1
|
Miao Z, Pan X, Kamenetska M. Conductance and assembly of quasi-1D coordination chain molecular junctions with triazole derivatives. Dalton Trans 2024; 53:10453-10461. [PMID: 38868899 DOI: 10.1039/d4dt01085j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Incorporating transition metal atoms into metal-molecule-metal junctions presents opportunities for exploring the electronic properties of coordination complexes, organometallics and metal-organic materials on the single molecule level. Recent single molecule conductance studies have shown that in situ incorporation of electrode metal atoms into coordination chains formed in the junction can occur with deprotonated, negatively charged organic ligands, such as the imidazolate (Im-) anion. However, the mechanism and chemical principles, such as the role of the charge state of the ligand, for the construction of such coordination chains are still debated. Here, we probe the role of the ligand charge state and electronic structure in single-molecule conductance and formation of metal-molecule coordination chains. We perform break junction measurements with triazole isomers, which can bridge junctions both in their neutral and charged forms, and find that prior deprotonation of the ligands is not required for coordination complex assembly, but can affect the molecular conductance and junction formation probability. Our results indicate that coordination chains can form with neutral ligands, as long as the electron density in the frontier MOs is concentrated at the binding sites and along the direction of pulling, promoting ligand binding and incorporation of gold atoms into the junction during elongation. Our findings may provide insight into design principles for in situ assembled molecular wires with transition metal atoms and open the door to electronic and spintronic studies of such materials.
Collapse
Affiliation(s)
- Zelin Miao
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA.
| | - Xiaoyun Pan
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215, USA
| | - Maria Kamenetska
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts, 02215, USA.
- Department of Chemistry, Boston University, Boston, Massachusetts, 02215, USA
- Department of Physics, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
2
|
Fétida A, Bengone O, Romeo M, Scheurer F, Robles R, Lorente N, Limot L. Single-Spin Sensing: A Molecule-on-Tip Approach. ACS NANO 2024; 18:13829-13835. [PMID: 38739416 DOI: 10.1021/acsnano.4c02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Magnetometry plays a pivotal role in addressing the requirements of ultradense storage technology and overcoming challenges associated with downscaled spin qubits. A promising approach for atomic-scale single-spin sensing involves utilizing a magnetic molecule as a spin sensor, although such a realization is still in its early stages. To tackle this challenge and underscore the potential of this method, we combined a nickelocene molecule with scanning tunneling microscopy to perform versatile spin-sensitive imaging of magnetic surfaces. We investigated model Co islands on Cu(111) of different thicknesses having variable magnetic properties. Our method demonstrates robustness and reproducibility, providing atomic-scale sensitivity to spin polarization and magnetization orientation, owing to a direct exchange coupling between the nickelocene-terminated tip and the Co surfaces. We showcase the accessibility of magnetic exchange maps using this technique, revealing unique signatures in magnetic corrugation, which are well described by computed spin-density maps. These advancements significantly improve our capacity to probe and visualize magnetism at the atomic level.
Collapse
Affiliation(s)
- Alex Fétida
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Olivier Bengone
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Michelangelo Romeo
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Fabrice Scheurer
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018 Donostia-San Sebastián, Spain
| | - Laurent Limot
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| |
Collapse
|
3
|
He D, Zhang D, Yang L, Ye L, Xu RX, Zheng X. Unconventional Surface Doping Effect on the Spin State of an Adsorbed Magnetic Molecule. J Phys Chem Lett 2024; 15:4333-4341. [PMID: 38619466 DOI: 10.1021/acs.jpclett.4c00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Magnetic molecules adsorbed on two-dimensional (2D) substrates have attracted broad attention because of their potential applications in quantum device applications. Experimental observations have demonstrated substantial alteration in the spin excitation energy of iron phthalocyanine (FePc) molecules when adsorbed on nitrogen-doped graphene substrates. However, the underlying mechanism responsible for this notable change remains unclear. To shed light on this, we employ an embedding method and ab initio quantum chemistry calculations to investigate the effects of surface doping on molecular properties. Our study unveils an unconventional chemical bonding at the interface between the FePc molecule and the N-doped graphene. This bonding interaction, stronger than non-covalent interactions, significantly modifies the magnetic anisotropy energy of the adsorbed molecule, consistent with experimental observations. These findings provide valuable insights into the electronic and magnetic properties of molecules on 2D substrates, offering a promising pathway for precise manipulation of molecular spin states.
Collapse
Affiliation(s)
- Dawei He
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Daochi Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Longqing Yang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| | - Lyuzhou Ye
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Rui-Xue Xu
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale & Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
4
|
Hao H, Li H, Jia T, Zhou Y, Zheng X. Fano resonance in molecular junctions of spin crossover complexes. Phys Chem Chem Phys 2024; 26:12652-12660. [PMID: 38597792 DOI: 10.1039/d3cp06178g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
In this paper, we introduce a novel molecular switch paradigm that integrates spin crossover complexes with the Fano resonance effect. Specifically, by performing density-functional theory calculations, the feasibility of achieving Fano resonance using spin crossover complexes is demonstrated in our designed molecular junctions using the complex {Fe[H2B(pz)2]2[Bp(bipy)]} [pz = 1-pyrazolyl, Bp(bipy) = bis(phenylethynyl)(2,2'-bipyridine)]. It is further revealed that the Fano resonance, particularly the Fano dip, is most prominent in the junction with cobalt tips among all the schemes, together with the spin-filtering effect. Most importantly, this junction of cobalt tips is able to exhibit three distinct conductance states, which are controlled by the modulation of Fano resonance due to the spin-state transition of the complex and the applied gate voltage. Such a molecular switch paradigm holds potential for applications in logic gates, memory units, sensors, thermoelectrics, and beyond.
Collapse
Affiliation(s)
- Hua Hao
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China.
| | - Honghao Li
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China.
| | - Ting Jia
- School of Physics, Hangzhou Normal University, Hangzhou 311121, China.
| | - Yanhong Zhou
- College of Science, East China Jiao Tong University, Nanchang 330013, China
| | - Xiaohong Zheng
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Noei N, Mozara R, Montero AM, Brinker S, Ide N, Guimarães FSM, Lichtenstein AI, Berndt R, Lounis S, Weismann A. Manipulating the Spin Orientation of Co Atoms Using Monatomic Cu Chains. NANO LETTERS 2023; 23:8988-8994. [PMID: 37782684 DOI: 10.1021/acs.nanolett.3c02532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Harnessing the spin of single atoms is at the heart of quantum information nanotechnology based on magnetic concepts. By attaching single Co atoms to monatomic Cu chains, we demonstrate the ability to control the spin orientation by the atomic environment. Due to spin-orbit coupling (SOC), the spin is tilted by ≈58° from the surface normal toward the chain as evidenced by inelastic tunneling spectroscopy. These findings are reproduced by density functional theory calculations and have implications for Co atoms on pristine Cu(111), which are believed to be Kondo systems. Our quantum Monte Carlo calculations suggest that SOC suppresses the Kondo effect of Co atoms at chains and on the flat surface. Our work impacts the fundamental understanding of low-energy excitations in nanostructures on surfaces and demonstrates the ability to manipulate atomic-scale magnetic moments, which can have tremendous implications for quantum devices.
