min) and a great therapeutic performance. These drug delivery systems provide new insights for regulating the controlled morphologies and improving the efficiency of drug delivery.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixuan Huang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
24
|
Cook AB, Clemons TD. Bottom‐Up versus Top‐Down Strategies for Morphology Control in Polymer‐Based Biomedical Materials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alexander B. Cook
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
| | - Tristan D. Clemons
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
25
|
Kozlovskaya V, Kharlampieva E. Anisotropic Particles through Multilayer Assembly. Macromol Biosci 2021; 22:e2100328. [PMID: 34644008 DOI: 10.1002/mabi.202100328] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/24/2021] [Indexed: 12/17/2022]
Abstract
The anisotropy in the shape of polymeric particles has been demonstrated to have many advantages over spherical particulates, including bio-mimetic behavior, shaped-directed flow, deformation, surface adhesion, targeting, motion, and permeability. The layer-by-layer (LbL) assembly is uniquely suited for synthesizing anisotropic particles as this method allows for simple and versatile replication of diverse colloid geometries with precise control over their chemical and physical properties. This review highlights recent progress in anisotropic particles of micrometer and nanometer sizes produced by a templated multilayer assembly of synthetic and biological macromolecules. Synthetic approaches to produce capsules and hydrogels utilizing anisotropic templates such as biological, polymeric, bulk hydrogel, inorganic colloids, and metal-organic framework crystals as sacrificial templates are overviewed. Structure-property relationships controlled by the anisotropy in particle shape and surface are discussed and compared with their spherical counterparts. Advances and challenges in controlling particle properties through varying shape anisotropy and surface asymmetry are outlined. The perspective applications of anisotropic colloids in biomedicine, including programmed behavior in the blood and tissues as artificial cells, nano-motors/sensors, and intelligent drug carriers are also discussed.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Chemistry Department, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Eugenia Kharlampieva
- Chemistry Department, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.,UAB Center for Nanomaterials and Biointegration, UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| |
Collapse
|
26
|
Xu M, Yim W, Zhou J, Zhou J, Jin Z, Moore C, Borum R, Jorns A, Jokerst JV. The Application of Organic Nanomaterials for Bioimaging, Drug Delivery, and Therapy: Spanning Various Domains. IEEE NANOTECHNOLOGY MAGAZINE 2021. [DOI: 10.1109/mnano.2021.3081758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
27
|
Butler CSG, King JP, Giles LW, Marlow JB, Vidallon MLP, Sokolova A, de Campo L, Tuck KL, Tabor RF. Design and synthesis of an azobenzene-betaine surfactant for photo-rheological fluids. J Colloid Interface Sci 2021; 594:669-680. [PMID: 33780770 DOI: 10.1016/j.jcis.2021.02.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 12/29/2022]
Abstract
HYPOTHESIS Morphology of surfactant self-assemblies are governed by the intermolecular interactions and packing constraints of the constituent molecules. Therefore, rational design of surfactant structure should allow targeting of the specific self-assembly modes, such as wormlike micelles (WLMs). By inclusion of an appropriate photo-responsive functionality to a surfactant molecule, light-based control of formulation properties without the need for additives can be achieved. EXPERIMENTS A novel azobenzene-containing surfactant was synthesised with the intention of producing photo-responsive wormlike micelles. Aggregation of the molecule in its cis and trans isomers, and its concomitant flow properties, were characterised using UV-vis spectroscopy, small-angle neutron scattering, and rheological measurements. Finally, the fluids capacity for mediating particle diffusion was assessed using dynamic light scattering. FINDINGS The trans isomer of the novel azo-surfactant was found to form a viscoelastic WLM network, which transitioned to inviscid ellipsoidal aggregates upon photo-switching to the cis isomer. This was accompanied by changes in zero-shear viscosity up to 16,000×. UV-vis spectroscopic and rheo-SANS analysis revealed π-π interactions of the trans azobenzene chromophore within the micelles, influencing aggregate structure and contributing to micellar rigidity. Particles dispersed in a 1 wt% surfactant solution showed a fivefold increase in apparent diffusion coefficient after UV-irradiation of the mixture.
