1
|
Quan S, Guo S, Zhao X, Weller D, Wang X, Li L, Fu S, Liu R. Enhanced Photodetection Performance of InBiSe 3/ReS 2 Polarization-Sensitive Heterostructure Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406148. [PMID: 39468911 DOI: 10.1002/smll.202406148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Indexed: 10/30/2024]
Abstract
Individual anisotropic two-dimensional (2D) materials have been widely applied for developing polarization-sensitive photodetectors, but they often suffer from limitations in photoresponsivity, detection range, etc. To overcome these challenges, van der Waals (vdW) heterostructures created by stacking different 2D materials provide a promising solution to enhance the performance of the photoelectronic device. In this work, a novel polarization-sensitive photodetector is developed by leveraging a heterojunction formed by InBiSe3 and anisotropic ReS2 nanoflakes. The InBiSe3/ReS2 vdW heterostructure devices exhibit excellent photodetection performance with a high photoresponsivity (R) of 7.68 A W-1 and a specific detectivity (D*) up to 1.26 × 1011 Jones as well as an external quantum efficiency (EQE) of 1790% under 532 nm laser irradiation. Additionally, benefiting from the broadband light absorption of InBiSe3 crystals together with the pronounced anisotropic electronic and optical characteristics of ReS2 flakes, the devices demonstrate a broad spectral response range from 402 to 1006 nm with a distinct polarization sensitivity of 1.24. Moreover, the devices exhibit extraordinary optical communication and high contrast polarimetric imaging capacity. This work demonstrates the enhanced photodetection performance with the InBiSe3/ReS2 vdW heterostructures operating in a photoconductive mode and illustrates promising application of these heterostructures in integrated optoelectronic systems.
Collapse
Affiliation(s)
- Sufeng Quan
- School of Information Science and Engineering, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
| | - Shuai Guo
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
- Tianjin Key Laboratory of Optoelectronic Detection Technology and System, Tianjin, 300387, China
| | - Xiaoyu Zhao
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Dieter Weller
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Xuefeng Wang
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Li Li
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
| | - Shiyou Fu
- School of Information Science and Engineering, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology Weihai Campus, Weihai, 264209, China
| | - Ruibin Liu
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Che M, Wang B, Zhao X, Li Y, Chang C, Liu M, Du Y, Qi L, Zhang N, Zou Y, Li S. PdSe 2/2H-MoTe 2 Heterojunction Self-Powered Photodetector: Broadband Photodetection and Linear/Circular Polarization Capability. ACS NANO 2024. [PMID: 39441187 DOI: 10.1021/acsnano.4c12298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
In this research, we introduce a PdSe2/2H-MoTe2 heterojunction photodetector that exhibits both broadband self-powered photodetection and linear/circular polarization detection capabilities. It has a broad spectral response range (covering 375-2200 nm) and reaches a peak sensitivity at 532 nm, exhibiting a notable responsivity of 7.3 × 103 A/W and a substantial specific detectivity of 8.5 × 1012 Jones. Even in the near-infrared region of 1310 nm, it still has a high responsivity of 20 A/W. The self-powered photodetection capabilities of the PdSe2/2H-MoTe2 heterojunction are equally impressive, covering a broad range from 375 to 1550 nm, with a responsivity of 243 mA/W, a specific detectivity of 6.46 × 1010 Jones, a fill factor of 0.8, and an external quantum efficiency of 56.73%. Finally, simultaneous implementation of linear/circular polarization detection on the PdSe2/2H-MoTe2 heterojunction provides a powerful solution for near-infrared full-Stokes polarization detectors with high integration, miniaturization, and portability.
Collapse
Affiliation(s)
- Mengqi Che
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Zhao
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Li
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlu Chang
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxiu Liu
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Du
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liujian Qi
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Zhang
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Zou
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojuan Li
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Li J, Yang X, Zhang Z, Yang W, Duan X, Duan X. Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. NATURE MATERIALS 2024; 23:1326-1338. [PMID: 39227467 DOI: 10.1038/s41563-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Two-dimensional transition metal dichalcogenides, which feature atomically thin geometry and dangling-bond-free surfaces, have attracted intense interest for diverse technology applications, including ultra-miniaturized transistors towards the subnanometre scale. A straightforward exfoliation-and-restacking approach has been widely used for nearly arbitrary assembly of diverse two-dimensional (2D) heterostructures, superlattices and moiré superlattices, providing a versatile materials platform for fundamental investigations of exotic physical phenomena and proof-of-concept device demonstrations. While this approach has contributed importantly to the recent flourishing of 2D materials research, it is clearly unsuitable for practical technologies. Capturing the full potential of 2D transition metal dichalcogenides requires robust and scalable synthesis of these atomically thin materials and their heterostructures with designable spatial modulation of chemical compositions and electronic structures. The extreme aspect ratio, lack of intrinsic substrate and highly delicate nature of the atomically thin crystals present fundamental difficulties in material synthesis. Here we summarize the key challenges, highlight current advances and outline opportunities in the scalable synthesis of transition metal dichalcogenide-based heterostructures, superlattices and moiré superlattices.
Collapse
Affiliation(s)
- Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Zhengwei Zhang
- School of Physics and Electronics, Central South University, Changsha, China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Li W, Qin Q, Li X, Huangfu Y, Shen D, Liu J, Li J, Li B, Wu R, Duan X. Robust Growth of 2D Transition Metal Dichalcogenide Vertical Heterostructures via Ammonium-Assisted CVD Strategy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408367. [PMID: 39300853 DOI: 10.1002/adma.202408367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Two dimension (2D) transition metal dichalcogenides (TMD) heterostructures have opened unparalleled prospects for next-generation electronic and optoelectronic applications due to their atomic-scale thickness and distinct physical properties. The chemical vapor deposition (CVD) method is the most feasible approach to prepare 2D TMD heterostructures. However, the synthesis of 2D vertical heterostructures faces competition between in-plane and out-of-plane growth, which makes it difficult to precisely control the growth of vertical heterostructures. Here, a universal and controllable strategy is reported to grow various 2D TMD vertical heterostructures through an ammonium-assisted CVD process. The ammonium-assisted strategy shows excellent controllability and operational simplicity to prevent interlayer diffusion/alloying and thermal decomposition of the existed TMD templates. Ab initio simulations demonstrate that the reaction between NH4Cl and MoS2 leads to the formation of MoS3 clusters, promoting the nucleation and growth of 2D MoS2 on existed 2D WS2 layer, thereby leading to the growth of vertical heterostructure. The resulting 2D WSe2/WS2 vertical heterostructure photodetectors demonstrate an outstanding optoelectronic performance, which are comparable to the performances of photodetectors fabricated from mechanically exfoliated and stacked vertical heterostructures. The ammonium-assisted strategy for robust growth of high-quality vertical van der Waals heterostructures will facilitate fundamental physics investigations and device applications in electronics and optoelectronics.
Collapse
Affiliation(s)
- Wei Li
- College of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Qiuyin Qin
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xin Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Ying Huangfu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Dingyi Shen
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| | - Jialing Liu
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jia Li
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Li
- College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Ruixia Wu
- College of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xidong Duan
- Hunan Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
5
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Bai Y, Nguyen TT, Song H, Chu R, Tran DT, Kim NH, Lee JH. Ru Single Atom Dispersed on MoS 2/MXene for Enhanced Sulfur Reduction Reaction in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402074. [PMID: 38794990 DOI: 10.1002/smll.202402074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Indexed: 05/27/2024]
Abstract
The high theoretical energy density (2600 Wh kg-1) and low cost of lithium-sulfur batteries (LSBs) make them an ideal alternative for the next-generation energy storage system. Nevertheless, severe capacity degradation and low sulfur utilization resulting from shuttle effect hinder their commercialization. Herein, Single-atom Ru-doped 1T/2H MoS2 with enriched defects decorates V2C MXene (Ru-MoS2/MXene) produced by a new phase-engineering strategy employed as sulfur host to promote polysulfide adsorption and conversion reaction kinetics. The Ru single atom-doped adjusts the chemical environment of the MoS2/MXene to anchor polysulfide and acts as an efficient center to motivate the redox reaction. In addition, the rich defects of the MoS2 and ternary boundary among 1T/2H MoS2 and V2C accelerate the charge transfer and ion movements for the reaction. As expected, the Ru-MoS2/MXene/S cathode-based cell exhibits a high-rate capability of 684.3 mAh g-1 at 6 C. After 1000 cycles, the Ru-MoS2/MXene/S cell maintains an excellent cycling stability of 696 mAh g-1 at 2 C with a capacity degradation as low as 0.02% per cycle. Despite a high sulfur loading of 9.5 mg cm-2 and a lean electrolyte-to-sulfur ratio of 4.3, the cell achieves a high discharge capacity of 726 mAh g-1.
Collapse
Affiliation(s)
- Yanqun Bai
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- AHES Co., 445 Techno Valley-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55314, Republic of Korea
| | - Thanh Tuan Nguyen
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Hewei Song
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Rongrong Chu
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Duy Thanh Tran
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Nam Hoon Kim
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Joong Hee Lee
- Advanced Materials Institute of Nano Convergence Engineering (BK21 FOUR), Dept. of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
- AHES Co., 445 Techno Valley-ro, Bongdong-eup, Wanju-gun, Jeonbuk, 55314, Republic of Korea
- Carbon Composite Research Centre, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| |
Collapse
|
7
|
Liang M, Yan H, Wazir N, Zhou C, Ma Z. Two-Dimensional Semiconductors for State-of-the-Art Complementary Field-Effect Transistors and Integrated Circuits. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1408. [PMID: 39269071 PMCID: PMC11397490 DOI: 10.3390/nano14171408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
As the trajectory of transistor scaling defined by Moore's law encounters challenges, the paradigm of ever-evolving integrated circuit technology shifts to explore unconventional materials and architectures to sustain progress. Two-dimensional (2D) semiconductors, characterized by their atomic-scale thickness and exceptional electronic properties, have emerged as a beacon of promise in this quest for the continued advancement of field-effect transistor (FET) technology. The energy-efficient complementary circuit integration necessitates strategic engineering of both n-channel and p-channel 2D FETs to achieve symmetrical high performance. This intricate process mandates the realization of demanding device characteristics, including low contact resistance, precisely controlled doping schemes, high mobility, and seamless incorporation of high- κ dielectrics. Furthermore, the uniform growth of wafer-scale 2D film is imperative to mitigate defect density, minimize device-to-device variation, and establish pristine interfaces within the integrated circuits. This review examines the latest breakthroughs with a focus on the preparation of 2D channel materials and device engineering in advanced FET structures. It also extensively summarizes critical aspects such as the scalability and compatibility of 2D FET devices with existing manufacturing technologies, elucidating the synergistic relationships crucial for realizing efficient and high-performance 2D FETs. These findings extend to potential integrated circuit applications in diverse functionalities.
