1
|
Zheng S, Hong Z, Tan Y, Wang Y, Li J, Zhang Z, Feng T, Hong Z, Lin G, Ye D. MYO6 contributes to tumor progression and enzalutamide resistance in castration-resistant prostate cancer by activating the focal adhesion signaling pathway. Cell Commun Signal 2024; 22:517. [PMID: 39449086 PMCID: PMC11515482 DOI: 10.1186/s12964-024-01897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Enzalutamide (Enz) resistance is a poor prognostic factor for patients with castration-resistant prostate cancer (CRPC), which often involves aberrant expression of the androgen receptor (AR). Myosin VI (MYO6), one member of the myosin family, plays an important role in regulating cell survival and is highly expressed in prostate cancer (PCa). However, whether MYO6 is involved in Enz resistance in CRPC and its mechanism remain unclear. METHODS Multiple open-access databases were utilized to examine the relationship between MYO6 expression and PCa progression, and to screen differentially expressed genes (DEGs) and potential signaling pathways associated with the MYO6-regulated Enz resistance. Both in vitro and in vivo tumorigenesis assays were employed to examine the impact of MYO6 on the growth and Enz resistance of PCa cells. Human PCa tissues and related clinical biochemical data were utilized to identify the role of MYO6 in promoting PCa progression and Enz resistance. The molecular mechanisms underlying the regulation of gene expression, PCa progression, and Enz resistance in CRPC by MYO6 were investigated. RESULTS MYO6 expression increases in patients with PCa and is positively correlated with AR expression in PCa cell lines and tissues. Overexpression of AR increases MYO6 expression to promote PCa cell proliferation, migration and invasion, and to inhibit PCa cell apoptosis; whereas knockdown of MYO6 expression reverses these outcomes and enhances Enz function in suppressing the proliferation of the Enz- sensitive and resistant PCa cells both in vitro and in vivo. Mechanistically, AR binds directly to the promoter region (residues - 503 to - 283 base pairs) of MYO6 gene and promotes its transcription. Furthermore, MYO6 activates focal adhesion kinase (FAK) phosphorylation at tyrosine-397 through integrin beta 8 (ITGB8) modulation to promote PCa progression and Enz resistance. Notably, inhibition of FAK activity by Y15, an inhibitor of FAK, can resensitize CRPC cells to Enz treatment in cell lines and mouse xenograft models. CONCLUSIONS MYO6 has pro-tumor and Enz-resistant effects in CRPC, suggesting that targeting MYO6 may be beneficial for ENZ-resistant CRPC therapy through the AR/MYO6/FAK signaling pathway.
Collapse
MESH Headings
- Humans
- Male
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Benzamides/pharmacology
- Phenylthiohydantoin/pharmacology
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Signal Transduction/drug effects
- Animals
- Nitriles/pharmacology
- Cell Line, Tumor
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Disease Progression
- Focal Adhesions/drug effects
- Focal Adhesions/metabolism
- Mice
- Gene Expression Regulation, Neoplastic/drug effects
- Cell Proliferation/drug effects
- Mice, Nude
- Cell Movement/drug effects
- Receptors, Androgen/metabolism
- Receptors, Androgen/genetics
Collapse
Affiliation(s)
- Shengfeng Zheng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
- Qingdao Institute, School of Life Medicine, Department of Urology, Fudan University Shanghai Cancer Center, Fudan University, Qingdao, China
| | - Zhe Hong
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Yao Tan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Nursing Administration, Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Yue Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Junhong Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zihao Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Tao Feng
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China
| | - Zongyuan Hong
- Department of Pharmacology and Laboratory of Quantitative Pharmacology, Wannan Medical College, Wuhu, Anhui, 241000, China.
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Genitourinary Cancer Institute, Shanghai, 200032, China.
| |
Collapse
|
2
|
de Jonge JJ, Graw A, Kargas V, Batters C, Montanarella AF, O'Loughlin T, Johnson C, Arden SD, Warren AJ, Geeves MA, Kendrick-Jones J, Zaccai NR, Kröss M, Veigel C, Buss F. Motor domain phosphorylation increases nucleotide exchange and turns MYO6 into a faster and stronger motor. Nat Commun 2024; 15:6716. [PMID: 39112473 PMCID: PMC11306250 DOI: 10.1038/s41467-024-49898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/20/2024] [Indexed: 08/10/2024] Open
Abstract
Myosin motors perform many fundamental functions in eukaryotic cells by providing force generation, transport or tethering capacity. Motor activity control within the cell involves on/off switches, however, few examples are known of how myosins regulate speed or processivity and fine-tune their activity to a specific cellular task. Here, we describe a phosphorylation event for myosins of class VI (MYO6) in the motor domain, which accelerates its ATPase activity leading to a 4-fold increase in motor speed determined by actin-gliding assays, single molecule mechanics and stopped flow kinetics. We demonstrate that the serine/threonine kinase DYRK2 phosphorylates MYO6 at S267 in vitro. Single-molecule optical-tweezers studies at low load reveal that S267-phosphorylation results in faster nucleotide-exchange kinetics without change in the working stroke of the motor. The selective increase in stiffness of the acto-MYO6 complex when proceeding load-dependently into the nucleotide-free rigor state demonstrates that S267-phosphorylation turns MYO6 into a stronger motor. Finally, molecular dynamic simulations of the nucleotide-free motor reveal an alternative interaction network within insert-1 upon phosphorylation, suggesting a molecular mechanism, which regulates insert-1 positioning, turning the S267-phosphorylated MYO6 into a faster motor.
Collapse
Affiliation(s)
- Janeska J de Jonge
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Andreas Graw
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany
| | - Vasileios Kargas
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Christopher Batters
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany
| | - Antonino F Montanarella
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany
| | - Tom O'Loughlin
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Chloe Johnson
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Susan D Arden
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Alan J Warren
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - John Kendrick-Jones
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK
| | - Markus Kröss
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany
| | - Claudia Veigel
- Department of Cellular Physiology, Biomedical Centre (BMC), Ludwig-Maximilians-Universität München, Grosshadernerstrasse 9, 82152, Planegg-Martinsried, Germany.
- Centre for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Schellingstrasse 4, 80799, München, Germany.
| | - Folma Buss
- Cambridge Institute for Medical Research, Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, The Keith Peters Building, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
3
|
Nowak J, Lenartowski R, Kalita K, Lehka L, Karatsai O, Lenartowska M, Rędowicz MJ. Myosin VI in the nucleolus of neurosecretory PC12 cells: its involvement in the maintenance of nucleolar structure and ribosome organization. Front Physiol 2024; 15:1368416. [PMID: 38774650 PMCID: PMC11106421 DOI: 10.3389/fphys.2024.1368416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/01/2024] [Indexed: 05/24/2024] Open
Abstract
We have previously shown that unconventional myosin VI (MVI), a unique actin-based motor protein, shuttles between the cytoplasm and nucleus in neurosecretory PC12 cells in a stimulation-dependent manner and interacts with numerous proteins involved in nuclear processes. Among the identified potential MVI partners was nucleolin, a major nucleolar protein implicated in rRNA processing and ribosome assembly. Several other nucleolar proteins such as fibrillarin, UBF (upstream binding factor), and B23 (also termed nucleophosmin) have been shown to interact with MVI. A bioinformatics tool predicted the presence of the nucleolar localization signal (NoLS) within the MVI globular tail domain, and immunostaining confirmed the presence of MVI within the nucleolus. Depletion of MVI, previously shown to impair PC12 cell proliferation and motility, caused disorganization of the nucleolus and rough endoplasmic reticulum (rER). However, lack of MVI does not affect nucleolar transcription. In light of these data, we propose that MVI is important for nucleolar and ribosome maintenance but not for RNA polymerase 1-related transcription.