Collapse
Affiliation(s)
- Neda Noei
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Roberto Mozara
- Institut für Theoretische Physik, Universität Hamburg, 20355 Hamburg, Germany
| | - Ana M Montero
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany
| | - Sascha Brinker
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany
| | - Niklas Ide
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Filipe S M Guimarães
- Jülich Supercomputing Centre, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
| | | | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Samir Lounis
- Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich & JARA, 52425 Jülich, Germany
- Faculty of Physics, University of Duisburg-Essen and CENIDE, 47053 Duisburg, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
6
|
Zhang J, Hu W, Qian B, Li H, Sudduth B, Engelhard M, Zhang L, Hu J, Sun J, Zhang C, He H, Wang Y. Tuning hydrogenation chemistry of Pd-based heterogeneous catalysts by introducing homogeneous-like ligands. Nat Commun 2023; 14:3944. [PMID: 37402751 DOI: 10.1038/s41467-023-39478-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 06/14/2023] [Indexed: 07/06/2023] Open
Abstract
Noble metals have been extensively employed in a variety of hydrotreating catalyst systems for their featured functionality of hydrogen activation but may also bring side reactions such as undesired deep hydrogenation. It is crucial to develop a viable approach to selectively inhibit side reactions while preserving beneficial functionalities. Herein, we present modifying Pd with alkenyl-type ligands that forms homogeneous-like Pd-alkene metallacycle structure on the heterogeneous Pd catalyst to achieve the selective hydrogenolysis and hydrogenation. Particularly, a doped alkenyl-type carbon ligand on Pd-Fe catalyst is demonstrated to donate electrons to Pd, creating an electron-rich environment that elongates the distance and weakens the electronic interaction between Pd and unsaturated C of the reactants/products to control the hydrogenation chemistry. Moreover, high H2 activation capability is maintained over Pd and the activated H is transferred to Fe to facilitate C-O bond cleavage or directly participate in the reaction on Pd. The modified Pd-Fe catalyst displays comparable C-O bond cleavage rate but much higher selectivity (>90%) than the bare Pd-Fe (<50%) in hydrotreating of diphenyl ether (DPE, modelling the strongest C-O linkage in lignin) and enhanced ethene selectivity (>90%) in acetylene hydrogenation. This work sheds light on the controlled synthesis of selective hydrotreating catalysts via mimicking homogeneous analogues.
Collapse
Affiliation(s)
- Jianghao Zhang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenda Hu
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Binbin Qian
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224002, China
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Houqian Li
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Berlin Sudduth
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Mark Engelhard
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Lian Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Jianzhi Hu
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Junming Sun
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
| | - Changbin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yong Wang
- The Gene & Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA.
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
7
|
Gao Y, Vlaic S, Gorni T, De' Medici L, Clair S, Roditchev D, Pons S. Manipulation of the Magnetic State of a Porphyrin-Based Molecule on Gold: From Kondo to Quantum Nanomagnet via the Charge Fluctuation Regime. ACS NANO 2023; 17:9082-9089. [PMID: 37162317 DOI: 10.1021/acsnano.2c12223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
By moving individual Fe-porphyrin-based molecules with the tip of a scanning tunneling microscope in the vicinity of the elbow of the herringbone-reconstructed Au(111) containing a Br atom, we reversibly and continuously control their magnetic state. Several regimes are obtained experimentally and explored theoretically: from the integer spin limit, through intermediate magnetic states with renormalized magnetic anisotropy, until the Kondo-screened regime, corresponding to a progressive increase of charge fluctuations and mixed valency due to an increase in the interaction of the molecular Fe states with the substrate Fermi sea. Our study demonstrates the potential of utilizing charge fluctuations to generate and tune quantum magnetic states in molecule-surface hybrids.
Collapse
Affiliation(s)
- Yingzheng Gao
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Sergio Vlaic
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Tommaso Gorni
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Luca De' Medici
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| | - Sylvain Clair
- Aix Marseille University, CNRS, IM2NP, 13397 Marseille, France
| | - Dimitri Roditchev
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS UMR7588, 75005 Paris, France
| | - Stéphane Pons
- Laboratoire de Physique et d'Étude des Matériaux (LPEM), ESPCI Paris, PSL Research University, CNRS UMR8213, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
8
|
Bhandary S, Poli E, Teobaldi G, O’Regan DD. Dynamical Screening of Local Spin Moments at Metal-Molecule Interfaces. ACS NANO 2023; 17:5974-5983. [PMID: 36881865 PMCID: PMC10062023 DOI: 10.1021/acsnano.3c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Transition-metal phthalocyanine molecules have attracted considerable interest in the context of spintronics device development due to their amenability to diverse bonding regimes and their intrinsic magnetism. The latter is highly influenced by the quantum fluctuations that arise at the inevitable metal-molecule interface in a device architecture. In this study, we have systematically investigated the dynamical screening effects in phthalocyanine molecules hosting a series of transition-metal ions (Ti, V, Cr, Mn, Fe, Co, and Ni) in contact with the Cu(111) surface. Using comprehensive density functional theory plus Anderson's Impurity Model calculations, we show that the orbital-dependent hybridization and electron correlation together result in strong charge and spin fluctuations. While the instantaneous spin moments of the transition-metal ions are near atomic-like, we find that screening gives rise to considerable lowering or even quenching of these. Our results highlight the importance of quantum fluctuations in metal-contacted molecular devices, which may influence the results obtained from theoretical or experimental probes, depending on their possibly material-dependent characteristic sampling time-scales.
Collapse
Affiliation(s)
- Sumanta Bhandary
- School
of Physics and CRANN Institute, Trinity
College Dublin, The University
of Dublin, Dublin 2, Ireland
| | - Emiliano Poli
- Scientific
Computing Department, STFC UKRI, Rutherford
Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gilberto Teobaldi
- Scientific
Computing Department, STFC UKRI, Rutherford
Appleton Laboratory, Didcot OX11 0QX, United Kingdom
- School
of Chemistry, University of Southampton, Highfield SO17 1BJ, Southampton, United Kingdom
| | - David D. O’Regan
- School
of Physics and CRANN Institute, Trinity
College Dublin, The University
of Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Zhang D, Zuo L, Ye L, Chen ZH, Wang Y, Xu RX, Zheng X, Yan Y. Hierarchical equations of motion approach for accurate characterization of spin excitations in quantum impurity systems. J Chem Phys 2023; 158:014106. [PMID: 36610957 DOI: 10.1063/5.0131739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Recent technological advancement in scanning tunneling microscopes has enabled the measurement of spin-field and spin-spin interactions in single atomic or molecular junctions with an unprecedentedly high resolution. Theoretically, although the fermionic hierarchical equations of motion (HEOM) method has been widely applied to investigate the strongly correlated Kondo states in these junctions, the existence of low-energy spin excitations presents new challenges to numerical simulations. These include the quest for a more accurate and efficient decomposition for the non-Markovian memory of low-temperature environments and a more careful handling of errors caused by the truncation of the hierarchy. In this work, we propose several new algorithms, which significantly enhance the performance of the HEOM method, as exemplified by the calculations on systems involving various types of low-energy spin excitations. Being able to characterize both the Kondo effect and spin excitation accurately, the HEOM method offers a sophisticated and versatile theoretical tool, which is valuable for the understanding and even prediction of the fascinating quantum phenomena explored in cutting-edge experiments.