Collapse
Affiliation(s)
- Calum S G Butler
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Joshua P King
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Luke W Giles
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Joshua B Marlow
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | | | - Anna Sokolova
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, New South Wales 2234, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
28
|
Ivanov I, Castellanos SL, Balasbas S, Otrin L, Marušič N, Vidaković-Koch T, Sundmacher K. Bottom-Up Synthesis of Artificial Cells: Recent Highlights and Future Challenges. Annu Rev Chem Biomol Eng 2021; 12:287-308. [PMID: 34097845 DOI: 10.1146/annurev-chembioeng-092220-085918] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The bottom-up approach in synthetic biology aims to create molecular ensembles that reproduce the organization and functions of living organisms and strives to integrate them in a modular and hierarchical fashion toward the basic unit of life-the cell-and beyond. This young field stands on the shoulders of fundamental research in molecular biology and biochemistry, next to synthetic chemistry, and, augmented by an engineering framework, has seen tremendous progress in recent years thanks to multiple technological and scientific advancements. In this timely review of the research over the past decade, we focus on three essential features of living cells: the ability to self-reproduce via recursive cycles of growth and division, the harnessing of energy to drive cellular processes, and the assembly of metabolic pathways. In addition, we cover the increasing efforts to establish multicellular systems via different communication strategies and critically evaluate the potential applications.
Collapse
Affiliation(s)
- Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Sebastián López Castellanos
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Severo Balasbas
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Lado Otrin
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ,
| | - Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , ,
| | - Tanja Vidaković-Koch
- Electrochemical Energy Conversion, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; ,
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, 39106 Magdeburg, Germany; , , , , .,Department of Process Systems Engineering, Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
29
|
Kubota R, Tanaka W, Hamachi I. Microscopic Imaging Techniques for Molecular Assemblies: Electron, Atomic Force, and Confocal Microscopies. Chem Rev 2021; 121:14281-14347. [DOI: 10.1021/acs.chemrev.0c01334] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ryou Kubota
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wataru Tanaka
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- JST-ERATO, Hamachi Innovative Molecular Technology for Neuroscience, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
30
|
Bhushan V, Heitz MP, Baker GA, Pandey S. Ionic Liquid-Controlled Shape Transformation of Spherical to Nonspherical Polymersomes via Hierarchical Self-Assembly of a Diblock Copolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5081-5088. [PMID: 33845575 DOI: 10.1021/acs.langmuir.1c00821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we report the self-assembly of poly(ethylene glycol) methyl ether-block-poly(ε-caprolactone) (PEG-b-PCL) copolymer in three ionic liquids (ILs) possessing different cations with common bis(trifluoromethylsulfonyl)imide anion. The observed polymeric nanostructures in ILs were directly visualized by room temperature conventional transmission and field emission scanning electron microscopy and were further examined for their size and shape by dynamic light scattering technique. The results show that through changes in the concentration of PEG-b-PCL and/or changing the solvent by using a different IL, we can effectively induce shape transformation of self-assembled PEG-b-PCL nanostructures in order to generate nonspherical polymersomes, such as worm-like aggregates, stomatocytes, nanotubes, large hexagonal and tubular-shaped polymersomes. These findings provide a promising platform for the design of biodegradable soft dynamic systems in the micro-/nano-motor field for cancer-targeted delivery, diagnosis and imaging-guided therapy, and controlled release of therapeutic drugs for treatment of many diseases. Non-spherical polymersome-based vaccines may be taken up more efficiently, especially against viruses for pulmonary drug delivery than the spherical polymersomes-based.