Collapse
Affiliation(s)
- Meng Liang
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Han Yan
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Nasrullah Wazir
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Changjian Zhou
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| | - Zichao Ma
- School of Microelectronics, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
8
|
Jeong Y, Han B, Tamayo A, Claes N, Bals S, Samorì P. Defect Engineering of MoTe 2 via Thiol Treatment for Type III van der Waals Heterojunction Phototransistor. ACS NANO 2024; 18:18334-18343. [PMID: 38960378 PMCID: PMC11256742 DOI: 10.1021/acsnano.4c02207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Molybdenum ditelluride (MoTe2) nanosheets have displayed intriguing physicochemical properties and opto-electric characteristics as a result of their tunable and small band gap (Eg ∼ 1 eV), facilitating concurrent electron and hole transport. Despite the numerous efforts devoted to the development of p-type MoTe2 field-effect transistors (FETs), the presence of tellurium (Te) point vacancies has caused serious reliability issues. Here, we overcome this major limitation by treating the MoTe2 surface with thiolated molecules to heal Te vacancies. Comprehensive materials and electrical characterizations provided unambiguous evidence for the efficient chemisorption of butanethiol. Our thiol-treated MoTe2 FET exhibited a 10-fold increase in hole current and a positive threshold voltage shift of 25 V, indicative of efficient hole carrier doping. We demonstrated that our powerful molecular engineering strategy can be extended to the controlled formation of van der Waals heterostructures by developing an n-SnS2/thiol-MoTe2 junction FET (thiol-JFET). Notably, the thiol-JFET exhibited a significant negative photoresponse with a responsivity of 50 A W-1 and a fast response time of 80 ms based on band-to-band tunneling. More interestingly, the thiol-JFET displayed a gate tunable trimodal photodetection comprising two photoactive modes (positive and negative photoresponse) and one photoinactive mode. These findings underscore the potential of molecular engineering approaches in enhancing the performance and functionality of MoTe2-based nanodevices as key components in advanced 2D-based optoelectronics.
Collapse
Affiliation(s)
- Yeonsu Jeong
- University
of Strasbourg, CNRS, Institut de Science et d’Ingénierie
Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Bin Han
- University
of Strasbourg, CNRS, Institut de Science et d’Ingénierie
Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Adrián Tamayo
- University
of Strasbourg, CNRS, Institut de Science et d’Ingénierie
Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| | - Nathalie Claes
- Electron
Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence,
University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Sara Bals
- Electron
Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence,
University of Antwerp, Groenenborgerlaan 171, Antwerp 2020, Belgium
| | - Paolo Samorì
- University
of Strasbourg, CNRS, Institut de Science et d’Ingénierie
Supramoléculaires, UMR 7006, 8 Allée Gaspard Monge, Strasbourg 67000, France
| |
Collapse
|
9
|
Luo X, Jiao Y, Li H, Liu Q, Liu J, Wang M, Liu Y. Impact of Carrier Gas Flow Rate on the Synthesis of Monolayer WSe 2 via Hydrogen-Assisted Chemical Vapor Deposition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2190. [PMID: 38793257 PMCID: PMC11123087 DOI: 10.3390/ma17102190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/26/2024]
Abstract
Transition metal dichalcogenides (TMDs), particularly monolayer TMDs with direct bandgap properties, are key to advancing optoelectronic device technology. WSe2 stands out due to its adjustable carrier transport, making it a prime candidate for optoelectronic applications. This study explores monolayer WSe2 synthesis via H2-assisted CVD, focusing on how carrier gas flow rate affects WSe2 quality. A comprehensive characterization of monolayer WSe2 was conducted using OM (optical microscope), Raman spectroscopy, PL spectroscopy, AFM, SEM, XPS, HRTEM, and XRD. It was found that H2 incorporation and flow rate critically influence WSe2's growth and structural integrity, with low flow rates favoring precursor concentration for product formation and high rates causing disintegration of existing structures. This research accentuates the significance of fine-tuning the carrier gas flow rate for optimizing monolayer WSe2 synthesis, offering insights for fabricating monolayer TMDs like WS2, MoSe2, and MoS2, and facilitating their broader integration into optoelectronic devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yong Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering (ISMSE), State Wuhan University of Technology, Wuhan 430070, China; (X.L.); (Y.J.); (H.L.); (Q.L.); (J.L.); (M.W.)
| |
Collapse
|
10
|
Zhong J, Zhou D, Bai Q, Liu C, Fan X, Zhang H, Li C, Jiang R, Zhao P, Yuan J, Li X, Zhan G, Yang H, Liu J, Song X, Zhang J, Huang X, Zhu C, Zhu C, Wang L. Growth of millimeter-sized 2D metal iodide crystals induced by ion-specific preference at water-air interfaces. Nat Commun 2024; 15:3185. [PMID: 38609368 PMCID: PMC11014996 DOI: 10.1038/s41467-024-47241-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Conventional liquid-phase methods lack precise control in synthesizing and processing materials with macroscopic sizes and atomic thicknesses. Water interfaces are ubiquitous and unique in catalyzing many chemical reactions. However, investigations on two-dimensional (2D) materials related to water interfaces remain limited. Here we report the growth of millimeter-sized 2D PbI2 single crystals at the water-air interface. The growth mechanism is based on an inherent ion-specific preference, i.e. iodine and lead ions tend to remain at the water-air interface and in bulk water, respectively. The spontaneous accumulation and in-plane arrangement within the 2D crystal of iodide ions at the water-air interface leads to the unique crystallization of PbI2 as well as other metal iodides. In particular, PbI2 crystals can be customized to specific thicknesses and further transformed into millimeter-sized mono- to few-layer perovskites. Additionally, we have developed water-based techniques, including water-soaking, spin-coating, water-etching, and water-flow-assisted transfer to recycle, thin, pattern, and position PbI2, and subsequently, perovskites. Our water-interface mediated synthesis and processing methods represents a significant advancement in achieving simple, cost-effective, and energy-efficient production of functional materials and their integrated devices.
Collapse
Affiliation(s)
- Jingxian Zhong
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Dawei Zhou
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Qi Bai
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Chao Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Xinlian Fan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hehe Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Congzhou Li
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Ran Jiang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Peiyi Zhao
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jiaxiao Yuan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiaojiao Li
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China
| | - Guixiang Zhan
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Hongyu Yang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Jing Liu
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xuefen Song
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Junran Zhang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Xiao Huang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China
| | - Chao Zhu
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing, 210096, China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, China.
| | - Lin Wang
- School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Key Laboratory of Flexible Electronics (KLOFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), Nanjing, 211816, China.
| |
Collapse
|
11
|
Zhou X, Shen B, Zhai J, Yuan J, Hedin N. Enhanced Generation of Reactive Oxygen Species via Piezoelectrics based on p-n Heterojunctions with Built-In Electric Field. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38595048 DOI: 10.1021/acsami.4c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Tuning the charge transfer processes through a built-in electric field is an effective way to accelerate the dynamics of electro- and photocatalytic reactions. However, the coupling of the built-in electric field of p-n heterojunctions and the microstrain-induced polarization on the impact of piezocatalysis has not been fully explored. Herein, we demonstrate the role of the built-in electric field of p-type BiOI/n-type BiVO4 heterojunctions in enhancing their piezocatalytic behaviors. The highly crystalline p-n heterojunction is synthesized by using a coprecipitation method under ambient aqueous conditions. Under ultrasonic irradiation in water exposed to air, the p-n heterojunctions exhibit significantly higher production rates of reactive species (·OH, ·O2-, and 1O2) as compared to isolated BiVO4 and BiOI. Also, the piezocatalytic rate of H2O2 production with the BiOI/BiVO4 heterojunction reaches 480 μmol g-1 h-1, which is 1.6- and 12-fold higher than those of BiVO4 and BiOI, respectively. Furthermore, the p-n heterojunction maintains a highly stable H2O2 production rate under ultrasonic irradiation for up to 5 h. The results from the experiments and equation-driven simulations of the strain and piezoelectric potential distributions indicate that the piezocatalytic reactivity of the p-n heterojunction resulted from the polarization intensity induced by periodic ultrasound, which is enhanced by the built-in electric field of the p-n heterojunctions. This study provides new insights into the design of piezocatalysts and opens up new prospects for applications in medicine, environmental remediation, and sonochemical sensors.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Bo Shen
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jiwei Zhai
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Niklas Hedin
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
12
|
Chen Y, Liu H, Yu G, Ma C, Xu Z, Zhang J, Zhang C, Chen M, Li D, Zheng W, Luo Z, Yang X, Li K, Yao C, Zhang D, Xu B, Yi J, Yi C, Li B, Zhang H, Zhang Z, Zhu X, Li S, Chen S, Jiang Y, Pan A. Defect Engineering of 2D Semiconductors for Dual Control of Emission and Carrier Polarity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312425. [PMID: 38146671 DOI: 10.1002/adma.202312425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Indexed: 12/27/2023]
Abstract
2D transition metal dichalcogenides (TMDCs) are considered as promising materials in post-Moore technology. However, the low photoluminescence quantum yields (PLQY) and single carrier polarity due to the inevitable defects during material preparation are great obstacles to their practical applications. Here, an extraordinary defect engineering strategy is reported based on first-principles calculations and realize it experimentally on WS2 monolayers by doping with IIIA atoms. The doped samples with large sizes possess both giant PLQY enhancement and effective carrier polarity modulation. Surprisingly, the high PL emission maintained even after one year under ambient environment. Moreover, the constructed p-n homojunctions shows high rectification ratio (≈2200), ultrafast response times and excellent stability. Meanwhile, the doping strategy is universally applicable to other TMDCs and dopants. This smart defect engineering strategy not only provides a general scheme to eliminate the negative influence of defects, but also utilize them to achieve desired optoelectronic properties for multifunctional applications.
Collapse
Affiliation(s)
- Ying Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Huawei Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Guoliang Yu
- School of Physics and Electronics, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Chao Ma
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zheyuan Xu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jinding Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Cheng Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Mingxing Chen
- School of Physics and Electronics, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Weihao Zheng
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan, 410073, China
| | - Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xin Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Kaihui Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Chengdong Yao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Danliang Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Boyi Xu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jiali Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Chen Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Bo Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Hongmei Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zucheng Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xiaoli Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Siyu Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ying Jiang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
13
|
Xin Z, Zhang X, Guo J, Wu Y, Wang B, Shi R, Liu K. Dual-Limit Growth of Large-Area Monolayer Transition Metal Dichalcogenides. ACS NANO 2024; 18:7391-7401. [PMID: 38408193 DOI: 10.1021/acsnano.3c09222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The large-scale growth of monolayer transition metal dichalcogenide (TMDC) films is a determinant for the implementation of two-dimensional materials in industrial applications. However, the simultaneous realization of uniform monolayer thickness and large-area coverage is still a challenge, because it requires precise control of reaction kinetics in both space and time dimensions. Herein, we achieve a variety of large-area monolayer TMDCs films by a dual-limit growth (DLG) that is realized through nanoporous carbon nanotube (CNT) films. In the DLG, a precursor-loaded CNT film placed face-to-face with a substrate provides a space-limited environment facilitating the monolayer growth, while the byproducts formed in the CNT film timely limits the supply of precursors released from nanopores of the CNT film, inhibiting the growth of multilayer TMDCs on the substrate. Consequently, large-area monolayer TMDC films are grown in a wide range of reaction times and show good homogeneity in thickness, optical properties, and device performance over the entire substrate. The DLG strategy is widely applicable for the growth of a variety of TMDC films including WSe2, MoS2, MoSe2, WS2, and ReS2. Our work provides a universal strategy to attain large-area monolayer TMDC films that can be used in practical applications of integrated circuits.