Collapse
Affiliation(s)
- Daochi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Hao Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Zuo L, Zhuang Q, Ye L, Yan Y, Zheng X. Unveiling the Decisive Factor for the Sharp Transition in the Scanning Tunneling Spectroscopy of a Single Nickelocene Molecule. J Phys Chem Lett 2022; 13:11262-11270. [PMID: 36448930 DOI: 10.1021/acs.jpclett.2c03168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Scanning tunneling microscopy (STM) has been utilized to realize the precise measurement and control of local spin states. Experiments have demonstrated that when a nickelocene (Nc) molecule is attached to the apex of an STM tip, the dI/dV spectra exhibit a sharp or a smooth transition when the tip is displaced toward the substrate. However, what leads to the two distinct types of transitions remains unclear, and more intriguingly, the physical origin of the abrupt change in the line shape of dI/dV spectra remains unclear. To clarify these intriguing issues, we perform first-principles-based simulations on the STM tip control process for the Cu tip/Nc/Cu(100) junction. In particular, we find that the suddenly enhanced hybridization between the d orbitals on the Ni ion and the metallic bands in the substrate leads to Kondo correlation overwhelming spin excitation, which is the main cause of the sharp transition in the dI/dV spectra observed experimentally.
Collapse
Affiliation(s)
- Lijun Zuo
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingfeng Zhuang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lyuzhou Ye
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale and iChEM, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
11
|
Ketkov S, Tzeng SY, Rychagova E, Tzeng WB. Ionization of Decamethylmanganocene: Insights from the DFT-Assisted Laser Spectroscopy. Molecules 2022; 27:molecules27196226. [PMID: 36234763 PMCID: PMC9573365 DOI: 10.3390/molecules27196226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022] Open
Abstract
Metallocenes represent one of the most important classes of organometallics with wide prospects for practical use in various fields of chemistry, materials science, molecular electronics, and biomedicine. Many applications of these metal complexes are based on their ability to form molecular ions. We report the first results concerning the changes in the molecular and electronic structure of decamethylmanganocene, Cp*2Mn, upon ionization provided by the high-resolution mass-analyzed threshold ionization (MATI) spectroscopy supported by DFT calculations. The precise ionization energy of Cp*2Mn is determined as 5.349 ± 0.001 eV. The DFT modeling of the MATI spectrum shows that the main structural deformations accompanying the detachment of an electron consist in the elongation of the Mn-C bonds and a change in the Me out-of-plane bending angles. Surprisingly, the DFT calculations predict that most of the reduction in electron density (ED) upon ionization is associated with the hydrogen atoms of the substituents, despite the metal character of the ionized orbital. However, the ED difference isosurfaces reveal a complex mechanism of the charge redistribution involving also the carbon atoms of the molecule.
Collapse
Affiliation(s)
- Sergey Ketkov
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., 603950 Nizhny Novgorod, Russia
- Correspondence: (S.K.); (W.-B.T.)
| | - Sheng-Yuan Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Elena Rychagova
- G.A. Razuvaev Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., 603950 Nizhny Novgorod, Russia
| | - Wen-Bih Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei 10617, Taiwan
- Correspondence: (S.K.); (W.-B.T.)
| |
Collapse
|
12
|
Wang Y, Li X. Unravelling the robustness of magnetic anisotropy of a nickelocene molecule in different environments: a first-principles-based study. Phys Chem Chem Phys 2022; 24:21122-21130. [PMID: 36039704 DOI: 10.1039/d2cp02793c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent scanning tunneling spectroscopy with single metallocene molecule-functionalized tips have proved to be a powerful tool to probe and control individual spins and spin-spin exchange interactions due to the robustness of the magnetic properties of the metallocene molecule in different surroundings. However, accurate prediction of such robustness at a first-principles-based level by the conventional density functional theory (DFT) has remained challenging. In this paper, we have performed a detailed investigation of the evolution of electronic and magnetic properties of a nickelocene molecule (NiCp2) in different environments, i.e., free-standing, adsorbed on Cu(100) and as a functionalized tip apex. Using an embedding method, which combines DFT and the complete active space self-consistent field (CASSCF) method recently developed, we demonstrate that the nickelocene molecule almost preserves its spin and magnetic anisotropy upon adsorption on Cu(100), and also in the position of the tip apex. In particular, the cyclic π* orbital of the Cp rings could hybridize with the singly occupied dπ orbitals of the Ni center of the molecule, protecting these orbitals from external states. Hence the molecular spin maintains S = 1, the same as in the free-standing case, and its magnetic anisotropy is also robust with energies of 3.56, 3.34, and 3.51 meV in free-standing, adsorbed on Cu(100), and functionalized tip apex states, respectively, in good agreement with previous theoretical and experimental results. This work thus provides a first-principles-based understanding of the relevant experiments. Such agreement between theoretical simulations and experimental measurements highlights the potential usefulness of the method for investigating the local electronic and spin states of organometallic molecule-surface composite systems.
Collapse
Affiliation(s)
- Yu Wang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| | - Xiaoguang Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Thupakula U, Perrin V, Palacio-Morales A, Cario L, Aprili M, Simon P, Massee F. Coherent and Incoherent Tunneling into Yu-Shiba-Rusinov States Revealed by Atomic Scale Shot-Noise Spectroscopy. PHYSICAL REVIEW LETTERS 2022; 128:247001. [PMID: 35776485 DOI: 10.1103/physrevlett.128.247001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/27/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The pair breaking potential of individual magnetic impurities in s-wave superconductors generates localized states inside the superconducting gap commonly referred to as Yu-Shiba-Rusinov (YSR) states whose isolated nature makes them promising building blocks for artificial structures that may host Majorana fermions. One of the challenges in this endeavor is to understand their intrinsic lifetime, ℏ/Λ, which is expected to be limited by the inelastic coupling with the continuum thus leading to decoherence. Here we use shot-noise scanning tunneling microscopy to reveal that electron tunneling into superconducting 2H-NbSe_{2} mediated by YSR states is not Poissonian, but ordered as a function of time, as evidenced by a reduction of the noise. Moreover, our data show the concomitant transfer of charges e and 2e, indicating that incoherent single particle and coherent Andreev processes operate simultaneously. From the quantitative agreement between experiment and theory we obtain Λ=1 μeV≪k_{B}T demonstrating that shot noise can probe energy scales and timescales inaccessible by conventional spectroscopy whose resolution is thermally limited.
Collapse
Affiliation(s)
- U Thupakula
- Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud/Université Paris-Saclay, 91405 Orsay, France
| | - V Perrin
- Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud/Université Paris-Saclay, 91405 Orsay, France
| | - A Palacio-Morales
- Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud/Université Paris-Saclay, 91405 Orsay, France
| | - L Cario
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - M Aprili
- Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud/Université Paris-Saclay, 91405 Orsay, France
| | - P Simon
- Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud/Université Paris-Saclay, 91405 Orsay, France
| | - F Massee
- Laboratoire de Physique des Solides (CNRS UMR 8502), Bâtiment 510, Université Paris-Sud/Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
14
|
Kuppusamy SK, Mizuno A, García-Fuente A, van der Poel S, Heinrich B, Ferrer J, van der Zant HSJ, Ruben M. Spin-Crossover in Supramolecular Iron(II)-2,6-bis(1 H-Pyrazol-1-yl)pyridine Complexes: Toward Spin-State Switchable Single-Molecule Junctions. ACS OMEGA 2022; 7:13654-13666. [PMID: 35559184 PMCID: PMC9088905 DOI: 10.1021/acsomega.1c07217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/21/2022] [Indexed: 05/27/2023]
Abstract
Spin-crossover (SCO) active iron(II) complexes are an integral class of switchable and bistable molecular materials. Spin-state switching properties of the SCO complexes have been studied in the bulk and single-molecule levels to progress toward fabricating molecule-based switching and memory elements. Supramolecular SCO complexes featuring anchoring groups for metallic electrodes, for example, gold (Au), are ideal candidates to study spin-state switching at the single-molecule level. In this study, we report on the spin-state switching characteristics of supramolecular iron(II) complexes 1 and 2 composed of functional 4-([2,2'-bithiophen]-5-ylethynyl)-2,6-di(1H-pyrazol-1-yl)pyridine (L1) and 4-(2-(5-(5-hexylthiophen-2-yl)thiophen-2-yl)ethynyl)-2,6-di(1H-pyrazol-1-yl)pyridine (L2) ligands, respectively. Density functional theory (DFT) studies revealed stretching-induced spin-state switching in a molecular junction composed of complex 1, taken as a representative example, and gold electrodes. Single-molecule conductance traces revealed the unfavorable orientation of the complexes in the junctions to demonstrate the spin-state dependence of the conductance.