Collapse
Affiliation(s)
- Vidiksha Bhushan
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Mark P Heitz
- Department of Chemistry and Biochemistry, State University of New York at Brockport, Brockport, New York, New York 14420, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Siddharth Pandey
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
31
|
Katterman C, Pierce C, Larsen J. Combining Nanoparticle Shape Modulation and Polymersome Technology in Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:2853-2862. [PMID: 35014381 DOI: 10.1021/acsabm.1c00203] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This paper highlights the potential benefits of using self-assembled polymeric nanoparticles of various shapes to enhance drug uptake. First, we highlight the growth and development of the polymersome, using a liposome as a blueprint for amphiphilic codelivery. Then, we focus on the advantages of nanoparticle elongation, drawing from the field of solid nanoparticles, as opposed to self-assembled vesicles which have not yet been extensively explored in shape-modulated drug delivery applications. Notably, regardless of the material used in the solid nanoparticle systems, more elongated shapes lead to greater cellular uptake, decreased interaction with the reticuloendothelial system macrophages, and increased circulation times. Finally, we highlight the methods currently being developed to modulate polymersome shape, thus providing a drug delivery system with the benefits derived from amphiphilicity and elongated structures. Current methods employed to modulate polymersome shape involve osmotic pressure gradients, solvent switching, and the use of cross-linking agents. Although these methods are successful in modulating polymersome shapes and the benefits of elongated nanoparticles in therapeutic targeting are clear, these methods have not yet been explored for applications in drug delivery.
Collapse
|
32
|
Xu XF, Zhu RM, Pan CY, You YZ, Zhang WJ, Hong CY. Polymerization-Induced Self-Assembly Driven by the Synergistic Effects of Aromatic and Solvophobic Interactions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02882] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xiao-Fei Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ren-Man Zhu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ye-Zi You
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wen-Jian Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
33
|
Chidanguro T, Simon YC. Bent out of shape: towards non‐spherical polymersome morphologies. POLYM INT 2021. [DOI: 10.1002/pi.6203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tamuka Chidanguro
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS USA
| | - Yoan C. Simon
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS USA
| |
Collapse
|
34
|
Hazra R, Roy D. Distinctive Weak Interactions Underlie Diverse Nucleation and Small-Angle Scattering Behavior of Aqueous Cholesterol, Cholesteryl Hemisuccinate, and Glycocholic Acid. J Phys Chem B 2021; 125:612-624. [PMID: 33417461 DOI: 10.1021/acs.jpcb.0c08931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increased total cholesterol is a major cause of serious heart ailments leading to an estimated 3 million deaths annually throughout the world. Understanding the flocculation behavior of small lipids is thus quintessential. Nucleation, small-angle scattering, and dynamical behavior of lipids and analogues like cholesterol (CHL), cholesteryl hemisuccinate (CHM), and glycocholic acid (GHL) are studied in water by molecular dynamics simulation. The study shows a distinct aggregation behavior of these physiologically relevant molecules owing to a systematic gradation in their non-bonding interactions with solvents and near neighbors. Spontaneous self-assemblies formed during simulation are observed to have different stability, aggregation patterns, and dynamics depending crucially on the nature of the hydrophobic/hydrophilic tails. With increasing hydrophilicity, in the order CHL < CHM < GHL, the aggregates become breakable and less compact, often interposed by water molecules in the interstitial spaces between the lipids. Small-angle scattering data obtained from our simulations provide insights toward the structural integrity and shape of the aggregates formed. Unique features are noticed while following the time evolution of the packing of the nucleated assemblies from the solution phase in terms of local density and molecular orientation. As hydrophilicity increases from CHL to GHL, the packing becomes progressively erratic with diverse angles between the molecular vectors. Surface electrostatic potential calculation indicates drastic increase in positive surface charge from CHL to CHM, which has strong implication in water and ion transport through membranes. These observations can be further correlated to comprehend the flocculation of cholesterol and bile acids in the human body.
Collapse
Affiliation(s)
- Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad, Telangana 500078, India
| |
Collapse
|
35
|
Li L, Li Y, Wang S, Ye L, Zhang W, Zhou N, Zhang Z, Zhu X. Morphological modulation of azobenzene-containing tubular polymersomes. Polym Chem 2021. [DOI: 10.1039/d1py00099c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several external factors influencing the formation and morphologic transition of tubular vesicles were carefully investigated, including the initial polymer concentration, solvent, temperature, water adding rate, and light irradiation.