Collapse
Affiliation(s)
- Zeqin Xin
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolong Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jing Guo
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yonghuang Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Bolun Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Run Shi
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
14
|
Fortin-Deschênes M, Watanabe K, Taniguchi T, Xia F. Van der Waals epitaxy of tunable moirés enabled by alloying. NATURE MATERIALS 2024; 23:339-346. [PMID: 37580367 DOI: 10.1038/s41563-023-01596-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 05/31/2023] [Indexed: 08/16/2023]
Abstract
The unique physics in moiré superlattices of twisted or lattice-mismatched atomic layers holds great promise for future quantum technologies. However, twisted configurations are thermodynamically unfavourable, making accurate twist angle control during growth implausible. While rotationally aligned, lattice-mismatched moirés such as WSe2/WS2 can be synthesized, they lack the critical moiré period tunability, and their formation mechanisms are not well understood. Here, we report the thermodynamically driven van der Waals epitaxy of moirés with a tunable period from 10 to 45 nanometres, using lattice mismatch engineering in two WSSe layers with adjustable chalcogen ratios. Contrary to conventional epitaxy, where lattice-mismatch-induced stress hinders high-quality growth, we reveal the key role of bulk stress in moiré formation and its unique interplay with edge stress in shaping the moiré growth modes. Moreover, the superlattices display tunable interlayer excitons and moiré intralayer excitons. Our studies unveil the epitaxial science of moiré synthesis and lay the foundations for moiré-based technologies.
Collapse
Affiliation(s)
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Fengnian Xia
- Department of Electrical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
15
|
Chen L, Cheng Z, He S, Zhang X, Deng K, Zong D, Wu Z, Xia M. Large-area single-crystal TMD growth modulated by sapphire substrates. NANOSCALE 2024; 16:978-1004. [PMID: 38112240 DOI: 10.1039/d3nr05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Transition metal dichalcogenides (TMDs) have recently attracted extensive attention due to their unique physical and chemical properties; however, the preparation of large-area TMD single crystals is still a great challenge. Chemical vapor deposition (CVD) is an effective method to synthesize large-area and high-quality TMD films, in which sapphires as suitable substrates play a crucial role in anchoring the source material, promoting nucleation and modulating epitaxial growth. In this review, we provide an insightful overview of different epitaxial mechanisms and growth behaviors associated with the atomic structure of sapphire surfaces and the growth parameters. First, we summarize three epitaxial growth mechanisms of TMDs on sapphire substrates, namely, van der Waals epitaxy, step-guided epitaxy, and dual-coupling-guided epitaxy. Second, we introduce the effects of polishing, cutting, and annealing processing of the sapphire surface on the TMD growth. Finally, we discuss the influence of other growth parameters, such as temperature, pressure, carrier gas, and substrate position, on the growth kinetics of TMDs. This review might provide deep insights into the controllable growth of large-area single-crystal TMDs on sapphires, which will propel their practical applications in high-performance nanoelectronics and optoelectronics.
Collapse
Affiliation(s)
- Lina Chen
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Zhaofang Cheng
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China
| | - Shaodan He
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Xudong Zhang
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Kelun Deng
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Dehua Zong
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Zipeng Wu
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Minggang Xia
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China
- Shaanxi Province Key Laboratory of Quantum Information and Optoelectronic Quantum Devices, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China
| |
Collapse
|
16
|
Quan S, Li L, Guo S, Zhao X, Weller D, Wang X, Fu S, Liu R, Hao Y. SnS 2/MoS 2 van der Waals Heterostructure Photodetector with Ultrahigh Responsivity Realized by a Photogating Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59592-59599. [PMID: 38104345 DOI: 10.1021/acsami.3c13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Photoresponsivity is a fundamental parameter used to quantify the ability of photoelectric conversion of a photodetector device. High-responsivity photodetectors are essential for numerous optoelectronic applications. Due to the strong light-matter interactions and the high carrier mobility, two-dimensional (2D) materials are promising candidates for the next-generation photodetectors. However, poor light absorption, lack of photoconductive gain, and the interfacial recombination lead to the relatively low responsivity of 2D photodetectors. The photogating effect, which extends the lifetime of photoexcited carriers, provides a simple approach to enhance responsivity in photodetector devices. Here, the O2 plasma treatment introduced surface traps on the SnS2 surface, leading to a gate-tunable photogating effect in SnS2/MoS2 heterojunctions. The heterojunction device exhibits an ultrahigh responsibility of up to 28 A/W. Moreover, the photodetector possesses a wide spectral photoresponse spanning from 300 to 1100 nm and a high specific detectivity (D*) of 4 × 1011 Jones under a 532 nm laser at VDS = 1 V. These results demonstrate that O2 plasma treatment is an efficient and simple avenue to achieve photogating effects, which can be employed to enhance the performance of van der Waals heterostructure photodetector devices and make them suitable for future integration into advanced electronic and optoelectronic systems.
Collapse
Affiliation(s)
- Sufeng Quan
- School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Luyang Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| | - Shuai Guo
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Xiaoyu Zhao
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Dieter Weller
- Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Duisburg 47057, Germany
| | - Xuefeng Wang
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Shiyou Fu
- School of Information Science and Engineering, Harbin Institute of Technology at Weihai, Weihai 264209, China
- School of Science, Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Ruibin Liu
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yufeng Hao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China
| |
Collapse
|
17
|
Liu F, Lin X, Yan Y, Gan X, Cheng Y, Luo X. Self-Powered Programmable van der Waals Photodetectors with Nonvolatile Semifloating Gate. NANO LETTERS 2023; 23:11645-11654. [PMID: 38088857 DOI: 10.1021/acs.nanolett.3c03500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Tunable photovoltaic photodetectors are of significant relevance in the fields of programmable and neuromorphic optoelectronics. However, their widespread adoption is hindered by intricate architectural design and energy consumption challenges. This study employs a nonvolatile MoTe2/hexagonal boron nitride/graphene semifloating photodetector to address these issues. Programed with pulsed gate voltage, the MoTe2 channel can be reconfigured from an n+-n to a p-n homojunction and the photocurrent transition changes from negative to positive values. Scanning photocurrent mapping reveals that the negative and positive photocurrents are attributed to Schottky junction and p-n homojunction, respectively. In the p-n configuration, the device demonstrates self-driven, linear, rapid response (∼3 ms), and broadband sensitivity (from 405 to 1500 nm) for photodetection, with typical performances of responsivity at ∼0.5 A/W and detectivity ∼1.6 × 1012 Jones under 635 nm illumination. These outstanding photodetection capabilities emphasize the potential of the semifloating photodetector as a pioneering approach for advancing logical and nonvolatile optoelectronics.
Collapse
Affiliation(s)
- Fan Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710129, China
| | - Xi Lin
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710129, China
| | - Yuting Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710129, China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xiaoguang Luo
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
18
|
Elahi E, Ahmad M, Dahshan A, Rabeel M, Saleem S, Nguyen VH, Hegazy HH, Aftab S. Contemporary innovations in two-dimensional transition metal dichalcogenide-based P-N junctions for optoelectronics. NANOSCALE 2023; 16:14-43. [PMID: 38018395 DOI: 10.1039/d3nr04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Two-dimensional transition metal dichalcogenides (2D-TMDCs) with various physical characteristics have attracted significant interest from the scientific and industrial worlds in the years following Moore's law. The p-n junction is one of the earliest electrical components to be utilized in electronics and optoelectronics, and modern research on 2D materials has renewed interest in it. In this regard, device preparation and application have evolved substantially in this decade. 2D TMDCs provide unprecedented flexibility in the construction of innovative p-n junction device designs, which is not achievable with traditional bulk semiconductors. It has been investigated using 2D TMDCs for various junctions, including homojunctions, heterojunctions, P-I-N junctions, and broken gap junctions. To achieve high-performance p-n junctions, several issues still need to be resolved, such as developing 2D TMDCs of superior quality, raising the rectification ratio and quantum efficiency, and successfully separating the photogenerated electron-hole pairs, among other things. This review comprehensively details the various 2D-based p-n junction geometries investigated with an emphasis on 2D junctions. We investigated the 2D p-n junctions utilized in current rectifiers and photodetectors. To make a comparison of various devices easier, important optoelectronic and electronic features are presented. We thoroughly assessed the review's prospects and challenges for this emerging field of study. This study will serve as a roadmap for more real-world photodetection technology applications.
Collapse
Affiliation(s)
- Ehsan Elahi
- Department of Physics & Astronomy and Graphene Research Institute, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea.
| | - Muneeb Ahmad
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - A Dahshan
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Muhammad Rabeel
- Department of Electrical Engineering and Convergence Engineering for Intelligent Drone, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul 05006, South Korea
| | - Sidra Saleem
- Division of Science Education, Department of Energy Storage/Conversion Engineering for Graduate School, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Van Huy Nguyen
- Department of Nanotechnology and Advanced Materials Engineering, and H.M.C., Sejong University, Seoul 05006, South Korea
| | - H H Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia
| | - Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-Gu, Seoul, 05006 South Korea.
| |
Collapse
|
19
|
Zheng B, Sun X, Zheng W, Zhu C, Ma C, Pan A, Li D, Li S. Vapor growth of V-doped MoS 2 monolayers with enhanced B-exciton emission and broad spectral response. FRONTIERS OF OPTOELECTRONICS 2023; 16:42. [PMID: 38060145 DOI: 10.1007/s12200-023-00097-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Dynamically engineering the optical and electrical properties in two-dimensional (2D) materials is of great significance for designing the related functions and applications. The introduction of foreign-atoms has previously been proven to be a feasible way to tune the band structure and related properties of 3D materials; however, this approach still remains to be explored in 2D materials. Here, we systematically demonstrate the growth of vanadium-doped molybdenum disulfide (V-doped MoS2) monolayers via an alkali metal-assisted chemical vapor deposition method. Scanning transmission electron microscopy demonstrated that V atoms substituted the Mo atoms and became uniformly distributed in the MoS2 monolayers. This was also confirmed by Raman and X-ray photoelectron spectroscopy. Power-dependent photoluminescence spectra clearly revealed the enhanced B-exciton emission characteristics in the V-doped MoS2 monolayers (with low doping concentration). Most importantly, through temperature-dependent study, we observed efficient valley scattering of the B-exciton, greatly enhancing its emission intensity. Carrier transport experiments indicated that typical p-type conduction gradually arisen and was enhanced with increasing V composition in the V-doped MoS2, where a clear n-type behavior transited first to ambipolar and then to lightly p-type charge carrier transport. In addition, visible to infrared wide-band photodetectors based on V-doped MoS2 monolayers (with low doping concentration) were demonstrated. The V-doped MoS2 monolayers with distinct B-exciton emission, enhanced p-type conduction and broad spectral response can provide new platforms for probing new physics and offer novel materials for optoelectronic applications.