Collapse
Affiliation(s)
- Senthil Kumar Kuppusamy
- Institute
for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Asato Mizuno
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Amador García-Fuente
- Departamento
de Física, Universidad de Oviedo, ES-33007 Oviedo, Spain
- Centro
de Investigación en Nanotecnología y Nanomateriales
(CINN, CSIC), El Entrego ES-33940, Spain
| | - Sebastiaan van der Poel
- Kavli
Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Benoît Heinrich
- Institut
de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg,
23, rue du Loess, BP 43, 67034 cedex
2 Strasbourg, France
| | - Jaime Ferrer
- Departamento
de Física, Universidad de Oviedo, ES-33007 Oviedo, Spain
- Centro
de Investigación en Nanotecnología y Nanomateriales
(CINN, CSIC), El Entrego ES-33940, Spain
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
| | - Mario Ruben
- Institute
for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Université
de Strasbourg (Unistra), Institute de Science et d′Ingénierie
Supramoléculaire (ISIS), Centre Européen de Science
Quantique (CESQ), 8,
Allée Gaspard Monge, F-67000 Strasbourg, France
| |
Collapse
|
15
|
Lawson B, Zahl P, Hybertsen MS, Kamenetska M. Formation and Evolution of Metallocene Single-Molecule Circuits with Direct Gold-π Links. J Am Chem Soc 2022; 144:6504-6515. [PMID: 35353518 DOI: 10.1021/jacs.2c01322] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Single-molecule circuits with group 8 metallocenes are formed without additional linker groups in scanning tunneling microscope-based break junction (STMBJ) measurements at cryogenic and room-temperature conditions with gold (Au) electrodes. We investigate the nature of this direct gold-π binding motif and its effect on molecular conductance and persistence characteristics during junction evolution. The measurement technique under cryogenic conditions tracks molecular plateaus through the full cycle of extension and compression. Analysis reveals that junction persistence when the metal electrodes are pushed together correlates with whether electrodes are locally sharp or blunt, suggesting distinct scenarios for metallocene junction formation and evolution. The top and bottom surfaces of the "barrel"-shaped metallocenes present the electron-rich π system of cyclopentadienyl rings, which interacts with the gold electrodes in two distinct ways. An undercoordinated gold atom on a sharp tip forms a donor-acceptor bond to a specific carbon atom in the ring. However, a small, flat patch on a dull tip can bind more strongly to the ring as a whole through van der Waals interactions. Density functional theory (DFT)-based calculations of model electrode structures provide an atomic-scale picture of these scenarios, demonstrating the role of these bonding motifs during junction evolution and showing that the conductance is relatively independent of tip atomic-scale structure. The nonspecific interaction of the cyclopentadienyl rings with the electrodes enables extended conductance plateaus, a mechanism distinct from that identified for the more commonly studied, rod-shaped organic molecular wires.
Collapse
Affiliation(s)
- Brent Lawson
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States
| | - Percy Zahl
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Mark S Hybertsen
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Maria Kamenetska
- Department of Physics, Boston University, Boston, Massachusetts 02215, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.,Division of Material Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
16
|
Zhuang Q, Wang X, Ye L, Yan Y, Zheng X. Origin of Asymmetric Splitting of Kondo Peak in Spin-Polarized Scanning Tunneling Spectroscopy: Insights from First-Principles-Based Simulations. J Phys Chem Lett 2022; 13:2094-2100. [PMID: 35225612 DOI: 10.1021/acs.jpclett.2c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The spin-polarized scanning tunneling microscope (SP-STM) has served as a versatile tool for probing and manipulating the spintronic properties of atomic and molecular devices with high precision. The interplay between the local spin state and its surrounding magnetic environment significantly affects the transport behavior of the device. Particularly, in the contact regime, the strong hybridization between the SP-STM tip and the magnetic atom or molecule could give rise to unconventional Kondo resonance signatures in the differential conductance (dI/dV) spectra. This poses challenges for the simulation of a realistic tip control process. By combining the density functional theory and the hierarchical equations of motion methods, we achieve first-principles-based simulation of the control of a Ni-tip/Co/Cu(100) junction in both the tunneling and contact regimes. The calculated dI/dV spectra reproduce faithfully the experimental data. A cotunneling mechanism is proposed to elucidate the physical origin of the observed unconventional Kondo signatures.
Collapse
Affiliation(s)
- Qingfeng Zhuang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoli Wang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, China
| | - Lyuzhou Ye
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
17
|
Yelin T, Chakrabarti S, Vilan A, Tal O. Richness of molecular junction configurations revealed by tracking a full pull-push cycle. NANOSCALE 2021; 13:18434-18440. [PMID: 34700338 PMCID: PMC8601122 DOI: 10.1039/d1nr05680h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/10/2021] [Indexed: 05/14/2023]
Abstract
In the field of molecular electronics, the interplay between molecular orientation and the resulting electronic transport is of central interest. At the single molecule level, this topic is extensively studied with the aid of break junction setups. In such experiments, two metal electrodes are brought into contact, and the conductance is typically measured when the electrodes are pulled apart in the presence of molecules, until a molecule bridges the two electrodes. However, the molecular junctions formed in this pull process reflect only part of the rich possible junction configurations. Here, we show that the push process, in which molecular junctions are formed by bringing the electrodes towards each other, allows the fabrication of molecular junction structures that are not necessarily formed in the pull process. We also find that in the extreme case, molecular junctions can be formed only in the push process that is typically ignored. Our findings demonstrate that tracking the two inverse processes of molecular junction formation, reveals a more comprehensive picture of the variety of molecular configurations in molecular junctions.
Collapse
Affiliation(s)
- Tamar Yelin
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Sudipto Chakrabarti
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Ayelet Vilan
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| | - Oren Tal
- Chemical and Biological Physics Department, Weizmann Institute of Science, 76100 Rehovot, Israel.
| |
Collapse
|
18
|
Žitko R, Blesio GG, Manuel LO, Aligia AA. Iron phthalocyanine on Au(111) is a "non-Landau" Fermi liquid. Nat Commun 2021; 12:6027. [PMID: 34654828 PMCID: PMC8521586 DOI: 10.1038/s41467-021-26339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
The paradigm of Landau’s Fermi liquid theory has been challenged with the finding of a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. A spin-1 two-channel Kondo impurity with anisotropy D has a quantum phase transition between two topologically different Fermi liquids with a peak (dip) in the Fermi level for D < Dc (D > Dc). Extending this theory to general multi-orbital problems with finite magnetic field, we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) that were previously described in disconnected and conflicting ways. The differential conductance shows a zero-bias dip that widens when the molecule is lifted from the surface (reducing the Kondo couplings) and is transformed continuously into a peak under an applied magnetic field. We reproduce all features and propose an experiment to induce the topological transition. Single molecules on metal surfaces are paradigmatic systems for the study of many-body phenomena. Here, the authors show that several spectroscopic experiments on iron phthalocyanine on Au(111) surface can be described in a unified way in terms of a strongly interacting topologically non-trivial (non-Landau) Fermi liquid.