Collapse
Affiliation(s)
- Lishan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Yiwen Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu
- P. R. China
| | - Shuyuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Liandong Ye
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Wei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Nianchen Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
36
|
Chidanguro T, Ghimire E, Simon YC. Shape-transformation of polymersomes from glassy and crosslinkable ABA triblock copolymers. J Mater Chem B 2020; 8:8914-8924. [PMID: 33026406 DOI: 10.1039/d0tb01643h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Recent developments in the field of polymer vesicles, i.e. polymersomes, have demonstrated that disrupting the equilibrium conditions of the milieu could lead to shape transformation into stable non-spherical morphologies, bringing on-demand shape control to reality and bearing great promise for cell mimicry and a variety of biomedical applications. Here, we studied the self-assembly behavior of glassy amphiphilic triblock copolymers, poly(ethylene glycol)-block-polystyrene-stat-poly(coumarin methacrylate)-block-poly(ethylene glycol) (PEG-b-P(S-stat-CMA)-b-PEG), and their response to various stimuli. By changing the respective molecular weights of both the hydrophobic P(S-stat-CMA) and the hydrophilic PEG blocks, we varied the hydrophobic volume fraction thereby accessing a range of morphologies from spherical and worm-like micelles, as well as polymersomes. For the latter, we observed that slow osmotic pressure changes induced by dialysis led to a decrease in size while rapid osmotic pressure changes by addition of a PEG fusogen led to morphological transformations into rod-like and tubular polymersomes. We also found out that chemically crosslinking the vesicles before inducing osmotic pressure changes led to the vesicles exhibiting hypotonic shock, atypical for glassy polymersomes. We believe that this approach combining the robustness of triblock copolymers and light-based transformations will help expand the toolbox to design ever more complex biomimetic constructs.
Collapse
Affiliation(s)
- Tamuka Chidanguro
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, #5050, Hattiesburg, 39406, MS, USA.
| | - Elina Ghimire
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, #5050, Hattiesburg, 39406, MS, USA.
| | - Yoan C Simon
- School of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Dr, #5050, Hattiesburg, 39406, MS, USA.
| |
Collapse
|
37
|
|
38
|
Zhang Q, Fan H, Zhang L, Jin Z. Nanodiscs Generated from the Solvent Exchange of a Block Copolymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01185] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qiuya Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Hailong Fan
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Lu Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| | - Zhaoxia Jin
- Department of Chemistry, Renmin University of China, Beijing 100872, People’s Republic of China
| |
Collapse
|
39
|
Tjandra KC, Forest CR, Wong CK, Alcantara S, Kelly HG, Ju Y, Stenzel MH, McCarroll JA, Kavallaris M, Caruso F, Kent SJ, Thordarson P. Modulating the Selectivity and Stealth Properties of Ellipsoidal Polymersomes through a Multivalent Peptide Ligand Display. Adv Healthc Mater 2020; 9:e2000261. [PMID: 32424998 DOI: 10.1002/adhm.202000261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/20/2020] [Indexed: 12/16/2022]
Abstract
There is a need for improved nanomaterials to simultaneously target cancer cells and avoid non-specific clearance by phagocytes. An ellipsoidal polymersome system is developed with a unique tunable size and shape property. These particles are functionalized with in-house phage-display cell-targeting peptide to target a medulloblastoma cell line in vitro. Particle association with medulloblastoma cells is modulated by tuning the peptide ligand density on the particles. These polymersomes has low levels of association with primary human blood phagocytes. The stealth properties of the polymersomes are further improved by including the peptide targeting moiety, an effect that is likely driven by the peptide protecting the particles from binding blood plasma proteins. Overall, this ellipsoidal polymersome system provides a promising platform to explore tumor cell targeting in vivo.