Collapse
Affiliation(s)
- Jolanta Nowak
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Robert Lenartowski
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Katarzyna Kalita
- Laboratory of Neurobiology, Nencki-EMBL Partnership for Neural Plasticity and Brain Disorders—BRAINCITY, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Lilya Lehka
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olena Karatsai
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Marta Lenartowska
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Torun, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Maria Jolanta Rędowicz
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Canon L, Kikuti C, Planelles-Herrero VJ, Lin T, Mayeux F, Sirkia H, Lee YI, Heidsieck L, Velikovsky L, David A, Liu X, Moussaoui D, Forest E, Höök P, Petersen KJ, Morgan TE, Di Cicco A, Sirés-Campos J, Derivery E, Lévy D, Delevoye C, Sweeney HL, Houdusse A. How myosin VI traps its off-state, is activated and dimerizes. Nat Commun 2023; 14:6732. [PMID: 37872146 PMCID: PMC10593786 DOI: 10.1038/s41467-023-42376-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Myosin VI (Myo6) is the only minus-end directed nanomotor on actin, allowing it to uniquely contribute to numerous cellular functions. As for other nanomotors, the proper functioning of Myo6 relies on precise spatiotemporal control of motor activity via a poorly defined off-state and interactions with partners. Our structural, functional, and cellular studies reveal key features of myosin regulation and indicate that not all partners can activate Myo6. TOM1 and Dab2 cannot bind the off-state, while GIPC1 binds Myo6, releases its auto-inhibition and triggers proximal dimerization. Myo6 partners thus differentially recruit Myo6. We solved a crystal structure of the proximal dimerization domain, and show that its disruption compromises endocytosis in HeLa cells, emphasizing the importance of Myo6 dimerization. Finally, we show that the L926Q deafness mutation disrupts Myo6 auto-inhibition and indirectly impairs proximal dimerization. Our study thus demonstrates the importance of partners in the control of Myo6 auto-inhibition, localization, and activation.
Collapse
Affiliation(s)
- Louise Canon
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Carlos Kikuti
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Vicente J Planelles-Herrero
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Tianming Lin
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA
| | - Franck Mayeux
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Helena Sirkia
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Young Il Lee
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA
| | - Leila Heidsieck
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Léonid Velikovsky
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Amandine David
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Xiaoyan Liu
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA
| | - Dihia Moussaoui
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - Emma Forest
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
- École Nationale Supérieure de Chimie de Montpellier, 240 Avenue du Professeur Emile Jeanbrau, 34090, Montpellier, France
| | - Peter Höök
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA
| | - Karl J Petersen
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | | | - Aurélie Di Cicco
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Julia Sirés-Campos
- Structure et Compartimentation Membranaire, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | | | - Daniel Lévy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Cédric Delevoye
- Structure et Compartimentation Membranaire, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, PO Box 100267, Gainesville, Florida, 32610-0267, USA.
| | - Anne Houdusse
- Structural Motility, UMR 144 CNRS/Curie Institute, PSL Research University, 26 rue d'Ulm, 75258, Paris cedex 05, France.
| |
Collapse
|
5
|
Shahid-Fuente IW, Toseland CP. Myosin in chromosome organisation and gene expression. Biochem Soc Trans 2023; 51:1023-1034. [PMID: 37171068 PMCID: PMC10317160 DOI: 10.1042/bst20220939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
The importance of myosin motor protein is well-characterised within the cytoplasm and cytoskeleton. However, mounting evidence on four nuclear myosins highlights the central role these proteins have in maintaining genomic stability and gene expression. This review focuses on each of their critical roles in chromatin structure, chromosome translocation, transcription regulation, and DNA damage repair in terms of maintaining chromosome and chromatin integrity.
Collapse
|
6
|
Shi J, Hauschulte K, Mikicic I, Maharjan S, Arz V, Strauch T, Heidelberger JB, Schaefer JV, Dreier B, Plückthun A, Beli P, Ulrich HD, Wollscheid HP. Nuclear myosin VI maintains replication fork stability. Nat Commun 2023; 14:3787. [PMID: 37355687 PMCID: PMC10290672 DOI: 10.1038/s41467-023-39517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/09/2023] [Indexed: 06/26/2023] Open
Abstract
The actin cytoskeleton is of fundamental importance for cellular structure and plasticity. However, abundance and function of filamentous actin in the nucleus are still controversial. Here we show that the actin-based molecular motor myosin VI contributes to the stabilization of stalled or reversed replication forks. In response to DNA replication stress, myosin VI associates with stalled replication intermediates and cooperates with the AAA ATPase Werner helicase interacting protein 1 (WRNIP1) in protecting these structures from DNA2-mediated nucleolytic attack. Using functionalized affinity probes to manipulate myosin VI levels in a compartment-specific manner, we provide evidence for the direct involvement of myosin VI in the nucleus and against a contribution of the abundant cytoplasmic pool during the replication stress response.
Collapse
Affiliation(s)
- Jie Shi
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Kristine Hauschulte
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Ivan Mikicic
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Srijana Maharjan
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
- Mainz Biomed N.V., Robert-Koch-Str. 50, D - 55129, Mainz, Germany
| | - Valerie Arz
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Tina Strauch
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
| | - Jan B Heidelberger
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
- Max Planck School Matter to Life, Jahnstr. 29, D - 69120, Heidelberg, Germany
| | - Jonas V Schaefer
- University of Zurich, Department of Biochemistry, Winterthurerstr. 190, CH - 8057, Zurich, Switzerland
| | - Birgit Dreier
- University of Zurich, Department of Biochemistry, Winterthurerstr. 190, CH - 8057, Zurich, Switzerland
| | - Andreas Plückthun
- University of Zurich, Department of Biochemistry, Winterthurerstr. 190, CH - 8057, Zurich, Switzerland
| | - Petra Beli
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University, Hanns-Dieter-Hüsch-Weg 15, D - 55128, Mainz, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany.
| | - Hans-Peter Wollscheid
- Institute of Molecular Biology gGmbH (IMB), Ackermannweg 4, D - 55128, Mainz, Germany.
