1
|
Hing B, Mitchell SB, Filali Y, Eberle M, Hultman I, Matkovich M, Kasturirangan M, Johnson M, Wyche W, Jimenez A, Velamuri R, Ghumman M, Wickramasinghe H, Christian O, Srivastava S, Hultman R. Transcriptomic Evaluation of a Stress Vulnerability Network Using Single-Cell RNA Sequencing in Mouse Prefrontal Cortex. Biol Psychiatry 2024; 96:886-899. [PMID: 38866174 PMCID: PMC11524784 DOI: 10.1016/j.biopsych.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Increased vulnerability to stress is a major risk factor for several mood disorders, including major depressive disorder. Although cellular and molecular mechanisms associated with depressive behaviors following stress have been identified, little is known about the mechanisms that confer the vulnerability that predisposes individuals to future damage from chronic stress. METHODS We used multisite in vivo neurophysiology in freely behaving male and female C57BL/6 mice (n = 12) to measure electrical brain network activity previously identified as indicating a latent stress vulnerability brain state. We combined this neurophysiological approach with single-cell RNA sequencing of the prefrontal cortex to identify distinct transcriptomic differences between groups of mice with inherent high and low stress vulnerability. RESULTS We identified hundreds of differentially expressed genes (padjusted < .05) across 5 major cell types in animals with high and low stress vulnerability brain network activity. This unique analysis revealed that GABAergic (gamma-aminobutyric acidergic) neuron gene expression contributed most to the network activity of the stress vulnerability brain state. Upregulation of mitochondrial and metabolic pathways also distinguished high and low vulnerability brain states, especially in inhibitory neurons. Importantly, genes that were differentially regulated with vulnerability network activity significantly overlapped (above chance) with those identified by genome-wide association studies as having single nucleotide polymorphisms significantly associated with depression as well as genes more highly expressed in postmortem prefrontal cortex of patients with major depressive disorder. CONCLUSIONS This is the first study to identify cell types and genes involved in a latent stress vulnerability state in the brain.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sara B Mitchell
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Yassine Filali
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Maureen Eberle
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Ian Hultman
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Molly Matkovich
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | | | - Micah Johnson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Whitney Wyche
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Alli Jimenez
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Radha Velamuri
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Mahnoor Ghumman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Himali Wickramasinghe
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Olivia Christian
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa
| | - Sanvesh Srivastava
- Department of Statistics and Actuarial Science, University of Iowa, Iowa City, Iowa
| | - Rainbo Hultman
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; Department of Psychiatry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
2
|
Lang A, Gadd S, Gunderman L, Lippner E, Devonshire A, Schipma MJ, Berdnikovs S, Kumar R. Whole Blood Transcriptomics Identifies Differences in Innate Immune Pathway Expression in Infants at Risk for Peanut Allergy. Clin Exp Allergy 2024. [PMID: 39415357 DOI: 10.1111/cea.14587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Affiliation(s)
- Abigail Lang
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Samantha Gadd
- Quantitative Science Pillar, Stanley Manne Children's Research Institute, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Lauren Gunderman
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Division of Immunology, Seattle Children's Hospital, Seattle, Washington, USA
| | - Elizabeth Lippner
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashley Devonshire
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Matthew J Schipma
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sergejs Berdnikovs
- Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajesh Kumar
- Division of Allergy and Immunology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
3
|
Zhong H, Wang F, Tang C, Li J, Cheng JH. Combination of Structural Analysis and Proteomics Strategy Revealed the Mechanism of Ultrasound-Assisted Cold Plasma Regulating Shrimp Allergy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39356241 DOI: 10.1021/acs.jafc.4c06388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Allergic incidents of crustacean aquatic products occur frequently, and tropomyosin (TM) is the main allergen. Therefore, it is worthwhile to develop technologies to efficiently reduce the allergenicity of TM. In this study, ultrasound-assisted cold plasma (UCP) treatment was used to regulate shrimp allergy. The remarkable changes in TM structure were substantiated by alteration in secondary structure, reduction in sulfhydryl content, change in surface hydrophobicity, and disparity in surface morphology. The IgE and IgG binding ability of TM significantly decreased by 52.40% and 46.51% due to UCP treatment. In the Balb/c mouse model, mice in the UCP group showed most prominent mitigation of allergic symptoms, proved by lower allergy score, changes in levels of TM-specific antibodies, and restoration of Th1/Th2 cytokine imbalance. Using a proteomics approach, 439 differentially expressed proteins (DEPs) in the TM group (vs phosphate-buffered saline group) and 170 DEPs in the UCP group (vs TM group) were determined. Subsequent analysis demonstrated that Col6a5, Col6a6, and Epx were potential biomarkers of TM allergy. Moreover, Col6a5, Col6a6, Dcn, and Kng1 might be the target proteins of UCP treatment, while PI3K/Akt/mTOR might be the regulated signaling pathway. These findings proved that UCP treatment has great potential in reducing TM allergenicity and provide new insights into the development of hypoallergenic shrimp products.