Collapse
Affiliation(s)
- Kristel C. Tjandra
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
| | - Chelsea R. Forest
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
| | - Chin Ken Wong
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
| | - Sheilajen Alcantara
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville VIC 3000 Australia
| | - Hannah G. Kelly
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville VIC 3000 Australia
| | - Yi Ju
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Martina H. Stenzel
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- School of ChemistryCentre for Advanced Macromolecular Design (CAMD)The University of New South Wales Sydney NSW 2052 Australia
| | - Joshua A. McCarroll
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Translational Cancer Nanomedicine ThemeChildren's Cancer InstituteLowy Cancer Research CentreThe University of New South Wales Sydney NSW 2031 Australia
- School of Women's and Children's HealthFaculty of MedicineThe University of New South Wales Sydney NSW 2052 Australia
| | - Maria Kavallaris
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Translational Cancer Nanomedicine ThemeChildren's Cancer InstituteLowy Cancer Research CentreThe University of New South Wales Sydney NSW 2031 Australia
- School of Women's and Children's HealthFaculty of MedicineThe University of New South Wales Sydney NSW 2052 Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Chemical EngineeringThe University of Melbourne Parkville VIC 3010 Australia
| | - Stephen J. Kent
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
- Department of Microbiology and ImmunologyThe University of Melbourne at the Peter Doherty Institute for Infection and Immunity Parkville VIC 3000 Australia
| | - Pall Thordarson
- School of ChemistryThe University of New South Wales Sydney NSW 2052 Australia
- Australian Centre for NanomedicineThe University of New South Wales Sydney NSW 2052 Australia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology Australia
| |
Collapse
|
40
|
Li L, Cui S, Hu A, Zhang W, Li Y, Zhou N, Zhang Z, Zhu X. Smart azobenzene-containing tubular polymersomes: fabrication and multiple morphological tuning. Chem Commun (Camb) 2020; 56:6237-6240. [PMID: 32373820 DOI: 10.1039/d0cc01934h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A fundamental challenge in nanomaterial science is to facilely fabricate nonspherical polymersomes. Here, several kinds of novel tubular polymersomes were fabricated via self-assembly of amphiphilic azobenzene-containing block copolymers. Besides, their shape could be tuned by multiple approaches including changes in the chemical structure, self-assembly conditions and external stimuli.
Collapse
Affiliation(s)
- Lishan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Tan Z, Lan W, Hou Z, Wang K, Li Y, Xu J, Luo X, Zhang L, Zhu J. Flow-Induced Micellar Morphological Transformation in Microfluidic Chips under Nonequilibrium State: From Aggregates to Spherical Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5377-5384. [PMID: 32345020 DOI: 10.1021/acs.langmuir.0c00836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembly of block copolymers (BCPs) in microfluidic chips is a versatile yet effective route to produce micellar aggregates with various controllable sizes and morphologies. In this study, the morphological transformation of the BCP of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) assemblies from irregular aggregates to multicompartment micelles and ultimately to ordered spherical micelles is demonstrated in microfluidic chips. Our experimental and computational simulation results indicate that the transverse diffusion of solvents plays an important role in the morphological transformation of PS-b-P4VP assemblies in the confined flow condition. We find that the mixing time (tmix) between a BCP/tetrahydrofuran (THF) solution and water affects the morphological transformation. Micellar morphologies are intended to transform from aggregates to ordered spherical structures under a relatively long mixing time (tmix). In addition, it is observed that the size of the micelles decreases with the increase of the flow velocity ratio by tuning the hydrodynamic conditions of the flows. Moreover, by adjusting the initial polymer solution concentration, temperature, and weight fraction of the introduced homopolystyrene (hPS), which can affect the viscosity of the BCP solution, the flow diffusion in the microfluidic chip and the resulted micellar structures can also be readily adjusted. The current study provides a new flow-driven method to adjust the micellar ordered structural transformation under the nonequilibrium state.