| |
Collapse
|
7
|
Dos Santos Á, Rollins DE, Hari-Gupta Y, McArthur H, Du M, Ru SYZ, Pidlisna K, Stranger A, Lorgat F, Lambert D, Brown I, Howland K, Aaron J, Wang L, Ellis PJI, Chew TL, Martin-Fernandez M, Pyne ALB, Toseland CP. Autophagy receptor NDP52 alters DNA conformation to modulate RNA polymerase II transcription. Nat Commun 2023; 14:2855. [PMID: 37202403 PMCID: PMC10195817 DOI: 10.1038/s41467-023-38572-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/09/2023] [Indexed: 05/20/2023] Open
Abstract
NDP52 is an autophagy receptor involved in the recognition and degradation of invading pathogens and damaged organelles. Although NDP52 was first identified in the nucleus and is expressed throughout the cell, to date, there is no clear nuclear functions for NDP52. Here, we use a multidisciplinary approach to characterise the biochemical properties and nuclear roles of NDP52. We find that NDP52 clusters with RNA Polymerase II (RNAPII) at transcription initiation sites and that its overexpression promotes the formation of additional transcriptional clusters. We also show that depletion of NDP52 impacts overall gene expression levels in two model mammalian cells, and that transcription inhibition affects the spatial organisation and molecular dynamics of NDP52 in the nucleus. This directly links NDP52 to a role in RNAPII-dependent transcription. Furthermore, we also show that NDP52 binds specifically and with high affinity to double-stranded DNA (dsDNA) and that this interaction leads to changes in DNA structure in vitro. This, together with our proteomics data indicating enrichment for interactions with nucleosome remodelling proteins and DNA structure regulators, suggests a possible function for NDP52 in chromatin regulation. Overall, here we uncover nuclear roles for NDP52 in gene expression and DNA structure regulation.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
- MRC LMB, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Daniel E Rollins
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
- MRC LMCB, University College London, Gower Street, London, WC1E 6BT, UK
| | - Hannah McArthur
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Mingxue Du
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | | | - Kseniia Pidlisna
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Ane Stranger
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Faeeza Lorgat
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Danielle Lambert
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Kevin Howland
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Peter J I Ellis
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, OX11 0QX, UK
| | - Alice L B Pyne
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | | |
Collapse
|
8
|
Haage A, Dhasarathy A. Working a second job: Cell adhesion proteins that moonlight in the nucleus. Front Cell Dev Biol 2023; 11:1163553. [PMID: 37169022 PMCID: PMC10164977 DOI: 10.3389/fcell.2023.1163553] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023] Open
Abstract
Cells are adept at sensing changes in their environment, transmitting signals internally to coordinate responses to external stimuli, and thereby influencing adaptive changes in cell states and behavior. Often, this response involves modulation of gene expression in the nucleus, which is seen largely as a physically separated process from the rest of the cell. Mechanosensing, whereby a cell senses physical stimuli, and integrates and converts these inputs into downstream responses including signaling cascades and gene regulatory changes, involves the participation of several macromolecular structures. Of note, the extracellular matrix (ECM) and its constituent macromolecules comprise an essential part of the cellular microenvironment, allowing cells to interact with each other, and providing both structural and biochemical stimuli sensed by adhesion transmembrane receptors. This highway of information between the ECM, cell adhesion proteins, and the cytoskeleton regulates cellular behavior, the disruption of which results in disease. Emerging evidence suggests a more direct role for some of these adhesion proteins in chromatin structure and gene regulation, RNA maturation and other non-canonical functions. While many of these discoveries were previously limited to observations of cytoplasmic-nuclear transport, recent advances in microscopy, and biochemical, proteomic and genomic technologies have begun to significantly enhance our understanding of the impact of nuclear localization of these proteins. This review will briefly cover known cell adhesion proteins that migrate to the nucleus, and their downstream functions. We will outline recent advances in this very exciting yet still emerging field, with impact ranging from basic biology to disease states like cancer.
Collapse
Affiliation(s)
- Amanda Haage
- *Correspondence: Amanda Haage, ; Archana Dhasarathy,
| | | |
Collapse
|
9
|
Acevedo-Garcia J, Walden K, Leissing F, Baumgarten K, Drwiega K, Kwaaitaal M, Reinstädler A, Freh M, Dong X, James GV, Baus LC, Mascher M, Stein N, Schneeberger K, Brocke-Ahmadinejad N, Kollmar M, Schulze-Lefert P, Panstruga R. Barley Ror1 encodes a class XI myosin required for mlo-based broad-spectrum resistance to the fungal powdery mildew pathogen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:84-103. [PMID: 35916711 DOI: 10.1111/tpj.15930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/17/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Loss-of-function alleles of plant MLO genes confer broad-spectrum resistance to powdery mildews in many eudicot and monocot species. Although barley (Hordeum vulgare) mlo mutants have been used in agriculture for more than 40 years, understanding of the molecular principles underlying this type of disease resistance remains fragmentary. Forward genetic screens in barley have revealed mutations in two Required for mlo resistance (Ror) genes that partially impair immunity conferred by mlo mutants. While Ror2 encodes a soluble N-ethylmaleimide-sensitive factor-attached protein receptor (SNARE), the identity of Ror1, located at the pericentromeric region of barley chromosome 1H, remained elusive. We report the identification of Ror1 based on combined barley genomic sequence information and transcriptomic data from ror1 mutant plants. Ror1 encodes the barley class XI myosin Myo11A (HORVU.MOREX.r3.1HG0046420). Single amino acid substitutions of this myosin, deduced from non-functional ror1 mutant alleles, map to the nucleotide-binding region and the interface between the relay-helix and the converter domain of the motor protein. Ror1 myosin accumulates transiently in the course of powdery mildew infection. Functional fluorophore-labeled Ror1 variants associate with mobile intracellular compartments that partially colocalize with peroxisomes. Single-cell expression of the Ror1 tail region causes a dominant-negative effect that phenocopies ror1 loss-of-function mutants. We define a myosin motor for the establishment of mlo-mediated resistance, suggesting that motor protein-driven intracellular transport processes are critical for extracellular immunity, possibly through the targeted transfer of antifungal and/or cell wall cargoes to pathogen contact sites.