Collapse
Affiliation(s)
- Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xingxia Sun
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Weihao Zheng
- College of Advanced Interdisciplinary Studies and Hunan Provincial Key Laboratory of Novel Nano Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, 410073, China
| | - Chenguang Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Chao Ma
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Shengman Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
- Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
20
|
Luo Y, Su W, Chen F, Wu K, Zeng Y, Lu HW. Observation of Strong Anisotropic Interlayer Excitons. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54808-54817. [PMID: 37975532 DOI: 10.1021/acsami.3c12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Anisotropic interlayer excitons had been theoretically predicted to exist in two-dimensional (2D) anisotropy/isotropy van der Waals heterojunctions. However, experimental results consolidating the theoretical prediction and exploring the related anisotropic optoelectronic response have not been reported so far. Herein, strong photoluminescence (PL) of anisotropic interlayer excitons is observed in a symmetric anisotropy/isotropy/anisotropy heterojunction exemplified by 3L-ReS2/1L-MoS2/3L-ReS2 using monolayer (1L) MoS2 and trilayer (3L) ReS2 as components. Sharp interlayer exciton PL peaks centered at ∼1.64, ∼1.61, and ∼1.57 eV are only observed at low temperatures of ≤120 K and become more pronounced as the temperature decreases. These interlayer excitons exhibit strong anisotropic PL intensity variations with periodicities of 180° as functions of the incident laser polarization angles. The polarization ratios of these interlayer excitons are calculated to be 1.33-1.45. Our study gives new insight into the manipulation of excitons in 2D materials and paves a new way for a rational design of novel anisotropic optoelectronic devices.
Collapse
Affiliation(s)
- Yu Luo
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Fei Chen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Ke Wu
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Yijie Zeng
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Hong-Wei Lu
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| |
Collapse
|
21
|
Zhu J, Hu Z, Guo S, Luo R, Yu M, Li A, Pang J, Xue M, Pennycook SJ, Liu Z, Zhang Z, Zhou W. Non-epitaxial growth of highly oriented transition metal dichalcogenides with density-controlled twin boundaries. Innovation (N Y) 2023; 4:100502. [PMID: 37701921 PMCID: PMC10493259 DOI: 10.1016/j.xinn.2023.100502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/21/2023] [Indexed: 09/14/2023] Open
Abstract
Twin boundaries (TBs) in transition metal dichalcogenides (TMDs) constitute distinctive one-dimensional electronic systems, exhibiting intriguing physical and chemical properties that have garnered significant attention in the fields of quantum physics and electrocatalysis. However, the controlled manipulation of TBs in terms of density and specific atomic configurations remains a formidable challenge. In this study, we present a non-epitaxial growth approach that enables the controlled and large-scale fabrication of homogeneous catalytically active TBs in monolayer TMDs on arbitrary substrates. Notably, the density achieved using this strategy is six times higher than that observed in convention chemical vapor deposition (CVD)-grown samples. Through rigorous experimental analysis and multigrain Wulff construction simulations, we elucidate the role of regulating the metal source diffusion process, which serves as the key factor for inducing the self-oriented growth of TMD grains and the formation of unified TBs. Furthermore, we demonstrate that this novel growth mode can be readily incorporated into the conventional CVD growth method by making a simple modification of the growth temperature profile, thereby offering a universal approach for engineering of grain boundaries in two-dimensional materials.
Collapse
Affiliation(s)
- Juntong Zhu
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Hu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210013, China
| | - Shasha Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Ruichun Luo
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maolin Yu
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210013, China
| | - Ang Li
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingbo Pang
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minmin Xue
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210013, China
| | - Stephen J. Pennycook
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Zhuhua Zhang
- State Key Laboratory of Mechanics and Control for Aerospace Structures, Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210013, China
| | - Wu Zhou
- School of Physical Sciences, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Yan C, Yang K, Zhang H, Chen Y, Liu H. High performance self-powered photodetector based on van der Waals heterojunction. NANOTECHNOLOGY 2023; 35:035203. [PMID: 37852217 DOI: 10.1088/1361-6528/ad047f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Self-powered photodetectors that do not require external power support are expected to play a key role in future photodetectors due to their low power characteristics, but achieving high responsivity remains a challenge. 2D van der Waals heterojunctions are a promising technology for high-performance self-powered photodetectors due to their excellent optical and electrical properties. Here, we fabricate a self-powered photodetector based on In2Se3/WSe2/ReS2van der Waals heterojunction self-powered photodetector. Due to the presence of ReS2layer, photocurrent is enhanced as a result of the increase in light absorption efficiency and the effective region for generating photogenerated carriers. The built-in electric field is enhanced by a negative 'back-gate voltage' along the p-n junction vertical direction generated by the electrons in the photo-generated electrons accumulation layer. Accordingly, the optical responsivity and the photoresponse speed of this heterojunction self-powered photodetector are greatly boosted. The proposed self-powered photodetector based on the In2Se3/WSe2/ReS2heterojunction exhibits a high responsivity of 438 mA W-1, which is 17 times higher compared to the In2Se3/WSe2photodetector, a self-powered current (1.1 nA) that is an order of magnitude higher than that of the In2Se3/WSe2photodetector, and a fast response time that is 250% faster. Thus the self-powered photodetector with a stronger built-in electric field and a wider depletion zone can provide a new technological support for the fabrication of high responsivity, low power consumption and high speed self-powered photodetectors based on van der Waals heterojunctions.
Collapse
Affiliation(s)
- Cong Yan
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Kun Yang
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Hao Zhang
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Yaolin Chen
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| | - Hongxia Liu
- Key Laboratory for Wide-Band Gap Semiconductor Materials and Devices of Education, The School of Microelectronics, Xidian University, Xi'an 710071, People's Republic of China
| |
Collapse
|
23
|
Jeong Y, Kim T, Cho H, Ahn J, Hong S, Hwang DK, Im S. Negative Photoresponse Switching via Electron-Hole Recombination at The Type III Junction of MoTe 2 Channel/SnS 2 Top Layer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304599. [PMID: 37506305 DOI: 10.1002/adma.202304599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Extensive study on 2D van der Waals (vdW) heterojunctions has primarily focused on PN diodes for fast-switching photodetection, while achieving the same from 2D channel phototransistors is rare despite their other advantages. Here, a high-speed phototransistor featuring a type III junction between p-MoTe2 channel and n-SnS2 top layer is designed. The photodetecting device operates with a basis of negative photoresponse (NPR), which originates from the recombination of photoexcited electrons in n-SnS2 and accumulated holes in the p-MoTe2 channel. For the NPR to occur, high-energy photons capable of exciting SnS2 (band gap ≈2.2 eV) are found to be effective because lower-energy photons simply penetrate the SnS2 top layer only to excite MoTe2 , leading to normal positive photoresponse (PPR) which is known to be slow due to the photogating effects. The NPR transistor showcases 0.5 ms fast photoresponses and a high responsivity over 5000 A W-1 . More essentially, such carrier recombination mechanism is clarified with three experimental evidences. The phototransistor is finally modified with Au contact on n-SnS2 , to be a more practical device displaying voltage output. Three different photo-logic states under blue, near infrared (NIR), and blue-NIR mixed photons are demonstrated using the voltage signals.
Collapse
Affiliation(s)
- Yeonsu Jeong
- van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Institut de Science et d'Ingénierie Supramoléculaires, University of Strasbourg, UMR 7006, 8 Allée Gaspard Monge, Strasbourg, 67000, France
| | - Taewook Kim
- van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyunmin Cho
- van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jongtae Ahn
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Sungjae Hong
- van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Do Kyung Hwang
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seongil Im
- van der Waals Materials Research Center, Department of Physics, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
24
|
Tang L, Zou J. p-Type Two-Dimensional Semiconductors: From Materials Preparation to Electronic Applications. NANO-MICRO LETTERS 2023; 15:230. [PMID: 37848621 PMCID: PMC10582003 DOI: 10.1007/s40820-023-01211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/04/2023] [Indexed: 10/19/2023]
Abstract
Two-dimensional (2D) materials are regarded as promising candidates in many applications, including electronics and optoelectronics, because of their superior properties, including atomic-level thickness, tunable bandgaps, large specific surface area, and high carrier mobility. In order to bring 2D materials from the laboratory to industrialized applications, materials preparation is the first prerequisite. Compared to the n-type analogs, the family of p-type 2D semiconductors is relatively small, which limits the broad integration of 2D semiconductors in practical applications such as complementary logic circuits. So far, many efforts have been made in the preparation of p-type 2D semiconductors. In this review, we overview recent progresses achieved in the preparation of p-type 2D semiconductors and highlight some promising methods to realize their controllable preparation by following both the top-down and bottom-up strategies. Then, we summarize some significant application of p-type 2D semiconductors in electronic and optoelectronic devices and their superiorities. In end, we conclude the challenges existed in this field and propose the potential opportunities in aspects from the discovery of novel p-type 2D semiconductors, their controlled mass preparation, compatible engineering with silicon production line, high-κ dielectric materials, to integration and applications of p-type 2D semiconductors and their heterostructures in electronic and optoelectronic devices. Overall, we believe that this review will guide the design of preparation systems to fulfill the controllable growth of p-type 2D semiconductors with high quality and thus lay the foundations for their potential application in electronics and optoelectronics.
Collapse
Affiliation(s)
- Lei Tang
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, People's Republic of China.
| | - Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Xu Q, Wu Q, Wang C, Zhang X, Cai Z, Lin L, Gu X, Ostrikov KK, Nan H, Xiao S. High-performance multilayer WSe 2/SnS 2p-n heterojunction photodetectors by two step confined space chemical vapor deposition. NANOTECHNOLOGY 2023; 34:505604. [PMID: 37748477 DOI: 10.1088/1361-6528/acfcc3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Two-dimensional (2D) p-n heterojunctions have attracted great attention due to their outstanding properties in electronic and optoelectronic devices, especially in photodetectors. Various types of heterojunctions have been constituted by mechanical exfoliation and stacking. However, achieving controlled growth of heterojunction structures remains a tremendous challenge. Here, we employed a two-step KI-assisted confined-space chemical vapor deposition method to prepare multilayer WSe2/SnS2p-n heterojunctions. Optical characterization results revealed that the prepared WSe2/SnS2vertical heterostructures have clear interfaces as well as vertical heterostructures. The electrical and optoelectronic properties were investigated by constructing the corresponding heterojunction devices, which exhibited good rectification characteristics and obtained a high detectivity of 7.85 × 1012Jones and a photoresponse of 227.3 A W-1under visible light irradiation, as well as a fast rise/fall time of 166/440μs. These remarkable performances are likely attributed to the ultra-low dark current generated in the depletion region at the junction and the high direct tunneling current during illumination. This work demonstrates the value of multilayer WSe2/SnS2heterojunctions for applications in high-performance photodetectors.