Collapse
Affiliation(s)
- Zhengping Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Wei Lan
- School of Energy and Power Engineering, HUST, Wuhan 430074, China
| | - Zaiyan Hou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ke Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuce Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jiangping Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaobing Luo
- School of Energy and Power Engineering, HUST, Wuhan 430074, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
42
|
Gröschel TI, Wong CK, Haataja JS, Dias MA, Gröschel AH. Direct Observation of Topological Defects in Striped Block Copolymer Discs and Polymersomes. ACS NANO 2020; 14:4829-4838. [PMID: 32243133 DOI: 10.1021/acsnano.0c00718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Topology and defects are of fundamental importance for ordered structures on all length scales. Despite extensive research on block copolymer self-assembly in solution, knowledge about topological defects and their effect on nanostructure formation has remained limited. Here, we report on the self-assembly of block copolymer discs and polymersomes with a cylinder line pattern on the surface that develops specific combinations of topological defects to satisfy the Euler characteristics for closed spheres as described by Gauss-Bonnet theorem. The dimension of the line pattern allows the direct visualization of defect emergence, evolution, and annihilation. On discs, cylinders either form end-caps that coincide with λ+1/2 disclinations or they bend around τ+1/2 disclinations in 180° turns (hairpin loops). On polymersomes, two λ+1/2 defects connect into three-dimensional (3D) Archimedean spirals, while two τ+1/2 defects form 3D Fermat spirals. Electron tomography reveals two complementary line patterns on the inside and outside of the polymersome membrane, where λ+1/2 and τ+1/2 disclinations always eclipse on opposing sides ("defect communication"). Attractive defects are able to annihilate with each other into +1 disclinations and stabilize anisotropic polymersomes with sharp tips through screening of high-energy curvature. This study fosters our understanding of the behavior of topological defects in self-assembled polymer materials and aids in the design of polymersomes with preprogrammed shapes governed by synthetic block length and topological rules.
Collapse
Affiliation(s)
- Tina I Gröschel
- Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Chin Ken Wong
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, 48149 Münster, Germany
| | - Johannes S Haataja
- Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, United Kingdom
| | - Marcelo A Dias
- Department of Engineering, Aarhus University, Inge Lehmanns Gade 10, 8000 Aarhus C, Denmark
| | - Andre H Gröschel
- Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany
- Physical Chemistry and Center for Soft Nanoscience (SoN), University of Münster, 48149 Münster, Germany
| |
Collapse
|
43
|
Affiliation(s)
- Jiangang Xiao
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
44
|
Beltrán A, Burguete MI, Galindo F, Luis SV. Synthesis of new fluorescent pyrylium dyes and study of their interaction with N-protected amino acids. NEW J CHEM 2020. [DOI: 10.1039/d0nj02033h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Six new fluorescent styrylpyrylium dyes have been synthesized and the collisional quenching taking place upon their interaction with Z-protected amino acids has been studied.
Collapse
Affiliation(s)
- Alicia Beltrán
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Avda. Vicente Sos Baynat s/n
- Castellón
- Spain
| | - M. Isabel Burguete
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Avda. Vicente Sos Baynat s/n
- Castellón
- Spain
| | - Francisco Galindo
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Avda. Vicente Sos Baynat s/n
- Castellón
- Spain
| | - Santiago V. Luis
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Avda. Vicente Sos Baynat s/n
- Castellón
- Spain
| |
Collapse
|
45
|
Che H, de Windt LNJ, Zhu J, Pijpers IAB, Mason AF, Abdelmohsen LKEA, van Hest JCM. Pathway dependent shape-transformation of azide-decorated polymersomes. Chem Commun (Camb) 2020; 56:2127-2130. [DOI: 10.1039/c9cc08944f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we report the shape transformation of poly(ethylene glycol)–polystyrene (PEG–PS) polymersomes into ordered inverse morphologies, directed by the salt concentration of the medium and the presence of azide groups on the polymersome surface.