Collapse
Affiliation(s)
- Hangyu Zhong
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Fengqi Wang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Caidie Tang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jilin Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jun-Hu Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Academy of Contemporary Food Engineering, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering and Technological Research Centre of Guangdong Province on Intelligent Sensing and Process Control of Cold Chain Foods, & Guangdong Province Engineering Laboratory for Intelligent Cold Chain Logistics Equipment for Agricultural Products, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
4
|
Risemberg EL, Smeekens JM, Cruz Cisneros MC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to anaphylaxis severity following oral peanut challenge in CC027 mice. J Allergy Clin Immunol 2024; 154:387-397. [PMID: 38670234 PMCID: PMC11323216 DOI: 10.1016/j.jaci.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized Collaborative Cross strain CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, in contrast to C3H/HeJ (C3H) mice. OBJECTIVE This study aimed to determine the genetic basis of orally induced anaphylaxis to peanut in CC027 mice. METHODS A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 mice and 5 additional Collaborative Cross strains. RESULTS Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis and 4% having severe anaphylaxis. There were 8 genetic loci associated with variation in response to peanut challenge-6 associated with anaphylaxis (temperature decrease) and 2 associated with peanut-specific IgE levels. There were 2 major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis gene. Consistent with described functions of Themis, we found that CC027 mice have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. CONCLUSIONS Our results demonstrate a key role for Themis in the orally reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L Risemberg
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Johanna M Smeekens
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Marta C Cruz Cisneros
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Pablo Hock
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Colton L Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Darla R Miller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kelly Orgel
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ginger D Shaw
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - A Wesley Burks
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - William Valdar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Michael D Kulis
- Division of Allergy and Immunology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC.
| |
Collapse
|
5
|
Liu L, Liao B, Fan R, Liu Y, Li A, Liu L, Li Y, Li J. TRIP13 Plays an Important Role in the Sensitivity of Leukemia Cell Response to Sulforaphane Therapy. ACS OMEGA 2024; 9:26628-26640. [PMID: 38911763 PMCID: PMC11191565 DOI: 10.1021/acsomega.4c03450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/25/2024]
Abstract
Sulforaphane is one of the most characterized isothiocyanate compounds in cruciferous vegetables and shows anticancer effects, especially antileukemia properties. However, the molecular mechanism of the growth inhibition effect of sulforaphane in acute myeloid leukemia (AML) has not been fully explored. In the present study, a proteomic analysis was performed on the AML cell line U937 responding to sulforaphane treatment to identify novel and efficient therapeutic targets of sulforaphane on AML cells. Key driver analysis was run on the leukemia network, and TRIP13 was identified as a key regulatory factor in sulforaphane-induced growth inhibition in U937 cells. Pretreatment with DCZ0415, an inhibitor of TRIP13, could significantly attenuate sulforaphane-induced cell apoptosis and cell cycle arrest in vitro through the PI3K/Akt/mTOR signaling pathway. In addition, the inhibitory effect of sulforaphane on the tumor volume could also be obviously attenuated by the pretreatment of DCZ0415 in vivo. These results indicate that TRIP13 plays an important role in the sensitivity of leukemia cell response to sulforaphane treatment, and these findings expand the understanding of the mechanism of the antileukemic effect of sulforaphane and provide a new target for the treatment of AML.
Collapse
Affiliation(s)
- Lei Liu
- Medical
Research Center, The Third People’s Hospital of Chengdu (Affiliated
Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Baixue Liao
- College
of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Ruiling Fan
- School
of Pharmacy, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yanxia Liu
- College
of Pharmacy, Third Military Medical University
(Army Medical University), Chongqing 400038, China
| | - Aoshuang Li
- College
of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Lüye Liu
- Medical
Research Center, The Third People’s Hospital of Chengdu (Affiliated
Hospital of Southwest Jiaotong University), College of Medicine, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Yan Li
- Department
of General Surgery, The 77th Army Hospital, Leshan 614000, Sichuan, China
| | - Jing Li
- Department
of Pharmacological Research Lab, The Beibei
Affiliated Hospital of Chongqing Medical University, The Ninth People’s
Hospital of Chongqing, Chongqing 400799, China
| |
Collapse
|
6
|
Zhang L, Chun Y, Arditi Z, Grishina G, Lo T, Wisotzkey K, Agashe C, Grishin A, Wang J, Sampson HA, Sicherer S, Berin MC, Bunyavanich S. Joint transcriptomic and cytometric study of children with peanut allergy reveals molecular and cellular cross talk in reaction thresholds. J Allergy Clin Immunol 2024; 153:1721-1728. [PMID: 38272374 PMCID: PMC11162334 DOI: 10.1016/j.jaci.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/22/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Reaction thresholds in peanut allergy are highly variable. Elucidating causal relationships between molecular and cellular processes associated with variable thresholds could point to therapeutic pathways for raising thresholds. OBJECTIVE The aim of this study was to characterize molecular and cellular systemic processes associated with reaction threshold in peanut allergy and causal relationships between them. METHODS A total of 105 children aged 4 to 14 years with suspected peanut allergy underwent double-blind, placebo-controlled food challenge to peanut. The cumulative peanut protein quantity eliciting allergic symptoms was considered the reaction threshold for each child. Peripheral blood samples collected at 0, 2, and 4 hours after challenge start were used for RNA sequencing, whole blood staining, and cytometry. Statistical and network analyses were performed to identify associations and causal mediation between the molecular and cellular profiles and peanut reaction threshold. RESULTS Within the cohort (N = 105), 81 children (77%) experienced allergic reactions after ingesting varying quantities of peanut, ranging from 43 to 9043 mg of cumulative peanut protein. Peripheral blood expression of transcripts (eg, IGF1R [false discovery rate (FDR) = 5.4e-5] and PADI4 [FDR = 5.4e-5]) and neutrophil abundance (FDR = 9.5e-4) were associated with peanut threshold. Coexpression network analyses revealed that the threshold-associated transcripts were enriched in modules for FcγR-mediated phagocytosis (FDR = 3.2e-3) and Toll-like receptor (FDR = 1.4e-3) signaling. Bayesian network, key driver, and causal mediation analyses identified key drivers (AP5B1, KLHL21, VASP, TPD52L2, and IGF2R) within these modules that are involved in bidirectional causal mediation relationships with neutrophil abundance. CONCLUSION Key driver transcripts in FcγR-mediated phagocytosis and Toll-like receptor signaling interact bidirectionally with neutrophils in peripheral blood and are associated with reaction threshold in peanut allergy.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Tracy Lo
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kayla Wisotzkey