Collapse
Affiliation(s)
- Johanna Acevedo-Garcia
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Kim Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Franz Leissing
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Kira Baumgarten
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Katarzyna Drwiega
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Mark Kwaaitaal
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Anja Reinstädler
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Matthias Freh
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
| | - Xue Dong
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lisa C Baus
- Faculty of Biology, LMU Munich, 82152, Planegg-Martinsried, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466, Seeland, Germany
- Center of integrated Breeding Research (CiBreed), Department of Crop Sciences, Georg-August-University Göttingen, Von Siebold Str. 8, 37075, Göttingen, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Faculty of Biology, LMU Munich, 82152, Planegg-Martinsried, Germany
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Nahal Brocke-Ahmadinejad
- INRES Crop Bioinformatics, University of Bonn, Katzenburgweg 2, 53115, Bonn, Germany
- Institute of Biochemistry and Molecular Biology, University of Bonn, Nussallee 11, D-53115, Bonn, Germany
| | - Martin Kollmar
- Department of NMR-based Structural Biology, Group Systems Biology of Motor Proteins, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056, Aachen, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
10
|
dos Santos Á, Fili N, Hari-Gupta Y, Gough RE, Wang L, Martin-Fernandez M, Aaron J, Wait E, Chew TL, Toseland CP. Binding partners regulate unfolding of myosin VI to activate the molecular motor. Biochem J 2022; 479:1409-1428. [PMID: 35722941 PMCID: PMC9342898 DOI: 10.1042/bcj20220025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022]
Abstract
Myosin VI is the only minus-end actin motor and it is coupled to various cellular processes ranging from endocytosis to transcription. This multi-potent nature is achieved through alternative isoform splicing and interactions with a network of binding partners. There is a complex interplay between isoforms and binding partners to regulate myosin VI. Here, we have compared the regulation of two myosin VI splice isoforms by two different binding partners. By combining biochemical and single-molecule approaches, we propose that myosin VI regulation follows a generic mechanism, independently of the spliced isoform and the binding partner involved. We describe how myosin VI adopts an autoinhibited backfolded state which is released by binding partners. This unfolding activates the motor, enhances actin binding and can subsequently trigger dimerization. We have further expanded our study by using single-molecule imaging to investigate the impact of binding partners upon myosin VI molecular organization and dynamics.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Natalia Fili
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, U.K
| | - Rosemarie E. Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, U.K
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, U.K
| | - Marisa Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, U.K
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | - Eric Wait
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, U.S.A
| | | |
Collapse
|
11
|
Measuring Nuclear Mechanics with Atomic Force Microscopy. Methods Mol Biol 2022; 2476:171-181. [PMID: 35635704 DOI: 10.1007/978-1-0716-2221-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Atomic force microscopy is an ideal tool to map topography and mechanical properties of materials on the micro- and nanoscale. Here, we describe its application to measure and analyze the mechanics, in particular the effective Young's elastic modulus E* of the mammalian nucleus in live cells. We present three approaches which enable the mechanics to be probed under varying conditions. This includes fully adhered cells, initially adhered cells which lack an established cytoskeleton, and purified nuclei to study their isolated response.
Collapse
|
12
|
Dos Santos Á, Gough RE, Wang L, Toseland CP. Measuring Nuclear Organization of Proteins with STORM Imaging and Cluster Analysis. Methods Mol Biol 2022; 2476:293-309. [PMID: 35635711 DOI: 10.1007/978-1-0716-2221-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Super-resolution microscopy enables the high-precision localization of proteins. Therefore, it is possible to investigate the spatial organization of proteins within the nucleus to understand how their organization relates to regulation and function. Here, we present methodology for single-molecule localization microscopy and cluster analysis where we cover sample preparation, image acquisition, and data analysis.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Rosemarie E Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Oxford, UK
| | | |
Collapse
|
13
|
Hari-Gupta Y, Fili N, dos Santos Á, Cook AW, Gough RE, Reed HCW, Wang L, Aaron J, Venit T, Wait E, Grosse-Berkenbusch A, Gebhardt JCM, Percipalle P, Chew TL, Martin-Fernandez M, Toseland CP. Myosin VI regulates the spatial organisation of mammalian transcription initiation. Nat Commun 2022; 13:1346. [PMID: 35292632 PMCID: PMC8924246 DOI: 10.1038/s41467-022-28962-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
During transcription, RNA Polymerase II (RNAPII) is spatially organised within the nucleus into clusters that correlate with transcription activity. While this is a hallmark of genome regulation in mammalian cells, the mechanisms concerning the assembly, organisation and stability remain unknown. Here, we have used combination of single molecule imaging and genomic approaches to explore the role of nuclear myosin VI (MVI) in the nanoscale organisation of RNAPII. We reveal that MVI in the nucleus acts as the molecular anchor that holds RNAPII in high density clusters. Perturbation of MVI leads to the disruption of RNAPII localisation, chromatin organisation and subsequently a decrease in gene expression. Overall, we uncover the fundamental role of MVI in the spatial regulation of gene expression.
Collapse
Affiliation(s)
- Yukti Hari-Gupta
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK ,grid.83440.3b0000000121901201Present Address: MRC LMCB, University College London, London, UK
| | - Natalia Fili
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK ,grid.36511.300000 0004 0420 4262Present Address: School of Life Sciences, University of Lincoln, Lincoln, UK
| | - Ália dos Santos
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Alexander W. Cook
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Rosemarie E. Gough
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | - Hannah C. W. Reed
- grid.9759.20000 0001 2232 2818School of Biosciences, University of Kent, Canterbury, UK
| | - Lin Wang
- grid.76978.370000 0001 2296 6998Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, UK
| | - Jesse Aaron
- grid.443970.dAdvanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA USA
| | - Tomas Venit
- grid.440573.10000 0004 1755 5934Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates
| | - Eric Wait
- grid.443970.dAdvanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA USA
| | | | | | - Piergiorgio Percipalle
- grid.440573.10000 0004 1755 5934Science Division, Biology Program, New York University Abu Dhabi (NYUAD), Abu Dhabi, United Arab Emirates ,grid.10548.380000 0004 1936 9377Department of Molecular Bioscience, The Wenner Gren Institute, Stockholm University, Stockholm, SE Sweden
| | - Teng-Leong Chew
- grid.443970.dAdvanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA USA
| | - Marisa Martin-Fernandez
- grid.76978.370000 0001 2296 6998Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford, UK
| | - Christopher P. Toseland
- grid.11835.3e0000 0004 1936 9262Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
14
|
Rai A, Shrivastava R, Vang D, Ritt M, Sadler F, Bhaban S, Salapaka M, Sivaramakrishnan S. Multimodal regulation of myosin VI ensemble transport by cargo adaptor protein GIPC. J Biol Chem 2022; 298:101688. [PMID: 35143838 PMCID: PMC8908270 DOI: 10.1016/j.jbc.2022.101688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 11/30/2022] Open
Abstract
A range of cargo adaptor proteins are known to recruit cytoskeletal motors to distinct subcellular compartments. However, the structural impact of cargo recruitment on motor function is poorly understood. Here, we dissect the multimodal regulation of myosin VI activity through the cargo adaptor GAIP-interacting protein, C terminus (GIPC), whose overexpression with this motor in cancer enhances cell migration. Using a range of biophysical techniques, including motility assays, FRET-based conformational sensors, optical trapping, and DNA origami-based cargo scaffolds to probe the individual and ensemble properties of GIPC-myosin VI motility, we report that the GIPC myosin-interacting region (MIR) releases an autoinhibitory interaction within myosin VI. We show that the resulting conformational changes in the myosin lever arm, including the proximal tail domain, increase the flexibility of the adaptor-motor linkage, and that increased flexibility correlates with faster actomyosin association and dissociation rates. Taken together, the GIPC MIR-myosin VI interaction stimulates a twofold to threefold increase in ensemble cargo speed. Furthermore, the GIPC MIR-myosin VI ensembles yield similar cargo run lengths as forced processive myosin VI dimers. We conclude that the emergent behavior from these individual aspects of myosin regulation is the fast, processive, and smooth cargo transport on cellular actin networks. Our study delineates the multimodal regulation of myosin VI by the cargo adaptor GIPC, while highlighting linkage flexibility as a novel biophysical mechanism for modulating cellular cargo motility.