Collapse
Affiliation(s)
- Hailong Che
- Eindhoven University of Technology
- Institute for Complex Molecular Systems
- 5600MB Eindhoven
- The Netherlands
| | - Lafayette N. J. de Windt
- Eindhoven University of Technology
- Institute for Complex Molecular Systems
- 5600MB Eindhoven
- The Netherlands
| | - Jianzhi Zhu
- Eindhoven University of Technology
- Institute for Complex Molecular Systems
- 5600MB Eindhoven
- The Netherlands
| | - Imke A. B. Pijpers
- Eindhoven University of Technology
- Institute for Complex Molecular Systems
- 5600MB Eindhoven
- The Netherlands
| | - Alexander F. Mason
- Eindhoven University of Technology
- Institute for Complex Molecular Systems
- 5600MB Eindhoven
- The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Eindhoven University of Technology
- Institute for Complex Molecular Systems
- 5600MB Eindhoven
- The Netherlands
| | - Jan C. M. van Hest
- Eindhoven University of Technology
- Institute for Complex Molecular Systems
- 5600MB Eindhoven
- The Netherlands
| |
Collapse
|
46
|
He X, Ji Y, Xie J, Hu W, Jia K, Liu X. Emulsion solvent evaporation induced self-assembly of polyarylene ether nitrile block copolymers into functional metal coordination polymeric microspheres. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Varlas S, Keogh R, Xie Y, Horswell SL, Foster JC, O’Reilly RK. Polymerization-Induced Polymersome Fusion. J Am Chem Soc 2019; 141:20234-20248. [PMID: 31782652 PMCID: PMC6935865 DOI: 10.1021/jacs.9b10152] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Indexed: 02/06/2023]
Abstract
The dynamic interactions of membranes, particularly their fusion and fission, are critical for the transmission of chemical information between cells. Fusion is primarily driven by membrane tension built up through membrane deformation. For artificial polymersomes, fusion is commonly induced via the external application of a force field. Herein, fusion-promoted development of anisotropic tubular polymersomes (tubesomes) was achieved in the absence of an external force by exploiting the unique features of aqueous ring-opening metathesis polymerization-induced self-assembly (ROMPISA). The out-of-equilibrium tubesome morphology was found to arise spontaneously during polymerization, and the composition of each tubesome sample (purity and length distribution) could be manipulated simply by targeting different core-block degrees of polymerization (DPs). The evolution of tubesomes was shown to occur via fusion of "monomeric" spherical polymersomes, evidenced most notably by a step-growth-like relationship between the fraction of tubular to spherical nano-objects and the average number of fused particles per tubesome (analogous to monomer conversion and DP, respectively). Fusion was also confirmed by Förster resonance energy transfer (FRET) studies to show membrane blending and confocal microscopy imaging to show mixing of the polymersome lumens. We term this unique phenomenon polymerization-induced polymersome fusion, which operates via the buildup of membrane tension exerted by the growing polymer chains. Given the growing body of evidence demonstrating the importance of nanoparticle shape on biological activity, our methodology provides a facile route to reproducibly obtain samples containing mixtures of spherical and tubular polymersomes, or pure samples of tubesomes, of programmed length. Moreover, the capability to mix the interior aqueous compartments of polymersomes during polymerization-induced fusion also presents opportunities for its application in catalysis, small molecule trafficking, and drug delivery.
