1
|
Frąckowiak J, Komorowicz I, Sajnóg A, Skrypnik K, Suliburska J, Hanć A. Do probiotics and iron supplementation have any impact on element distribution in rat kidneys? - bioimaging by laser ablation inductively coupled plasma mass spectrometry. Talanta 2025; 283:127112. [PMID: 39492141 DOI: 10.1016/j.talanta.2024.127112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
This study investigates the influence of multistrain probiotics and iron supplementation on the distribution and interaction of trace elements in the kidneys of Wistar rats using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) bioimaging. Forty 6-week-old female Wistar rats were divided into five groups, each fed an AIN-93 M diet with varying additions or deficiencies of iron and probiotics, which included a control, an iron-deficient diet, an iron-deficient diet with probiotics, an iron-deficient diet with iron supplementation, and an iron-deficient diet with both probiotics and iron supplementation. The obtained two-dimensional maps of the distribution of elements reveal distinct locations of Cu, Fe, Mn, and Zn in specific tissues of rat kidneys. Specifically, Cu and Fe were co-localized in the renal cortex, while Zn was mostly absent from regions where Cu and Fe accumulated. Fe supplementation alone increased Fe in the renal cortex, while probiotics enhanced this effect, suggesting a synergistic role in Fe absorption. The total content of elements in the kidneys of all groups was determined after digestion: Cu 13.3-24.7 mg kg-1, Fe 218-509 mg kg-1, Mn 0.87-1.29 mg kg-1, and Zn 28.6-40.1 mg kg-1. Competitive interactions among Cu, Fe, and Zn were observed, with probiotics modulating their concentrations and distribution, highlighting their role in trace element homeostasis. Our research provides insights into the interactions between dietary supplements, probiotics, and trace element distribution in kidneys, paving the way for targeted nutritional interventions. This study highlights the need for further research on trace element functions in organisms and their impact on health.
Collapse
Affiliation(s)
- Julia Frąckowiak
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Izabela Komorowicz
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Adam Sajnóg
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Katarzyna Skrypnik
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Joanna Suliburska
- Department of Human Nutrition and Hygiene, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624, Poznań, Poland
| | - Anetta Hanć
- Department of Trace Analysis, Adam Mickiewicz University, Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland.
| |
Collapse
|
2
|
Xu B, Huang Y, Yu D, Chen Y. Advancements of ROS-based biomaterials for sensorineural hearing loss therapy. Biomaterials 2024; 316:123026. [PMID: 39705924 DOI: 10.1016/j.biomaterials.2024.123026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Sensorineural hearing loss (SNHL) represents a substantial global health challenge, primarily driven by oxidative stress-induced damage within the auditory system. Excessive reactive oxygen species (ROS) play a pivotal role in this pathological process, leading to cellular damage and apoptosis of cochlear hair cells, culminating in irreversible hearing impairment. Recent advancements have introduced ROS-scavenging biomaterials as innovative, multifunctional platforms capable of mitigating oxidative stress. This comprehensive review systematically explores the mechanisms of ROS-mediated oxidative stress in SNHL, emphasizing etiological factors such as aging, acoustic trauma, and ototoxic medication exposure. Furthermore, it examines the therapeutic potential of ROS-scavenging biomaterials, positioning them as promising nanomedicines for targeted antioxidant intervention. By critically assessing recent advances in biomaterial design and functionality, this review thoroughly evaluates their translational potential for clinical applications. It also addresses the challenges and limitations of ROS-neutralizing strategies, while highlighting the transformative potential of these biomaterials in developing novel SNHL treatment modalities. This review advocates for continued research and development to integrate ROS-scavenging biomaterials into future clinical practice, aiming to address the unmet needs in SNHL management and potentially revolutionize the treatment landscape for this pervasive health issue.
Collapse
Affiliation(s)
- Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China; Shanghai Institute of Materdicine, Shanghai, 200012, China.
| |
Collapse
|
3
|
Lou J, Wu F, He W, Hu R, Cai Z, Chen G, Zhao W, Zhang Z, Si Y. Hesperidin activates Nrf2 to protect cochlear hair cells from cisplatin-induced damage. Redox Rep 2024; 29:2341470. [PMID: 38629504 PMCID: PMC11025410 DOI: 10.1080/13510002.2024.2341470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Cisplatin is widely employed in clinical oncology as an anticancer chemotherapy drug in clinical practice and is known for its severe ototoxic side effects. Prior research indicates that the accumulation of reactive oxygen species (ROS) plays a pivotal role in cisplatin's inner ear toxicity. Hesperidin is a flavanone glycoside extracted from citrus fruits that has anti-inflammatory and antioxidant effects. Nonetheless, the specific pharmacological actions of hesperidin in alleviating cisplatin-induced ototoxicity remain elusive. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a critical mediator of the cellular oxidative stress response, is influenced by hesperidin. Activation of Nrf2 was shown to have a protective effect against cisplatin-induced ototoxicity. The potential of hesperidin to stimulate Nrf2 in attenuating cisplatin's adverse effects on the inner ear warrants further investigation. This study employs both in vivo and in vitro models of cisplatin ototoxicity to explore this possibility. Our results reveal that hesperidin mitigates cisplatin-induced ototoxicity by activating the Nrf2/NQO1 pathway in sensory hair cells, thereby reducing ROS accumulation, preventing hair cell apoptosis, and alleviating hearing loss.
Collapse
Affiliation(s)
- Jintao Lou
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Fan Wu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wuhui He
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Rui Hu
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ziyi Cai
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Guisheng Chen
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wenji Zhao
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhigang Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yu Si
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
4
|
Li W, Xu B, Huang Y, Wang X, Yu D. Rodent models in sensorineural hearing loss research: A comprehensive review. Life Sci 2024; 358:123156. [PMID: 39442868 DOI: 10.1016/j.lfs.2024.123156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Sensorineural hearing loss (SNHL) constitutes a major global health challenge, affecting millions of individuals and substantially impairing social integration and quality of life. The complexity of the auditory system and the multifaceted nature of SNHL necessitate advanced methodologies to understand its etiology, progression, and potential therapeutic interventions. This review provides a comprehensive overview of the current animal models used in SNHL research, focusing on their selection based on specific characteristics and their contributions to elucidating pathophysiological mechanisms and evaluating novel treatment strategies. It discusses the most commonly used rodent models in hearing research, including mice, rats, guinea pigs, Mongolian gerbils, and chinchillas. Through a comparative analysis, this review underscores the importance of selecting models that align with specific research objectives in SNHL studies, discussing the advantages and limitations of each model. By advocating for a multidisciplinary approach that leverages the strengths of various animal models with technological advancements, this review aims to facilitate significant advancements in the prevention, diagnosis, and treatment of sensorineural hearing loss.
Collapse
Affiliation(s)
- Wenjing Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Baoying Xu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Yuqi Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200100, PR China
| | - Dehong Yu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai 200444, PR China.
| |
Collapse
|
5
|
Lu C, Chen C, Xu Y, Dai D, Sun C, Li Q. Activation of Wnt/β-catenin signaling to increase B lymphoma Moloney murine leukemia virus insertion region 1 by lithium chloride attenuates the toxicity of cisplatin in the HEI-OC1 auditory cells. Toxicol Lett 2024; 403:50-65. [PMID: 39608515 DOI: 10.1016/j.toxlet.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 10/31/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Cisplatin is widely used in anti-tumor therapy, but the ototoxicity caused by high-dose cisplatin often limits its efficacy, and the specific mechanism of cisplatin-induced cochlear damage is still not perfect. The Wnt/β-catenin signaling pathway is closely related to aging, embryonic development, and apoptosis. Meanwhile, B lymphoma Moloney murine leukemia virus insertion region 1 (BMI1) plays a certain role in the evolution and development of the inner ear and the occurrence and development of inner ear-related diseases. Our study intends to explore the role and specific mechanism of the Wnt/β-catenin signaling pathway and BMI1 in improving cisplatin ototoxicity. The appropriate experimental concentrations for each drug were selected by CCK-8 cell proliferation assay and Western Blot to detect apoptosis. The lentivirus transfection of HEI-OC1 cochlear hair cells was used to overexpress BMI1. Western Blot, qPCR, and immunofluorescence detected the activation of each component of BMI1 and Wnt/β-catenin signaling pathway in each experimental model. Wnt/β-catenin signaling pathway and BMI1 are jointly involved in cisplatin-induced cell injury. Low lithium chloride (LiCl) concentrations activated the Wnt/β-catenin pathway, increased BMI1 expression, and reduced cisplatin-induced hair cell injury. In contrast, overexpression of BMI1 inhibited the Wnt/β-catenin pathway and reduced hair cell injury. Meanwhile, the increased cisplatin-induced damage to hair cells by inhibiting BMI1 could not be rescued by LiCl. In conclusion, LiCl can ameliorate cisplatin ototoxicity by elevating BMI1 expression through activation of the Wnt/β-catenin pathway. Overexpression of BMI1 inhibits the Wnt/β-catenin pathway and reduces cisplatin-induced hair cell damage.
Collapse
Affiliation(s)
- Chen Lu
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chao Chen
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Yingpeng Xu
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Dingyuan Dai
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chen Sun
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China.
| | - Qi Li
- Department of ENT, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China; Medical School of Nanjing University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
6
|
Ramnarian K, Paken J. Healthcare professionals' knowledge and practices in managing ototoxicity in children with cancer. SOUTH AFRICAN JOURNAL OF COMMUNICATION DISORDERS 2024; 71:e1-e15. [PMID: 39625086 PMCID: PMC11622129 DOI: 10.4102/sajcd.v71i1.1064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/16/2024] [Accepted: 09/06/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy poses a risk of ototoxic hearing loss, the effects of which can be devastating in paediatrics with cancer. Childhood hearing loss significantly impacts speech and language acquisition, and educational, psychosocial and emotional development, consequently negatively impacting quality of life. Adequate knowledge and effective management by healthcare professionals in the team managing paediatrics with cancer are, therefore, pivotal to mitigating the severity and impact on quality of life. OBJECTIVES To describe the knowledge and practices of healthcare professionals on the management of ototoxic hearing loss in children receiving platinum-based chemotherapy drugs. METHOD Using a descriptive survey design, data were collected from self-administered questionnaires completed by 74 healthcare professionals from two hospitals in KwaZulu-Natal, South Africa. RESULTS While 45 participants (60.8%) identified ototoxicity as a side effect of platinum-based chemotherapeutic drugs, 43 (58.1%) identified dose, duration and mode of administration as risk factors, and 43 participants (72.9%) did not know the duration of an ototoxicity monitoring programme post-treatment. Fifty participants (68%) accurately identified most of their roles within the ototoxicity monitoring programme. Most participants (n = 73; 99%) did not fully adhere to Health Professions Council of South Africa (HPCSA) ototoxicity monitoring guidelines. However, a positive outcome was that 70 participants (94.6%) acknowledged the importance of the ototoxicity monitoring programme for children receiving platinum-based chemotherapy. CONCLUSION The current study demonstrates a clear correlation between healthcare professionals' practices and their level of knowledge. These findings underscore the importance of improving the knowledge base of healthcare professionals involved in ototoxicity monitoring programme to enhance their practices effectively.Contribution: This study identified areas requiring improvement in managing ototoxicity in this patient group, prompting the inclusion of ototoxicity training. This study supports audiologists in effectively implementing and overseeing ototoxicity monitoring programme.
Collapse
Affiliation(s)
- Kajal Ramnarian
- Department of Audiology, Faculty of Health Sciences, University of KwaZulu-Natal, Durban.
| | | |
Collapse
|
7
|
Teng H, Sun X, Eglitis R, Wang X, Zhang W, Wang H, Qu S, Yu Z, Liu S, Zhao Y. Chiisanoside from the Leaves of Acanthopanax sessiliflorus Can Resist Cisplatin-Induced Ototoxicity by Maintaining Cytoskeletal Homeostasis and Inhibiting Ferroptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25720-25742. [PMID: 39505327 DOI: 10.1021/acs.jafc.4c07994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Ototoxicity is a common side effect of cisplatin cancer treatment, potentially leading to hearing loss. This study demonstrated the significant protective activity of Acanthopanax sessiliflorus (A. sessiliflorus) leaves against cisplatin-induced ototoxicity (CIO), investigated the active compounds, and elucidated their mechanisms in countering CIO. UPLC-Q/TOF-MS analysis identified 79 compounds. Network pharmacology and activity screening determined that chiisanoside (CSS) plays a crucial role in combating CIO. Transcriptomics combined with network pharmacology analysis and experiments revealed that CSS activates the Dock1/PIP5K1A pathway to suppress the actin-severing protein gelsolin, protecting hair cells from cisplatin-induced cytoskeleton damage. CSS also activates the SLC7A11/GPX4 pathway via TGFBR2, reducing lipid peroxidation and intracellular iron accumulation to suppress cisplatin-induced ferroptosis. This study discovers that the major component CSS in A. sessiliflorus leaves reverses CIO by regulating actin homeostasis via Dock1 and inhibiting ferroptosis through TGFBR2, providing a theoretical basis for expanding CIO treatment targets and related drug development.
Collapse
Affiliation(s)
- Hongbo Teng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Xialin Sun
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
- College of Pharmacy, Jilin Medical University, Jilin, Jilin Province 132013, China
| | - Roberts Eglitis
- Institute of Solid State Physics, University of Latvia, Riga LV-1067, Latvia
| | - Xv Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Wenxin Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Haijing Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Shurong Qu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Zhengxuan Yu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- International Joint Laboratory for Development of Animal and Plant Resources for Food and Medicine, Changchun, Jilin Province 130118, China
| |
Collapse
|
8
|
Lee DS, Schrader A, Zou J, Ang WH, Warchol ME, Sheets L. Direct targeting of mitochondria by cisplatin leads to cytotoxicity in zebrafish lateral-line hair cells. iScience 2024; 27:110975. [PMID: 39398243 PMCID: PMC11466657 DOI: 10.1016/j.isci.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024] Open
Abstract
Cisplatin is a chemotherapy drug that causes permanent hearing loss by injuring cochlear hair cells. Hair cell mitochondria have emerged as potential mediators of hair cell cytotoxicity. Using in vivo live imaging of hair cells in the zebrafish lateral-line organ expressing a genetically encoded indicator of cumulative mitochondrial activity, we first demonstrate that greater redox history increases susceptibility to cisplatin. Next, we conducted time-lapse imaging to understand dynamic changes in mitochondrial homeostasis and observe elevated mitochondrial and cytosolic calcium that surge prior to hair cell death. Furthermore, using a localized probe that fluoresces in the presence of cisplatin, we show that cisplatin directly accumulates in hair cell mitochondria, and this accumulation occurs before mitochondrial dysregulation and apoptosis. Our findings provide evidence that cisplatin directly targets hair cell mitochondria and support that the mitochondria are integral to cisplatin cytotoxicity in hair cells.