Collapse
Affiliation(s)
- Ashim Rai
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Rachit Shrivastava
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Duha Vang
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Michael Ritt
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Fredrik Sadler
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Shreyas Bhaban
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Murti Salapaka
- Department of Electrical and Computer Engineering, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Sivaraj Sivaramakrishnan
- Department of Genetics, Cell Biology, and Development, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA.
| |
Collapse
|
15
|
Miyamoto K, Harata M. Nucleoskeleton proteins for nuclear dynamics. J Biochem 2021; 169:237-241. [PMID: 33479767 DOI: 10.1093/jb/mvab006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic nucleus shows organized structures of chromosomes, transcriptional components and their associated proteins. It has been believed that such a dense nuclear environment prevents the formation of a cytoskeleton-like network of protein filaments. However, accumulating evidence suggests that the cell nucleus also possesses structural filamentous components to support nuclear organization and compartments, which are referred to as nucleoskeleton proteins. Nucleoskeleton proteins including lamins and actin influence nuclear dynamics including transcriptional regulation, chromatin organization and DNA damage responses. Furthermore, these nucleoskeleton proteins play a pivotal role in cellular differentiation and animal development. In this commentary, we discuss how nucleoskeleton-based regulatory mechanisms orchestrate nuclear dynamics.
Collapse
Affiliation(s)
- Kei Miyamoto
- Graduate School of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa-shi, Wakayama 649-6493, Japan
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-0845, Japan
| |
Collapse
|
16
|
Cook AW, Toseland CP. The roles of nuclear myosin in the DNA damage response. J Biochem 2021; 169:265-271. [PMID: 33035317 DOI: 10.1093/jb/mvaa113] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Myosin within the nucleus has often been overlooked due to their importance in cytoplasmic processes and a lack of investigation. However, more recently, it has been shown that their nuclear roles are just as fundamental to cell function and survival with roles in transcription, DNA damage and viral replication. Myosins can act as molecular transporters and anchors that rely on their actin binding and ATPase capabilities. Their roles within the DNA damage response can varies from a transcriptional response, moving chromatin and stabilizing chromosome contacts. This review aims to highlight their key roles in the DNA damage response and how they impact nuclear organization and transcription.
Collapse
Affiliation(s)
- Alexander W Cook
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
17
|
Wagh K, Ishikawa M, Garcia DA, Stavreva DA, Upadhyaya A, Hager GL. Mechanical Regulation of Transcription: Recent Advances. Trends Cell Biol 2021; 31:457-472. [PMID: 33712293 PMCID: PMC8221528 DOI: 10.1016/j.tcb.2021.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/01/2023]
Abstract
Mechanotransduction is the ability of a cell to sense mechanical cues from its microenvironment and convert them into biochemical signals to elicit adaptive transcriptional and other cellular responses. Here, we describe recent advances in the field of mechanical regulation of transcription, highlight mechanical regulation of the epigenome as a key novel aspect of mechanotransduction, and describe recent technological advances that could further elucidate the link between mechanical stimuli and gene expression. In this review, we emphasize the importance of mechanotransduction as one of the governing principles of cancer progression, underscoring the need to conduct further studies of the molecular mechanisms involved in sensing mechanical cues and coordinating transcriptional responses.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Momoko Ishikawa
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David A Garcia
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Arpita Upadhyaya
- Department of Physics, University of Maryland, College Park, MD 20742, USA; Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA.
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Kneussel M, Sánchez-Rodríguez N, Mischak M, Heisler FF. Dynein and muskelin control myosin VI delivery towards the neuronal nucleus. iScience 2021; 24:102416. [PMID: 33997696 PMCID: PMC8099778 DOI: 10.1016/j.isci.2021.102416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 11/30/2022] Open
Abstract
Protein transport toward the nucleus is important for translating molecular signals into gene expression changes. Interestingly, the unconventional motor protein myosin VI regulates RNA polymerase II-dependent gene transcription. Whether actin-filament-dependent myosins are actively transported to nuclear compartments remains unknown. Here, we report that neurons also contain myosin VI inside their nucleus. Notably, nuclear appearance of this actin-dependent motor depends on functional cytoplasmic dynein, a minus end-directed microtubule motor. We find that the trafficking factor muskelin assists in the formation of dynein-myosin VI interactions and further localizes to nuclear foci, enriched in the myosin. Impairment of dynein, but not myosin VI function, reduces nuclear muskelin levels. In turn, muskelin represents a critical determinant in regulating myosin VI nuclear targeting. Our data reveal that minus end-directed microtubule transport determines myosin VI subcellular localization. They suggest a pathway of cytoplasm-to-nucleus trafficking that requires muskelin and is based on dynein-myosin cross talk.
Collapse
Affiliation(s)
- Matthias Kneussel
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Noelia Sánchez-Rodríguez
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Michaela Mischak
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| | - Frank F. Heisler
- Department of Molecular Neurogenetics, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, Falkenried 94, 20251 Hamburg, Germany
| |
Collapse
|
19
|
dos Santos Á, Toseland CP. Regulation of Nuclear Mechanics and the Impact on DNA Damage. Int J Mol Sci 2021; 22:3178. [PMID: 33804722 PMCID: PMC8003950 DOI: 10.3390/ijms22063178] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, the nucleus houses the genomic material of the cell. The physical properties of the nucleus and its ability to sense external mechanical cues are tightly linked to the regulation of cellular events, such as gene expression. Nuclear mechanics and morphology are altered in many diseases such as cancer and premature ageing syndromes. Therefore, it is important to understand how different components contribute to nuclear processes, organisation and mechanics, and how they are misregulated in disease. Although, over the years, studies have focused on the nuclear lamina-a mesh of intermediate filament proteins residing between the chromatin and the nuclear membrane-there is growing evidence that chromatin structure and factors that regulate chromatin organisation are essential contributors to the physical properties of the nucleus. Here, we review the main structural components that contribute to the mechanical properties of the nucleus, with particular emphasis on chromatin structure. We also provide an example of how nuclear stiffness can both impact and be affected by cellular processes such as DNA damage and repair.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Christopher P. Toseland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
- Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield S10 2RX, UK
| |
Collapse
|
20
|
Ulferts S, Prajapati B, Grosse R, Vartiainen MK. Emerging Properties and Functions of Actin and Actin Filaments Inside the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a040121. [PMID: 33288541 PMCID: PMC7919393 DOI: 10.1101/cshperspect.a040121] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent years have provided considerable insights into the dynamic nature of the cell nucleus, which is constantly reorganizing its genome, controlling its size and shape, as well as spatiotemporally orchestrating chromatin remodeling and transcription. Remarkably, it has become clear that the ancient and highly conserved cytoskeletal protein actin plays a crucial part in these processes. However, the underlying mechanisms, regulations, and properties of actin functions inside the nucleus are still not well understood. Here we summarize the diverse and distinct roles of monomeric and filamentous actin as well as the emerging roles for actin dynamics inside the nuclear compartment for genome organization and nuclear architecture.