Collapse
Affiliation(s)
- Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Robert Keogh
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Sarah L. Horswell
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jeffrey C. Foster
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
48
|
Facile construction of shape-regulated β-cyclodextrin-based supramolecular self-assemblies for drug delivery. Carbohydr Polym 2019; 231:115714. [PMID: 31888845 DOI: 10.1016/j.carbpol.2019.115714] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022]
Abstract
Although supramolecular prodrug self-assemblies have been proven as efficient nanocarriers for cancer therapy, tedious synthesis procedures have made their practical applications more difficult. In this paper, β-cyclodextrin-based supramolecular self-assemblies (SSAs) were directly constructed by utilizing β-cyclodextrin trimer (β-CD3) as the host unit and unmodified curcumin as the guest unit. Due to the adjustment of host-guest inclusion and hydrophilic-hydrophobic interactions occurring in the SSAs, their morphology could be readily tuned by changing the ratio of the two components. Different self-assembly morphologies, such as spherical complex micelles, spindle-like complex micelles and multi-compartment vesicles, were obtained. Furthermore, basic cell experiments were performed to study the corresponding effects of the SSA shape on their biological properties. Compared to the other micelles, the spindle-like complex micelles exhibited enhanced cellular toxicity, uptake behaviors and apoptosis rates, and the spherical complex micelles exhibited poor performance. The performance of the multi-compartment vesicles was similar to that of the spindle-like complex micelles. The facile construction of these shape-regulated SSAs and their different cellular biological properties might be valuable in the controlled drug release field.
Collapse
|
49
|
Men Y, Li W, Tu Y, Peng F, Janssen GJA, Nolte RJM, Wilson DA. Nonequilibrium Reshaping of Polymersomes via Polymer Addition. ACS NANO 2019; 13:12767-12773. [PMID: 31697471 PMCID: PMC6887890 DOI: 10.1021/acsnano.9b04740] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Polymersomes are a class of artificial liposomes, assembled from amphiphilic synthetic block copolymers, holding great promise toward applications in nanomedicine. The diversity in polymersome morphological shapes and, in particular, the precise control of these shapes, which is an important aspect in drug delivery studies, remains a great challenge. This is due to a lack of general methodologies that can be applied and the inability to capture the morphologies at the nanometer scale. Here, we present a methodology that can accurately control the shape of polymersomes via the addition of polyethylene glycol (PEG) under nonequilibrium conditions. Various shapes including spheres, ellipsoids, tubes, discs, stomatocytes, nests, stomatocyte-in-stomatocytes, disc-in-discs, and large compound vesicles (LCVs) can be uniformly captured by adjusting the water content and the PEG concentration. Moreover, these shapes undergo nonequilibrium changes in time, which is reflected in their phase diagram changes. This research provides a universal tool to fabricate all shapes of polymersomes by controlling three variables: water content, PEG concentration, and time. The use of the biofriendly polymer PEG enables the application of this methodology in the field of nanomedicine.
Collapse
|
50
|
Zhou X, Xu M, Wang L, Liu X. The Adsorption of Methylene Blue by an Amphiphilic Block Co-Poly(Arylene Ether Nitrile) Microsphere-Based Adsorbent: Kinetic, Isotherm, Thermodynamic and Mechanistic Studies. NANOMATERIALS 2019; 9:nano9101356. [PMID: 31546667 PMCID: PMC6835929 DOI: 10.3390/nano9101356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 11/16/2022]
Abstract
Dye pollution is a serious problem in modern society. We desired to develop an efficient adsorbent for the decontamination of discharged dyes. In this work, the polymeric microspheres derived from a kind of amphiphilic block of co-poly(arylene ether nitrile) (B-b-S-P) were prepared on the basis of “oil-in-water” (O/W) microemulsion method. The B-b-S-P microspheres were found competent to remove the cationic dye, methylene blue (MB); and various influential factors, such as contact time, initial concentration, solution pH and temperature were investigated. Results indicated that the maximum adsorption capacity of B-b-S-P microspheres for MB was 119.84 mg/g at 25 °C in neutral conditions. Adsorption kinetics and isotherm dates were well fitted to a pseudo-second-order kinetic model and the Langmuir isotherm model, and thermodynamic parameters implied that the adsorption process was endothermic. The B-b-S-P microspheres also exhibited a highly selective adsorption for cationic dye MB, even in the presence of anionic dye methyl orange (MO). In addition, the possible adsorption mechanism was studied, suggesting that the electrostatic interaction and π–π interaction could be the main force in the adsorption process.
Collapse
Affiliation(s)
- Xuefei Zhou
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Mingzhen Xu
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Lingling Wang
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Xiaobo Liu
- Research Branch of Advanced Functional Materials, School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|