Collapse
Affiliation(s)
- R Žitko
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia. .,Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000, Ljubljana, Slovenia.
| | - G G Blesio
- Jožef Stefan Institute, Jamova 39, SI-1000, Ljubljana, Slovenia.,Instituto de Física Rosario (CONICET) and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - L O Manuel
- Instituto de Física Rosario (CONICET) and Universidad Nacional de Rosario, Bv. 27 de Febrero 210 bis, 2000, Rosario, Argentina
| | - A A Aligia
- Instituto de Nanociencia y Nanotecnología CNEA-CONICET, Centro Atómico Bariloche and Instituto Balseiro, 8400, Bariloche, Argentina
| |
Collapse
|
19
|
Bhandary S, Tomczak JM, Valli A. Designing a mechanically driven spin-crossover molecular switch via organic embedding. NANOSCALE ADVANCES 2021; 3:4990-4995. [PMID: 34485819 PMCID: PMC8386408 DOI: 10.1039/d1na00407g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Among spin-crossover complexes, Fe-porphyrin (FeP) stands out for molecular spintronic applications: an intricate, yet favourable balance between ligand fields, charge transfer, and the Coulomb interaction makes FeP highly manipulable, while its planar structure facilitates device integration. Here, we theoretically design a mechanical spin-switch device in which external strain triggers the intrinsic magneto-structural coupling of FeP through a purely organic embedding. Exploiting the chemical compatibility and stretchability of graphene nanoribbon electrodes, we overcome common reliability and reproducibility issues of conventional inorganic setups. The competition between the Coulomb interaction and distortion-induced changes in ligand fields requires methodologies beyond the state-of-the-art: combining density functional theory with many-body techniques, we demonstrate experimentally feasible tensile strain to trigger a low-spin (S = 1) to high-spin (S = 2) crossover. Concomitantly, the current through the device toggles by over an order of magnitude, adding a fully planar mechanical current-switch unit to the panoply of molecular spintronics.
Collapse
Affiliation(s)
- Sumanta Bhandary
- School of Physics, Trinity College Dublin, The University of Dublin Dublin 2 Ireland +353-1-896 8455
| | - Jan M Tomczak
- Institute of Solid State Physics, Vienna University of Technology 1040 Vienna Austria
| | - Angelo Valli
- Institute for Theoretical Physics, Vienna University of Technology 1040 Vienna Austria
| |
Collapse
|
20
|
Ketkov SY, Tzeng SY, Rychagova EA, Markin GV, Makarov SG, Tzeng WB. Laser spectroscopic and computational insights into unexpected structural behaviours of sandwich complexes upon ionization. Dalton Trans 2021; 50:10729-10736. [PMID: 34231616 DOI: 10.1039/d1dt01887f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition-metal sandwich complexes play key roles in various fields such as fundamental and applied chemistry; many of their unique properties arise from their ability to form stable or reactive ions. The first mass-analyzed threshold ionization (MATI) spectra of mixed sandwich compounds, (Ch)(Cp)Cr and (Cot)(Cp)Ti (Ch = η7-C7H7, Cp = η5-C5H5, Cot = η8-C8H8), presented in this work provide an extremely accurate description of the electron detachment. The ionization energies of the neutrals and stabilization energies of the metal-ligand interactions upon ionization are derived from the MATI data with an accuracy of 0.0006 eV. In combination with DFT calculations, laser threshold ionization spectroscopy reveals surprisingly different structural variations accompanying the detachment of the non-bonding dz2 electron from the sandwich molecules. The geometry of (Ch)(Cp)Cr remains practically unchanged while the ionization of (Cot)(Cp)Ti causes a noticeable shortening of the inter-ring distance, similar to that resulting from the ionization of a typical antibonding orbital. Electron density analysis throws light on the nature of these amazing effects.
Collapse
Affiliation(s)
- Sergey Yu Ketkov
- Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., Nizhny Novgorod, 603950 Russian Federation.
| | - Sheng-Yuan Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei, 10617 Taiwan.
| | - Elena A Rychagova
- Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., Nizhny Novgorod, 603950 Russian Federation.
| | - Gennady V Markin
- Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., Nizhny Novgorod, 603950 Russian Federation.
| | - Sergei G Makarov
- Institute of Organometallic Chemistry of the Russian Academy of Sciences, 49 Tropinin St., Nizhny Novgorod, 603950 Russian Federation.
| | - Wen-Bih Tzeng
- Institute of Atomic and Molecular Sciences, Academia Sinica, 1 Section 4, Roosevelt Road, Taipei, 10617 Taiwan.
| |
Collapse
|
21
|
Mier C, Verlhac B, Garnier L, Robles R, Limot L, Lorente N, Choi DJ. Superconducting Scanning Tunneling Microscope Tip to Reveal Sub-millielectronvolt Magnetic Energy Variations on Surfaces. J Phys Chem Lett 2021; 12:2983-2989. [PMID: 33730501 DOI: 10.1021/acs.jpclett.1c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Combining the complex ordering ability of molecules with their local magnetic properties is a little-explored technique to tailor spin structures on surfaces. However, revealing the molecular geometry can be demanding. Nickelocene (Nc) molecules present a large spin-flip excitation leading to clear changes of conductance at the excitation-threshold bias. Using a superconducting tip, we have the energy resolution to detect small shifts of the Nc spin-flip excitation thresholds, permitting us to reveal the different individual environments of Nc molecules in an ordered layer. This knowledge allows us to reveal the adsorption configuration of a complex molecular structure formed by Nc molecules in different orientations and positions. As a consequence, we infer that Nc layers present a strong noncollinear magnetic-moment arrangement.
Collapse
Affiliation(s)
- Cristina Mier
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Benjamin Verlhac
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Léo Garnier
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Laurent Limot
- Université de Strasbourg CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - Deung-Jang Choi
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
22
|
Avvisati G, Gargiani P, Mariani C, Betti MG. Tuning the Magnetic Coupling of a Molecular Spin Interface via Electron Doping. NANO LETTERS 2021; 21:666-672. [PMID: 33356332 DOI: 10.1021/acs.nanolett.0c04256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mastering the magnetic response of molecular spin interfaces by tuning the occupancy of the molecular orbitals, which carry the spin magnetic moment, can be accomplished by electron doping. We propose a viable route to control the magnetization direction and magnitude of a molecular spin network, in a graphene-mediated architecture, achieved via alkali doping of manganese phthalocyanine (MnPc) molecules assembled on cobalt intercalated under a graphene membrane. The antiparallel magnetic alignment of the MnPc molecules with the underlying Co layer can be switched to a ferromagnetic state by electron doping. Multiplet calculations unveil an enhanced magnetic state of the Mn centers with a 3/2 to 5/2 spin transition induced by alkali doping, as confirmed by the steepening of the hysteresis loops, with higher saturation magnetization values. This new molecular spin configuration can be aligned by an external field, almost independently from the hard-magnet substrate effectively behaving as a free magnetic layer.