Collapse
Affiliation(s)
- Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology I, University of Freiburg, 79104 Freiburg, Germany
| | - Bina Prajapati
- Institute of Biotechnology, Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology I, University of Freiburg, 79104 Freiburg, Germany,Centre for Integrative Biological Signalling Studies (CIBSS), 79104 Freiburg, Germany
| | - Maria K. Vartiainen
- Institute of Biotechnology, Helsinki Institute for Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
21
|
Dos Santos Á, Fili N, Pearson DS, Hari-Gupta Y, Toseland CP. High-throughput mechanobiology: Force modulation of ensemble biochemical and cell-based assays. Biophys J 2021; 120:631-641. [PMID: 33453266 PMCID: PMC7896026 DOI: 10.1016/j.bpj.2020.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 11/27/2022] Open
Abstract
Mechanobiology is focused on how the physical forces and mechanical properties of proteins, cells, and tissues contribute to physiology and disease. Although the response of proteins and cells to mechanical stimuli is critical for function, the tools to probe these activities are typically restricted to single-molecule manipulations. Here, we have developed a novel microplate reader assay to encompass mechanical measurements with ensemble biochemical and cellular assays, using a microplate lid modified with magnets. This configuration enables multiple static magnetic tweezers to function simultaneously across the microplate, thereby greatly increasing throughput. We demonstrate the broad applicability and versatility through in vitro and in cellulo approaches. Overall, our methodology allows, for the first time (to our knowledge), ensemble biochemical and cell-based assays to be performed under force in high-throughput format. This approach substantially increases the availability of mechanobiology measurements.
Collapse
Affiliation(s)
- Ália Dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Fili
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - David S Pearson
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Christopher P Toseland
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
22
|
Naydenov NG, Lechuga S, Huang EH, Ivanov AI. Myosin Motors: Novel Regulators and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2021; 13:741. [PMID: 33670106 PMCID: PMC7916823 DOI: 10.3390/cancers13040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer and the second most common cause of cancer deaths worldwide. Clinicians are largely faced with advanced and metastatic disease for which few interventions are available. One poorly understood aspect of CRC involves altered organization of the actin cytoskeleton, especially at the metastatic stage of the disease. Myosin motors are crucial regulators of actin cytoskeletal architecture and remodeling. They act as mechanosensors of the tumor environments and control key cellular processes linked to oncogenesis, including cell division, extracellular matrix adhesion and tissue invasion. Different myosins play either oncogenic or tumor suppressor roles in breast, lung and prostate cancer; however, little is known about their functions in CRC. This review focuses on the functional roles of myosins in colon cancer development. We discuss the most studied class of myosins, class II (conventional) myosins, as well as several classes (I, V, VI, X and XVIII) of unconventional myosins that have been linked to CRC development. Altered expression and mutations of these motors in clinical tumor samples and their roles in CRC growth and metastasis are described. We also evaluate the potential of using small molecular modulators of myosin activity to develop novel anticancer therapies.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Susana Lechuga
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| | - Emina H. Huang
- Departments of Cancer Biology and Colorectal Surgery, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
| | - Andrei I. Ivanov
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA; (N.G.N.); (S.L.)
| |
Collapse
|
23
|
Zakrzewski P, Lenartowska M, Buss F. Diverse functions of myosin VI in spermiogenesis. Histochem Cell Biol 2021; 155:323-340. [PMID: 33386429 PMCID: PMC8021524 DOI: 10.1007/s00418-020-01954-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Spermiogenesis is the final stage of spermatogenesis, a differentiation process during which unpolarized spermatids undergo excessive remodeling that results in the formation of sperm. The actin cytoskeleton and associated actin-binding proteins play crucial roles during this process regulating organelle or vesicle delivery/segregation and forming unique testicular structures involved in spermatid remodeling. In addition, several myosin motor proteins including MYO6 generate force and movement during sperm differentiation. MYO6 is highly unusual as it moves towards the minus end of actin filaments in the opposite direction to other myosin motors. This specialized feature of MYO6 may explain the many proposed functions of this myosin in a wide array of cellular processes in animal cells, including endocytosis, secretion, stabilization of the Golgi complex, and regulation of actin dynamics. These diverse roles of MYO6 are mediated by a range of specialized cargo-adaptor proteins that link this myosin to distinct cellular compartments and processes. During sperm development in a number of different organisms, MYO6 carries out pivotal functions. In Drosophila, the MYO6 ortholog regulates actin reorganization during spermatid individualization and male KO flies are sterile. In C. elegans, the MYO6 ortholog mediates asymmetric segregation of cytosolic material and spermatid budding through cytokinesis, whereas in mice, this myosin regulates assembly of highly specialized actin-rich structures and formation of membrane compartments to allow the formation of fully differentiated sperm. In this review, we will present an overview and compare the diverse function of MYO6 in the specialized adaptations of spermiogenesis in flies, worms, and mammals.
Collapse
Affiliation(s)
- Przemysław Zakrzewski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Torun, Poland.,Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
| | - Marta Lenartowska
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Torun, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Torun, Poland
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK.
| |
Collapse
|
24
|
dos Santos Á, Cook AW, Gough RE, Schilling M, Olszok N, Brown I, Wang L, Aaron J, Martin-Fernandez ML, Rehfeldt F, Toseland CP. DNA damage alters nuclear mechanics through chromatin reorganization. Nucleic Acids Res 2020; 49:340-353. [PMID: 33330932 PMCID: PMC7797048 DOI: 10.1093/nar/gkaa1202] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance.
Collapse
Affiliation(s)
- Ália dos Santos
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Alexander W Cook
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Rosemarie E Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Martin Schilling
- University of Göttingen, 3rd Institute of Physics—Biophysics, Göttingen 37077, Germany
| | - Nora A Olszok
- University of Göttingen, 3rd Institute of Physics—Biophysics, Göttingen 37077, Germany
| | - Ian Brown
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, UK
| | - Jesse Aaron
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, UK
| | - Florian Rehfeldt
- Correspondence may also be addressed to Florian Rehfeldt. Tel: +49 921 55 2504;
| | | |
Collapse
|
25
|
Myomics: myosin VI structural and functional plasticity. Curr Opin Struct Biol 2020; 67:33-40. [PMID: 33053464 DOI: 10.1016/j.sbi.2020.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/21/2022]
Abstract
Myosin VI is a minus end-directed actin motor protein that fulfils several roles in the cell. The interaction of myosin VI with its cellular cargoes is dictated by the presence of binding domains at the C-terminus of the protein. In this review, we describe how alternative splicing and structural and conformational changes modulate the plasticity of the myosin VI interactome. Recent findings highlight how the various partners can cooperate or compete for binding to allow a precise temporal and spatial regulation of myosin VI recruitment to different cellular compartments, where its motor or anchor function is needed.