Collapse
Affiliation(s)
- Qilei Xu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Qianqian Wu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Chenglin Wang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiumei Zhang
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Zhengyang Cai
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Liangliang Lin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Xiaofeng Gu
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Physics and Chemistry and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Haiyan Nan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Shaoqing Xiao
- Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| |
Collapse
|
26
|
Alijani H, Reineck P, Komljenovic R, Russo SP, Low MX, Balendhran S, Crozier KB, Walia S, Nash GR, Yeo LY, Rezk AR. The Acoustophotoelectric Effect: Efficient Phonon-Photon-Electron Coupling in Zero-Voltage-Biased 2D SnS 2 for Broad-Band Photodetection. ACS NANO 2023; 17:19254-19264. [PMID: 37755696 DOI: 10.1021/acsnano.3c06075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Two-dimensional (2D) layered metal dichalcogenides constitute a promising class of materials for photodetector applications due to their excellent optoelectronic properties. The most common photodetectors, which work on the principle of photoconductive or photovoltaic effects, however, require either the application of external voltage biases or built-in electric fields, which makes it challenging to simultaneously achieve high responsivities across broad-band wavelength excitation─especially beyond the material's nominal band gap─while producing low dark currents. In this work, we report the discovery of an intricate phonon-photon-electron coupling─which we term the acoustophotoelectric effect─in SnS2 that facilitates efficient photodetection through the application of 100 MHz order propagating surface acoustic waves (SAWs). This effect not only reduces the band gap of SnS2 but also provides the requisite momentum for indirect band gap transition of the photoexcited charge carriers, to enable broad-band photodetection beyond the visible light range, while maintaining pA-order dark currents─ without the need for any external voltage bias. More specifically, we show in the infrared excitation range that it is possible to achieve up to 8 orders of magnitude improvement in the material's photoresponsivity compared to that previously reported for SnS2-based photodetectors, in addition to exhibiting superior performance compared to most other 2D materials reported to date for photodetection.
Collapse
Affiliation(s)
- Hossein Alijani
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Robert Komljenovic
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Mei Xian Low
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | | | - Kenneth B Crozier
- School of Physics, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia
| | - Geoff R Nash
- Natural Sciences, Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
27
|
Sun X, Liu Y, Shi J, Si C, Du J, Liu X, Jiang C, Yang S. Controllable Synthesis of 2H-1T' Mo x Re (1- x ) S 2 Lateral Heterostructures and Their Tunable Optoelectronic Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304171. [PMID: 37278555 DOI: 10.1002/adma.202304171] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Constructing heterostructures and doping are valid ways to improve the optoelectronic properties of transition metal dichalcogenides (TMDs) and optimize the performance of TMDs-based photodetectors. Compared with transfer techniques, chemical vapor deposition (CVD) has higher efficiency in preparing heterostructures. As for the one-step CVD growth of heterostructures, cross-contamination between the two materials may occur during the growth process, which may provide the possibility of one-step simultaneous realization of controllable doping and formation of alloy-based heterostructures by finely tuning the growth dynamics. Here, 2H-1T' Mox Re(1- x ) S2 alloy-to-alloy lateral heterostructures are synthesized through this one-step CVD growth method, utilizing the cross-contamination and different growth temperatures of the two alloys. Due to the doping of a small amount of Re atoms in 2H MoS2 , 2H Mox Re(1- x ) S2 has a high response rejection ratio in the solar-blind ultraviolet (SBUV) region and exhibits a positive photoconductive (PPC) effect. While the 1T' Mox Re(1- x ) S2 formed by heavily doping Mo atoms into 1T' ReS2 will produce a negative photoconductivity (NPC) effect under UV laser irradiation. The optoelectronic property of 2H-1T' Mox Re(1- x ) S2 -based heterostructures can be modulated by gate voltage. These findings are expected to expand the functionality of traditional optoelectronic devices and have potential applications in optoelectronic logic devices.
Collapse
Affiliation(s)
- Xiaona Sun
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Yang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chen Si
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Jiantao Du
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chengbao Jiang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| | - Shengxue Yang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
28
|
Zhou Z, Hou F, Huang X, Wang G, Fu Z, Liu W, Yuan G, Xi X, Xu J, Lin J, Gao L. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 2023; 621:499-505. [PMID: 37674075 DOI: 10.1038/s41586-023-06404-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/05/2023] [Indexed: 09/08/2023]
Abstract
Two-dimensional (2D) van der Waals (vdW) heterostructures have attracted considerable attention in recent years1-5. The most widely used method of fabrication is to stack mechanically exfoliated micrometre-sized flakes6-18, but this process is not scalable for practical applications. Despite thousands of 2D materials being created, using various stacking combinations1-3,19-21, hardly any large 2D superconductors can be stacked intact into vdW heterostructures, greatly restricting the applications for such devices. Here we report a high-to-low temperature strategy for controllably growing stacks of multiple-layered vdW superconductor heterostructure (vdWSH) films at a wafer scale. The number of layers of 2D superconductors in the vdWSHs can be precisely controlled, and we have successfully grown 27 double-block, 15 triple-block, 5 four-block and 3 five-block vdWSH films (where one block represents one 2D material). Morphological, spectroscopic and atomic-scale structural analyses reveal the presence of parallel, clean and atomically sharp vdW interfaces on a large scale, with very little contamination between neighbouring layers. The intact vdW interfaces allow us to achieve proximity-induced superconductivity and superconducting Josephson junctions on a centimetre scale. Our process for making multiple-layered vdWSHs can easily be generalized to other situations involving 2D materials, potentially accelerating the design of next-generation functional devices and applications22-24.
Collapse
Affiliation(s)
- Zhenjia Zhou
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Fuchen Hou
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, China
| | - Xianlei Huang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Gang Wang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, China
| | - Zihao Fu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Weilin Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Guowen Yuan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Xiaoxiang Xi
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jie Xu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| | - Junhao Lin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen, China.
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, China.
| | - Libo Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory for Nanotechnology, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
29
|
Wang H, Bao L, Guzman R, Wu K, Wang A, Liu L, Wu L, Chen J, Huan Q, Zhou W, Pantelides ST, Gao HJ. Ultrafast-Programmable 2D Homojunctions Based on van der Waals Heterostructures on a Silicon Substrate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301067. [PMID: 37204321 DOI: 10.1002/adma.202301067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/15/2023] [Indexed: 05/20/2023]
Abstract
The development of electrically ultrafast-programmable semiconductor homojunctions can lead to transformative multifunctional electronic devices. However, silicon-based homojunctions are not programmable so that alternative materials need to be explored. Here 2D, multi-functional, lateral homojunctions made of van der Waals heterostructures with a semi-floating-gate configuration on a p++ Si substrate feature atomically sharp interfaces and can be electrostatically programmed in nanoseconds, more than seven orders of magnitude faster than other 2D-based homojunctions. By applying voltage pulses with different polarities, lateral p-n, n+ -n and other types of homojunctions can be formed, varied, and reversed. The p-n homojunctions possess a high rectification ratio of up to ≈105 and can be dynamically switched between four distinct conduction states with the current spanning over nine orders of magnitude, enabling them to function as logic rectifiers, memories, and multi-valued logic inverters. Built on a p++ Si substrate, which acts as the control gate, the devices are compatible with Si technology.
Collapse
Affiliation(s)
- Hao Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lihong Bao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523830, P. R. China
| | - Roger Guzman
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kang Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Aiwei Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liangmei Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiancui Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Huan
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523830, P. R. China
| | - Wu Zhou
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Sokrates T Pantelides
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Department of Physics and Astronomy & Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523830, P. R. China
| |
Collapse
|
30
|
Li Y, Zhao Y, Wang X, Liu W, He J, Luo X, Liu J, Liu Y. Precise Construction and Growth of Submillimeter Two-Dimensional WSe 2 and MoSe 2 Monolayers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4795. [PMID: 37445110 DOI: 10.3390/ma16134795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
Currently, as shown by large-scale research on two-dimensional materials in the field of nanoelectronics and catalysis, the construction of large-area two-dimensional materials is crucial for the development of devices and their application in photovoltaics, sensing, optoelectronics, and energy generation/storage. Here, using atmospheric-pressure chemical vapor deposition, we developed a method to regulate growth conditions according to the growth mechanism for WSe2 and MoSe2 materials. By accurately controlling the hydrogen flux within the range of 1 sccm and the distance between the precursor and the substrate, we obtained large-size films of single atomic layers with thicknesses of only about 1 nm. When growing the samples, we could not only obtain a 100 percent proportion of samples with the same shape, but the samples could also be glued into pieces of 700 μm and above in size, changing the shape and making it possible to reach the millimeter/submillimeter level visible to the naked eye. Our method is an effective method for the growth of large-area films with universal applicability.
Collapse
Affiliation(s)
- Yuqing Li
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyan Zhao
- Southwest Institute of Technical Physics, Chengdu 610041, China
| | - Xiaoqian Wang
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Wanli Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiazhen He
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Xuemin Luo
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jinfeng Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yong Liu
- International School of Materials Science and Engineering (ISMSE), State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
31
|
Zou D, Zhao W, Xu Y, Li X, Liu Y, Yang C. Dual transmission channels at metal-MoS 2/WSe 2 hetero-bilayer interfaces. Phys Chem Chem Phys 2023. [PMID: 37318781 DOI: 10.1039/d3cp00710c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
van der Waals heterostructures (vdWHs) open the possibility of creating novel semiconductor materials at the atomic scale that demonstrate totally new physics and enable unique functionalities, and have therefore attracted great interest in the fields of advanced electronic and optoelectronic devices. However, the interactions between metals and vdWHs semiconductors require further investigation as they directly affect or limit the advancement of high-performance electronic devices. Here we study the contact behavior of MoS2/WSe2 vdWHs in contact with a series of bulk metals using ab initio electronic structure calculations and quantum transport simulations. Our study shows that dual transmission paths for electrons and holes exist at the metal-MoS2/WSe2 hetero-bilayer interfaces. In addition, the metal-induced bandgap state (MIGS) of the original monolayer disappears due to the creation of the heterolayer, which weakens the Fermi level pinning (FLP) effect. We also find that the creation of the heterolayer causes a change in the Schottky barrier height (SBH) of the non-ohmic contact systems, whilst this does not occur so easily in the ohmic contact systems. In addition, our results indicate that when Al, Ag and Au are in contact with a MoS2/WSe2 hetero-bilayer semiconductor, a low contact barrier exists throughout the whole transmission process causing the charge to tunnel to the MoS2 layer, irrespective of whether the MoS2 is in contact with the metals as the nearest layer or as the next-nearest layer. Our work not only offers new insights into electrical contact issues between metals and hetero-bilayer semiconductors, but also provides guidance for the design of high-performance vdWHs semiconductor devices.