Collapse
Affiliation(s)
- Giulia Avvisati
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Pierluigi Gargiani
- ALBA Synchrotron Light Source, Carrer de la Llum, 2-26 08290 Barcelona, Spain
| | - Carlo Mariani
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| | - Maria Grazia Betti
- Physics Department, Sapienza University of Rome, Piazzale Aldo Moro, 5 00185 Rome, Italy
| |
Collapse
|
23
|
Gorenskaia E, Naher M, Daukiya L, Moggach SA, Costa Milan D, Vezzoli A, Lambert CJ, Nichols RJ, Becker T, Low PJ. Experimental Validation of Quantum Circuit Rules in Molecular Junctions. Aust J Chem 2021. [DOI: 10.1071/ch21136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A series of diarylacetylene (tolane) derivatives functionalised at the 4- and 4′-positions by thiolate, thioether, or amine groups capable of serving as anchor groups to secure the molecules within a molecular junction have been prepared and characterised. The series of compounds have a general form X-B-X, Y-B-Y, and X-B-Y where X and Y represent anchor groups and B the molecular bridge. The single-molecule conductance values determined by the scanning tunnelling microscope break-junction method are found to be in excellent agreement with the predictions made on the basis of a recently proposed ‘molecular circuit law’, which states ‘the conductance of an asymmetric molecule X-B-Y is the geometric mean of the conductance of the two symmetric molecules derived from it, and .’ The experimental verification of the circuit law, which holds for systems in which the constituent moieties X, B, and Y are weakly coupled and whose conductance takes place via off-resonance tunnelling, gives further confidence in the use of this relationship in the design of future compounds for use in molecular electronics research.
Collapse
|
24
|
Garnier L, Verlhac B, Abufager P, Lorente N, Ormaza M, Limot L. The Kondo Effect of a Molecular Tip As a Magnetic Sensor. NANO LETTERS 2020; 20:8193-8199. [PMID: 33119321 DOI: 10.1021/acs.nanolett.0c03271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A single molecule offers to tailor and control the probing capability of a scanning tunneling microscope when placed on the tip. With the help of first-principles calculations, we show that on-tip spin sensitivity is possible through the Kondo ground state of a spin S = 1/2 cobaltocene molecule. When attached to the tip apex, we observe a reproducible Kondo resonance, which splits apart upon tuning the exchange coupling of cobaltocene to an iron atom on the surface. The spin-split Kondo resonance provides quantitative information on the exchange field and on the spin polarization of the iron atom. We also demonstrate that molecular vibrations cause the emergence of Kondo side peaks, which, unlike the Kondo resonance, are sensitive to cobaltocene adsorption.
Collapse
Affiliation(s)
- Léo Garnier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg F-67000, France
| | - Benjamin Verlhac
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg F-67000, France
| | - Paula Abufager
- Instituto de Física de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Avenida Pellegrini 250 (2000), Rosario 2000, Argentina
| | - Nicolás Lorente
- Centro de Física de Materiales (CFM), Donostia-San San Sebastián20018, Spain
- Donostia International Physics Center (DIPC), Donostia-San Sebastián20018, Spain
| | - Maider Ormaza
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg F-67000, France
| | - Laurent Limot
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg F-67000, France
| |
Collapse
|
25
|
Nanofabrication Techniques in Large-Area Molecular Electronic Devices. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The societal impact of the electronics industry is enormous—not to mention how this industry impinges on the global economy. The foreseen limits of the current technology—technical, economic, and sustainability issues—open the door to the search for successor technologies. In this context, molecular electronics has emerged as a promising candidate that, at least in the short-term, will not likely replace our silicon-based electronics, but improve its performance through a nascent hybrid technology. Such technology will take advantage of both the small dimensions of the molecules and new functionalities resulting from the quantum effects that govern the properties at the molecular scale. An optimization of interface engineering and integration of molecules to form densely integrated individually addressable arrays of molecules are two crucial aspects in the molecular electronics field. These challenges should be met to establish the bridge between organic functional materials and hard electronics required for the incorporation of such hybrid technology in the market. In this review, the most advanced methods for fabricating large-area molecular electronic devices are presented, highlighting their advantages and limitations. Special emphasis is focused on bottom-up methodologies for the fabrication of well-ordered and tightly-packed monolayers onto the bottom electrode, followed by a description of the top-contact deposition methods so far used.
Collapse
|
26
|
Malavolti L, McMurtrie G, Rolf-Pissarczyk S, Yan S, Burgess JAJ, Loth S. Minimally invasive spin sensing with scanning tunneling microscopy. NANOSCALE 2020; 12:11619-11626. [PMID: 32435779 DOI: 10.1039/c9nr10252c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Minimizing the invasiveness of scanning tunneling measurements is paramount for observation of the magnetic properties of unperturbed atomic-scale objects. We show that the invasiveness of STM inspection on few-atom spin systems can be drastically reduced by means of a remote detection scheme, which makes use of a sensor spin weakly coupled to the sensed object. By comparing direct and remote measurements we identify the relevant perturbations caused by the local probe. For direct inspection we find that tunneling electrons strongly perturb the investigated object even for currents as low as 3 pA. Electrons injected into the sensor spin induce perturbations with much reduced probability. The sensing scheme uses standard differential conductance measurements, and is decoupled both by its non-local nature, and by dynamic decoupling due to the significantly different time scales at which the sensor and sensed object evolve. The latter makes it possible to effectively remove static interactions between the sensed object and the spin sensor while still allowing the spin sensing. In this way we achieve measurements with a reduction in perturbative effects of up to 100 times relative to direct scanning tunneling measurements, which enables minimally invasive measurements of a few-atom magnet's fragile spin states with STM.
Collapse
Affiliation(s)
- Luigi Malavolti
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany. and Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany and Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Gregory McMurtrie
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany. and Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany and Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Steffen Rolf-Pissarczyk
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany and Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Shichao Yan
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany and Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany and School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jacob A J Burgess
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany and Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany and Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Sebastian Loth
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569 Stuttgart, Germany. and Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany and Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany
| |
Collapse
|
27
|
Bachellier N, Verlhac B, Garnier L, Zaldívar J, Rubio-Verdú C, Abufager P, Ormaza M, Choi DJ, Bocquet ML, Pascual JI, Lorente N, Limot L. Vibron-assisted spin excitation in a magnetically anisotropic molecule. Nat Commun 2020; 11:1619. [PMID: 32238814 PMCID: PMC7113279 DOI: 10.1038/s41467-020-15266-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 02/21/2020] [Indexed: 11/09/2022] Open
Abstract
The electrical control and readout of molecular spin states are key for high-density storage. Expectations are that electrically-driven spin and vibrational excitations in a molecule should give rise to new conductance features in the presence of magnetic anisotropy, offering alternative routes to study and, ultimately, manipulate molecular magnetism. Here, we use inelastic electron tunneling spectroscopy to promote and detect the excited spin states of a prototypical molecule with magnetic anisotropy. We demonstrate the existence of a vibron-assisted spin excitation that can exceed in energy and in amplitude a simple excitation among spin states. This excitation, which can be quenched by structural changes in the magnetic molecule, is explained using first-principles calculations that include dynamical electronic correlations.