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Charuta Agashe
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Julie Wang
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hugh A Sampson
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott Sicherer
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Medicine, Northwestern Feinberg School of Medicine, Chicago, Ill
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
7
|
Bunyavanich S, Becker PM, Altman MC, Lasky-Su J, Ober C, Zengler K, Berdyshev E, Bonneau R, Chatila T, Chatterjee N, Chung KF, Cutcliffe C, Davidson W, Dong G, Fang G, Fulkerson P, Himes BE, Liang L, Mathias RA, Ogino S, Petrosino J, Price ND, Schadt E, Schofield J, Seibold MA, Steen H, Wheatley L, Zhang H, Togias A, Hasegawa K. Analytical challenges in omics research on asthma and allergy: A National Institute of Allergy and Infectious Diseases workshop. J Allergy Clin Immunol 2024; 153:954-968. [PMID: 38295882 PMCID: PMC10999353 DOI: 10.1016/j.jaci.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
Studies of asthma and allergy are generating increasing volumes of omics data for analysis and interpretation. The National Institute of Allergy and Infectious Diseases (NIAID) assembled a workshop comprising investigators studying asthma and allergic diseases using omics approaches, omics investigators from outside the field, and NIAID medical and scientific officers to discuss the following areas in asthma and allergy research: genomics, epigenomics, transcriptomics, microbiomics, metabolomics, proteomics, lipidomics, integrative omics, systems biology, and causal inference. Current states of the art, present challenges, novel and emerging strategies, and priorities for progress were presented and discussed for each area. This workshop report summarizes the major points and conclusions from this NIAID workshop. As a group, the investigators underscored the imperatives for rigorous analytic frameworks, integration of different omics data types, cross-disciplinary interaction, strategies for overcoming current limitations, and the overarching goal to improve scientific understanding and care of asthma and allergic diseases.
Collapse
Affiliation(s)
| | - Patrice M Becker
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Jessica Lasky-Su
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | | | - Talal Chatila
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | | | | | | | - Wendy Davidson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Dong
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Gang Fang
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Patricia Fulkerson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | | | - Liming Liang
- Harvard T. H. Chan School of Public Health, Boston, Mass
| | | | - Shuji Ogino
- Brigham & Women's Hospital and Harvard Medical School, Boston, Mass; Harvard T. H. Chan School of Public Health, Boston, Mass; Broad Institute of MIT and Harvard, Boston, Mass
| | | | | | - Eric Schadt
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Max A Seibold
- National Jewish Health, Denver, Colo; University of Colorado School of Medicine, Aurora, Colo
| | - Hanno Steen
- Boston Children's Hospital and Harvard Medical School, Boston, Mass
| | - Lisa Wheatley
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Hongmei Zhang
- School of Public Health, University of Memphis, Memphis, Tenn
| | - Alkis Togias
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Md
| | - Kohei Hasegawa
- Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| |
Collapse
|
8
|
Bai D, Ziadlou R, Vaijayanthi T, Karthikeyan S, Chinnathambi S, Parthasarathy A, Cai L, Brüggen MC, Sugiyama H, Pandian GN. Nucleic acid-based small molecules as targeted transcription therapeutics for immunoregulation. Allergy 2024; 79:843-860. [PMID: 38055191 DOI: 10.1111/all.15959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Transcription therapy is an emerging approach that centers on identifying the factors associated with the malfunctioning gene transcription machinery that causes diseases and controlling them with designer agents. Until now, the primary research focus in therapeutic gene modulation has been on small-molecule drugs that target epigenetic enzymes and critical signaling pathways. However, nucleic acid-based small molecules have gained popularity in recent years for their amenability to be pre-designed and realize operative control over the dynamic transcription machinery that governs how the immune system responds to diseases. Pyrrole-imidazole polyamides (PIPs) are well-established DNA-based small-molecule gene regulators that overcome the limitations of their conventional counterparts owing to their sequence-targeted specificity, versatile regulatory efficiency, and biocompatibility. Here, we emphasize the rational design of PIPs, their functional mechanisms, and their potential as targeted transcription therapeutics for disease treatment by regulating the immune response. Furthermore, we also discuss the challenges and foresight of this approach in personalized immunotherapy in precision medicine.
Collapse
Affiliation(s)
- Dan Bai
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Xi'an Key Laboratory of Special Medicine and Health Engineering, Xi'an, China
| | - Reihane Ziadlou
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Thangavel Vaijayanthi
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Subramani Karthikeyan
- Centre for Healthcare Advancement, Innovation and Research, Vellore Institute of Technology, Chennai, Tamil Nadu, India
| | | | | | - Li Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Marie-Charlotte Brüggen
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Hiroshi Sugiyama
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Ganesh N Pandian
- Chief Executive Officer, Regugene Co. Ltd., Kyoto, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Kleuskens MTA, Haasnoot ML, Garssen J, Bredenoord AJ, van Esch BCAM, Redegeld FA. Transcriptomic profiling of the acute mucosal response to local food injections in adults with eosinophilic esophagitis. J Allergy Clin Immunol 2024; 153:780-792. [PMID: 37972740 DOI: 10.1016/j.jaci.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Exposure of the esophageal mucosa to food allergens can cause acute mucosal responses in patients with eosinophilic esophagitis (EoE), but the underlying local immune mechanisms driving these acute responses are not well understood. OBJECTIVE We sought to gain insight into the early transcriptomic changes that occur during an acute mucosal response to food allergens in EoE. METHODS Bulk RNA sequencing was performed on esophageal biopsy specimens from adult patients with EoE (n = 5) collected before and 20 minutes after intramucosal injection of various food extracts in the esophagus. Baseline biopsy specimens from control subjects without EoE (n = 5) were also included. RESULTS At baseline, the transcriptome of the patients with EoE showed increased expression of genes related to an EoE signature. After local food injection, we identified 40 genes with a potential role in the early immune response to food allergens (most notably CEBPB, IL1B, TNFSF18, PHLDA2, and SLC15A3). These 40 genes were enriched in processes related to immune activation, such as the acute-phase response, cellular responses to external stimuli, and cell population proliferation. TNFSF18 (also called GITRL), a member of the TNF superfamily that is best studied for its costimulatory effect on T cells, was the most dysregulated early EoE gene, showing a 12-fold increase compared with baseline and an 18-fold increase compared with a negative visual response. Further experiments showed that the esophageal epithelium may be an important source of TNFSF18 in EoE, which was rapidly induced by costimulating esophageal epithelial cells with the EoE-relevant cytokines IL-13 and TNF-α. CONCLUSIONS Our data provide unprecedented insight into the transcriptomic changes that mediate the acute mucosal immune response to food allergens in EoE and suggest that TNFSF18 may be an important effector molecule in this response.