Collapse
|
26
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
27
|
Abstract
The presence of actin in the nucleus has historically been a highly contentious issue. It is now, however, well accepted that actin has physiologically important roles in the nucleus. In this Review, we describe the evolution of our thinking about actin in the nucleus starting with evidence supporting its involvement in transcription, chromatin remodeling and intranuclear movements. We also review the growing literature on the mechanisms that regulate the import and export of actin and how post-translational modifications of actin could regulate nuclear actin. We end with an extended discussion of the role of nuclear actin in the repair of DNA double stranded breaks.
Collapse
Affiliation(s)
- Leonid Serebryannyy
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
28
|
Cook AW, Gough RE, Toseland CP. Nuclear myosins - roles for molecular transporters and anchors. J Cell Sci 2020; 133:133/11/jcs242420. [PMID: 32499319 DOI: 10.1242/jcs.242420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The myosin family of molecular motors are well-characterised cytoskeletal proteins. However, myosins are also present in the nucleus, where they have been shown to have roles in transcription, DNA repair and viral infections. Despite their involvement in these fundamental cellular processes, our understanding of these functions and their regulation remains limited. Recently, research on nuclear myosins has been gathering pace, and this Review will evaluate the current state of the field. Here, we will focus on the variation in structure of nuclear myosins, their nuclear import and their roles within transcription, DNA damage, chromatin organisation and viral infections. We will also consider both the biochemical and biophysical properties and restraints that are placed on these multifunctional motors, and how they link to their cytoplasmic counterparts. By highlighting these properties and processes, we show just how integral nuclear myosins are for cellular survival.
Collapse
Affiliation(s)
- Alexander W Cook
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | - Rosemarie E Gough
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, UK
| | | |
Collapse
|
29
|
|
30
|
O'Loughlin T, Kendrick-Jones J, Buss F. Approaches to Identify and Characterise MYO6-Cargo Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1239:355-380. [PMID: 32451866 DOI: 10.1007/978-3-030-38062-5_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Given the prevalence and importance of the actin cytoskeleton and the host of associated myosin motors, it comes as no surprise to find that they are linked to a plethora of cellular functions and pathologies. Although our understanding of the biophysical properties of myosin motors has been aided by the high levels of conservation in their motor domains and the extensive work on myosin in skeletal muscle contraction, our understanding of how the nonmuscle myosins participate in such a wide variety of cellular processes is less clear. It is now well established that the highly variable myosin tails are responsible for targeting these myosins to distinct cellular sites for specific functions, and although a number of adaptor proteins have been identified, our current understanding of the cellular processes involved is rather limited. Furthermore, as more adaptor proteins, cargoes and complexes are identified, the importance of elucidating the regulatory mechanisms involved is essential. Ca2+, and now phosphorylation and ubiquitination, are emerging as important regulators of cargo binding, and it is likely that other post-translational modifications are also involved. In the case of myosin VI (MYO6), a number of immediate binding partners have been identified using traditional approaches such as yeast two-hybrid screens and affinity-based pull-downs. However, these methods have only been successful in identifying the cargo adaptors, but not the cargoes themselves, which may often comprise multi-protein complexes. Furthermore, motor-adaptor-cargo interactions are dynamic by nature and often weak, transient and highly regulated and therefore difficult to capture using traditional affinity-based methods. In this chapter we will discuss the various approaches including functional proteomics that have been used to uncover and characterise novel MYO6-associated proteins and complexes and how this work contributes to a fuller understanding of the targeting and function(s) of this unique myosin motor.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK
| | | | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge, UK.
| |
Collapse
|
31
|
Venit T, Mahmood SR, Endara-Coll M, Percipalle P. Nuclear actin and myosin in chromatin regulation and maintenance of genome integrity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 355:67-108. [DOI: 10.1016/bs.ircmb.2020.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
32
|
Unconventional Myosins: How Regulation Meets Function. Int J Mol Sci 2019; 21:ijms21010067. [PMID: 31861842 PMCID: PMC6981383 DOI: 10.3390/ijms21010067] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 01/24/2023] Open
Abstract
Unconventional myosins are multi-potent molecular motors that are assigned important roles in fundamental cellular processes. Depending on their mechano-enzymatic properties and structural features, myosins fulfil their roles by acting as cargo transporters along the actin cytoskeleton, molecular anchors or tension sensors. In order to perform such a wide range of roles and modes of action, myosins need to be under tight regulation in time and space. This is achieved at multiple levels through diverse regulatory mechanisms: the alternative splicing of various isoforms, the interaction with their binding partners, their phosphorylation, their applied load and the composition of their local environment, such as ions and lipids. This review summarizes our current knowledge of how unconventional myosins are regulated, how these regulatory mechanisms can adapt to the specific features of a myosin and how they can converge with each other in order to ensure the required tight control of their function.
Collapse
|
33
|
Fili N, Hari-Gupta Y, Aston B, Dos Santos Á, Gough RE, Alamad B, Wang L, Martin-Fernandez ML, Toseland CP. Competition between two high- and low-affinity protein-binding sites in myosin VI controls its cellular function. J Biol Chem 2019; 295:337-347. [PMID: 31744880 DOI: 10.1074/jbc.ra119.010142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/15/2019] [Indexed: 11/06/2022] Open
Abstract
Myosin VI is involved in many cellular processes ranging from endocytosis to transcription. This multifunctional potential is achieved through alternative isoform splicing and through interactions of myosin VI with a diverse network of binding partners. However, the interplay between these two modes of regulation remains unexplored. To this end, we compared two different binding partners and their interactions with myosin VI by exploring the kinetic properties of recombinant proteins and their distribution in mammalian cells using fluorescence imaging. We found that selectivity for these binding partners is achieved through a high-affinity motif and a low-affinity motif within myosin VI. These two motifs allow competition among partners for myosin VI. Exploring how this competition affects the activity of nuclear myosin VI, we demonstrate the impact of a concentration-driven interaction with the low-affinity binding partner DAB2, finding that this interaction blocks the ability of nuclear myosin VI to bind DNA and its transcriptional activity in vitro We conclude that loss of DAB2, a tumor suppressor, may enhance myosin VI-mediated transcription. We propose that the frequent loss of specific myosin VI partner proteins during the onset of cancer leads to a higher level of nuclear myosin VI activity.
Collapse
Affiliation(s)
- Natalia Fili
- Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Bjork Aston
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Ália Dos Santos
- Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Rosemarie E Gough
- Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Bana Alamad
- School of Biosciences, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Lin Wang
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, United Kingdom
| | - Marisa L Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell, Didcot, Oxford OX11 0QX, United Kingdom
| | - Christopher P Toseland
- Sheffield Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, United Kingdom.
| |
Collapse
|
34
|
de Jonge JJ, Batters C, O'Loughlin T, Arden SD, Buss F. The MYO6 interactome: selective motor-cargo complexes for diverse cellular processes. FEBS Lett 2019; 593:1494-1507. [PMID: 31206648 DOI: 10.1002/1873-3468.13486] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/07/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
Abstract
Myosins of class VI (MYO6) are unique actin-based motor proteins that move cargo towards the minus ends of actin filaments. As the sole myosin with this directionality, it is critically important in a number of biological processes. Indeed, loss or overexpression of MYO6 in humans is linked to a variety of pathologies including deafness, cardiomyopathy, neurodegenerative diseases as well as cancer. This myosin interacts with a wide variety of direct binding partners such as for example the selective autophagy receptors optineurin, TAX1BP1 and NDP52 and also Dab2, GIPC, TOM1 and LMTK2, which mediate distinct functions of different MYO6 isoforms along the endocytic pathway. Functional proteomics has recently been used to identify the wider MYO6 interactome including several large functionally distinct multi-protein complexes, which highlight the importance of this myosin in regulating the actin and septin cytoskeleton. Interestingly, adaptor-binding not only triggers cargo attachment, but also controls the inactive folded conformation and dimerisation of MYO6. Thus, the C-terminal tail domain mediates cargo recognition and binding, but is also crucial for modulating motor activity and regulating cytoskeletal track dynamics.