Collapse
Affiliation(s)
- N Bachellier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - B Verlhac
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| | - L Garnier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
| | - J Zaldívar
- CIC nanoGUNE, 20018, Donostia-San Sebastián, Spain
| | | | - P Abufager
- Instituto de Física de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Av. Pellegrini 250 (2000), Rosario, Argentina
| | - M Ormaza
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France
- Universidad del País Vasco, Dpto. Física Aplicada I, 20018, Donostia-San Sebastián, Spain
| | - D-J Choi
- Centro de Física de Materiales (CFM MPC) CSIC-EHU, 20018, Donostia-San San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - M-L Bocquet
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Universités, CNRS, 24 Rue Lhomond, 75005, Paris, France
| | - J I Pascual
- CIC nanoGUNE, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - N Lorente
- Centro de Física de Materiales (CFM MPC) CSIC-EHU, 20018, Donostia-San San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Spain
| | - L Limot
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000, Strasbourg, France.
| |
Collapse
|
28
|
Ketkov S. Substituent effects on the electronic structures of sandwich compounds: new understandings provided by DFT-assisted laser ionization spectroscopy of bisarene complexes. Dalton Trans 2020; 49:569-577. [PMID: 31903470 DOI: 10.1039/c9dt04440j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Recent advances on substituent effects in transition metal bisarene complexes studied with high-resolution threshold ionization spectroscopy are reviewed to demonstrate new aspects of the ligand influence on electronic structures of sandwich molecules. Unprecedented accuracy in the determination of ionization energies provided by the laser techniques makes it possible to reveal and describe quantitatively such fine phenomena as isotope effects, the mutual substituent influence or variations of substituent effects on replacing the central metal atom with its Group analogues. In combination with DFT calculations, laser ionization spectroscopy unveils mechanisms of the ligand influence on unique redox properties of sandwich complexes which are of key importance for their practical use.
Collapse
Affiliation(s)
- Sergey Ketkov
- G.A. Razuvaev Institute of Organometallic Chemistry RAS, Tropinin St. 49, GSP-445, Nizhny Novgorod 603950, Russian Federation.
| |
Collapse
|
29
|
Soe WH, Manzano C, Robles R, Lorente N, Joachim C. On-Surface Atom-by-Atom-Assembled Aluminum Binuclear Tetrabenzophenazine Organometallic Magnetic Complex. NANO LETTERS 2020; 20:384-388. [PMID: 31846337 DOI: 10.1021/acs.nanolett.9b04040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The Kondo effect results from the interactions of the conduction electrons in a metal bulk with localized magnetic impurities. While adsorbed atop a metallic surface, the on-surface nanoscale version of this effect is observed when a single magnetic atom or a single magnetic molecule (SMM) is interacting with the conduction electrons. SMMs are commonly organometallic complexes incorporating transition-metal atoms in different oxidation states. We demonstrate how a single nonmagnetic neutral tetrabenzo[a,c,j,h]phenazine molecule can be on-surface-coordinated with exactly two aluminum metal atoms (between Al(I) and Al(II) oxidation state on the Au(111) surface) by low-temperature scanning tunneling microscope (LT-STM) single-atom manipulation. It results in a Kondo measurable localized molecular magnetic moment. This opens a new way to design SMM complexes without the need for heavy transition-metal atoms and complex ligands to stabilize the molecular coordination sphere.
Collapse
Affiliation(s)
- We-Hyo Soe
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES) , Centre National de la Recherche Scientifique (CNRS), Université de Toulouse , 29 Rue J. Marvig, BP 4347 , 31055 Toulouse , Cedex , France
| | - Carlos Manzano
- Institute of Material Research and Engineering (IMRE) , Agency for Science, Technology and Engineering (A*STAR), 3 Research Link , Singapore 117602 , Singapore
| | - Roberto Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) , Paseo Manuel de Lardizabal 5 , 20018 Donostia-San Sebastián , Spain
| | - Nicolas Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU) , Paseo Manuel de Lardizabal 5 , 20018 Donostia-San Sebastián , Spain
| | - Christian Joachim
- Centre d'Elaboration de Matériaux et d'Études Structurales (CEMES) , Centre National de la Recherche Scientifique (CNRS), Université de Toulouse , 29 Rue J. Marvig, BP 4347 , 31055 Toulouse , Cedex , France
| |
Collapse
|
30
|
Robert J, Parizel N, Turek P, Boudalis AK. Polyanisotropic Magnetoelectric Coupling in an Electrically Controlled Molecular Spin Qubit. J Am Chem Soc 2019; 141:19765-19775. [DOI: 10.1021/jacs.9b09101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jérôme Robert
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin, LJP, F-75005 Paris, France
| | - Nathalie Parizel
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| | - Philippe Turek
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| | - Athanassios K. Boudalis
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| |
Collapse
|
31
|
Verlhac B, Bachellier N, Garnier L, Ormaza M, Abufager P, Robles R, Bocquet ML, Ternes M, Lorente N, Limot L. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science 2019; 366:623-627. [DOI: 10.1126/science.aax8222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/08/2019] [Indexed: 11/03/2022]
Affiliation(s)
- B. Verlhac
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - N. Bachellier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - L. Garnier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - M. Ormaza
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - P. Abufager
- Instituto de Física de Rosario, CONICET and Universidad Nacional de Rosario, Av. Pellegrini 250 (2000) Rosario, Argentina
| | - R. Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - M.-L. Bocquet
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
| | - M. Ternes
- Institute of Physics II B, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - N. Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - L. Limot
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| |
Collapse
|
32
|
Czap G, Wagner PJ, Li J, Xue F, Yao J, Wu R, Ho W. Detection of Spin-Vibration States in Single Magnetic Molecules. PHYSICAL REVIEW LETTERS 2019; 123:106803. [PMID: 31573305 DOI: 10.1103/physrevlett.123.106803] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 06/10/2023]
Abstract
The spin states of magnetic molecules have advantageous attributes as carriers of quantum information. However, spin-vibration coupling in molecules causes a decay of excited spin states and a loss of spin coherence. Here, we detect excitations of spin-vibration states in single nickelocene molecules on Ag(110) with a scanning tunneling microscope. By transferring a nickelocene to the tip, the joint spin-vibration states with an adsorbed nickelocene were measured. Chemical variations in magnetic molecules offer the opportunity to tune spin-vibration coupling for controlling the spin coherence.
Collapse
Affiliation(s)
- Gregory Czap
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - Peter J Wagner
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - Jie Li
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - Feng Xue
- State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai, China 200433
| | - Jiang Yao
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
| | - R Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
- State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences, Fudan University, Shanghai, China 200433
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, USA
- Department of Chemistry, University of California, Irvine, California 92697-2025, USA
| |
Collapse
|
33
|
Paschke F, Erler P, Enenkel V, Gragnaniello L, Fonin M. Bulk-Like Magnetic Signature of Individual Fe 4H Molecular Magnets on Graphene. ACS NANO 2019; 13:780-785. [PMID: 30604971 DOI: 10.1021/acsnano.8b08184] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Single-molecule magnets (SMMs) incorporate key properties that make them promising candidates for the emerging field of spintronics. The challenge to realize ordered SMM arrangements on surfaces and at the same time to preserve the magnetic properties upon interaction with the environment is a crucial point on the way to applications. Here we employ inelastic electron tunneling spectroscopy (IETS) to address the magnetic properties in single Fe4 complexes that are adsorbed in a highly ordered arrangement on graphene/Ir(111). We are able to substantially reduce the influence of both the tunneling tip and the adsorption environment on the Fe4 complex during the measurements by using appropriate tunneling parameters in combination with the flat-lying Fe4H derivative and a weakly interacting surface. This allows us to perform noninvasive IETS studies on these bulky molecules. From the measurements we identify intermultiplet spin transitions and determine the intramolecular magnetic exchange interaction constant on a large number of molecules. Although a considerable scattering of the exchange constant values is observed, the distribution maximum is located at a value that coincides with that of the bulk. Our findings confirm a retained molecular magnetism of the Fe4H complex at the local scale and evaluate the influence of the environment on the magnetic exchange interaction.