Collapse
Affiliation(s)
- Mirelle T A Kleuskens
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Maria L Haasnoot
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Danone Nutricia Research, Utrecht, The Netherlands
| | - Albert J Bredenoord
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Betty C A M van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands; Danone Nutricia Research, Utrecht, The Netherlands.
| | - Frank A Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Ashley SE, Bosco A, Tang MLK. Transcriptomic changes associated with oral immunotherapy for food allergy. Pediatr Allergy Immunol 2024; 35:e14106. [PMID: 38520061 DOI: 10.1111/pai.14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024]
Abstract
This review summarizes recent advances in characterizing the transcriptional pathways associated with outcomes following Oral Immunotherapy. Recent technological advances including single-cell sequencing are transforming the ways in which the transcriptional landscape is understood. The application of these technologies is still in its infancy in food allergy but here we summarize current understanding of gene expression changes following oral immunotherapy for food allergy and specific signatures underpinning the different clinical outcomes of desensitization and remission (sustained unresponsiveness). T helper 2A cells have been identified as a cell type which correlates with disease activity and is modified by treatment. Molecular features at study entry may differentiate individuals who achieve more positive outcomes during OIT. Recent findings point to T cell anergy and Type 1 interferon pathways as potential mechanisms supporting redirection of the allergen-specific immune response away from allergy towards remission. Despite these developments in our understanding of immune mechanisms following OIT, there are still significant gaps. Additional studies examining immune signatures associated with long term and well-defined clinical outcomes are required to gain a more complete understanding of the pathways leading to remission of allergy, in order to optimize treatments and gain improved outcomes for patients.
Collapse
Affiliation(s)
- Sarah E Ashley
- Allergy Immunology, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anthony Bosco
- Asthma and Airway Disease Research Center, University of Arizona, Tucson, Arizona, USA
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Mimi L K Tang
- Allergy Immunology, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Allergy and Immunology, Royal Children's Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
11
|
Zhang L, Chun Y, Irizar H, Arditi Z, Grishina G, Grishin A, Vicencio A, Bunyavanich S. Integrated study of systemic and local airway transcriptomes in asthma reveals causal mediation of systemic effects by airway key drivers. Genome Med 2023; 15:71. [PMID: 37730635 PMCID: PMC10512627 DOI: 10.1186/s13073-023-01222-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Systemic and local profiles have each been associated with asthma, but parsing causal relationships between system-wide and airway-specific processes can be challenging. We sought to investigate systemic and airway processes in asthma and their causal relationships. METHODS Three hundred forty-one participants with persistent asthma and non-asthmatic controls were recruited and underwent peripheral blood mononuclear cell (PBMC) collection and nasal brushing. Transcriptome-wide RNA sequencing of the PBMC and nasal samples and a series of analyses were then performed using a discovery and independent test set approach at each step to ensure rigor. Analytic steps included differential expression analyses, coexpression and probabilistic causal (Bayesian) network constructions, key driver analyses, and causal mediation models. RESULTS Among the 341 participants, the median age was 13 years (IQR = 10-16), 164 (48%) were female, and 200 (58.7%) had persistent asthma with mean Asthma Control Test (ACT) score 16.6 (SD = 4.2). PBMC genes associated with asthma were enriched in co-expression modules for NK cell-mediated cytotoxicity (fold enrichment = 4.5, FDR = 6.47 × 10-32) and interleukin production (fold enrichment = 2.0, FDR = 1.01 × 10-15). Probabilistic causal network and key driver analyses identified NK cell granule protein (NKG7, fold change = 22.7, FDR = 1.02 × 10-31) and perforin (PRF1, fold change = 14.9, FDR = 1.31 × 10-22) as key drivers predicted to causally regulate PBMC asthma modules. Nasal genes associated with asthma were enriched in the tricarboxylic acid (TCA) cycle module (fold enrichment = 7.5 FDR = 5.09 × 10-107), with network analyses identifying G3BP stress granule assembly factor 1 (G3BP1, fold change = 9.1 FDR = 2.77 × 10-5) and InaD-like protein (INADL, fold change = 5.3 FDR = 2.98 × 10-9) as nasal key drivers. Causal mediation analyses revealed that associations between PBMC key drivers and asthma are causally mediated by nasal key drivers (FDR = 0.0076 to 0.015). CONCLUSIONS Integrated study of the systemic and airway transcriptomes in a well-phenotyped asthma cohort identified causal key drivers of asthma among PBMC and nasal transcripts. Associations between PBMC key drivers and asthma are causally mediated by nasal key drivers.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Yoojin Chun