Collapse
Affiliation(s)
- David S. Lee
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela Schrader
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jiaoxia Zou
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School – Integrated Science and Engineering Programme (ISEP), National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| | - Mark E. Warchol
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lavinia Sheets
- Department of Otolaryngology – Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
9
|
Cederroth CR, Dyhrfjeld-Johnsen J, Canlon B. Pharmacological Approaches to Hearing Loss. Pharmacol Rev 2024; 76:1063-1088. [PMID: 39164117 PMCID: PMC11549935 DOI: 10.1124/pharmrev.124.001195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 08/22/2024] Open
Abstract
Hearing disorders pose significant challenges to individuals experiencing them and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Current treatment options often focus on amplification devices, cochlear implants, or other rehabilitative therapies, leaving a substantial gap regarding effective pharmacological interventions. Advancements in our understanding of the molecular and cellular mechanisms involved in hearing disorders induced by noise, aging, and ototoxicity have opened new avenues for drug development, some of which have led to numerous clinical trials, with promising results. The development of optimal drug delivery solutions in animals and humans can also enhance the targeted delivery of medications to the ear. Moreover, large genome studies contributing to a genetic understanding of hearing loss in humans combined with advanced molecular technologies in animal studies have shown a great potential to increase our understanding of the etiologies of hearing loss. The auditory system exhibits circadian rhythms and temporal variations in its physiology, its vulnerability to auditory insults, and its responsiveness to drug treatments. The cochlear clock rhythms are under the control of the glucocorticoid system, and preclinical evidence suggests that the risk/benefit profile of hearing disorder treatments using chronopharmacological approaches would be beneficial. If translatable to the bedside, such approaches may improve the outcome of clinical trials. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug formulation and delivery as well as optimized timing of drug administration, holds great promise of more effective treatments. SIGNIFICANCE STATEMENT: Hearing disorders pose significant challenges to individuals and their overall quality of life, emphasizing the critical need for advanced pharmacological approaches to address these conditions. Ongoing research into the molecular and genetic basis of auditory disorders, coupled with advancements in drug delivery procedures and optimized timing of drug administration, holds the promise of more effective treatments.
Collapse
Affiliation(s)
- Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Jonas Dyhrfjeld-Johnsen
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden (C.R.C., B.C.); Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen, Germany (C.R.C.); and Acousia Therapeutics GmbH, Tübingen, Germany (J.D.-J.)
| |
Collapse
|
10
|
Jiang W, Wang G, Bai F, Hu B, Xu Y, Xu X, Nie G, Zhu WG, Chen F, Pei XH. BRCA1 Promotes Repair of DNA Damage in Cochlear Hair Cells and Prevents Hearing Loss. J Neurosci 2024; 44:e0132242024. [PMID: 39227158 PMCID: PMC11484548 DOI: 10.1523/jneurosci.0132-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/15/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Cochlear hair cells (HCs) sense sound waves and allow us to hear. Loss of HCs will cause irreversible sensorineural hearing loss. It is well known that DNA damage repair plays a critical role in protecting cells in many organs. However, how HCs respond to DNA damage and how defective DNA damage repair contributes to hearing loss remain elusive. In this study, we showed that cisplatin induced DNA damage in outer hair cells (OHCs) and promoted OHC loss, leading to hearing loss in mice of either sex. Cisplatin induced the expression of Brca1, a DNA damage repair factor, in OHCs. Deficiency of Brca1 induced OHC and hearing loss, and further promoted cisplatin-induced DNA damage in OHCs, accelerating OHC loss. This study provides the first in vivo evidence demonstrating that cisplatin mainly induces DNA damage in OHCs and that BRCA1 promotes repair of DNA damage in OHCs and prevents hearing loss. Our findings not only demonstrate that DNA damage-inducing agent generates DNA damage in postmitotic HCs but also suggest that DNA repair factors, like BRCA1, protect postmitotic HCs from DNA damage-induced cell death and hearing loss.
Collapse
Affiliation(s)
- Weitao Jiang
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Guanrun Wang
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Bing Hu
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yang Xu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Guohui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Wei-Guo Zhu
- Department of Biochemistry and Molecular Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen 518060, China
| | - Fangyi Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin-Hai Pei
- International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Otolaryngology, The First Affiliated Hospital, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China
| |
Collapse
|
11
|
Miao DNR, Wilke MAP, Pham J, Ladha F, Singh M, Arsenio J, Luca E, Dabdoub A, Yang W, Yang JJ, Drögemöller BI. Leveraging large-scale datasets and single cell omics data to develop a polygenic score for cisplatin-induced ototoxicity. Hum Genomics 2024; 18:112. [PMID: 39380081 PMCID: PMC11463131 DOI: 10.1186/s40246-024-00679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Cisplatin-induced ototoxicity (CIO), characterized by irreversible and progressive bilateral hearing loss, is a prevalent adverse effect of cisplatin chemotherapy. Alongside clinical risk factors, genetic variants contribute to CIO and genome-wide association studies (GWAS) have highlighted the polygenicity of this adverse drug reaction. Polygenic scores (PGS), which integrate information from multiple genetic variants across the genome, offer a promising tool for the identification of individuals who are at higher risk for CIO. Integrating large-scale hearing loss GWAS data with single cell omics data holds potential to overcome limitations related to small sample sizes associated with CIO studies, enabling the creation of PGSs to predict CIO risk. RESULTS We utilized a large-scale hearing loss GWAS and murine inner ear single nuclei RNA-sequencing (snRNA-seq) data to develop two polygenic scores: a hearing loss PGS (PGSHL) and a biologically informed PGS for CIO (PGSCIO). The PGSCIO included only variants which mapped to genes that were differentially expressed within cochlear cells that showed differential abundance in the murine snRNA-seq data post-cisplatin treatment. Evaluation of the association of these PGSs with CIO in our target CIO cohort revealed that PGSCIO demonstrated superior performance (P = 5.54 × 10- 5) relative to PGSHL (P = 2.93 × 10- 3). PGSCIO was also associated with CIO in our test cohort (P = 0.04), while the PGSHL did not show a significant association with CIO (P = 0.52). CONCLUSION This study developed the first PGS for CIO using a large-scale hearing loss dataset and a biologically informed filter generated from cisplatin-treated murine inner ear snRNA-seq data. This innovative approach offers new avenues for developing PGSs for pharmacogenomic traits, which could contribute to the implementation of tailored therapeutic interventions. Further, our approach facilitated the identification of specific cochlear cells that may play critical roles in CIO. These novel insights will guide future research aimed at developing targeted therapeutic strategies to prevent CIO.
Collapse
Affiliation(s)
- Deanne Nixie R Miao
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - MacKenzie A P Wilke
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John Pham
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Feryal Ladha
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mansumeet Singh
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Janilyn Arsenio
- Department of Internal Medicine, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - Emilia Luca
- Sunnybrook Research Institute, Toronto, ON, Canada
| | | | - Wejian Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Britt I Drögemöller
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- CancerCare Manitoba Research Institute, Winnipeg, MB, Canada.
- Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
- Centre of Aging, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
12
|
Fleihan T, Nader ME, Dickman JD. Cisplatin vestibulotoxicity: a current review. Front Surg 2024; 11:1437468. [PMID: 39421409 PMCID: PMC11484025 DOI: 10.3389/fsurg.2024.1437468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Cisplatin, a commonly used chemotherapy drug, is well-established for its ototoxic effects, primarily attributed to the damage it inflicts on cochlear hair cells. However, its impact on the vestibular system remains inadequately understood. Here, we provide a comprehensive review of existing literature concerning cisplatin-induced vestibulotoxicity. Animal studies have shown that cisplatin induces a vestibular hair cell loss that is dose-dependent, with the severity of damage also varying according to the route of administration. Notably, intratympanic and systemic injections in animal models have manifested significant damage primarily to utricular hair cells, with a lesser degree of damage observed for the other vestibular end organs. The underlying mechanisms of cisplatin induced vestibular hair cell loss include apoptosis, oxidative stress, and inflammatory cytokines. Several protective agents, such as Pifithrin-α, DAPT, Ginkgolide B, and heat shock proteins, have demonstrated efficacy in inhibiting cisplatin-induced vestibular damage in preclinical studies. Human clinical findings indicate that cisplatin treatment can cause vestibular dysfunction, characterized by symptoms ranging from transient dizziness to persistent vertigo. Challenges in diagnosis, including the limited utilization of comprehensive vestibular testing for many patients, contribute to the variability in reported outcomes. Cisplatin-induced vestibulotoxicity is a significant complication of chemotherapy, necessitating further research to understand its mechanisms and to improve diagnosis and management, ultimately aiming to enhance the quality of life for cancer patients undergoing cisplatin therapy.
Collapse
Affiliation(s)
- Tamara Fleihan
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Marc Elie Nader
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - J. David Dickman
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Lyu AR, Kim SJ, Park MJ, Park YH. CORM‑2 reduces cisplatin accumulation in the mouse inner ear and protects against cisplatin-induced ototoxicity. J Adv Res 2024; 64:183-194. [PMID: 38030129 PMCID: PMC11464639 DOI: 10.1016/j.jare.2023.11.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
INTRODUCTION Cisplatin is a life-saving anticancer compound used to treat multiple solid malignant tumors, while it causes permanent hearing loss. There is no known cure, and the FDA has not approved any preventative treatment for cisplatin-based ototoxicity. OBJECTIVES This study investigated whether the carbon monoxide (CO)-releasing tricarbonyldichlororuthenium (II) dimer, CORM-2, reverses cisplatin-induced hearing impairment and reduces cisplatin accumulation in the mouse inner ear. METHODS Male 6-week-old BALB/c mice were randomly assigned to one of the following groups: control (saline-treated, i.p.), CORM-2 only (30 mg/kg, i.p., four doses), cisplatin only (20 mg/kg, i.p., one dose), and CORM-2 + cisplatin, to determine whether cisplatin-based hearing impairment was alleviated by CORM-2 treatment. RESULTS Our results revealed CORM-2 significantly attenuated cisplatin-induced hearing loss in young adult mice. CORM-2 co-treatment significantly decreased platinum accumulation in the inner ear and activated the plasma membrane repair system of the stria vascularis. Moreover, CORM-2 co-treatment significantly decreased cisplatin-induced inflammation, apoptosis, and cochlear necroptosis. Because the stria vascularis is the likely cochlear entry point of cisplatin, we next focused on the microvasculature. Cisplatin induced increased extravasation of a chromatic tracer (fluorescein isothiocyanate [FITC]-dextran, MW 75 kDa) around the cochlear microvessels at 4 days post-treatment; this extravasation was completely inhibited by CORM-2 co-therapy. CORM-2 co-treatment effectively maintained the integrity of stria vascularis components including endothelial cells, pericytes, and perivascular-resident macrophage-type melanocytes. CONCLUSION CORM-2 co-therapy substantially protects against cisplatin-induced ototoxicity by reducing platinum accumulation and toxic cellular stress responses. These data indicate that CORM-2 co-treatment may be translated into clinical strategy to reduce cisplatin-induced hearing loss.
Collapse
Affiliation(s)
- Ah-Ra Lyu
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Soo Jeong Kim
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Min Jung Park
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| | - Yong-Ho Park
- Brain Research Institute, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea.
| |
Collapse
|
14
|
Kessler L, Koo C, Richter CP, Tan X. Hearing loss during chemotherapy: prevalence, mechanisms, and protection. Am J Cancer Res 2024; 14:4597-4632. [PMID: 39417180 PMCID: PMC11477841 DOI: 10.62347/okgq4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Ototoxicity is an often-underestimated sequela for cancer patients undergoing chemotherapy, with an incidence rate exceeding 50%, affecting approximately 4 million individuals worldwide each year. Despite the nearly 2,000 publications on chemotherapy-related ototoxicity in the past decade, the understanding of its prevalence, mechanisms, and preventative or therapeutic measures remains ambiguous and subject to debate. To date, only one drug, sodium thiosulfate, has gained FDA approval for treating ototoxicity in chemotherapy. However, its utilization is restricted. This review aims to offer clinicians and researchers a comprehensive perspective by thoroughly and carefully reviewing available data and current evidence. Chemotherapy-induced ototoxicity is characterized by four primary symptoms: hearing loss, tinnitus, vertigo, and dizziness, originating from both auditory and vestibular systems. Hearing loss is the predominant symptom. Amongst over 700 chemotherapeutic agents documented in various databases, only seven are reported to induce hearing loss. While the molecular mechanisms of the hearing loss caused by the two platinum-based drugs are extensively explored, the pathways behind the action of the other five drugs are primarily speculative, rooted in their therapeutic properties and side effects. Cisplatin attracts the majority of attention among these drugs, encompassing around two-thirds of the literature regarding ototoxicity in chemotherapy. Cisplatin ototoxicity chiefly manifests through the loss of outer hair cells, possibly resulting from damages directly by cisplatin uptake or secondary effects on the stria vascularis. Both direct and indirect influences contribute to cisplatin ototoxicity, while it is still debated which path is dominant or where the primary target of cisplatin is located. Candidates for hearing protection against cisplatin ototoxicity are also discussed, with novel strategies and methods showing promise on the horizon.