Collapse
Affiliation(s)
- Dongqing Zou
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai, 264025, People's Republic of China.
| | - Wenkai Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai, 264025, People's Republic of China.
| | - Yuqing Xu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai, 264025, People's Republic of China.
| | - Xiaoteng Li
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai, 264025, People's Republic of China.
| | - Yuliang Liu
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai, 264025, People's Republic of China.
| | - Chuanlu Yang
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
32
|
Zheng T, Yang M, Pan Y, Zheng Z, Sun Y, Li L, Huo N, Luo D, Gao W, Li J. Self-Powered Photodetector with High Efficiency and Polarization Sensitivity Enabled by WSe 2/Ta 2NiSe 5/WSe 2 van der Waals Dual Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37294943 DOI: 10.1021/acsami.3c04147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-powered photodetectors have triggered widespread attention because of the requirement of Internet of Things (IoT) application and low power consumption. However, it is challenging to simultaneously implement miniaturization, high quantum efficiency, and multifunctionalization. Here, we report a high-efficiency and polarization-sensitive photodetector enabled by two-dimensional (2D) WSe2/Ta2NiSe5/WSe2 van der Waals (vdW) dual heterojunctions (DHJ) along with a sandwich-like electrode pair. On account of enhanced light collection efficiency and two opposite built-in electric fields at the hetero-interfaces, the DHJ device achieves not only a broadband spectral response of 400-1550 nm but outstanding performance under 635 nm light illumination including an ultrahigh external quantum efficiency (EQE) of 85.5%, a pronounced power conversion efficiency (PCE) of 1.9%, and a fast response speed of 420/640 μs, which is much better than that of the WSe2/Ta2NiSe5 single heterojunction (SHJ). Significantly, based on the strong in-plane anisotropy of 2D Ta2NiSe5 nanosheets, the DHJ device shows competitive polarization sensitivities of 13.9 and 14.8 under 635 and 808 nm light, respectively. Furthermore, an excellent self-powered visible imaging capability based on the DHJ device is demonstrated. These results pave a promising platform for realizing self-powered photodetectors with high performance and multifunctionality.
Collapse
Affiliation(s)
- Tao Zheng
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Yuan Pan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Zhaoqiang Zheng
- College of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yiming Sun
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Nengjie Huo
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Dongxiang Luo
- Huangpu Hydrogen Innovation Center/Guangzhou Key Laboratory for Clean Energy and Materials, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Wei Gao
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| | - Jingbo Li
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, P. R. China
| |
Collapse
|
33
|
Roh I, Goh SH, Meng Y, Kim JS, Han S, Xu Z, Lee HE, Kim Y, Bae SH. Applications of remote epitaxy and van der Waals epitaxy. NANO CONVERGENCE 2023; 10:20. [PMID: 37120780 PMCID: PMC10149550 DOI: 10.1186/s40580-023-00369-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Epitaxy technology produces high-quality material building blocks that underpin various fields of applications. However, fundamental limitations exist for conventional epitaxy, such as the lattice matching constraints that have greatly narrowed down the choices of available epitaxial material combinations. Recent emerging epitaxy techniques such as remote and van der Waals epitaxy have shown exciting perspectives to overcome these limitations and provide freestanding nanomembranes for massive novel applications. Here, we review the mechanism and fundamentals for van der Waals and remote epitaxy to produce freestanding nanomembranes. Key benefits that are exclusive to these two growth strategies are comprehensively summarized. A number of original applications have also been discussed, highlighting the advantages of these freestanding films-based designs. Finally, we discuss the current limitations with possible solutions and potential future directions towards nanomembranes-based advanced heterogeneous integration.
Collapse
Affiliation(s)
- Ilpyo Roh
- Mechanical Engineering & Materials Science, Washington University in St. Louis, Saint Louis, MO, 63105, USA
- R&D CENTER, M.O.P Co., Ltd, Seoul, 07281, South Korea
| | - Seok Hyeon Goh
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Yuan Meng
- Mechanical Engineering & Materials Science, Washington University in St. Louis, Saint Louis, MO, 63105, USA
| | - Justin S Kim
- The Institution of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Sangmoon Han
- Mechanical Engineering & Materials Science, Washington University in St. Louis, Saint Louis, MO, 63105, USA
| | - Zhihao Xu
- The Institution of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Han Eol Lee
- Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Yeongin Kim
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA.
| | - Sang-Hoon Bae
- Mechanical Engineering & Materials Science, Washington University in St. Louis, Saint Louis, MO, 63105, USA.
- The Institution of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
34
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
35
|
Luo Z, Xu H, Gao W, Yang M, He Y, Huang Z, Yao J, Zhang M, Dong H, Zhao Y, Zheng Z, Li J. High-Performance and Polarization-Sensitive Imaging Photodetector Based on WS 2 /Te Tunneling Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207615. [PMID: 36605013 DOI: 10.1002/smll.202207615] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Next-generation imaging systems require photodetectors with high sensitivity, polarization sensitivity, miniaturization, and integration. By virtue of their intriguing attributes, emerging 2D materials offer innovative avenues to meet these requirements. However, the current performance of 2D photodetectors is still below the requirements for practical application owing to the severe interfacial recombination, the lack of photoconductive gain, and insufficient photocarrier collection. Here, a tunneling dominant imaging photodetector based on WS2 /Te heterostructure is reported. This device demonstrates competitive performance, including a remarkable responsivity of 402 A W-1 , an outstanding detectivity of 9.28 × 1013 Jones, a fast rise/decay time of 1.7/3.2 ms, and a high photocurrent anisotropic ratio of 2.5. These outstanding performances can be attributed to the type-I band alignment with carrier transmission barriers and photoinduced tunneling mechanism, allowing reduced interfacial trapping effect, effective photoconductive gains, and anisotropic collection of photocarriers. Significantly, the constructed photodetector is successfully integrated into a polarized light imaging system and an ultra-weak light imaging system to illustrate the imaging capability. These results suggest the promising application prospect of the device in future imaging systems.
Collapse
Affiliation(s)
- Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Huakai Xu
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Wei Gao
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Mengmeng Yang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Yan He
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Menglong Zhang
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jingbo Li
- School of Semiconductor Science and Technology, South China Normal University, Foshan, Guangdong, 528225, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, Guangdong, 510631, P. R. China
| |
Collapse
|
36
|
Zhong A, Zhou Y, Jin H, Yu H, Wang Y, Luo J, Huang L, Sun Z, Zhang D, Fan P. Superior Performances of Self-Driven Near-Infrared Photodetectors Based on the SnTe:Si/Si Heterostructure Boosted by Bulk Photovoltaic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206262. [PMID: 36642832 DOI: 10.1002/smll.202206262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The upsurge of new materials that can be used for near-infrared (NIR) photodetectors operated without cooling is crucial. As a novel material with a small bandgap of ≈0.28 eV, the topological crystalline insulator SnTe has attracted considerable attention. Herein, this work demonstrates self-driven NIR photodetectors based on SnTe/Si and SnTe:Si/Si heterostructures. The SnTe/Si heterostructure has a high detectivity D* of 3.3 × 1012 Jones. By Si doping, the SnTe:Si/Si heterostructure reduces the dark current density and increases the photocurrent by ≈1 order of magnitude simultaneously, which improves the detectivity D* by ≈2 orders of magnitude up to 1.59 × 1014 Jones. Further theoretical analysis indicates that the improved device performance may be ascribed to the bulk photovoltaic effect (BPVE), in which doped Si atoms break the inversion symmetry and thus enable the generation of additional photocurrents beyond the heterostructure. In addition, the external quantum efficiency (EQE) measured at room temperature at 850 nm increases by a factor of 7.5 times, from 38.5% to 289%. A high responsivity of 1979 mA W-1 without bias and fast rising time of 8 µs are also observed. The significantly improved photodetection achieved by the Si doping is of great interest and may provide a novel strategy for superior photodetectors.
Collapse
Affiliation(s)
- Aihua Zhong
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yue Zhou
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Hao Jin
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Huimin Yu
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Yunkai Wang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Jingting Luo
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Longbiao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Zhenhua Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Dongping Zhang
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| | - Ping Fan
- Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P.R. China
| |
Collapse
|
37
|
Babar ZUD, Raza A, Cassinese A, Iannotti V. Two Dimensional Heterostructures for Optoelectronics: Current Status and Future Perspective. Molecules 2023; 28:2275. [PMID: 36903520 PMCID: PMC10005545 DOI: 10.3390/molecules28052275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Researchers have found various families of two-dimensional (2D) materials and associated heterostructures through detailed theoretical work and experimental efforts. Such primitive studies provide a framework to investigate novel physical/chemical characteristics and technological aspects from micro to nano and pico scale. Two-dimensional van der Waals (vdW) materials and their heterostructures can be obtained to enable high-frequency broadband through a sophisticated combination of stacking order, orientation, and interlayer interactions. These heterostructures have been the focus of much recent research due to their potential applications in optoelectronics. Growing the layers of one kind of 2D material over the other, controlling absorption spectra via external bias, and external doping proposes an additional degree of freedom to modulate the properties of such materials. This mini review focuses on current state-of-the-art material design, manufacturing techniques, and strategies to design novel heterostructures. In addition to a discussion of fabrication techniques, it includes a comprehensive analysis of the electrical and optical properties of vdW heterostructures (vdWHs), particularly emphasizing the energy-band alignment. In the following sections, we discuss specific optoelectronic devices, such as light-emitting diodes (LEDs), photovoltaics, acoustic cavities, and biomedical photodetectors. Furthermore, this also includes a discussion of four different 2D-based photodetector configurations according to their stacking order. Moreover, we discuss the challenges that remain to be addressed in order to realize the full potential of these materials for optoelectronics applications. Finally, as future perspectives, we present some key directions and express our subjective assessment of upcoming trends in the field.
Collapse
Affiliation(s)
- Zaheer Ud Din Babar
- Scuola Superiore Meridionale (SSM), University of Naples Federico II, Largo S. Marcellino 10, 80138 Naples, Italy
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ali Raza
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Antonio Cassinese
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CNR–SPIN (Institute for Superconductors, Oxides and Other Innovative Materials and Devices), Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Vincenzo Iannotti
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CNR–SPIN (Institute for Superconductors, Oxides and Other Innovative Materials and Devices), Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
38
|
Li F, Li J, Zheng J, Tong Y, Zhu H, Wang P, Li L. Fast Fabrication of WS 2/Bi 2Se 3 Heterostructures for High-Performance Photodetection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10098-10108. [PMID: 36751031 DOI: 10.1021/acsami.2c17513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two-dimensional (2D) material heterostructures have attracted considerable attention owing to their interesting and novel physical properties, which expand the possibilities for future optoelectronic, photovoltaic, and nanoelectronic applications. A portable, fast, and deterministic transfer technique is highly needed for the fabrication of heterostructures. Herein, we report a fast half-wet poly(dimethylsiloxane) (PDMS) transfer process utilizing the change of adhesion energy with the help of micron-sized water droplets. Using this method, a vertical stacking of the WS2/Bi2Se3 heterostructure with a straddling band configuration is successfully assembled on a fluorophlogopite substrate. Thanks to the complementary band gaps and high efficiency of interfacial charge transfer, the photodetector based on the heterostructure exhibits a superior responsivity of 109.9 A W-1 for a visible incident light at 473 nm and 26.7 A W-1 for a 1064 nm near-infrared illumination. Such high photoresponsivity of the heterostructure demonstrates that our transfer method not only owns time efficiency but also ensures high quality of the heterointerface. Our study may open new pathways to the fast and massive fabrication of various vertical 2D heterostructures for applications in twistronics/valleytronics and other band engineering devices.