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Haritz Irizar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Zoe Arditi
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Galina Grishina
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Alfin Vicencio
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Risemberg EL, Smeekens JM, Cisneros MCC, Hampton BK, Hock P, Linnertz CL, Miller DR, Orgel K, Shaw GD, de Villena FPM, Burks AW, Valdar W, Kulis MD, Ferris MT. A mutation in Themis contributes to peanut-induced oral anaphylaxis in CC027 mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557467. [PMID: 37745496 PMCID: PMC10515941 DOI: 10.1101/2023.09.13.557467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background The development of peanut allergy is due to a combination of genetic and environmental factors, although specific genes have proven difficult to identify. Previously, we reported that peanut-sensitized CC027/GeniUnc (CC027) mice develop anaphylaxis upon oral challenge to peanut, unlike C3H/HeJ (C3H) mice. Objective To determine the genetic basis of orally-induced anaphylaxis to peanut in CC027 mice. Methods A genetic mapping population between CC027 and C3H mice was designed to identify the genetic factors that drive oral anaphylaxis. A total of 356 CC027xC3H backcrossed mice were generated, sensitized to peanut, then challenged to peanut by oral gavage. Anaphylaxis and peanut-specific IgE were quantified for all mice. T-cell phenotyping was conducted on CC027 and five additional CC strains. Results Anaphylaxis to peanut was absent in 77% of backcrossed mice, with 19% showing moderate anaphylaxis, and 4% having severe anaphylaxis. A total of eight genetic loci were associated with variation in response to peanut challenge, six associated with anaphylaxis (temperature decrease) and two associated with peanut-specific IgE levels. There were two major loci that impacted multiple aspects of the severity of acute anaphylaxis, at which the CC027 allele was associated with worse outcome. At one of these loci, CC027 has a private genetic variant in the Themis (thymocyte-expressed molecule involved in selection) gene. Consistent with Themis' described functions, we found that CC027 have more immature T cells with fewer CD8+, CD4+, and CD4+CD25+CD127- regulatory T cells. Conclusion Our results demonstrate a key role for Themis in the orally-reactive CC027 mouse model of peanut allergy.
Collapse
Affiliation(s)
- Ellen L. Risemberg
- Curriculum in Bioinformatics and Computational Biology, UNC Chapel Hill
- Department of Genetics, UNC Chapel Hill
| | - Johanna M. Smeekens
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Marta C. Cruz Cisneros
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | - Brea K. Hampton
- Department of Genetics, UNC Chapel Hill
- Curriculum in Genetics and Molecular Biology, UNC Chapel Hill
| | | | | | | | - Kelly Orgel
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - Ginger D. Shaw
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | | | - A. Wesley Burks
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | - William Valdar
- Department of Genetics, UNC Chapel Hill
- Lineberger Comprehensive Cancer Center, UNC Chapel Hill
| | - Michael D. Kulis
- Department of Pediatrics, Division of Allergy and Immunology, UNC Chapel Hill
| | | |
Collapse
|
13
|
Sun S, Li K, Du H, Luo J, Jiang Y, Wang J, Liu M, Liu G, Han S, Che H. Integrating Widely Targeted Lipidomics and Transcriptomics Unravels Aberrant Lipid Metabolism and Identifies Potential Biomarkers of Food Allergies in Rats. Mol Nutr Food Res 2023; 67:e2200365. [PMID: 37057506 DOI: 10.1002/mnfr.202200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 01/17/2023] [Indexed: 04/15/2023]
Abstract
SCOPE Oral food challenges (OFCs) are currently the gold standard for determining the clinical reactivity of food allergy (FA) but are time-consuming, expensive, and risky. To screen novel peripheral biomarkers of FA and characterize the aberrant lipid metabolism in serum, 24 rats are divided into four groups: peanut, milk, and shrimp allergy (PA, MA, and SA, respectively) and control groups, with six rats in each group, and used for widely targeted lipidomics and transcriptomics analysis. METHODS AND RESULTS Widely targeted lipidomics reveal 144, 162, and 206 differentially accumulated lipids in PA, MA, and SA groups, respectively. The study integrates widely targeted lipidomics and transcriptomics and identifies abnormal lipid metabolism correlated with widespread differential accumulation of diverse lipids (including triacylglycerol, diacylglycerol, sphingolipid, and glycerophospholipid) in PA, MA, and SA. Simplified random forest classifier is constructed through five repetitions of 10-fold cross-validation to distinguish allergy from control. A subset of 15 lipids as potential biomarkers allows for more reliable and more accurate prediction of FA. Independent replication validates the reproducibility of potential biomarkers. CONCLUSION The results reveal the major abnormalities in lipid metabolism and suggest the potential role of lipids as novel molecular signatures for FA.