Collapse
Affiliation(s)
- Lexie Kessler
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Chail Koo
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
| | - Claus-Peter Richter
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern UniversityEvanston, Illinois 60208, USA
- Department of Communication Sciences and Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| | - Xiaodong Tan
- Department of Otolaryngology-Head and Neck Surgery, Feinberg School of Medicine, Northwestern UniversityChicago, Illinois 60611, USA
- Hugh Knowles Center for Clinical and Basic Science in Hearing and Its Disorders, Northwestern UniversityEvanston, Illinois 60208, USA
| |
Collapse
|
15
|
Dai D, Chen C, Lu C, Guo Y, Li Q, Sun C. Apoptosis, autophagy, ferroptosis, and pyroptosis in cisplatin-induced ototoxicity and protective agents. Front Pharmacol 2024; 15:1430469. [PMID: 39380912 PMCID: PMC11459463 DOI: 10.3389/fphar.2024.1430469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Cisplatin is widely used to treat various solid tumors. However, its toxicity to normal tissues limits its clinical application, particularly due to its ototoxic effects, which can result in hearing loss in patients undergoing chemotherapy. While significant progress has been made in preclinical studies to elucidate the cellular and molecular mechanisms underlying cisplatin-induced ototoxicity (CIO), the precise mechanisms remain unclear. Moreover, the optimal protective agent for preventing or mitigating cisplatin-induced ototoxicity has yet to be identified. This review summarizes the current understanding of the roles of apoptosis, autophagy, ferroptosis, pyroptosis, and protective agents in cisplatin-induced ototoxicity. A deeper understanding of these cell death mechanisms in the inner ear, along with the protective agents, could facilitate the translation of these agents into clinical therapeutics, help identify new therapeutic targets, and provide novel strategies for cisplatin-based cancer treatment.
Collapse
Affiliation(s)
- Dingyuan Dai
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Chen
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chen Lu
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Guo
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Nanjing Medical University, Nanjing, Jiangsu, China
- Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Chen Sun
- Department of Otolaryngology Head and Neck Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
16
|
López-Tofiño Y, Hopkins MA, Bagues A, Boullon L, Abalo R, Llorente-Berzal Á. The Endocannabinoid System of the Nervous and Gastrointestinal Systems Changes after a Subnoxious Cisplatin Dose in Male Rats. Pharmaceuticals (Basel) 2024; 17:1256. [PMID: 39458898 PMCID: PMC11509924 DOI: 10.3390/ph17101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Cisplatin, a common chemotherapy agent, is well known to cause severe side effects in the gastrointestinal and nervous systems due to its toxic and pro-inflammatory effects. Although pharmacological manipulation of the endocannabinoid system (ECS) can alleviate these side effects, how chemotherapy affects the ECS components in these systems remains poorly understood. Our aim was to evaluate these changes. Methods: Male Wistar rats received cisplatin (5 mg/kg, i.p.) or saline on day 0 (D0). Immediately after, serial X-rays were taken for 24 h (D0). Body weight was recorded (D0, D1, D2 and D7) and behavioural tests were performed on D4. On D7, animals were euthanized, and gastrointestinal tissue, dorsal root ganglia (DRGs) and brain areas were collected. Expression of genes related to the ECS was assessed via Rt-PCR, while LC-MS/MS was used to analyse endocannabinoid and related N-acylethanolamine levels in tissue and plasma. Results: Animals treated with cisplatin showed a reduction in body weight. Cisplatin reduced gastric emptying during D0 and decreased MAGL gene expression in the antrum at D7. Despite cisplatin not causing mechanical or heat sensitivity, we observed ECS alterations in the prefrontal cortex (PFC) and DRGs similar to those seen in other chronic pain conditions, including an increased CB1 gene expression in L4/L5 DRGs and a decreased MAGL expression in PFC. Conclusions: A single dose of cisplatin (5 mg/kg, i.p.), subnoxious, but capable of inducing acute gastrointestinal effects, caused ECS changes in both gastrointestinal and nervous systems. Modulating the ECS could alleviate or potentially prevent chemotherapy-induced toxicity.
Collapse
Affiliation(s)
- Yolanda López-Tofiño
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Mary A. Hopkins
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
| | - Ana Bagues
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Spanish National Research Council (CSIC), 28006 Madrid, Spain
| | - Laura Boullon
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
| | - Raquel Abalo
- Department of Basic Health Sciences, University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain; (Y.L.-T.); (A.B.)
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Associated R+D+i Unit to the Institute of Medicinal Chemistry (IQM), Spanish National Research Council (CSIC), 28006 Madrid, Spain
- Working Group of Basic Sciences on Pain and Analgesia, Spanish Pain Society, 28046 Madrid, Spain
- Working Group of Basic Sciences on Cannabinoids, Spanish Pain Society, 28046 Madrid, Spain
| | - Álvaro Llorente-Berzal
- High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), University Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Department of Pharmacology and Therapeutics, School of Medicine, University of Galway, H91W5P7 Galway, Ireland; (L.B.); (M.A.H.)
- Galway Neuroscience Centre, University of Galway, H91W5P7 Galway, Ireland
- Centre for Pain Research, University of Galway, H91W5P7 Galway, Ireland
- Department of Physiology, School of Medicine, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|
17
|
Fernandez K, Hoetink A, Konrad-Martin D, Berndtson D, Clark K, Dreisbach L, Geller JI, Goffi-Gomez MV, Grosnik A, Jamis C, Knight K, Lee DS, Lee J, Liberman PHP, Milnes T, Meijer AJM, Ortiz CE, Rooker J, Sanchez VA, van den Heuvel-Eibrink MM, Brewer CC, Poling GL. Roadmap to a Global Template for Implementation of Ototoxicity Management for Cancer Treatment. Ear Hear 2024:00003446-990000000-00345. [PMID: 39261989 DOI: 10.1097/aud.0000000000001592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Ototoxicity is among the adverse events related to cancer treatment that can have far-reaching consequences and negative impacts on quality-of-life for cancer patients and survivors of all ages. Ototoxicity management (OtoM) comprises the prevention, diagnosis, monitoring, and treatment, including rehabilitation and therapeutic intervention, of individuals who experience hearing loss, tinnitus, or balance/vestibular difficulties following exposures to ototoxic agents, including platinum chemotherapy (cisplatin, carboplatin) and cranial radiation. Despite the well-established physical, socioeconomic, and psychological consequences of hearing and balance dysfunction, there are no widely adopted standards for clinical management of cancer treatment-related ototoxicity. Consensus recommendations and a roadmap are needed to guide development of effective and feasible OtoM programs, direct research efforts, address the needs of caregivers and patients at all stages of cancer care and survivorship. Here we review current evidence and propose near-term to longer-term goals to advance OtoM in five strategic areas: (1) beneficiary awareness, empowerment, and engagement, (2) workforce enhancement, (3) program development, (4) policy, funding, and sustainability, and (5) research and evaluation. The goal is to identify needs and establish a roadmap to guide worldwide adoption of standardized OtoM for cancer treatment and improved outcomes for patients and survivors.
Collapse
Affiliation(s)
- Katharine Fernandez
- Division of Intramural Research, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Alex Hoetink
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht, the Netherlands
- Audiology, Utrecht Medical Center Utrecht Brain Center, Utrecht, the Netherlands
- Audiology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Audiology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Dawn Konrad-Martin
- National Center for Rehabilitative Auditory Research, Veterans Affairs Rehabilitation Research and Development, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | - Deborah Berndtson
- International Ototoxicity Management Group, Cancer Survivor and Advocate, Vienna, Virginia, USA
| | - Khaya Clark
- National Center for Rehabilitative Auditory Research, Veterans Affairs Rehabilitation Research and Development, Veterans Affairs Portland Health Care System, Portland, Oregon, USA
- Department of Otolaryngology/Head & Neck Surgery, Oregon Health & Science University, Portland, Oregon, USA
- Veterans Affairs Health Services Research & Development Center of Innovation, Center to Improve Veteran Involvement in Care, VA Portland Health Care System (R&D 66), Portland, Oregon, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Laura Dreisbach
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, California, USA
| | - James I Geller
- Division of Audiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Amy Grosnik
- Division of Audiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carmen Jamis
- Head and Neck Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kristin Knight
- Department of Audiology, Doernbecher Children's Hospital, Oregon Health & Science University, Portland, Oregon, USA
| | - David S Lee
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - John Lee
- Division of Intramural Research, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Trisha Milnes
- Department of Audiology, Veterans Affairs Augusta Health Care System, Augusta, Georgia, USA
| | - Annelot J M Meijer
- Audiology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Audiology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Candice E Ortiz
- Capital Institute of Hearing & Balance, Silver Spring, Maryland, USA
| | - Jennessa Rooker
- College of Nursing, University of South Florida, Tampa, Florida, USA
| | - Victoria A Sanchez
- Department of Otolaryngology-Head & Neck Surgery, University of South Florida, Tampa, Florida, USA
| | - Mary M van den Heuvel-Eibrink
- Audiology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Audiology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Carmen C Brewer
- Division of Intramural Research, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA
| | - Gayla L Poling
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Satyam SM, Bairy LK, Rehman A, Farook M, Khan S, Nair AA, Binu NN, Yehya M, Khan MM. Dapagliflozin: A Promising Strategy to Combat Cisplatin-Induced Hepatotoxicity in Wistar Rats. BIOLOGY 2024; 13:672. [PMID: 39336099 PMCID: PMC11428795 DOI: 10.3390/biology13090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Recognizing the challenges posed by chemotherapy, specifically the hepatotoxic effects of drugs like cisplatin, this study aimed to examine the hepatoprotective potential of dapagliflozin to mitigate cisplatin-induced hepatotoxicity in a rat model. This study focused on repurposing drugs such as dapagliflozin and natural agents like silymarin as potential interventions to address cisplatin-induced hepatotoxicity. Thirty adult female Wistar rats were distributed into five groups and treated with cisplatin alone, silymarin, dapagliflozin, or a combination of dapagliflozin and silymarin accordingly for 45 days. Body weight, fasting blood glucose levels, liver function tests, and histopathological analysis were conducted to evaluate the hepatoprotective effects. Cisplatin-induced hepatotoxicity significantly (p < 0.05) increased the serum levels of ALT, AST, TB, and reduced the TP and albumin levels. Dapagliflozin administration led to significant reductions in ALT, AST, TB, and increased albumin levels. Silymarin demonstrated comparable effects. Combining dapagliflozin and silymarin showed synergistic effects, further reducing the liver enzymes and improving albumin levels. Histopathological examination supported these findings, revealing the restoration of liver structure with dapagliflozin and silymarin treatment. Dapagliflozin and silymarin exhibited substantial hepatoprotective benefits against cisplatin-induced hepatotoxicity in rats. The combination therapy demonstrated synergistic effects, highlighting a potential therapeutic approach for mitigating chemotherapy-induced liver damage. Further research into molecular mechanisms and clinical translation is warranted, offering hope for improved clinical outcomes in cancer patients undergoing cisplatin-based chemotherapy.
Collapse
Affiliation(s)
- Shakta Mani Satyam
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Laxminarayana Kurady Bairy
- Faculty of Pharmacology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Abdul Rehman
- Faculty of Pathology, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohamed Farook
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Sofiya Khan
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Anuradha Asokan Nair
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Nirmal Nachiketh Binu
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohamed Yehya
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| | - Mohammed Moin Khan
- RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah 11172, United Arab Emirates
| |
Collapse
|
19
|
Zang YD, Wu HJ, Chen XY, Ma ZL, Li CJ, Ma J, Chen XG, Sheng L, Zhang S, Zhang DM. Synthesis and Biological Evaluation of Novel Psidium Meroterpenoid Derivatives against Cisplatin-Induced Acute Kidney Injury. J Med Chem 2024; 67:14234-14255. [PMID: 39137258 DOI: 10.1021/acs.jmedchem.4c01099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Cisplatin is a widely used drug for the clinical treatment of tumors. However, nephrotoxicity limits its widespread use. A series of compounds including eight analogs (G3-G10) and 40 simplifiers (G11-G50) were synthesized based on the total synthesis of Psiguamer A and B, which were novel meroterpenoids with unusual skeletons from the leaves of Psidium guajava. Among these compounds, (d)-G8 showed the strongest protective effect on cisplatin-induced acute kidney injury (AKI) in vitro and vivo, and slightly enhanced the antitumor efficacy of cisplatin. A mechanistic study showed that (d)-G8 promoted the efflux of cisplatin via upregulating the copper transporting efflux proteins ATP7A and ATP7B. It enhanced autophagy through the activation of the adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. (d)-G8 showed no acute toxicity or apparent pathological damage in the healthy mice at a single dose of 1 g/kg. This study provides a promising lead against cisplatin-induced AKI.
Collapse
Affiliation(s)
- Ying-Da Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Hai-Jie Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xin-Yi Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Zhi-Ling Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Chuang-Jun Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Jie Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xiao-Guang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Li Sheng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Sen Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| |
Collapse
|
20
|
Wu Z, Li B, Qie Y, Wu S, Qi F, Chu T, Nie G, Hu H. Targeted Inhibition of Lymphovascular Invasion Formation with CREKA Peptide-Modified Silicasomes to Boost Chemotherapy in Bladder Cancer. NANO LETTERS 2024; 24:10186-10195. [PMID: 39136297 DOI: 10.1021/acs.nanolett.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Despite its significant clinical efficacy as a first-line treatment for advanced bladder cancer, cisplatin-based chemotherapy provides a limited benefit for patients with lymphovascular invasion (LVI), which is characterized by the presence of tumor emboli within blood vessels and associated with enhanced cisplatin resistance and metastatic potential. Notably, platelets, a critical component of LVI, hinder the delivery of chemotherapeutic agents to tumors and facilitate metastasis. Consequently, platelet function inhibition holds the potential to disrupt LVI formation, as well as augment the antitumor activity of cisplatin. Herein, we developed a tumor microenvironment-targeted nanodrug with lipid-coated mesoporous silica nanoparticles (silicasomes) that synergistically combines cisplatin with an antiplatelet agent, tirofiban, for bladder cancer treatment. The customized nanodrug can concurrently prevent LVI formation and enhance the chemotherapeutic efficacy without significant adverse effects. This study supports the integration of chemotherapy and antiplatelet therapy via a silicasome-based nanosystem as a highly promising strategy for bladder cancer management.