Collapse
Affiliation(s)
| | | | - Thomas O'Loughlin
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Susan D Arden
- Cambridge Institute for Medical Research, University of Cambridge, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, UK
| |
Collapse
|
35
|
NDP52 tunes cortical actin interaction with astral microtubules for accurate spindle orientation. Cell Res 2019; 29:666-679. [PMID: 31201383 DOI: 10.1038/s41422-019-0189-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
Oriented cell divisions are controlled by a conserved molecular cascade involving Gαi, LGN, and NuMA. Here, we show that NDP52 regulates spindle orientation via remodeling the polar cortical actin cytoskeleton. siRNA-mediated NDP52 suppression surprisingly revealed a ring-like compact subcortical F-actin architecture surrounding the spindle in prophase/prometaphase cells, which resulted in severe defects of astral microtubule growth and an aberrant spindle orientation. Remarkably, NDP52 recruited the actin assembly factor N-WASP and regulated the dynamics of the subcortical F-actin ring in mitotic cells. Mechanistically, NDP52 was found to bind to phosphatidic acid-containing vesicles, which absorbed cytoplasmic N-WASP to regulate local filamentous actin growth at the polar cortex. Our TIRFM analyses revealed that NDP52-containing vesicles anchored N-WASP and shortened the length of actin filaments in vitro. Based on these results we propose that NDP52-containing vesicles regulate cortical actin dynamics through N-WASP to accomplish a spatiotemporal regulation between astral microtubules and the actin network for proper spindle orientation and precise chromosome segregation. In this way, intracellular vesicles cooperate with microtubules and actin filaments to regulate proper mitotic progression. Since NDP52 is absent from yeast, we reason that metazoans have evolved an elaborate spindle positioning machinery to ensure accurate chromosome segregation in mitosis.
Collapse
|
36
|
The LMTK-family of kinases: Emerging important players in cell physiology and pathogenesis. Biochim Biophys Acta Mol Basis Dis 2018; 1867:165372. [PMID: 30597196 DOI: 10.1016/j.bbadis.2018.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
Lemur Tail (former tyrosine) Kinases (LMTKs) comprise a novel family of regulated serine/threonine specific kinases with three structurally and evolutionary related members. LMTKs exercise a confusing variety of cytosolic functions in cell signalling and membrane trafficking. Moreover, LMTK2 and LMTK3 also reside in the nucleus where they participate in gene transcription/regulation. As a consequence, LMTKs impact cell proliferation and apoptosis, cell growth and differentiation, as well as cell migration. All these fundamental cell behaviours can turn awry, most prominently during neuropathologies and tumour biogenesis. In cancer cells, LMTK levels are often correlated with poor overall prognosis and therapy outcome, not least owned to acquired drug resistance. In brain tissue, LMTKs are highly expressed and have been linked to neuronal and glia cell differentiation and cell homeostasis. For one member of the LMTK-family (LMTK2) a role in cystic fibrosis has been identified. Due to their role in fundamental cell processes, altered LMTK physiology may also warrant a hitherto unappreciated role in other diseases, and expose them as potential valuable drug targets. On the backdrop of a compendium of LMTK cell functions, we hypothesize that the primary role of LMTKs may dwell within the endocytic cargo recycling and/or nuclear receptor transport pathways.
Collapse
|
37
|
Cook A, Hari-Gupta Y, Toseland CP. Application of the SSB biosensor to study in vitro transcription. Biochem Biophys Res Commun 2018; 496:820-825. [PMID: 29378185 PMCID: PMC5811048 DOI: 10.1016/j.bbrc.2018.01.147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 01/09/2023]
Abstract
Gene expression, catalysed by RNA polymerases (RNAP), is one of the most fundamental processes in living cells. The majority of methods to quantify mRNA are based upon purification of the nucleic acid which leads to experimental inaccuracies and loss of product, or use of high cost dyes and sensitive spectrophotometers. Here, we describe the use of a fluorescent biosensor based upon the single stranded binding (SSB) protein. In this study, the SSB biosensor showed similar binding properties to mRNA, to that of its native substrate, single-stranded DNA (ssDNA). We found the biosensor to be reproducible with no associated loss of product through purification, or the requirement for expensive dyes. Therefore, we propose that the SSB biosensor is a useful tool for comparative measurement of mRNA yield following in vitro transcription. Single-stranded binding protein can bind mRNA similar to single-stranded DNA. The biosensor MDCC-SSB can be used to quantify mRNA yield from in vitro transcription. Myosin VI motor activity is required for in vitro and in vivo transcription.
Collapse
Affiliation(s)
- Alexander Cook
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | - Yukti Hari-Gupta
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK
| | | |
Collapse
|
38
|
Viret C, Rozières A, Faure M. Novel Insights into NDP52 Autophagy Receptor Functioning. Trends Cell Biol 2018; 28:255-257. [PMID: 29395717 DOI: 10.1016/j.tcb.2018.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 02/02/2023]
Abstract
NDP52/CALCOCO2 makes multiple contributions to selective autophagy. By interacting with cargos and LC3, NDP52 directs autophagy targets to autophagosomes. In addition, NDP52 promotes autophagosomes fusion with endolysosomes by connecting autophagosomes to MYOSIN VI. Recent studies reveal that Rab35 GTPase controls NDP52 recruitment to its targets and that NDP52 triggers MYOSIN VI (MYO6) motility.
Collapse
Affiliation(s)
- Christophe Viret
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; INSERM, U1111, Lyon, France; CNRS, UMR5308, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 21 Av T. Garnier, 69007 Lyon, France; Equipe labellisée Fondation pour la Recherche Médicale FRM, France
| | - Aurore Rozières
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; INSERM, U1111, Lyon, France; CNRS, UMR5308, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 21 Av T. Garnier, 69007 Lyon, France; Equipe labellisée Fondation pour la Recherche Médicale FRM, France
| | - Mathias Faure
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; INSERM, U1111, Lyon, France; CNRS, UMR5308, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Lyon 1, Centre International de Recherche en Infectiologie, 21 Av T. Garnier, 69007 Lyon, France; Equipe labellisée Fondation pour la Recherche Médicale FRM, France.
| |
Collapse
|