Collapse
Affiliation(s)
- Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kexin Li
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hang Du
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiangzuo Luo
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yuchi Jiang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shiwen Han
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, The 2115 Talent Development Program of China Agricultural University College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
14
|
Peng Z, Chen H, Wang M. Identification of the biological processes, immune cell landscape, and hub genes shared by acute anaphylaxis and ST-segment elevation myocardial infarction. Front Pharmacol 2023; 14:1211332. [PMID: 37469874 PMCID: PMC10353022 DOI: 10.3389/fphar.2023.1211332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Background: Patients with anaphylaxis are at risk for ST-segment elevation myocardial infarction (STEMI). However, the pathological links between anaphylaxis and STEMI remain unclear. Here, we aimed to explore shared biological processes, immune effector cells, and hub genes of anaphylaxis and STEMI. Methods: Gene expression data for anaphylactic (GSE69063) and STEMI (GSE60993) patients with corresponding healthy controls were pooled from the Gene Expression Omnibus database. Differential expression analysis, enrichment analysis, and CIBERSORT were used to reveal transcriptomic signatures and immune infiltration profiles of anaphylaxis and STEMI, respectively. Based on common differentially expressed genes (DEGs), Gene Ontology analysis, cytoHubba algorithms, and correlation analyses were performed to identify biological processes, hub genes, and hub gene-related immune cells shared by anaphylaxis and STEMI. The robustness of hub genes was assessed in external anaphylactic (GSE47655) and STEMI (GSE61144) datasets. Furthermore, a murine model of anaphylaxis complicated STEMI was established to verify hub gene expressions. The logistic regression analysis was used to evaluate the diagnostic efficiency of hub genes. Results: 265 anaphylaxis-related DEGs were identified, which were associated with immune-inflammatory responses. 237 STEMI-related DEGs were screened, which were involved in innate immune response and myeloid leukocyte activation. M0 macrophages and dendritic cells were markedly higher in both anaphylactic and STEMI samples compared with healthy controls, while CD4+ naïve T cells and CD8+ T cells were significantly lower. Enrichment analysis of 33 common DEGs illustrated shared biological processes of anaphylaxis and STEMI, including cytokine-mediated signaling pathway, response to reactive oxygen species, and positive regulation of defense response. Six hub genes were identified, and their expression levels were positively correlated with M0 macrophage abundance and negatively correlated with CD4+ naïve T cell abundance. In external anaphylactic and STEMI samples, five hub genes (IL1R2, FOS, MMP9, DUSP1, CLEC4D) were confirmed to be markedly upregulated. Moreover, experimentally induced anaphylactic mice developed impaired heart function featuring STEMI and significantly increased expression of the five hub genes. DUSP1 and CLEC4D were screened as blood diagnostic biomarkers of anaphylaxis and STEMI based on the logistic regression analysis. Conclusion: Anaphylaxis and STEMI share the biological processes of inflammation and defense responses. Macrophages, dendritic cells, CD8+ T cells, and CD4+ naïve T cells constitute an immune cell population that acts in both anaphylaxis and STEMI. Hub genes (DUSP1 and CLEC4D) identified here provide candidate genes for diagnosis, prognosis, and therapeutic targeting of STEMI in anaphylactic patients.
Collapse
Affiliation(s)
- Zekun Peng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Devonshire A, Gautam Y, Johansson E, Mersha TB. Multi-omics profiling approach in food allergy. World Allergy Organ J 2023; 16:100777. [PMID: 37214173 PMCID: PMC10199264 DOI: 10.1016/j.waojou.2023.100777] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
The prevalence of food allergy (FA) among children is increasing, affecting nearly 8% of children, and FA is the most common cause of anaphylaxis and anaphylaxis-related emergency department visits in children. Importantly, FA is a complex, multi-system, multifactorial disease mediated by food-specific immunoglobulin E (IgE) and type 2 immune responses and involving environmental and genetic factors and gene-environment interactions. Early exposure to external and internal environmental factors largely influences the development of immune responses to allergens. Genetic factors and gene-environment interactions have established roles in the FA pathophysiology. To improve diagnosis and identification of FA therapeutic targets, high-throughput omics approaches have emerged and been applied over the past decades to screen for potential FA biomarkers, such as genes, transcripts, proteins, and metabolites. In this article, we provide an overview of the current status of FA omics studies, namely genomic, transcriptomic, epigenomic, proteomic, exposomic, and metabolomic. The current development of multi-omics integration of FA studies is also briefly discussed. As individual omics technologies only provide limited information on the multi-system biological processes of FA, integration of population-based multi-omics data and clinical data may lead to robust biomarker discovery that could translate into advances in disease management and clinical care and ultimately lead to precision medicine approaches.
Collapse
Affiliation(s)
- Ashley Devonshire
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yadu Gautam
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elisabet Johansson
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tesfaye B. Mersha
- Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
16
|
Sharma A, Rijavec M, Tomar S, Yamani A, Ganesan V, Krempski J, Schuler CF, Bunyavanich S, Korosec P, Hogan SP. Acute systemic myeloid inflammatory and stress response in severe food allergic reactions. Clin Exp Allergy 2023; 53:536-549. [PMID: 36756745 PMCID: PMC11157667 DOI: 10.1111/cea.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/20/2022] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Food allergic reactions can be severe and potentially life-threatening and the underlying immunological processes that contribute to the severity of reactions are poorly understood. The aim of this study is to integrate bulk RNA-sequencing of human and mouse peripheral blood mononuclear cells during food allergic reactions and in vivo mouse models of food allergy to identify dysregulated immunological processes associated with severe food allergic reactions. METHODS Bulk transcriptomics of whole blood from human and mouse following food allergic reactions combined with integrative differential expressed gene bivariate and module eigengene network analyses to identify the whole blood transcriptome associated with food allergy severity. In vivo validation immune cell and gene expression in mice following IgE-mediated reaction. RESULTS Bulk transcriptomics of whole blood from mice with different severity of food allergy identified gene ontology (GO) biological processes associated with innate and inflammatory immune responses, dysregulation of MAPK and NFkB signalling and identified 429 genes that correlated with reaction severity. Utilizing two independent human cohorts, we identified 335 genes that correlated with severity of peanut-induced food allergic reactions. Mapping mouse food allergy severity transcriptome onto the human transcriptome revealed 11 genes significantly dysregulated and correlated with severity. Analyses of whole blood from mice undergoing an IgE-mediated reaction revealed a rapid change in blood leukocytes particularly inflammatory monocytes (Ly6Chi Ly6G- ) and neutrophils that was associated with changes in CLEC4E, CD218A and GPR27 surface expression. CONCLUSIONS Collectively, IgE-mediated food allergy severity is associated with a rapid innate inflammatory response associated with acute cellular stress processes and dysregulation of peripheral blood inflammatory myeloid cell frequencies.