Collapse
Affiliation(s)
- Zhouliang Wu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bozhao Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunkai Qie
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| | - Suying Wu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feilong Qi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianjiao Chu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjun Nie
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Hu
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin 300211, China
| |
Collapse
|
21
|
Magagnoli J, Cummings TH, Hardin JW, Sutton SS, Ambati J. Fluoxetine, fluvoxamine, and hearing loss or tinnitus after cisplatin treatment: A retrospective cohort study. J Investig Med 2024; 72:579-586. [PMID: 38597272 DOI: 10.1177/10815589241247796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cisplatin use is often limited by its ototoxic side effects, which can lead to irreversible hearing loss. Preventing cisplatin-induced ototoxicity is crucial to improve patient outcomes. Fluoxetine and fluvoxamine, both selective serotonin reuptake inhibitors antidepressants, inhibit the NLR pyrin domain-containing protein 3 inflammasome, a potential therapeutic target for preventing ototoxicity. However, human studies have not evaluated if these antidepressants may protect against cisplatin-induced ototoxicity. The object of this study is to assess the association between fluoxetine or fluvoxamine use and incidence of hearing loss or tinnitus in a large cohort of patients receiving cisplatin chemotherapy. We use a retrospective cohort study within the U.S. Department of Veterans Affairs healthcare system. Adult patients with cancer who received cisplatin chemotherapy between 2000 and 2023 are included. Incidence of ototoxicity, defined by international classification of diseases revision 9-CM or international classification of diseases revision 10-CM diagnoses of hearing loss or tinnitus is compared between concurrent use of fluoxetine or fluvoxamine and cisplatin alone. A total of 20,552 patients were included. Of those, 489 received cisplatin and fluoxetine or fluvoxamine. After propensity score adjustment, the hazard of ototoxicity was lower in the group receiving fluoxetine or fluvoxamine compared to the group receiving cisplatin alone (HR = 0.62, 95% CI = (0.41-0.94)). Fluoxetine or fluvoxamine use may be associated with a reduced risk of cisplatin-induced ototoxicity. Randomized clinical trials are needed to confirm these findings and establish the efficacy of the medications in ototoxicity prevention. Further research is also warranted to investigate the potential mechanisms underlying this protective effect.
Collapse
Affiliation(s)
- Joseph Magagnoli
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Tammy H Cummings
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - James W Hardin
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Epidemiology and Biostatistics, University of South Carolina, Columbia, SC, USA
| | - S Scott Sutton
- Dorn Research Institute, Columbia VA Health Care System, Columbia, SC, USA
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina College of Pharmacy, Columbia, SC, USA
| | - Jayakrishna Ambati
- Center for Advanced Vision Science, University of Virginia School of Medicine, Charlottesville, VI, USA
- Department of Ophthalmology, University of Virginia School of Medicine, Charlottesville, VI, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VI, USA
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VI, USA
| |
Collapse
|
22
|
Sung CYW, Hayase N, Yuen PST, Lee J, Fernandez K, Hu X, Cheng H, Star RA, Warchol ME, Cunningham LL. Macrophage depletion protects against cisplatin-induced ototoxicity and nephrotoxicity. SCIENCE ADVANCES 2024; 10:eadk9878. [PMID: 39047106 PMCID: PMC11268410 DOI: 10.1126/sciadv.adk9878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
Cisplatin is a widely used anticancer drug with notable side effects including ototoxicity and nephrotoxicity. Macrophages, the major resident immune cells in the cochlea and kidney, are important drivers of both inflammatory and tissue repair responses. To investigate the roles of macrophages in cisplatin-induced toxicities, we used PLX3397, a U.S. Food and Drug Administration-approved inhibitor of the colony-stimulating factor 1 receptor, to eliminate tissue-resident macrophages. Mice treated with cisplatin alone had considerable hearing loss (ototoxicity) and kidney injury (nephrotoxicity). Macrophage ablation resulted in significantly reduced hearing loss and had greater outer hair cell survival. Macrophage ablation also protected against cisplatin-induced nephrotoxicity, as evidenced by markedly reduced tubular injury and fibrosis. Mechanistically, our data suggest that the protective effect of macrophage ablation against cisplatin-induced ototoxicity and nephrotoxicity is mediated by reduced platinum accumulation in both the inner ear and the kidney. Together, our data indicate that ablation of tissue-resident macrophages represents an important strategy for mitigating cisplatin-induced ototoxicity and nephrotoxicity.
Collapse
Affiliation(s)
- Cathy Yea Won Sung
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| | - Naoki Hayase
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Peter S. T. Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Hui Cheng
- Bioinformatics and Biostatistics Collaboration Core, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| | - Robert A. Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Mark E. Warchol
- Department of Otolaryngology, School of Medicine, Washington University, Saint Louis, MO, USA
| | - Lisa L. Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders (NIDCD), NIH, Bethesda, MD, USA
| |
Collapse
|
23
|
Lee DS, Schrader A, Zou J, Ang WH, Warchol M, Sheets L. Cisplatin drives mitochondrial dysregulation in sensory hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577846. [PMID: 38352581 PMCID: PMC10862698 DOI: 10.1101/2024.01.29.577846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2024]
Abstract
Cisplatin is a chemotherapy drug that causes permanent hearing loss by injuring cochlear hair cells. The mechanisms that initiate injury are not fully understood, but mitochondria have emerged as potential mediators of hair cell cytotoxicity. Using in vivo live imaging of hair cells in the zebrafish lateral-line organ expressing a genetically encoded indicator of cumulative mitochondrial activity, we first demonstrate that greater redox history increases susceptibility to cisplatin. Next, we conducted time-lapse imaging to understand dynamic changes in mitochondrial homeostasis and observe elevated mitochondrial and cytosolic calcium that surge prior to hair cell death. Furthermore, using a localized probe that fluoresces in the presence of cisplatin, we show that cisplatin directly accumulates in hair cell mitochondria, and this accumulation occurs before mitochondrial dysregulation and apoptosis. Our findings provide evidence that cisplatin directly targets hair cell mitochondria and support that the mitochondria are integral to cisplatin cytotoxicity in hair cells.
Collapse
|
24
|
Li KH, Zhao YY, Cheng HL, Yang JJ, Chien CY. Ototoxicity among cisplatin, carboplatin, and oxaliplatin in zebrafish model. ENVIRONMENTAL TOXICOLOGY 2024; 39:4058-4065. [PMID: 38661261 DOI: 10.1002/tox.24285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/31/2024] [Indexed: 04/26/2024]
Abstract
Platinum-based antineoplastic drugs, including cisplatin, carboplatin, and oxaliplatin, are widely used in the treatment of various cancers. Ototoxicity is a common adverse effect of platinum-based drugs. Ototoxicity leads to irreversible hearing impairment. We hypothesize that different platinum-based drugs exhibit varying ototoxic concentrations, time effects, and ototoxic mechanisms. We tested this hypothesis by using a zebrafish model (pvalb3b: TagGFP) to assess the viability of hair cells collected from zebrafish larvae. Cisplatin, carboplatin, and oxaliplatin were administered at dosages of 100, 200, or 400 μM, and the ototoxic effects of these drugs were assessed 1, 2, or 3 h after administration. Fm4-64 and a TUNEL assay were used to label the membranes of living hair cells and to detect cell apoptosis, respectively. We observed that >50% of hair cells were damaged at 1 h after cisplatin (100 μM) exposure, and this ototoxic effect increased at higher dosages and over time. Owing to the smaller ototoxic effects of carboplatin and oxaliplatin, we conducted higher-strength and longer-duration experiments with these drugs. Neither carboplatin nor oxaliplatin was obviously ototoxic, even at 1600 μM and after 6 h. Moreover, only cisplatin damaged the membranes of the hair cells. Cell apoptosis and significantly increased antioxidant gene expression were observed in only the cisplatin group. In conclusion, cisplatin significantly damages sensory hair cells and has notable dosage and time effects. Carboplatin and oxaliplatin are less ototoxic than cisplatin, likely due to having different ototoxic mechanisms than cisplatin.
Collapse
Affiliation(s)
- Kuan-Hui Li
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Yu Zhao
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Hsin-Lin Cheng
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chen-Yu Chien
- Department of Otorhinolaryngology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Otorhinolaryngology, Kaohsiung Municipal Siaogang Hospital, Kaohsiung, Taiwan
| |
Collapse
|
25
|
Yu Y, Wei D, Bing T, Wang Y, Liu C, Xiao H. A Polyplatin with Hands-Holding Near-Infrared-II Fluorophores and Prodrugs at a Precise Ratio for Tracking Drug Fate with Realtime Readout and Treatment Feedback. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402452. [PMID: 38691849 DOI: 10.1002/adma.202402452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/16/2024] [Indexed: 05/03/2024]
Abstract
The in vivo fate of chemotherapeutic drugs plays a vital role in understanding the therapeutic outcome, side effects, and the mechanism. However, the lack of imaging abilities of drugs, tedious labeling processes, and premature leakage of imaging agents result in loss of fidelity between the drugs and imaging signals. Herein, an amphiphilic polymer is created by copolymerization of a near-infrared-II (NIR-II) fluorophore tracer (T) and an anticancer Pt(IV) prodrug (D) of cisplatin in a hand-holding manner into one polymer chain for the first time. The obtained PolyplatinDT is capable of delivering the drugs and the fluorophores concomitantly at a precise D/T ratio, thereby resulting in tracking the platinum drugs and even readout of them in real-time via NIR-II imaging. PolyplatinDT can self-assemble into nanoparticles, referred to as NanoplatinDT. Furthermore, a caspase-3 cleavable peptide that serves as an apoptosis reporter is attached to NanoplatinDT, resulting in NanoplatinDTR that are capable of simultaneously tracking platinum drugs and evaluating the therapeutic efficacy. Overall, it is reported here the design of the first theranostic polymer with anticancer drugs, drug tracers, and drug efficacy reporters that can work in concert to provide insight into the drug fate and mechanism of action.
Collapse
Affiliation(s)
- Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dengshuai Wei
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Tiejun Bing
- Immunology and Oncology Center, ICE Bioscience, Beijing, 100176, China
| | - Yongheng Wang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Chaoyong Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
26
|
Ma X, Guo J, Tian M, Fu Y, Jiang P, Zhang Y, Chai R. Advance and Application of Single-cell Transcriptomics in Auditory Research. Neurosci Bull 2024; 40:963-980. [PMID: 38015350 PMCID: PMC11250760 DOI: 10.1007/s12264-023-01149-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/03/2023] [Indexed: 11/29/2023] Open
Abstract
Hearing loss and deafness, as a worldwide disability disease, have been troubling human beings. However, the auditory organ of the inner ear is highly heterogeneous and has a very limited number of cells, which are largely uncharacterized in depth. Recently, with the development and utilization of single-cell RNA sequencing (scRNA-seq), researchers have been able to unveil the complex and sophisticated biological mechanisms of various types of cells in the auditory organ at the single-cell level and address the challenges of cellular heterogeneity that are not resolved through by conventional bulk RNA sequencing (bulk RNA-seq). Herein, we reviewed the application of scRNA-seq technology in auditory research, with the aim of providing a reference for the development of auditory organs, the pathogenesis of hearing loss, and regenerative therapy. Prospects about spatial transcriptomic scRNA-seq, single-cell based genome, and Live-seq technology will also be discussed.
Collapse
Affiliation(s)
- Xiangyu Ma
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jiamin Guo
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Mengyao Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yaoyang Fu
- Department of Psychiatry, Affiliated Hangzhou First People's Hospital, Zhejiang University school of Medicine, Hangzhou, 310030, China
| | - Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, China
- Research Institute of Otolaryngology, Nanjing, 210008, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 101408, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
27
|
Sanchez VA, Dinh PC, Monahan PO, Althouse S, Rooker J, Sesso HD, Dolan ME, Weinzerl M, Feldman DR, Fung C, Einhorn LH, Frisina RD, Travis LB. Comprehensive Audiologic Analyses After Cisplatin-Based Chemotherapy. JAMA Oncol 2024; 10:912-922. [PMID: 38842797 PMCID: PMC11157440 DOI: 10.1001/jamaoncol.2024.1233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/22/2023] [Indexed: 06/07/2024]
Abstract
Importance Cisplatin is highly ototoxic but widely used. Evidence is lacking regarding cisplatin-related hearing loss (CRHL) in adult-onset cancer survivors with comprehensive audiologic assessments (eg, Words-in-Noise [WIN] tests, full-spectrum audiometry, and additional otologic measures), as well as the progression of CRHL considering comorbidities, modifiable factors associated with risk, and cumulative cisplatin dose. Objective To assess CRHL with comprehensive audiologic assessments, including the WIN, evaluate the longitudinal progression of CRHL, and identify factors associated with risk. Design, Setting, and Participants The Platinum Study is a longitudinal study of cisplatin-treated testicular cancer survivors (TCS) enrolled from 2012 to 2018 with follow-up ongoing. Longitudinal comprehensive audiologic assessments at Indiana University and Memorial Sloan Kettering Cancer Center included 100 participants without audiometrically defined profound hearing loss (HL) at baseline and at least 3.5 years from their first audiologic assessment. Data were analyzed from December 2013 to December 2022. Exposures Factors associated with risk included cumulative cisplatin dose, hypertension, hypercholesterolemia, diabetes, tobacco use, physical inactivity, body mass index, family history of HL, cognitive dysfunction, psychosocial symptoms, and tinnitus. Main Outcomes and Measures Main outcomes were audiometrically measured HL defined as combined-ears high-frequency pure-tone average (4-12 kHz) and speech-recognition in noise performance measured with WIN. Multivariable analyses evaluated factors associated with risk for WIN scores and progression of audiometrically defined HL. Results Median (range) age of 100 participants at evaluation was 48 (25-67) years; median (range) time since chemotherapy: 14 (4-31) years. At follow-up, 78 (78%) TCS had audiometrically defined HL; those self-reporting HL had 2-fold worse hearing than TCS without self-reported HL (48 vs 24 dB HL; P < .001). A total of 54 (54%) patients with self-reported HL showed clinically significant functional impairment on WIN testing. Poorer WIN performance was associated with hypercholesterolemia (β = 0.88; 95% CI, 0.08 to 1.69; P = .03), lower-education (F1 = 5.95; P = .004), and severity of audiometrically defined HL (β̂ = 0.07; 95% CI, 0.06 to 0.09; P < .001). CRHL progression was associated with hypercholesterolemia (β̂ = -4.38; 95% CI, -7.42 to -1.34; P = .01) and increasing age (β̂ = 0.33; 95% CI, 0.15 to 0.50; P < .001). Importantly, relative to age-matched male normative data, audiometrically defined CRHL progression significantly interacted with cumulative cisplatin dose (F1 = 5.98; P = .02); patients given 300 mg/m2 or less experienced significantly less progression, whereas greater temporal progression followed doses greater than 300 mg/m2. Conclusions and Relevance Follow-up of cisplatin-treated cancer survivors should include strict hypercholesterolemia control and regular audiological assessments. Risk stratification through validated instruments should include querying hearing concerns. CRHL progression relative to age-matched norms is likely associated with cumulative cisplatin dose; investigation over longer follow-up is warranted.