Collapse
Affiliation(s)
- Fan Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
| | - Junsheng Zheng
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
| | - Yuanbiao Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
| | - Huanfeng Zhu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310028, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| |
Collapse
|
39
|
Zhu H, Li J, Chen Q, Tang W, Fan X, Li F, Li L. Highly Tunable Lateral Homojunction Formed in Two-Dimensional Layered CuInP 2S 6 via In-Plane Ionic Migration. ACS NANO 2023; 17:1239-1246. [PMID: 36633906 DOI: 10.1021/acsnano.2c09280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
As basic building blocks for next-generation information technologies devices, high-quality p-n junctions based on van der Waals (vdW) materials have attracted widespread interest. Compared to traditional two-dimensional (2D) heterojunction diodes, the emerging homojunctions are more attractive owing to their intrinsic advantages, such as continuous band alignments and smaller carrier trapping. Here, utilizing the long-range migration of Cu+ ions under an in-plane electric field, a lateral p-n homojunction was constructed in the 2D layered copper indium thiophosphate (CIPS). The symmetric Au/CIPS/Au devices demonstrate an electric-field-driven resistance switching (RS) accompanied by a rectification behavior without any gate control. Moreover, such rectification behavior can be continuously modulated by poling voltage. We deduce that the reversable rectifying RS behavior is governed by the effective lateral build-in potential and the change of the interfacial barrier during the poling process. Furthermore, the CIPS p-n homojuction is evidenced by the photovoltaic effect, with the spectral response extending up to the visible region due to the better photogenerated carrier separation efficiency. Therefore, this work provides a facile route to fabricate homojunctions through electric-field-driven ionic migration.
Collapse
Affiliation(s)
- Huanfeng Zhu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing314000, China
| | - Jialin Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Qiang Chen
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Wei Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Xinyi Fan
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Fan Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou310027, China
| | - Linjun Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou310027, China
- Intelligent Optics & Photonics Research Center, Jiaxing Research Institute Zhejiang University, Jiaxing314000, China
| |
Collapse
|
40
|
Madoune Y, Yang D, Ahmed Y, Al-Makeen MM, Huang H. PVD growth of spiral pyramid-shaped WS 2 on SiO 2/Si driven by screw dislocations. Front Chem 2023; 11:1132567. [PMID: 36936529 PMCID: PMC10022673 DOI: 10.3389/fchem.2023.1132567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Atomically thin layered transition metal dichalcogenides (TMDs), such as MoS2 and WS2, have been getting much attention recently due to their interesting electronic and optoelectronic properties. Especially, spiral TMDs provide a variety of candidates for examining the light-matter interaction resulting from the broken inversion symmetry, as well as the potential new utilization in functional optoelectronic, electromagnetic and nanoelectronics devices. To realize their potential device applications, it is desirable to achieve controlled growth of these layered nanomaterials with a tunable stacking. Here, we demonstrate the Physical Vapor Deposition (PVD) growth of spiral pyramid-shaped WS2 with ∼200 μ m in size and the interesting optical properties via AFM and Raman spectroscopy. By controlling the precursors concentration and changing the initial nucleation rates in PVD growth, WS2 in different nanoarchitectures can be obtained. We discuss the growth mechanism for these spiral-patterned WS2 nanostructures based on the screw dislocations. This study provides a simple, scalable approach of screw dislocation-driven (SDD) growth of distinct TMD nanostructures with varying morphologies, and stacking.
Collapse
Affiliation(s)
- Yassine Madoune
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
- *Correspondence: Yassine Madoune,
| | - DingBang Yang
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Yameen Ahmed
- Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
| | - Mansour M. Al-Makeen
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| | - Han Huang
- Hunan Key Laboratory of Super-microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, China
| |
Collapse
|
41
|
Shang H, Gao F, Dai M, Hu Y, Wang S, Xu B, Wang P, Gao B, Zhang J, Hu P. Light-Induced Electric Field Enhanced Self-Powered Photodetector Based on Van der Waals Heterojunctions. SMALL METHODS 2023; 7:e2200966. [PMID: 36440646 DOI: 10.1002/smtd.202200966] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Indexed: 06/16/2023]
Abstract
Self-powered photodetectors have attracted widespread attention due to their low power consumption which can be driven by the built-in electric field instead of external power, but it is very difficult to achieve high responsivity and fast response speed concurrently. Here, a self-powered photodetector with light-induced electric field enhancement based on a 2D InSe/WSe2 /SnS2 van der Waals heterojunction is designed. The light-induced electric field derived from the photo-generated electrons of SnS2 accumulated at the SnS2 /WSe2 interface produces an additional negative gate voltage applied to the WSe2 layer, which enhances the built-in electric field in the InSe/WSe2 /SnS2 heterojunction. Accordingly, the photocurrent and photoresponse speed of the heterostructure device are largely improved. The self-powered photodetector based on the InSe/WSe2 /SnS2 heterostructure exhibits a high responsivity of 550 mA W-1 , which is a 50 times increase compared to the InSe/WSe2 photodetector, and the response speed (110/120 µs) is one order of magnitude faster than that of the InSe/WSe2 photodetector. The high responsivity and fast speed are caused by the stronger built-in electric field modulated by a light-induced electric field, which can separate carriers effectively and reduce drift times. This device architecture can provide a new avenue to fabricate high-responsivity, fast self-power photodetectors by utilizing the van der Waals heterojunction.
Collapse
Affiliation(s)
- Huiming Shang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Feng Gao
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Mingjin Dai
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - YunXia Hu
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Shuai Wang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Bo Xu
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Peng Wang
- School of Information Engineering, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Bo Gao
- School of physics, Harbin Institute of Technology, Harbin, 150080, China
| | - Jia Zhang
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- School of mechatronic engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - PingAn Hu
- MOE Key Lab of Micro-System and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150080, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
42
|
Su W, Zhang S, Liu C, Tian Q, Liu X, Li K, Lv Y, Liao L, Zou X. Interlayer Transition Induced Infrared Response in ReS 2/2D Perovskite van der Waals Heterostructure Photodetector. NANO LETTERS 2022; 22:10192-10199. [PMID: 36475758 DOI: 10.1021/acs.nanolett.2c04328] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The emerging Ruddlesden-Popper two-dimensional perovskite (2D PVK) has recently joined the family of 2D semiconductors as a potential competitor for building van der Waals (vdW) heterostructures in future optoelectronics. However, to date, most of the reported heterostructures based on 2D PVKs suffer from poor spectral response that is caused by intrinsic wide bandgap of constituting materials. Herein, a direct heterointerface bandgap (∼0.4 eV) between 2D PVK and ReS2 is demonstrated. The strong interlayer coupling reduces the energy interval at the heterojunction region so that the heterostructure shows high sensitivity with the spectral response expanding to 2000 nm. The large type-II band offsets exceeding 1.1 eV ensure fast photogenerated carriers separation at the heterointerface. When this heterostructure is used as a self-driven photodetector, it exhibits a record high detectivity up to 1.8 × 1014 Jones, surpassing any reported 2D self-driven devices, and an impressive external quantum efficiency of 68%.
Collapse
Affiliation(s)
- Wanhan Su
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Sen Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Chang Liu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Qianlei Tian
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Xingqiang Liu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha410082, China
| | - Kenli Li
- China National Supercomputing Center in Changsha, HunanChangsha410082, China
| | - Yawei Lv
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| | - Lei Liao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha410082, China
- School of Physics and Electronic Engineering, Harbin Normal University, Harbin150025, China
| | - Xuming Zou
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha410082, China
| |
Collapse
|
43
|
Zribi J, Pierucci D, Bisti F, Zheng B, Avila J, Khalil L, Ernandes C, Chaste J, Oehler F, Pala M, Maroutian T, Hermes I, Lhuillier E, Pan A, Ouerghi A. Unidirectional Rashba spin splitting in single layer WS 2(1-x)Se 2xalloy. NANOTECHNOLOGY 2022; 34:075705. [PMID: 36347029 DOI: 10.1088/1361-6528/aca0f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Atomically thin two-dimensional (2D) layered semiconductors such as transition metal dichalcogenides have attracted considerable attention due to their tunable band gap, intriguing spin-valley physics, piezoelectric effects and potential device applications. Here we study the electronic properties of a single layer WS1.4Se0.6alloys. The electronic structure of this alloy, explored using angle resolved photoemission spectroscopy, shows a clear valence band structure anisotropy characterized by two paraboloids shifted in one direction of thek-space by a constant in-plane vector. This band splitting is a signature of a unidirectional Rashba spin splitting with a related giant Rashba parameter of 2.8 ± 0.7 eV Å. The combination of angle resolved photoemission spectroscopy with piezo force microscopy highlights the link between this giant unidirectional Rashba spin splitting and an in-plane polarization present in the alloy. These peculiar anisotropic properties of the WS1.4Se0.6alloy can be related to local atomic orders induced during the growth process due the different size and electronegativity between S and Se atoms. This distorted crystal structure combined to the observed macroscopic tensile strain, as evidenced by photoluminescence, displays electric dipoles with a strong in-plane component, as shown by piezoelectric microscopy. The interplay between semiconducting properties, in-plane spontaneous polarization and giant out-of-plane Rashba spin-splitting in this 2D material has potential for a wide range of applications in next-generation electronics, piezotronics and spintronics devices.
Collapse
Affiliation(s)
- Jihene Zribi
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Debora Pierucci
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Federico Bisti
- Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila, Via Vetoio 10, I-67100 L'Aquila, Italy
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - José Avila
- Synchrotron-SOLEIL, Saint-Aubin, BP48, F-91192 Gif sur Yvette Cedex, France
| | - Lama Khalil
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Cyrine Ernandes
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Julien Chaste
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Fabrice Oehler
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Marco Pala
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Thomas Maroutian
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| | - Ilka Hermes
- Park Systems Europe GmbH. Schildkroetstrasse 15, D-68199 Mannheim, Germany
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, F-75005 Paris, France
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Abdelkarim Ouerghi
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, F-91120, Palaiseau, France
| |
Collapse
|
44
|
Zhang H, Wang Z, Chen J, Tan C, Yin S, Zhang H, Wang S, Qin Q, Li L. Type-I PtS 2/MoS 2 van der Waals heterojunctions with tunable photovoltaic effects and high photosensitivity. NANOSCALE 2022; 14:16130-16138. [PMID: 36239166 DOI: 10.1039/d2nr04231b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recent advances in two-dimensional (2D) materials play an essential role in boosting modern electronics and optoelectronics. Thus far, transition metal dichalcogenides (TMDs) as emerging members of 2D materials, and the van der Waals heterostructures (vdWHs) based on TMDs have been extensively investigated owing to their prominent capabilities and unique crystal structures. In this work, an original vdWH composed of molybdenum disulfide (MoS2) and platinum disulfide (PtS2) was comprehensively studied as a field-effect transistor (FET) and photodetector. A gate-tunable rectifying behavior was obtained, stemming from the band design of PtS2/MoS2 vdWH. Upon 685 nm laser illumination, it also exhibited a superior photodetection performance with a distinctly high photoresponsivity of 403 A W-1, a comparable detectivity of 1.07 × 1011 Jones, and an excellent external quantum efficiency of 7.32 × 104%. More importantly, fast rise (24 ms) and decay (21 ms) times were obtained under 685 nm light illumination attributed to the unilateral depletion region structure. Further, the photovoltaic effect and photocurrent of the heterojunction could be modulated by a back gate voltage. All these results indicated that such 2D-TMD-based vdWHs provide a new idea for realizing high-performance electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Hui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zihan Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chaoyang Tan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shiqi Yin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Hanlin Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Shaotian Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Qinggang Qin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Liang Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P.R. China.