Collapse
Affiliation(s)
- Ankit Sharma
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Sunil Tomar
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - Amnah Yamani
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Varsha Ganesan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - James Krempski
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - Charles F Schuler
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
- Division of Allergy and Immunology, Michigan medicine University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| | - Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Icahn Institute for Data Science and Genome Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Peter Korosec
- University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Simon P. Hogan
- Mary H Weiser Food Allergy Center, Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
- Department of Pathology, Michigan Medicine, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200
| |
Collapse
|
17
|
McGrath FM, Francis A, Fatovich DM, Macdonald SPJ, Arendts G, Woo AJ, Bosio E. Genes involved in platelet aggregation and activation are downregulated during acute anaphylaxis in humans. Clin Transl Immunology 2022; 11:e1435. [PMID: 36583159 PMCID: PMC9791329 DOI: 10.1002/cti2.1435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022] Open
Abstract
Objective Mechanisms underlying the anaphylactic reaction in humans are not fully understood. Here, we aimed at improving our understanding of anaphylaxis by investigating gene expression changes. Methods Microarray data set GSE69063 was analysed, describing emergency department (ED) patients with severe anaphylaxis (n = 12), moderate anaphylaxis (n = 6), sepsis (n = 20) and trauma (n = 11). Samples were taken at ED presentation (T0) and 1 h later (T1). Healthy controls were age and sex matched to ED patient groups. Gene expression changes were determined using limma, and pathway analysis applied. Differentially expressed genes were validated in an independent cohort of anaphylaxis patients (n = 31) and matched healthy controls (n = 10), using quantitative reverse transcription-polymerase chain reaction. Results Platelet aggregation was dysregulated in severe anaphylaxis at T0, but not in moderate anaphylaxis, sepsis or trauma. Dysregulation was not observed in patients who received adrenaline before T0. Seven genes (GATA1 (adjusted P-value = 5.57 × 10-4), TLN1 (adjusted P-value = 9.40 × 10-4), GP1BA (adjusted P-value = 2.15 × 10-2), SELP (adjusted P-value = 2.29 × 10-2), MPL (adjusted P-value = 1.20 × 10-2), F13A1 (adjusted P-value = 1.39 × 10-2) and SPARC (adjusted P-value = 4.06 × 10-2)) were significantly downregulated in severe anaphylaxis patients who did not receive adrenaline before ED arrival, compared with healthy controls. One gene (TLN1 (adjusted P-value = 1.29 × 10-2)) was significantly downregulated in moderate anaphylaxis patients who did not receive adrenaline before ED arrival, compared with healthy controls. Conclusion Downregulation of genes involved in platelet aggregation and activation is a unique feature of the early anaphylactic reaction not previously reported and may be associated with reaction severity.
Collapse
Affiliation(s)
- Francesca M McGrath
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia
| | - Abbie Francis
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Telethon Kids Institute, Centre for Child Health Research, The University of Western AustraliaNedlandsWAAustralia
| | - Daniel M Fatovich
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Discipline of Emergency Medicine, Medical SchoolUniversity of Western AustraliaPerthWAAustralia,Emergency DepartmentRoyal Perth HospitalPerthWAAustralia
| | - Stephen PJ Macdonald
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Discipline of Emergency Medicine, Medical SchoolUniversity of Western AustraliaPerthWAAustralia,Emergency DepartmentRoyal Perth HospitalPerthWAAustralia
| | - Glenn Arendts
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Discipline of Emergency Medicine, Medical SchoolUniversity of Western AustraliaPerthWAAustralia,Emergency DepartmentFiona Stanley HospitalPerthWAAustralia
| | - Andrew J Woo
- Laboratory for Cancer MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,School of Medical and Health SciencesEdith Cowan UniversityPerthWAAustralia
| | - Erika Bosio
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Discipline of Emergency Medicine, Medical SchoolUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
18
|
Rijavec M, Maver A, Turner PJ, Hočevar K, Košnik M, Yamani A, Hogan S, Custovic A, Peterlin B, Korošec P. Integrative transcriptomic analysis in human and mouse model of anaphylaxis identifies gene signatures associated with cell movement, migration and neuroinflammatory signalling. Front Immunol 2022; 13:1016165. [PMID: 36569939 PMCID: PMC9772259 DOI: 10.3389/fimmu.2022.1016165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Background Anaphylaxis is an acute life-threatening allergic reaction and a concern at a global level; therefore, further progress in understanding the underlying mechanisms and more effective strategies for diagnosis, prevention and management are needed. Objective We sought to identify the global architecture of blood transcriptomic features of anaphylaxis by integrating expression data from human patients and mouse model of anaphylaxis. Methods Bulk RNA-sequencings of peripheral whole blood were performed in: i) 14 emergency department (ED) patients with acute anaphylaxis, predominantly to Hymenoptera venom, ii) 11 patients with peanut allergy undergoing double-blind, placebo-controlled food challenge (DBPCFC) to peanut, iii) murine model of IgE-mediated anaphylaxis. Integrative characterisation of differential gene expression, immune cell-type-specific gene expression profiles, and functional and pathway analysis was undertaken. Results 1023 genes were commonly and significantly dysregulated during anaphylaxis in ED and DBPCFC patients; of those genes, 29 were also dysregulated in the mouse model. Cell-type-specific gene expression profiles showed a rapid downregulation of blood basophil and upregulation of neutrophil signature in ED and DBPCFC patients and the mouse model, but no consistent and/or significant differences were found for other blood cells. Functional and pathway analysis demonstrated that human and mouse blood transcriptomic signatures of anaphylaxis follow trajectories of upregulation of cell movement, migration and neuroinflammatory signalling, and downregulation of lipid activating nuclear receptors signalling. Conclusion Our study highlights the matched and extensive blood transcriptomic changes and suggests the involvement of discrete cellular components and upregulation of migration and neuroinflammatory pathways during anaphylaxis.