Collapse
Affiliation(s)
- Victoria A. Sanchez
- Department of Otolaryngology–Head and Neck Surgery, University of South Florida, Tampa
| | - Paul C. Dinh
- Department of Medical Oncology, Indiana University, Indianapolis
| | - Patrick O. Monahan
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University, Indianapolis
| | | | - Howard D. Sesso
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - M. Eileen Dolan
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Mandy Weinzerl
- Rehabilitation Services, Indiana University Health, Indianapolis
| | - Darren R. Feldman
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chunkit Fung
- Department of Medical Oncology, J.P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York
| | | | - Robert D. Frisina
- Department of Medical Engineering, University of South Florida, Tampa
| | - Lois B. Travis
- Department of Medical Oncology, Indiana University, Indianapolis
| |
Collapse
|
28
|
Carles L, Gibaja A, Scheper V, Alvarado JC, Almodovar C, Lenarz T, Juiz JM. Efficacy and Mechanisms of Antioxidant Compounds and Combinations Thereof against Cisplatin-Induced Hearing Loss in a Rat Model. Antioxidants (Basel) 2024; 13:761. [PMID: 39061830 PMCID: PMC11273477 DOI: 10.3390/antiox13070761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cisplatin is an election chemotherapeutic agent used for many cancer treatments. Its cytotoxicity against neoplastic cells is mirrored by that taking place in healthy cells and tissues, resulting in serious adverse events. A very frequent one is ototoxicity, causing hearing loss which may permanently affect quality of life after successful oncologic treatments. Exacerbated oxidative stress is a main cytotoxic mechanism of cisplatin, including ototoxicity. Previous reports have shown antioxidant protection against cisplatin ototoxicity, but there is a lack of comparative studies on the otoprotectant activity and mechanism of antioxidant formulations. Here, we show evidence that a cocktail of vitamins A, C, and E along with Mg++ (ACEMg), previously shown to protect against noise-induced hearing loss, reverses auditory threshold shifts, promotes outer hair cell survival, and attenuates oxidative stress in the cochlea after cisplatin treatment, thus protecting against extreme cisplatin ototoxicity in rats. The addition of 500 mg N-acetylcysteine (NAC), which, administered individually, also shows significant attenuation of cisplatin ototoxicity, to the ACEMg formulation results in functional degradation of ACEMg otoprotection. Mg++ administered alone, as MgSO4, also prevents cisplatin ototoxicity, but in combination with 500 mg NAC, otoprotection is also greatly degraded. Increasing the dose of NAC to 1000 mg also results in dramatic loss of otoprotection activity compared with 500 mg NAC. These findings support that single antioxidants or antioxidant combinations, particularly ACEMg in this experimental series, have significant otoprotection efficacy against cisplatin ototoxicity. However, an excess of combined antioxidants and/or elevated doses, above a yet-to-be-defined "antioxidation threshold", results in unrecoverable redox imbalance with loss of otoprotectant activity.
Collapse
Grants
- PID2020-117266RB-C22-1, EXC 2177/1, ID:390895286, SBPLY/17/180501/000544. Ministerio de Ciencia Innovación, MCINN, Gobierno de España, Plan Estatal de I+D+i, PID2020-117266RB-C22-1, Cluster of Excellence "Hearing4All" EXC 2177/1, ID:390895286, part of the Germany´s Excellence Strategy of the German Research Foundation, DFG. Co
Collapse
Affiliation(s)
- Liliana Carles
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain;
| | - Alejandro Gibaja
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| | - Juan C. Alvarado
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
| | - Carlos Almodovar
- Department of Otolaryngology, University Hospital “Doce de Octubre”, 28041 Madrid, Spain;
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| | - José M. Juiz
- Instituto de Investigación en Discapacidades Neurológicas (IDINE), School of Medicine, Universidad de Castilla-La Mancha (UCLM), Campus in Albacete, 02008 Albacete, Spain; (L.C.); (A.G.); (J.C.A.)
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, 30625 Hannover, Germany; (V.S.); (T.L.)
- Cluster of Excellence “Hearing4all” of the German Research Foundation, DFG, 26111 Oldenburg, Germany
| |
Collapse
|
29
|
Lutze RD, Ingersoll MA, Kelmann RG, Teitz T. Trametinib, a MEK1/2 Inhibitor, Protects Mice from Cisplatin- and Noise-Induced Hearing Loss. Pharmaceuticals (Basel) 2024; 17:735. [PMID: 38931403 PMCID: PMC11206450 DOI: 10.3390/ph17060735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high-decibel noises are two of the most common causes of hearing loss. The mitogen-activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective against noise- and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin-induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective against hearing loss in vivo. In this study, we demonstrate that trametinib protects against cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor-killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin, but lower doses of the drug were protective against hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects against both insults of hearing loss, as well as that targeting all three kinases in the MAPK pathway protects mice from cisplatin- and noise-induced hearing loss.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA; (R.D.L.); (M.A.I.); (R.G.K.)
- The Scintillon Research Institute, San Diego, CA 92121, USA
| |
Collapse
|
30
|
Shen YJ, Liao HH, Livneh H, Lin MC, Lu MC, Li SC, Tsai TY. Complementary acupuncture treatment and reduced risk of sudden sensorineural hearing loss in nasopharyngeal carcinoma patients: a retrospective, nested case-control study. J Cancer Surviv 2024:10.1007/s11764-024-01552-z. [PMID: 38833080 DOI: 10.1007/s11764-024-01552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/09/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE Hearing loss is a frequently observed comorbidity in patients with nasopharyngeal carcinoma (NPC). Accumulating evidence demonstrated that acupuncture can safely manage cancer and its treatment-related symptoms, but its effect in minimizing the likelihood of experiencing sudden sensorineural hearing loss (SSHL) has not been established. So this work aimed to determine the risk of SSHL among NPC persons with or without acupuncture use. METHODS One population-level, nested case-control design within a cohort study is employed. Relevant information on persons aged 20-80 years who were afflicted with NPC between 2000 and 2010 was extracted from a nationwide health claims database. From them, we identified the cases who had the first SSHL diagnosis occurring after NPC, and all of them were randomly matched to two controls without SSHL. Conditional logistic regression was employed to calculate odds ratios (OR) and its respective 95% confidence intervals (CI) for incident SSHL in relation to acupuncture treatment. RESULTS Eight hundred eleven SSHL cases were randomly matched to 1452 controls. Those receiving conventional care plus acupuncture use had a reduced adjusted OR of 0.39 (95% CI, 0.25-0.60) for SSHL. We further discovered that the longer usage of acupuncture remarkably correlated with reduction of SSHL risk in a dose-dependent manner. CONCLUSIONS Delineation of the benefit from integration of acupuncture into conventional care may be a reference in instituting more appropriate care for NPC subjects. IMPLICATIONS FOR CANCER SURVIVORS Patients living with NPC may benefit from a timely integration of acupuncture into routine care to lessen SSHL risk.
Collapse
Affiliation(s)
- Yu-Jen Shen
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Department of Chinese Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Hou-Hsun Liao
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Graduate Institute of Chinese Medicine, School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, USA
| | - Miao-Chiu Lin
- Department of Nursing, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Szu-Chin Li
- School of Medicine, Tzu Chi University, Hualien, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
| | - Tzung-Yi Tsai
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan.
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan.
| |
Collapse
|
31
|
Yao Z, Xiao Y, Li W, Kong S, Tu H, Guo S, Liu Z, Ma L, Qiao R, Wang S, Chang M, Zhao X, Zhang Y, Xu L, Sun D, Fu X. FDA-Approved Tedizolid Phosphate Prevents Cisplatin-Induced Hearing Loss Without Decreasing Its Anti-tumor Effect. J Assoc Res Otolaryngol 2024; 25:259-275. [PMID: 38622383 DOI: 10.1007/s10162-024-00945-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/04/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE Cisplatin is a low-cost clinical anti-tumor drug widely used to treat solid tumors. However, its use could damage cochlear hair cells, leading to irreversible hearing loss. Currently, there appears one drug approved in clinic only used for reducing ototoxicity associated with cisplatin in pediatric patients, which needs to further explore other candidate drugs. METHODS Here, by screening 1967 FDA-approved drugs to protect cochlear hair cell line (HEI-OC1) from cisplatin damage, we found that Tedizolid Phosphate (Ted), a drug indicated for the treatment of acute infections, had the best protective effect. Further, we evaluated the protective effect of Ted against ototoxicity in mouse cochlear explants, zebrafish, and adult mice. The mechanism of action of Ted was further explored using RNA sequencing analysis and verified. Meanwhile, we also observed the effect of Ted on the anti-tumor effect of cisplatin. RESULTS Ted had a strong protective effect on hair cell (HC) loss induced by cisplatin in zebrafish and mouse cochlear explants. In addition, when administered systemically, it protected mice from cisplatin-induced hearing loss. Moreover, antitumor studies showed that Ted had no effect on the antitumor activity of cisplatin both in vitro and in vivo. RNA sequencing analysis showed that the otoprotective effect of Ted was mainly achieved by inhibiting phosphorylation of ERK. Consistently, ERK activator aggravated the damage of cisplatin to HCs. CONCLUSION Collectively, these results showed that FDA-approved Ted protected HCs from cisplatin-induced HC loss by inhibiting ERK phosphorylation, indicating its potential as a candidate for preventing cisplatin ototoxicity in clinical settings.
Collapse
Affiliation(s)
- Zhiwei Yao
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Yu Xiao
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
- School of Life Science, Shandong University, Qingdao, 266237, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China.
| | - Shuhui Kong
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China
| | - Hailong Tu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ziyi Liu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Lushun Ma
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Ruifeng Qiao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China
| | - Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Miao Chang
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China
| | - Xiaoxu Zhao
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yuan Zhang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, China.
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, 250117, China.
| |
Collapse
|
32
|
Lutze RD, Ingersoll MA, Kelmann RG, Teitz T. FDA-Approved MEK1/2 Inhibitor, Trametinib, Protects Mice from Cisplatin and Noise-Induced Hearing Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.595056. [PMID: 38826449 PMCID: PMC11142120 DOI: 10.1101/2024.05.20.595056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Hearing loss is one of the most common types of disability; however, there is only one FDA-approved drug to prevent any type of hearing loss. Treatment with the highly effective chemotherapy agent, cisplatin, and exposure to high decibel noises are two of the most common causes of hearing loss. The mitogen activated protein kinase (MAPK) pathway, a phosphorylation cascade consisting of RAF, MEK1/2, and ERK1/2, has been implicated in both types of hearing loss. Pharmacologically inhibiting BRAF or ERK1/2 is protective from noise and cisplatin-induced hearing loss in multiple mouse models. Trametinib, a MEK1/2 inhibitor, protects from cisplatin induced outer hair cell death in mouse cochlear explants; however, to the best of our knowledge, inhibiting MEK1/2 has not yet been shown to be protective from hearing loss in vivo. In this study, we demonstrate that trametinib protects from cisplatin-induced hearing loss in a translationally relevant mouse model and does not interfere with cisplatin's tumor killing efficacy in cancer cell lines. Higher doses of trametinib were toxic to mice when combined with cisplatin but lower doses of the drug were protective from hearing loss without any known toxicity. Trametinib also protected mice from noise-induced hearing loss and synaptic damage. This study shows that MEK1/2 inhibition protects from both insults of hearing loss and that targeting all three kinases in the MAPK pathway protect from cisplatin and noise-induced hearing loss in mice.
Collapse
Affiliation(s)
- Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Regina G. Kelmann
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
33
|
ERTUNÇ O, ERZURUMLU Y, SAVRAN M, ÇATAKLI D, DOĞAN KIRAN E, PEKGÖZ Ş. Potential Hepatoprotective Effects of Irbesartan, an Accessible Angiotensin II Receptor Blocker, Against Cisplatin-Induced Liver Injury in a Rat Model. Turk J Pharm Sci 2024; 21:88-94. [PMID: 38742755 PMCID: PMC11096784 DOI: 10.4274/tjps.galenos.2023.90846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 05/06/2023] [Indexed: 05/16/2024]
Abstract
Objectives Drug-induced liver injury is a common adverse reaction that frequently occurs with chemotherapeutic agents, such as cisplatin (CIS). This study seeks to enhance our understanding of drug actions and their associated adverse effects by examining the toxicity of CIS on rat liver tissue. We aimed to investigate the potential hepatoprotective effects of irbesartan (IRB), an easily accessible angiotensin II receptor blocker, in mitigating CIS-induced hepatotoxicity. Materials and Methods Wistar albino rats were divided into four groups. These groups included a control group [saline, per oral (p.o.)] for seven days, and 1 mL saline intraperitoneal [(i.p.) on the fourth day]; a CIS group (1 mL saline for seven days and 7.5 mg/kg CIS i.p. on the fourth day); a CIS + IRB group (IRB: 50 mg/kg p.o. for seven days and 7.5 mg/kg CIS i.p. on the fourth day), and an IRB group (50 mg/kg IRB p.o. for seven days). The effect of IRB on interleukin-1 beta (IL-1β) and caspase 3 levels was evaluated by immunohistochemical analysis, and its effects on mRNA expression levels of CCAAT/enhancer-binding protein homologous protein (CHOP) and immunoglobulin-heavy-chain-binding protein (BiP) were tested by quantitative real-time polymerase chain reaction. Results IRB administration mitigated CIS-induced liver toxicity by inhibiting endoplasmic reticulum (ER) stress. Specifically, this drug reduced the mRNA expression of ER stress markers, including CHOP and BiP. In addition, IRB treatment decreased oxidative stress, inflammatory responses, and apoptotic markers. Conclusion These findings suggest that IRB is a promising therapeutic option for preventing CIS-induced liver injury, potentially by modulating ER stress-related pathways.