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
45
|
Yu Y, Xiong T, Guo Z, Hou S, Yang J, Liu YY, Gu H, Wei Z. Wide-spectrum polarization-sensitive and fast-response photodetector based on 2D group IV-VI semiconductor tin selenide. FUNDAMENTAL RESEARCH 2022; 2:985-992. [PMID: 38933380 PMCID: PMC11197658 DOI: 10.1016/j.fmre.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022] Open
Abstract
Tin selenide (SnSe) has attracted considerable interest recently on account of its low-symmetry lattice structure, great compatibility with key semiconductor technology, and remarkable electrical and optical performance. SnSe-based polarization-sensitive photodetectors show promising application prospects because of their fast response and excellent photoelectric performance. Here, an in-plane anisotropic SnSe nanosheet was synthesized and reported in detail by applying angle-resolved polarized Raman spectroscopy (ARPRS), polarization-resolved optical microscopy(PROM), angle-resolved optical absorption spectroscopy (AROAS), and other crystal structure characterization methods. Moreover, SnSe crystals exhibit superior polarization detection performance with a high anisotropic photocurrent ratio (2.31 at 1064 nm) due to the structure formed by the Van der Waals superposition of covalently bonded atomic layers. Furthermore, SnSe-based photodetectors have high responsivity (9.27 A/W), high detectivity (4.08 × 1010 Jones), and fast response (in the order of nanoseconds). These results suggest a new method for fabricating 2D fast-response polarization-sensitive photodetectors in the future.
Collapse
Affiliation(s)
- Yali Yu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Xiong
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengfeng Guo
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shijun Hou
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honggang Gu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Xiong Y, Xu D, Feng Y, Zhang G, Lin P, Chen X. P-Type 2D Semiconductors for Future Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2206939. [PMID: 36245325 DOI: 10.1002/adma.202206939] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/30/2022] [Indexed: 06/16/2023]
Abstract
2D semiconductors represent one of the best candidates to extend Moore's law for their superiorities, such as keeping high carrier mobility and remarkable gate-control capability at atomic thickness. Complementary transistors and van der Waals junctions are critical in realizing 2D semiconductors-based integrated circuits suitable for future electronics. N-type 2D semiconductors have been reported predominantly for the strong electron doping caused by interfacial charge impurities and internal structural defects. By contrast, superior and reliable p-type 2D semiconductors with holes as majority carriers are still scarce. Not only that, but some critical issues have not been adequately addressed, including their controlled synthesis in wafer size and high quality, defect and carrier modulation, optimization of interface and contact, and application in high-speed and low-power integrated devices. Here the material toolkit, synthesis strategies, device basics, and digital electronics closely related to p-type 2D semiconductors are reviewed. Their opportunities, challenges, and prospects for future electronic applications are also discussed, which would be promising or even shining in the post-Moore era.
Collapse
Affiliation(s)
- Yunhai Xiong
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Duo Xu
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yiping Feng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangjie Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Pei Lin
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang Chen
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
47
|
Xiao Y, Qu J, Luo Z, Chen Y, Yang X, Zhang D, Li H, Zheng B, Yi J, Wu R, You W, Liu B, Chen S, Pan A. Van der Waals epitaxial growth and optoelectronics of a vertical MoS 2/WSe 2 p-n junction. FRONTIERS OF OPTOELECTRONICS 2022; 15:41. [PMID: 36637698 PMCID: PMC9756242 DOI: 10.1007/s12200-022-00041-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted extensive attention due to their unique electronic and optical properties. In particular, TMDs can be flexibly combined to form diverse vertical van der Waals (vdWs) heterostructures without the limitation of lattice matching, which creates vast opportunities for fundamental investigation of novel optoelectronic applications. Here, we report an atomically thin vertical p-n junction WSe2/MoS2 produced by a chemical vapor deposition method. Transmission electron microscopy and steady-state photoluminescence experiments reveal its high quality and excellent optical properties. Back gate field effect transistor (FET) constructed using this p-n junction exhibits bipolar behaviors and a mobility of 9 cm2/(V·s). In addition, the photodetector based on MoS2/WSe2 heterostructures displays outstanding optoelectronic properties (R = 8 A/W, D* = 2.93 × 1011 Jones, on/off ratio of 104), which benefited from the built-in electric field across the interface. The direct growth of TMDs p-n vertical heterostructures may offer a novel platform for future optoelectronic applications.
Collapse
Affiliation(s)
- Yu Xiao
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Junyu Qu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Ziyu Luo
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Ying Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Xin Yang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Danliang Zhang
- School of Materials Science and Engineering, Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, Hunan University, Changsha, 410082, China
| | - Honglai Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Biyuan Zheng
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jiali Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Rong Wu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Wenxia You
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Bo Liu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Shula Chen
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
48
|
Cao X, Lei Z, Zhao S, Tao L, Zheng Z, Feng X, Li J, Zhao Y. Te/SnS 2 tunneling heterojunctions as high-performance photodetectors with superior self-powered properties. NANOSCALE ADVANCES 2022; 4:4296-4303. [PMID: 36321139 PMCID: PMC9552753 DOI: 10.1039/d2na00507g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
The tunneling heterojunctions made of two-dimensional (2D) materials have been explored to have many intriguing properties, such as ultrahigh rectification and on/off ratio, superior photoresponsivity, and improved photoresponse speed, showing great potential in achieving multifunctional and high-performance electronic and optoelectronic devices. Here, we report a systematic study of the tunneling heterojunctions consisting of 2D tellurium (Te) and Tin disulfide (SnS2). The Te/SnS2 heterojunctions possess type-II band alignment and can transfer to type-III one under reverse bias, showing a reverse rectification ratio of about 5000 and a current on/off ratio over 104. The tunneling heterojunctions as photodetectors exhibit an ultrahigh photoresponsivity of 50.5 A W-1 in the visible range, along with a dramatically enhanced photoresponse speed. Furthermore, due to the reasonable type-II band alignment and negligible band bending at the interface, Te/SnS2 heterojunctions at zero bias exhibit excellent self-powered performance with a high responsivity of 2.21 A W-1 and external quantum efficiency of 678%. The proposed heterostructure in this work provides a useful guideline for the rational design of a high-performance self-powered photodetector.
Collapse
Affiliation(s)
- Xuanhao Cao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Zehong Lei
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Shuting Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Jingbo Li
- Guangdong Key Lab of Chip and Integration Technology, Institute of Semiconductors, South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
49
|
Li Z, Wu H, Cao H, Liang L, Han Y, Yang J, Song Y, Burda C. Improved Ultrafast Carrier Relaxation and Charge Transfer Dynamics in CuI Films and Their Heterojunctions via Sn Doping. J Phys Chem Lett 2022; 13:9072-9078. [PMID: 36154177 DOI: 10.1021/acs.jpclett.2c02354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
CuI is one of the promising hole transport materials for perovskite solar cells. However, its tendency to form defects is currently limiting its use for device applications. Here, we report the successful improvement of CuI through Sn doping and the direct measurement of the carrier relaxation and interfacial charge-transfer processes in Sn-doped CuI films and their heterostructures. Femtosecond-transient absorption (fs-TA) measurements reveal that Sn doping effectively passivates the trap states within the bandgap of CuI. The I-V characteristics of heterostructures demonstrate drastic improvement in transport characteristics upon Sn doping. Fs-TA measurements further confirm that the CuSnI/ZnO heterojunction has a type-II configuration with ultrafast charge transfer (<280 fs). The charge transfer time of a CuI/ZnO heterostructure is ∼2.8 times slower than that of the CuSnI/ZnO heterostructure, indicating that Sn doping suppresses the interfacial states that retard the charge transfer. These results elucidate the effect of Sn doping on the performance of CuI-based heterostructures.
Collapse
Affiliation(s)
- Zhongguo Li
- School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Haijuan Wu
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Hongtao Cao
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Lingyan Liang
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yanbing Han
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Junyi Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Yinglin Song
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Clemens Burda
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
50
|
Luo Z, Yang M, Wu D, Huang Z, Gao W, Zhang M, Zhou Y, Zhao Y, Zheng Z, Li J. Rational Design of WSe 2 /WS 2 /WSe 2 Dual Junction Phototransistor Incorporating High Responsivity and Detectivity. SMALL METHODS 2022; 6:e2200583. [PMID: 35871503 DOI: 10.1002/smtd.202200583] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The excellent semiconducting properties and ultrathin morphological characteristics allow van der Waals (vdW) heterostructures based on 2D materials to be promising channel materials for the next-generation optoelectronic devices, especially in photodetectors. Although various 2D heterostructure-based photodetectors have been developed, the unavoidable trade-off between responsivity and detectivity remains a critical issue for these devices. Here, an ingenious phototransistor based on WSe2 /WS2 /WSe2 dual-vdW heterostructures is constructed, performing both high responsivity and detectivity. In the charge neutrality point (gate voltage of -15 V and bias voltage of 1 V), this device demonstrates a pronounced photosensitivity, accompanying with high detectivity of 1.9 × 1014 Jones, high responsivity of 35.4 A W-1 , and fast rise/fall time of 3.2/2.5 ms at 405 nm with power density of 60 µW cm-2 . Density functional theory calculations, energy band profiles, and optoelectronic characteristics jointly verify that the high performance is ascribed to the distinctive device design, which not only facilitates the separation of photogenerated carriers but also produces a strong photogating effect. As a feasible application, an automotive radar system is demonstrated, proving that the device has considerable potential for application in vehicle intelligent assisted driving.
Collapse
Affiliation(s)
- Zhongtong Luo
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Mengmeng Yang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Dongsi Wu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zihao Huang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Wei Gao
- Institute of Semiconductors, South China Normal University, Guangzhou, Guangdong, 510631, P. R. China
| | - Menglong Zhang
- Institute of Semiconductors, South China Normal University, Guangzhou, Guangdong, 510631, P. R. China
| | - Yuchen Zhou
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong, 510006, P. R. China
| | - Jingbo Li
- Institute of Semiconductors, South China Normal University, Guangzhou, Guangdong, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, Guangzhou, Guangdong, 510631, P. R. China
| |
Collapse
|