Collapse
Affiliation(s)
- Fabian Paschke
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
| | - Philipp Erler
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
| | - Vivien Enenkel
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
| | - Luca Gragnaniello
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
| | - Mikhail Fonin
- Department of Physics , University of Konstanz , 78457 Konstanz , Germany
| |
Collapse
|
34
|
Zhang Y. Electric-field control of spin orientation of manganocene: An insight into molecule-substrate interactions. J Chem Phys 2019; 150:014701. [PMID: 30621402 DOI: 10.1063/1.5064687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The manipulation of spin orientations in molecular nanomagnets assembled on surfaces is essential for the development of memory devices. These properties are dominated by interactions with the substrate. Here, we show that individual manganocene molecules deposited on Cu(111) exhibit different easy magnetization directions in an applied electric-field due to different contact geometries. Using Hubbard-U corrected density-functional theory to describe strong correlation effects and a non-self-consistent diagonalization method to treat spin-orbit coupling, we demonstrate that the field-induced spin reorientation transition occurs in the standing-up molecule in both high-spin (HS) and low-spin states, while the transition only occurs in the HS state for the flat-lying molecule. We propose plausible mechanisms in terms of charge polarization at the interface as well as modifications of the electronic states near the Fermi level E F. We show that the molecule largely preserves its arrangement of 3d orbitals in the standing configuration due to the "insulating layer" (bridging ligand), whereas direct contact of the Mn ion with the substrate in the lying configuration induces an orbital degeneracy around E F, thus preventing the electrical modulation of magnetic anisotropies.
Collapse
Affiliation(s)
- Yachao Zhang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
35
|
Affiliation(s)
- Laurent Limot
- Université de Strasbourg, CNRS, IPCMS, Strasbourg, France.
| |
Collapse
|
36
|
Kügel J, Hsu PJ, Böhme M, Schneider K, Senkpiel J, Serrate D, Bode M, Lorente N. Jahn-Teller Splitting in Single Adsorbed Molecules Revealed by Isospin-Flip Excitations. PHYSICAL REVIEW LETTERS 2018; 121:226402. [PMID: 30547609 DOI: 10.1103/physrevlett.121.226402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/11/2018] [Indexed: 06/09/2023]
Abstract
Scanning tunneling spectroscopy measurements of Mn phthalocyanine (MnPc) molecules adsorbed on (sqrt[3]×sqrt[3]) surface alloys show single inelastic steps at exclusively positive or negative bias strongly depending on the tip position. This is in contrast to conventional molecular excitation thresholds, which are independent of the current direction and therefore always occur at both positive and negative bias. This polarity selectivity is found to coincide with the spatial distribution of occupied and empty orbitals. Because of the interaction with the substrate, charge transfer into the doubly degenerate d_{π} orbitals of MnPc takes place. The resulting Jahn-Teller effect lifts the degeneracy and leads to an isospin- or pseudospin-flip excitation, the inelastic analogue of an orbital Kondo resonance.
Collapse
Affiliation(s)
- Jens Kügel
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pin-Jui Hsu
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Böhme
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Schneider
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jacob Senkpiel
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - David Serrate
- Instituto de Nanociencia de Aragón, Laboratorio de Microscopias Avanzadas, University of Zaragoza, E-50018 Zaragoza, Spain
- Departamento Física Materia Condensada, University of Zaragoza, E-50018 Zaragoza, Spain
| | - Matthias Bode
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
37
|
Rolf D, Lotze C, Czekelius C, Heinrich BW, Franke KJ. Visualizing Intramolecular Distortions as the Origin of Transverse Magnetic Anisotropy. J Phys Chem Lett 2018; 9:6563-6567. [PMID: 30384611 DOI: 10.1021/acs.jpclett.8b03036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The magnetic properties of metal-organic complexes are strongly influenced by conformational changes in the ligand. The flexibility of Fe-tetra-pyridyl-porphyrin molecules leads to different adsorption configurations on a Au(111) surface. By combining low-temperature scanning tunneling spectroscopy and atomic force microscopy, we resolve a correlation of the molecular configuration with different spin states and magnitudes of magnetic anisotropy. When the macrocycle exhibits a laterally undistorted saddle shape, the molecules lie in a S = 1 state with axial anisotropy arising from a square-planar ligand field. If the symmetry in the molecular ligand field is reduced by a lateral distortion of the molecule, we find a finite contribution of transverse anisotropy. Some of the distorted molecules lie in a S = 2 state, again exhibiting substantial transverse anisotropy.
Collapse
Affiliation(s)
- Daniela Rolf
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| | - Christian Lotze
- Fachbereich Physik , Freie Universität Berlin , 14195 Berlin , Germany
| | - Constantin Czekelius
- Institut für Organische Chemie und Makromolekulare Chemie , Heinrich-Heine-Universität Düsseldorf , 40225 Düsseldorf , Germany
| | | | | |
Collapse
|
38
|
Gruber M, Weismann A, Berndt R. The Kondo resonance line shape in scanning tunnelling spectroscopy: instrumental aspects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:424001. [PMID: 30191885 DOI: 10.1088/1361-648x/aadfa3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the scanning tunnelling microscope, the many-body Kondo effect leads to a zero-bias feature of the differential conductance spectra of magnetic adsorbates on surfaces. The intrinsic line shape of this Kondo resonance and its temperature dependence in principle contain valuable information. We use measurements on a molecular Kondo system, all- trans retinoic acid on Au(1 1 1), and model calculations to discuss the role of instrumental broadening. The modulation voltage used for the lock-in detection, noise on the sample voltage, and the temperature of the microscope tip are considered. These sources of broadening affect the apparent line shapes and render difficult a determination of the intrinsic line width, in particular when variable temperatures are involved.
Collapse
Affiliation(s)
- Manuel Gruber
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany
| | | | | |
Collapse
|
39
|
Heinrich BW, Ehlert C, Hatter N, Braun L, Lotze C, Saalfrank P, Franke KJ. Control of Oxidation and Spin State in a Single-Molecule Junction. ACS NANO 2018; 12:3172-3177. [PMID: 29489330 DOI: 10.1021/acsnano.8b00312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The oxidation and spin state of a metal-organic molecule determine its chemical reactivity and magnetic properties. Here, we demonstrate the reversible control of the oxidation and spin state in a single Fe porphyrin molecule in the force field of the tip of a scanning tunneling microscope. Within the regimes of half-integer and integer spin state, we can further track the evolution of the magnetocrystalline anisotropy. Our experimental results are corroborated by density functional theory and wave function theory. This combined analysis allows us to draw a complete picture of the molecular states over a large range of intramolecular deformations.
Collapse
Affiliation(s)
- Benjamin W Heinrich
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christopher Ehlert
- Institute of Chemistry , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
- Department of Chemistry , Wilfrid Laurier University , 75 University Avenue West , Waterloo , Ontario N2L3C5 , Canada
| | - Nino Hatter
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Lukas Braun
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Christian Lotze
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Peter Saalfrank
- Institute of Chemistry , Universität Potsdam , Karl-Liebknecht-Strasse 24-25 , 14476 Potsdam , Germany
| | - Katharina J Franke
- Fachbereich Physik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|