Collapse
Affiliation(s)
- Onur ERTUNÇ
- Süleyman Demirel University Faculty of Medicine, Department of Pathology, Isparta, Türkiye
| | - Yalçın ERZURUMLU
- Süleyman Demirel University Faculty of Pharmacy, Department of Biochemistry, Isparta, Türkiye
| | - Mehtap SAVRAN
- Süleyman Demirel University Faculty of Medicine, Department of Pharmacology, Isparta, Türkiye
| | - Deniz ÇATAKLI
- Süleyman Demirel University Faculty of Medicine, Department of Pharmacology, Isparta, Türkiye
| | - Eltaf DOĞAN KIRAN
- Süleyman Demirel University Faculty of Medicine, Department of Biochemistry, Isparta, Türkiye
| | - Şakir PEKGÖZ
- Süleyman Demirel University Faculty of Medicine, Department of Pathology, Isparta, Türkiye
| |
Collapse
|
34
|
De-la-Torre P, Martínez-García C, Gratias P, Mun M, Santana P, Akyuz N, González W, Indzhykulian AA, Ramírez D. Identification of Druggable Binding Sites and Small Molecules as Modulators of TMC1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583611. [PMID: 38826329 PMCID: PMC11142246 DOI: 10.1101/2024.03.05.583611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Our ability to hear and maintain balance relies on the proper functioning of inner ear sensory hair cells, which translate mechanical stimuli into electrical signals via mechano-electrical transducer (MET) channels, composed of TMC1/2 proteins. However, the therapeutic use of ototoxic drugs, such as aminoglycosides and cisplatin, which can enter hair cells through MET channels, often leads to profound auditory and vestibular dysfunction. Despite extensive research on otoprotective compounds targeting MET channels, our understanding of how small molecule modulators interact with these channels remains limited, hampering the discovery of novel compounds. Here, we propose a structure-based screening approach, integrating 3D-pharmacophore modeling, molecular simulations, and experimental validation. Our pipeline successfully identified several novel compounds and FDA-approved drugs that reduced dye uptake in cultured cochlear explants, indicating MET modulation activity. Molecular docking and free-energy estimations for binding allowed us to identify three potential drug binding sites within the channel pore, phospholipids, and key amino acids involved in modulator interactions. We also identified shared ligand-binding features between TMC and structurally related TMEM16 protein families, providing novel insights into their distinct inhibition, while potentially guiding the rational design of MET-channel-specific modulators. Our pipeline offers a broad application to discover small molecule modulators for a wide spectrum of mechanosensitive ion channels.
Collapse
Affiliation(s)
- Pedro De-la-Torre
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | | | - Paul Gratias
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Matthew Mun
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - Paula Santana
- Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago, Chile
| | - Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3460000, Chile
| | - Artur A. Indzhykulian
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School and Mass Eye and Ear, Boston, MA, USA
| | - David Ramírez
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepción, Chile
| |
Collapse
|
35
|
Pasdelou MP, Byelyayeva L, Malmström S, Pucheu S, Peytavy M, Laullier H, Hodges DB, Tzafriri AR, Naert G. Ototoxicity: a high risk to auditory function that needs to be monitored in drug development. Front Mol Neurosci 2024; 17:1379743. [PMID: 38756707 PMCID: PMC11096496 DOI: 10.3389/fnmol.2024.1379743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hearing loss constitutes a major global health concern impacting approximately 1.5 billion people worldwide. Its incidence is undergoing a substantial surge with some projecting that by 2050, a quarter of the global population will experience varying degrees of hearing deficiency. Environmental factors such as aging, exposure to loud noise, and the intake of ototoxic medications are implicated in the onset of acquired hearing loss. Ototoxicity resulting in inner ear damage is a leading cause of acquired hearing loss worldwide. This could be minimized or avoided by early testing of hearing functions in the preclinical phase of drug development. While the assessment of ototoxicity is well defined for drug candidates in the hearing field - required for drugs that are administered by the otic route and expected to reach the middle or inner ear during clinical use - ototoxicity testing is not required for all other therapeutic areas. Unfortunately, this has resulted in more than 200 ototoxic marketed medications. The aim of this publication is to raise awareness of drug-induced ototoxicity and to formulate some recommendations based on available guidelines and own experience. Ototoxicity testing programs should be adapted to the type of therapy, its indication (targeting the ear or part of other medications classes being potentially ototoxic), and the number of assets to test. For multiple molecules and/or multiple doses, screening options are available: in vitro (otic cell assays), ex vivo (cochlear explant), and in vivo (in zebrafish). In assessing the ototoxicity of a candidate drug, it is good practice to compare its ototoxicity to that of a well-known control drug of a similar class. Screening assays provide a streamlined and rapid method to know whether a drug is generally safe for inner ear structures. Mammalian animal models provide a more detailed characterization of drug ototoxicity, with a possibility to localize and quantify the damage using functional, behavioral, and morphological read-outs. Complementary histological measures are routinely conducted notably to quantify hair cells loss with cochleogram. Ototoxicity studies can be performed in rodents (mice, rats), guinea pigs and large species. However, in undertaking, or at the very least attempting, all preclinical investigations within the same species, is crucial. This encompasses starting with pharmacokinetics and pharmacology efficacy studies and extending through to toxicity studies. In life read-outs include Auditory Brainstem Response (ABR) and Distortion Product OtoAcoustic Emissions (DPOAE) measurements that assess the activity and integrity of sensory cells and the auditory nerve, reflecting sensorineural hearing loss. Accurate, reproducible, and high throughput ABR measures are fundamental to the quality and success of these preclinical trials. As in humans, in vivo otoscopic evaluations are routinely carried out to observe the tympanic membrane and auditory canal. This is often done to detect signs of inflammation. The cochlea is a tonotopic structure. Hair cell responsiveness is position and frequency dependent, with hair cells located close to the cochlea apex transducing low frequencies and those at the base transducing high frequencies. The cochleogram aims to quantify hair cells all along the cochlea and consequently determine hair cell loss related to specific frequencies. This measure is then correlated with the ABR & DPOAE results. Ototoxicity assessments evaluate the impact of drug candidates on the auditory and vestibular systems, de-risk hearing loss and balance disorders, define a safe dose, and optimize therapeutic benefits. These types of studies can be initiated during early development of a therapeutic solution, with ABR and otoscopic evaluations. Depending on the mechanism of action of the compound, studies can include DPOAE and cochleogram. Later in the development, a GLP (Good Laboratory Practice) ototoxicity study may be required based on otic related route of administration, target, or known potential otic toxicity.
Collapse
|
36
|
Dong W, Jiang Y, Yao Q, Xu M, Jin Y, Dong L, Li Z, Yu D. Inhibition of CISD1 attenuates cisplatin-induced hearing loss in mice via the PI3K and MAPK pathways. Biochem Pharmacol 2024; 223:116132. [PMID: 38492782 DOI: 10.1016/j.bcp.2024.116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
Cisplatin is an effective chemotherapeutic drug for different cancers, but it also causes severe and permanent hearing loss. Oxidative stress and mitochondrial dysfunction in cochlear hair cells (HCs) have been shown to be important in the pathogenesis of cisplatin-induced hearing loss (CIHL). CDGSH iron sulfur domain 1 (CISD1, also known as mitoNEET) plays a critical role in mitochondrial oxidative capacity and cellular bioenergetics. Targeting CISD1 may improve mitochondrial function in various diseases. However, the role of CISD1 in cisplatin-induced ototoxicity is unclear. Therefore, this study was performed to assess the role of CISD1 in cisplatin-induced ototoxicity. We found that CISD1 expression was significantly increased after cisplatin treatment in both HEI-OC1 cells and cochlear HCs. Moreover, pharmacological inhibition of CISD1 with NL-1 inhibited cell apoptosis and reduced mitochondrial reactive oxygen species accumulation in HEI-OC1 cells and cochlear explants. Inhibition of CISD1 with small interfering RNA in HEI-OC1 cells had similar protective effects. Furthermore, NL-1 protected against CIHL in adult C57 mice, as evaluated by the auditory brainstem response and immunofluorescent staining. Mechanistically, RNA sequencing revealed that NL-1 attenuated CIHL via the PI3K and MAPK pathways. Most importantly, NL-1 did not interfere with the antitumor efficacy of cisplatin. In conclusion, our study revealed that targeting CISD1 with NL-1 reduced reactive oxygen species accumulation, mitochondrial dysfunction, and apoptosis via the PI3K and MAPK pathways in HEI-OC1 cell lines and mouse cochlear explants in vitro, and it protected against CIHL in adult C57 mice. Our study suggests that CISD1 may serve as a novel target for the prevention of CIHL.
Collapse
Affiliation(s)
- Wenqi Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yumeng Jiang
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingxiu Yao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Maoxiang Xu
- Department of ORL-HNS, Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Yuchen Jin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingkang Dong
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuangzhuang Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongzhen Yu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
37
|
Xu Y, Zhao H, Wang F, Xu S, Wang C, Li Y, Wang Y, Nong H, Zhang J, Cao Z, Chen C, Li J. SERCA2 protects against cisplatin-induced damage of auditory cells: Possible relation with alleviation of ER stress. Toxicol Appl Pharmacol 2024; 486:116947. [PMID: 38688426 DOI: 10.1016/j.taap.2024.116947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
AIMS SERCA2, one of the P-type pumps encoded by gene ATP2A2, is the only calcium reflux channel of the endoplasmic reticulum (ER) and participates in maintaining calcium homeostasis. The present study was designed to explore SERCA2 expression pattern in auditory hair cells and the possible mechanism underlying the effects of SERCA2 on cisplatin-induced ototoxicity. MAIN METHODS The SERCA2 expression pattern in cochlea hair cells and HEI-OC1 cells was measured by Western blot (WB) and immunofluorescence staining. The apoptosis and its related factors were detected by TUNEL assay and WB. The expression levels of ER stress-related factors, ATF6, PERK, IRE1α, and GRP78, were measured via WB. As for the determination of SERCA2 overexpression and knockdown, plasmids and lentiviral vectors were constructed, respectively. KEY FINDINGS We found that SERCA2 was highly expressed in cochlea hair cells and HEI-OC1 cells. Of note, the level of SERCA2 expression in neonatal mice was remarkably higher than that in adult mice. Under the exposure of 30 μM cisplatin, SERCA2 was down-regulated significantly compared with the control group. In addition, cisplatin administration triggered the occurrence of ER stress and apoptosis. Those events were reversed by overexpressing SERCA2. On the contrary, SERCA2 knockdown could aggravate the above processes. SIGNIFICANCE The findings from the present study disclose, for the first time, that SERCA2 is abundantly expressed in cochlea hair cells, and the suppression of SERCA2 caused by cisplatin could trigger ER homeostasis disruption, thereby implying that SERCA2 might be a promising target to prevent cisplatin-induced cytotoxicity of hair cells.
Collapse
Affiliation(s)
- Yue Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Hao Zhao
- Department of Otolaryngology-Head and Neck Surgery, People's Hospital, Peking University, Beijing 100000, China
| | - Fan Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Shuai Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Chen Wang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China
| | - Yanan Li
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yajie Wang
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Huiming Nong
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Junhong Zhang
- Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Zhixin Cao
- Department of Pathology Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Chengfang Chen
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; Department of Otolaryngology-Head and Neck Surgery Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Shandong Provincial Key Laboratory of Otology, Jinan, Shandong 250021, China.
| |
Collapse
|
38
|
Ingersoll MA, Lutze RD, Kelmann RG, Kresock DF, Marsh JD, Quevedo RV, Zuo J, Teitz T. KSR1 Knockout Mouse Model Demonstrates MAPK Pathway's Key Role in Cisplatin- and Noise-induced Hearing Loss. J Neurosci 2024; 44:e2174232024. [PMID: 38548338 PMCID: PMC11063821 DOI: 10.1523/jneurosci.2174-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Hearing loss is a major disability in everyday life and therapeutic interventions to protect hearing would benefit a large portion of the world population. Here we found that mice devoid of the protein kinase suppressor of RAS 1 (KSR1) in their tissues (germline KO mice) exhibit resistance to both cisplatin- and noise-induced permanent hearing loss compared with their wild-type KSR1 littermates. KSR1 is a scaffold protein that brings in proximity the mitogen-activated protein kinase (MAPK) proteins BRAF, MEK1/2 and ERK1/2 and assists in their activation through a phosphorylation cascade induced by both cisplatin and noise insults in the cochlear cells. KSR1, BRAF, MEK1/2, and ERK1/2 are all ubiquitously expressed in the cochlea. Deleting the KSR1 protein tempered down the MAPK phosphorylation cascade in the cochlear cells following both cisplatin and noise insults and conferred hearing protection of up to 30 dB SPL in three tested frequencies in male and female mice. Treatment with dabrafenib, an FDA-approved oral BRAF inhibitor, protected male and female KSR1 wild-type mice from both cisplatin- and noise-induced hearing loss. Dabrafenib treatment did not enhance the protection of KO KSR1 mice, providing evidence dabrafenib works primarily through the MAPK pathway. Thus, either elimination of the KSR1 gene expression or drug inhibition of the MAPK cellular pathway in mice resulted in profound protection from both cisplatin- and noise-induced hearing loss. Inhibition of the MAPK pathway, a cellular pathway that responds to damage in the cochlear cells, can prove a valuable strategy to protect and treat hearing loss.
Collapse
Affiliation(s)
- Matthew A Ingersoll
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Richard D Lutze
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Regina G Kelmann
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Daniel F Kresock
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Jordan D Marsh
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| | - Rene V Quevedo
- Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Jian Zuo
- Biomedical Sciences, School of Medicine, Creighton University, Omaha, Nebraska 68178
| | - Tal Teitz
- Departments of Pharmacology and Neuroscience, Creighton University, Omaha, Nebraska 68178
| |
Collapse
|
39
|
Liu Z, Zhang H, Hong G, Bi X, Hu J, Zhang T, An Y, Guo N, Dong F, Xiao Y, Li W, Zhao X, Chu B, Guo S, Zhang X, Chai R, Fu X. Inhibition of Gpx4-mediated ferroptosis alleviates cisplatin-induced hearing loss in C57BL/6 mice. Mol Ther 2024; 32:1387-1406. [PMID: 38414247 PMCID: PMC11081921 DOI: 10.1016/j.ymthe.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024] Open
Abstract
Cisplatin-induced hearing loss is a common side effect of cancer chemotherapy in clinics; however, the mechanism of cisplatin-induced ototoxicity is still not completely clarified. Cisplatin-induced ototoxicity is mainly associated with the production of reactive oxygen species, activation of apoptosis, and accumulation of intracellular lipid peroxidation, which also is involved in ferroptosis induction. In this study, the expression of TfR1, a ferroptosis biomarker, was upregulated in the outer hair cells of cisplatin-treated mice. Moreover, several key ferroptosis regulator genes were altered in cisplatin-damaged cochlear explants based on RNA sequencing, implying the induction of ferroptosis. Ferroptosis-related Gpx4 and Fsp1 knockout mice were established to investigate the specific mechanisms associated with ferroptosis in cochleae. Severe outer hair cell loss and progressive damage of synapses in inner hair cells were observed in Atoh1-Gpx4-/- mice. However, Fsp1-/- mice showed no significant hearing phenotype, demonstrating that Gpx4, but not Fsp1, may play an important role in the functional maintenance of HCs. Moreover, findings showed that FDA-approved luteolin could specifically inhibit ferroptosis and alleviate cisplatin-induced ototoxicity through decreased expression of transferrin and intracellular concentration of ferrous ions. This study indicated that ferroptosis inhibition through the reduction of intracellular ferrous ions might be a potential strategy to prevent cisplatin-induced hearing loss.
Collapse
MESH Headings
- Animals
- Cisplatin/adverse effects
- Ferroptosis/drug effects
- Ferroptosis/genetics
- Mice
- Hearing Loss/chemically induced
- Hearing Loss/genetics
- Hearing Loss/metabolism
- Mice, Knockout
- Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism
- Phospholipid Hydroperoxide Glutathione Peroxidase/genetics
- Mice, Inbred C57BL
- Disease Models, Animal
- Receptors, Transferrin/metabolism
- Receptors, Transferrin/genetics
- Reactive Oxygen Species/metabolism
- Lipid Peroxidation/drug effects
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/drug effects
- Hair Cells, Auditory, Outer/pathology
- Ototoxicity/etiology
- Ototoxicity/metabolism
- Antineoplastic Agents/adverse effects
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Ziyi Liu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hanbing Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong 250012, China
| | - Guodong Hong
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuli Bi
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jun Hu
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Tiancheng Zhang
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Na Guo
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fengyue Dong
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Yu Xiao
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Li
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxu Zhao
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250102, China
| | - Siwei Guo
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohan Zhang
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Renjie Chai
- Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, Jiangsu 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Southeast University Shenzhen Research Institute, Shenzhen, Guangdong 518063, China.
| | - Xiaolong Fu
- Medical Science and Technology Innovation Center, Institute of Brain Science and Brain-inspired Research, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
40
|
Huang TL, Jiang WJ, Zhou Z, Shi TF, Yu M, Yu M, Si JQ, Wang YP, Li L. Quercetin attenuates cisplatin-induced mitochondrial apoptosis via PI3K/Akt mediated inhibition of oxidative stress in pericytes and improves the blood labyrinth barrier permeability. Chem Biol Interact 2024; 393:110939. [PMID: 38490643 DOI: 10.1016/j.cbi.2024.110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Cisplatin (CDDP) is broadly employed to treat different cancers, whereas there are no drugs approved by the Food and Drug Administration (FDA) for preventing its side effects, including ototoxicity. Quercetin (QU) is a widely available natural flavonoid compound with anti-tumor and antioxidant properties. The research was designed to explore the protective effects of QU on CDDP-induced ototoxicity and its underlying mechanisms in male C57BL/6 J mice and primary cultured pericytes (PCs). Hearing changes, morphological changes of stria vascularis, blood labyrinth barrier (BLB) permeability and expression of apoptotic proteins were observed in vivo by using the auditory brainstem response (ABR) test, HE staining, Evans blue staining, immunohistochemistry, western blotting, etc. Oxidative stress levels, mitochondrial function and endothelial barrier changes were observed in vitro by using DCFH-DA probe detection, flow cytometry, JC-1 probe, immunofluorescence and the establishment in vitro BLB models, etc. QU pretreatment activates the PI3K/AKT signaling pathway, inhibits CDDP-induced oxidative stress, protects mitochondrial function, and reduces mitochondrial apoptosis in PCs. However, PI3K/AKT specific inhibitor (LY294002) partially reverses the protective effects of QU. In addition, in vitro BLB models were established by coculturing PCs and endothelial cells (ECs), which suggests that QU both reduces the CDDP-induced apoptosis in PCs and improves the endothelial barrier permeability. On the whole, the research findings suggest that QU can be used as a novel treatment to reduce CDDP-induced ototoxicity.
Collapse
Affiliation(s)
- Tian-Lan Huang
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Wen-Jun Jiang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Zan Zhou
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Tian-Feng Shi
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Miao Yu
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Meng Yu
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310051, China; Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Jun-Qiang Si
- Department of Physiology, Medical College of Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Yan-Ping Wang
- Department of Nursing, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| | - Li Li
- Department of Physiology, Medical College of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| |
Collapse
|
41
|
Fujikawa T, Ito T, Okada R, Sawada M, Mohri K, Tateishi Y, Takahashi R, Asakage T, Tsutsumi T. Combined genetic polymorphisms of the GSTT1 and NRF2 genes increase susceptibility to cisplatin-induced ototoxicity: A preliminary study. Hear Res 2024; 445:108995. [PMID: 38518393 DOI: 10.1016/j.heares.2024.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE The genotype-phenotype relationship in cisplatin-induced ototoxicity remains unclear. By assessing early shifts in distortion product otoacoustic emission (DPOAE) levels after initial cisplatin administration, we aimed to discriminate patients' susceptibility to cisplatin-induced ototoxicity and elucidate their genetic background. STUDY DESIGN A prospective cross-sectional study. SETTING Tertiary referral hospital in Japan. PATIENTS Twenty-six patients with head and neck cancer were undergoing chemoradiotherapy with three cycles of 100 mg/m2 cisplatin. INTERVENTIONS Repetitive pure-tone audiometry and DPOAE measurements, and blood sampling for DNA extraction were performed. Patients were grouped into early ototoxicity presence or absence based on whether DPOAE level shifts exceeded the corresponding reference limits of the 21-day test interval. MAIN OUTCOME MEASURES Hearing thresholds after each cisplatin cycle, severity of other adverse events, and polymorphisms in cisplatin-induced ototoxicity-associated genes were compared. RESULTS Early ototoxicity was present in 14 and absent in 12 patients. Ototoxicity presence on DPOAEs was associated with greater progression of hearing loss in frequencies ≥2 kHz throughout therapy and with higher ototoxicity grades compared with ototoxicity absence. Ototoxicity was further associated with grade ≥2 nausea. Ototoxicity presence was genetically associated with the GSTT1 null genotype and G-allele of NFE2L2 rs6721961, whereas ototoxicity absence was associated with the GSTM1 null genotype. Dose-dependent progression of hearing loss was the greatest in the combined genotype pattern of GSTT1 null and the T/G or G/G variants of rs6721961. CONCLUSION Early DPOAE changes reflected genetic vulnerability to cisplatin-induced ototoxicity. Hereditary insufficiency of the antioxidant defense system causes severe cisplatin-induced hearing loss and nausea.
Collapse
Affiliation(s)
- Taro Fujikawa
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan.
| | - Taku Ito
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Ryuhei Okada
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Mitsutaka Sawada
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Kaori Mohri
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Yumiko Tateishi
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Ryosuke Takahashi
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Takahiro Asakage
- Department of Head and Neck Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| | - Takeshi Tsutsumi
- Department of Otolaryngology, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo, Tokyo, 113-8510 Japan
| |
Collapse
|
42
|
Meijer AJM, Diepstraten FA, van den Heuvel-Eibrink MM, Bleyer A. Prevention of cisplatin-induced hearing loss in children: achievements and challenges for evidence-based implementation of sodium Thiosulfate. Front Oncol 2024; 14:1336714. [PMID: 38562178 PMCID: PMC10982326 DOI: 10.3389/fonc.2024.1336714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
Ototoxicity is a devastating direct, irreversible side effect of platinum use in children with cancer, with its consequent effect on speech, language and social development, quality of life and adult productivity. Cisplatin, an essential chemotherapeutic agent for the treatment of solid tumors in children, is a DNA cross-linking agent. Which causes hearing loss in 50-70% of cisplatin treated children. Fortunately, to prevent hearing loss, sodium thiosulfate (STS), which binds to cisplatin, and reduces the superoxides in both tumor and outer hair cells of the cochlea has now been discovered to be an effective and safe otoprotectant if administered correctly. The aim of this perspective paper is to explore the key safety issues and challenges important for pediatric oncologists and pharmacists when considering the clinical use of STS as an otoprotectant for children and adolescents receiving cisplatin. These include: the choice of the formulation; the timing, both that of the STS in relation to cisplatin as well as the timing of the cisplatin infusion itself; the dosing; the challenge left by the definition of localized versus disseminated disease and the difference in indication for STS, between cisplatin treated patients and those receiving another platinum chemotherapeutic agent, carboplatin.
Collapse
Affiliation(s)
| | | | - Marry M. van den Heuvel-Eibrink
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Wilhelmina Childrens Hospital, University of Utrecht, Utrecht, Netherlands
| | - Archie Bleyer
- Radiation Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
43
|
Lu PH, Ma PW, Wang WL, Gao W, Chen JW, Yuan H, Ding XR, Lun YQ, Liang R, Li SY, Wang Z, Guo JN, Mei HK, Lu LJ. Deferoxamine protects cochlear hair cells and hair cell-like HEI-OC1 cells against tert-butyl hydroperoxide-induced ototoxicity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167024. [PMID: 38242180 DOI: 10.1016/j.bbadis.2024.167024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
Oxidative stress is the common mechanism of sensorineural hearing loss (SNHL) caused by many factors, such as noise, drugs and ageing. Here, we used tert-butyl hydroperoxide (t-BHP) to cause oxidative stress damage in HEI-OC1 cells and in an in vitro cochlear explant model. We observed lipid peroxidation, iron accumulation, mitochondrial shrinkage and vanishing of mitochondrial cristae, which caused hair cell ferroptosis, after t-BHP exposure. Moreover, the number of TUNEL-positive cells in cochlear explants and HEI-OC1 cells increased significantly, suggesting that t-BHP caused the apoptosis of hair cells. Administration of deferoxamine (DFOM) significantly attenuated t-BHP-induced hair cell loss and disordered hair cell arrangement in cochlear explants as well as HEI-OC1 cell death, including via apoptosis and ferroptosis. Mechanistically, we found that DFOM treatment reduced t-BHP-induced lipid peroxidation, iron accumulation and mitochondrial pathological changes in hair cells, consequently mitigating apoptosis and ferroptosis. Moreover, DFOM treatment alleviated GSH depletion caused by t-BHP and activated the Nrf2 signalling pathway to exert a protective effect. Furthermore, we confirmed that the protective effect of DFOM mainly depended on its ability to chelate iron by constructing Fth1 knockout (KO), TfR1 KO and Nrf2 KO HEI-OC1 cell lines using CRISPR/Cas9 technology and a Flag-Fth1 (overexpression) HEI-OC1 cell line using the FlpIn™ System. Our findings suggest that DFOM is a potential drug for SNHL treatment due to its ability to inhibit apoptosis and ferroptosis by chelating iron and scavenging reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Pei-Heng Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Peng-Wei Ma
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei-Long Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Wei Gao
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jia-Wei Chen
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hao Yuan
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xue-Rui Ding
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yu-Qiang Lun
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Rui Liang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Si-Yu Li
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Zi Wang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jia-Ning Guo
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Hong-Kai Mei
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Lian-Jun Lu
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| |
Collapse
|
44
|
Gu X, Jiang K, Chen R, Chen Z, Wu X, Xiang H, Huang X, Nan B. Identification of common stria vascularis cellular alteration in sensorineural hearing loss based on ScRNA-seq. BMC Genomics 2024; 25:213. [PMID: 38413848 PMCID: PMC10897997 DOI: 10.1186/s12864-024-10122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The stria vascularis (SV), located in the lateral wall of the cochlea, maintains cochlear fluid homeostasis and mechanoelectrical transduction (MET) activity required for sound wave conduction. The pathogenesis of a number of human inheritable deafness syndromes, age related hearing loss, drug-induced ototoxicity and noise-induced hearing loss results from the morphological changes and functional impairments in the development of the SV. In this study, we investigate the implications of intercellular communication within the SV in the pathogenesis of sensorineural hearing loss (SNHL). We aim to identify commonly regulated signaling pathways using publicly available single-cell transcriptomic sequencing (scRNA-seq) datasets. METHODS We analyzed scRNA-seq data, which was derived from studying the cochlear SV in mice with SNHL compared to normal adult mice. After quality control and filtering, we obtained the major cellular components of the mouse cochlear SV and integrated the data. Using Seurat's FindAllMarkers and FindMarkers packages, we searched for novel conservative genes and differential genes. We employed KEGG and GSEA to identify molecular pathways that are commonly altered among different types of SNHL. We utilized pySCENIC to discover new specific regulatory factors in SV subpopulation cells. With the help of CellChat, we identified changes in subpopulation cells showing similar trends across different SNHL types and their alterations in intercellular communication pathways. RESULTS Through the analysis of the integrated data, we discovered new conserved genes to SV specific cells and identified common downregulated pathways in three types of SNHL. The enriched genes for these pathways showing similar trends are primarily associated with the Electron Transport Chain, related to mitochondrial energy metabolism. Using the CellChat package, we further found that there are shared pathways in the incoming signaling of specific intermediate cells in SNHL, and these pathways have common upstream regulatory transcription factor of Nfe2l2. Combining the results from pySCENIC and CellChat, we predicted the transcription factor Nfe2l2 as an upstream regulatory factor for multiple shared cellular pathways in IC. Additionally, it serves as an upstream factor for several genes within the Electron Transport Chain. CONCLUSION Our bioinformatics analysis has revealed that downregulation of the mitochondrial electron transport chain have been observed in various conditions of SNHL. E2f1, Esrrb, Runx1, Yy1, and Gata2 could serve as novel important common TFs regulating the electron transport chain. Adm has emerged as a potential new marker gene for intermediate cells, while Itgb5 and Tesc show promise as potential new marker genes for marginal cells in the SV. These findings offer a new perspective on SV lesions in SNHL and provide additional theoretical evidence for the same drug treatment and prevention of different pathologies of SNHL.
Collapse
Affiliation(s)
- Xi Gu
- Department of Otorhinolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Kanglun Jiang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Fenglin Road 180, Xuhui District, Shanghai, 200030, People's Republic of China
| | - Ruru Chen
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhifeng Chen
- Department of Otorhinolaryngology, Head and Neck Surgery, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Institute of Otolaryngology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Department of Otorhinolaryngology, Head and Neck Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xianmin Wu
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haijie Xiang
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinsheng Huang
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongshan Hospital, Fudan University, Fenglin Road 180, Xuhui District, Shanghai, 200030, People's Republic of China.
| | - Benyu Nan
- Department of Otorhinolaryngology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
45
|
Strepay D, Olszewski RT, Nixon S, Korrapati S, Adadey S, Griffith AJ, Su Y, Liu J, Vishwasrao H, Gu S, Saunders T, Roux I, Hoa M. Transgenic Tg(Kcnj10-ZsGreen) fluorescent reporter mice allow visualization of intermediate cells in the stria vascularis. Sci Rep 2024; 14:3038. [PMID: 38321040 PMCID: PMC10847169 DOI: 10.1038/s41598-024-52663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
The stria vascularis (SV) is a stratified epithelium in the lateral wall of the mammalian cochlea, responsible for both endolymphatic ion homeostasis and generation of the endocochlear potential (EP) critical for normal hearing. The SV has three layers consisting predominantly of basal, intermediate, and marginal cells. Intermediate and marginal cells form an intricate interdigitated network of cell projections making discrimination of the cells challenging. To enable intermediate cell visualization, we engineered by BAC transgenesis, reporter mouse lines expressing ZsGreen fluorescent protein under the control of Kcnj10 promoter and regulatory sequences. Kcnj10 encodes KCNJ10 protein (also known as Kir4.1 or Kir1.2), an ATP-sensitive inwardly-rectifying potassium channel critical to EP generation, highly expressed in SV intermediate cells. In these transgenic mice, ZsGreen fluorescence mimics Kcnj10 endogenous expression in the cochlea and was detected in the intermediate cells of the SV, in the inner phalangeal cells, Hensen's, Deiters' and pillar cells, in a subset of spiral ganglion neurons, and in glial cells. We show that expression of the transgene in hemizygous mice does not alter auditory function, nor EP. These transgenic Tg(Kcnj10-ZsGreen) mice allow live and fixed tissue visualization of ZsGreen-expressing intermediate cells and will facilitate future studies of stria vascularis cell function.
Collapse
Affiliation(s)
- Dillon Strepay
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Rafal T Olszewski
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Sydney Nixon
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Soumya Korrapati
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Samuel Adadey
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Yijun Su
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Jiamin Liu
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Harshad Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD, USA
| | - Shoujun Gu
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA
| | - Thomas Saunders
- Transgenic Animal Model Core, Biomedical Research Core Facility, University of Michigan, Ann Arbor, MI, USA
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, USA
| | - Michael Hoa
- Auditory Development and Restoration Program, Neurotology Branch, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Porter Neuroscience Research Center, 35 Convent Dr., Room 1F-226, Bethesda, MD, 20892-3745, USA.
| |
Collapse
|
46
|
Wu Y, Zhang J, Liu Q, Miao Z, Chai R, Chen W. Development of Chinese herbal medicine for sensorineural hearing loss. Acta Pharm Sin B 2024; 14:455-467. [PMID: 38322328 PMCID: PMC10840432 DOI: 10.1016/j.apsb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/16/2023] [Accepted: 10/24/2023] [Indexed: 02/08/2024] Open
Abstract
According to the World Health Organization's world report on hearing, nearly 2.5 billion people worldwide will suffer from hearing loss by 2050, which may contribute to a severe impact on individual life quality and national economies. Sensorineural hearing loss (SNHL) occurs commonly as a result of noise exposure, aging, and ototoxic drugs, and is pathologically characterized by the impairment of mechanosensory hair cells of the inner ear, which is mainly triggered by reactive oxygen species accumulation, inflammation, and mitochondrial dysfunction. Though recent advances have been made in understanding the ability of cochlear repair and regeneration, there are still no effective therapeutic drugs for SNHL. Chinese herbal medicine which is widely distributed and easily accessible in China has demonstrated a unique curative effect against SNHL with higher safety and lower cost compared with Western medicine. Herein we present trends in research for Chinese herbal medicine for the treatment of SNHL, and elucidate their molecular mechanisms of action, to pave the way for further research and development of novel effective drugs in this field.
Collapse
Affiliation(s)
- Yunhao Wu
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
| | - Jingwen Zhang
- Department of Otolaryngology-Head and Neck, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Qiuping Liu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Zhuang Miao
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214000, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing 100085, China
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China
| | - Wenyong Chen
- Department of Otolaryngology-Head and Neck, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| |
Collapse
|
47
|
Ishaniya W, Sumithaa C, Subramani M, Karanath-Anilkumar A, Munuswamy-Ramanujam G, Madan Kumar A, Rajendran S, Ganeshpandian M. Polydiacetylene/lipid-coated red-emissive silica nanorods for the sustained release and ameliorated anticancer efficacy of a Ru(arene) complex bearing piperlongumine natural product. Dalton Trans 2024; 53:1616-1629. [PMID: 38165714 DOI: 10.1039/d3dt02940a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
A suitable drug delivery strategy for metallodrugs is as significant as the strategies adopted for an efficient metallodrug design. In this study, piperlongumine, which is isolated from long pepper, is coordinated with a Ru(II)-p-cymene moiety to obtain an organoruthenated complex containing the natural product (Ru(pip)). The isolated complex shows higher cytotoxicity in MCF-7 breast cancer cells than in THP-1 leukemia and HepG2 liver cancer cells. The IC50 value of the complex in non-cancerous HEK-239 cells is also almost equal to that in MCF-7 cells. Next, with an aim to modulate the antiproliferative activity of Ru(pip) using a drug delivery strategy, the complex is loaded into mesoporous silica nanorods (MSNRs), which have a higher surface area than spherical silica nanoparticles. Furthermore, the outer surface of the loaded nanorods is covered with a polydiacetylene-lipid (PL) hybrid bilayer. Given the unique optical properties of polydiacetylene, the PL coating modifies non-fluorescent MSNRs into red-emissive particles (PL-Ru(pip)@MSNRs), which can be useful for diagnostic applications. The release profile studies reveal that the ene-yne conjugation in the PL coating ensures the sustained release of the complex from nanoparticles in both physiological and simulated cancer cell media. While Ru(pip) exhibits both necrotic and apoptotic modes of cell death, PL-Ru(pip)@MSNRs preferably induce the apoptotic mode of cell death in MCF-7 and THP-1 cells. Also, the nanoformulation exhibits a higher percentage of cell cycle arrest in the G0/G1 phase than Ru(pip), as measured by flow cytometry analysis. In contrast, the in vitro antioxidant potency of the complex is decreased after being loaded into PL-coated silica nanoparticles.
Collapse
Affiliation(s)
- Wickneswaran Ishaniya
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Chezhiyan Sumithaa
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| | - Muthuraman Subramani
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai-600127, Tamilnadu, India
| | - Aswathy Karanath-Anilkumar
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Ganesh Munuswamy-Ramanujam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - Arumugam Madan Kumar
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai-600119, Tamil Nadu, India
| | - Saravanakumar Rajendran
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology, Chennai-600127, Tamilnadu, India
| | - Mani Ganeshpandian
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
48
|
Lee J, Fernandez K, Cunningham LL. Hear and Now: Ongoing Clinical Trials to Prevent Drug-Induced Hearing Loss. Annu Rev Pharmacol Toxicol 2024; 64:211-230. [PMID: 37562496 DOI: 10.1146/annurev-pharmtox-033123-114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Each year over half a million people experience permanent hearing loss caused by treatment with therapeutic drugs with ototoxic side effects. There is a major unmet clinical need for therapies that protect against this hearing loss without reducing the therapeutic efficacy of these lifesaving drugs. At least 17 clinical trials evaluating 10 therapeutics are currently underway for therapies aimed at preventing aminoglycoside- and/or cisplatin-induced ototoxicity. This review describes the preclinical and clinical development of each of these approaches, provides updates on the status of ongoing trials, and highlights the importance of appropriate outcome measures in trial design and the value of reporting criteria in the dissemination of results.
Collapse
Affiliation(s)
- John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lisa L Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
49
|
Zavala-Valencia AC, Velasco-Hidalgo L, Martínez-Avalos A, Castillejos-López M, Torres-Espíndola LM. Effect of N-Acetylcysteine on Cisplatin Toxicity: A Review of the Literature. Biologics 2024; 18:7-19. [PMID: 38250216 PMCID: PMC10799624 DOI: 10.2147/btt.s438150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
N-acetylcysteine (NAC) is a membrane-permeable cysteine precursor capable of enhancing the intracellular cysteine pool, enhancing cellular glutathione (GSH) synthesis, and thus potentiating the endogenous antioxidant mechanism. Late administration of NAC after cisplatin has been shown in different in vivo studies to reduce the side effects caused by various toxicities at different levels without affecting the antitumor efficacy of platinum, improving total and enzymatic antioxidant capacity and decreasing oxidative stress markers. These characteristics provide NAC with a rationale as a potentially effective chemo protectant in cisplatin-based therapeutic cycles. NAC represents a potential candidate as a chemoprotective agent to decrease toxicities secondary to cisplatin treatment. It suggests that it could be used in clinical trials, whereby the effective dose, timing, and route should be adjusted to optimize chemoprotection. This review provides an overview of the effect of NAC on cisplatin toxicity, a drug widely used in the clinic in adults and children.
Collapse
Affiliation(s)
- Angeles Citlali Zavala-Valencia
- Laboratory of Pharmacology, National Institute of Pediatrics, Mexico City, Mexico
- Iztacala Faculty of Higher Studies, Tlalnepantla, México
| | | | | | - Manuel Castillejos-López
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | | |
Collapse
|
50
|
Pushpan CK, Kresock DF, Ingersoll MA, Lutze RD, Keirns DL, Hunter WJ, Bashir K, Teitz T. Repurposing AZD5438 and Dabrafenib for Cisplatin-Induced AKI. J Am Soc Nephrol 2024; 35:22-40. [PMID: 37962623 PMCID: PMC10786615 DOI: 10.1681/asn.0000000000000261] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023] Open
Abstract
SIGNIFICANCE STATEMENT To combat both untoward effects of nephrotoxicity and ototoxicity in cisplatin-treated patients, two potential therapeutic oral anticancer drugs AZD5438 and dabrafenib, a phase-2 clinical trial protein kinase CDK2 inhibitor and an US Food and Drug Administration-approved drug BRAF inhibitor, respectively, were tested in an established mouse AKI model. Both drugs have previously been shown to protect significantly against cisplatin-induced hearing loss in mice. Each drug ameliorated cisplatin-induced increases in the serum biomarkers BUN, creatinine, and neutrophil gelatinase-associated lipocalin. Drugs also improved renal histopathology and inflammation, mitigated cell death by pyroptosis and necroptosis, and significantly enhanced overall survival of cisplatin-treated mice. BACKGROUND Cisplatin is an effective chemotherapy agent for a wide variety of solid tumors, but its use is dose-limited by serious side effects, including AKI and hearing loss. There are no US Food and Drug Administration-approved drugs to treat both side effects. Recently, two anticancer oral drugs, AZD5438 and dabrafenib, were identified as protective against cisplatin-induced hearing loss in mice. We hypothesize that similar cell stress and death pathways are activated in kidney and inner ear cells when exposed to cisplatin and tested whether these drugs alleviate cisplatin-induced AKI. METHODS The HK-2 cell line and adult FVB mice were used to measure the protection from cisplatin-induced cell death and AKI by these drugs. Serum markers of kidney injury, BUN, creatinine, and neutrophil gelatinase-associated lipocalin as well as histology of kidneys were analyzed. The levels of markers of kidney cell death, including necroptosis and pyroptosis, pERK, and proliferating cell nuclear antigen, were also examined by Western blotting and immunofluorescence. In addition, CDK2 knockout (KO) mice were used to confirm AZD5438 protective effect is through CDK2 inhibition. RESULTS The drugs reduced cisplatin-induced cell death in the HK-2 cell line and attenuated cisplatin-induced AKI in mice. The drugs reduced serum kidney injury markers, inhibited cell death, and reduced the levels of pERK and proliferating cell nuclear antigen, all of which correlated with prolonged animal survival. CDK2 KO mice were resistant to cisplatin-induced AKI, and AZD5438 conferred no additional protection in the KO mice. CONCLUSIONS Cisplatin-induced damage to the inner ear and kidneys shares similar cellular beneficial responses to AZD5438 and dabrafenib, highlighting the potential therapeutic use of these agents to treat both cisplatin-mediated kidney damage and hearing loss.
Collapse
Affiliation(s)
- Chithra K. Pushpan
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - Daniel F. Kresock
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - Matthew A. Ingersoll
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - Richard D. Lutze
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - Darby L. Keirns
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| | - William J. Hunter
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska
| | - Khalid Bashir
- Renal Division, Department of Medicine, CHI Nephrology and Creighton University Medical Center, Omaha, Nebraska
| | - Tal Teitz
- Department of Pharmacology and Neuroscience, School of Medicine, Creighton University, Omaha, Nebraska
| |
Collapse
|