Collapse
Affiliation(s)
- Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Paul J. Turner
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Keli Hočevar
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Mitja Košnik
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amnah Yamani
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Simon P. Hogan
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- Mary H. Weiser Food Allergy Center (MHWFAC), Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Adnan Custovic
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Borut Peterlin
- Clinical Institute of Medical Genetics, University Medical Centre, Ljubljana, Slovenia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Jung SM, Baek IW, Park KS, Kim KJ. De novo molecular subtyping of salivary gland tissue in the context of Sjögren's syndrome heterogeneity. Clin Immunol 2022; 245:109171. [DOI: 10.1016/j.clim.2022.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/08/2022]
|
20
|
Erxian decoction inhibits apoptosis by activating Akt1 and repairs spinal cord injury in rats. Heliyon 2022; 8:e11279. [DOI: 10.1016/j.heliyon.2022.e11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/26/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
|
21
|
Li T, Wang Y, Dong Q, Wang F, Kong F, Liu G, Lei Y, Yang H, Zhou Y, Li C. Weighted gene co-expression network analysis reveals key module and hub genes associated with the anthocyanin biosynthesis in maize pericarp. FRONTIERS IN PLANT SCIENCE 2022; 13:1013412. [PMID: 36388502 PMCID: PMC9661197 DOI: 10.3389/fpls.2022.1013412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Anthocyanins are the visual pigments that present most of the colors in plants. Its biosynthesis requires the coordinated expression of structural genes and regulatory genes. Pericarps are the rich sources of anthocyanins in maize seeds. In the experiment, the transcriptomes of transparent and anthocyanins-enriched pericarps at 15, 20, and 25 DAP were obtained. The results output 110.007 million raw reads and 51407 genes' expression matrix. Using data filtration in R language, 2057 genes were eventually identified for weighted gene co-expression network analysis. The results showed that 2057 genes were classified into ten modules. The cyan module containing 183 genes was confirmed to be the key module with the highest correlation value of 0.98 to the anthocyanins trait. Among 183 genes, seven structural genes were mapped the flavonoid biosynthesis pathway, and a transcription factor Lc gene was annotated as an anthocyanin regulatory gene. Cluster heatmap and gene network analysis further demonstrated that Naringenin, 2-oxoglutarate 3-dioxygenase (Zm00001d001960), Dihydroflavonol 4-reductase (Zm00001d044122), Leucoanthocyanidin dioxygenase (Zm00001d014914), anthocyanin regulatory Lc gene (Zm00001d026147), and Chalcone synthase C2 (Zm00001d052673) participated in the anthocyanins biosynthesis. And the transcription factor anthocyanin regulatory Lc gene Zm00001d026147 may act on the genes Chalcone synthase C2 (Zm00001d052673) and Dihydroflavonol 4-reductase (Zm00001d044122). The yeast one-hybrid assays confirmed that the Lc protein could combine with the promoter region of C2 and directly regulate the anthocyanin biosynthesis in the pericarp. These results may provide a new sight to uncover the module and hub genes related to anthocyanins biosynthesis in plants.
Collapse
Affiliation(s)
- Tingchun Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yiting Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qing Dong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fang Wang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fanna Kong
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Guihu Liu
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yanli Lei
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Huaying Yang
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yingbing Zhou
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Cheng Li
- Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
22
|
Radzikowska U, Baerenfaller K, Cornejo‐Garcia JA, Karaaslan C, Barletta E, Sarac BE, Zhakparov D, Villaseñor A, Eguiluz‐Gracia I, Mayorga C, Sokolowska M, Barbas C, Barber D, Ollert M, Chivato T, Agache I, Escribese MM. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy 2022; 77:2888-2908. [PMID: 35713644 PMCID: PMC9796060 DOI: 10.1111/all.15412] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force "Omics technologies in allergic research" broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients' stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - José Antonio Cornejo‐Garcia
- Research LaboratoryIBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMAMálagaSpain
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain,Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Ibon Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Cristobalina Mayorga
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain,Andalusian Centre for Nanomedicine and Biotechnology – BIONANDMálagaSpain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of HealthyEsch‐sur‐AlzetteLuxembourg,Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisOdense University Hospital, University of Southern DenmarkOdenseDenmark
| | - Tomas Chivato
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain,Department of Clinic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | | | - Maria M. Escribese
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| |
Collapse
|
23
|
Zhao Y, Niu LT, Hu LJ, Lv M. Comprehensive analysis of ECHDC3 as a potential biomarker and therapeutic target for acute myeloid leukemia: Bioinformatic analysis and experimental verification. Front Oncol 2022; 12:947492. [PMID: 36172164 PMCID: PMC9511173 DOI: 10.3389/fonc.2022.947492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundEnoyl-CoA hydratase domain containing 3 (ECHDC3) increased in CD34+ progenitor cells of acute myeloid leukemia (AML) cells after chemotherapy. However, the prognostic significance and function of ECHDC3 in AML remain to be clarified.MethodsIn the training cohort, 24 AML (non-acute promyelocytic leukemia, APL) patients were enrolled in Peking University People’s Hospital and tested for ECHDC3 in enriched CD34+ cells at diagnosis. In the validation set, 351 bone marrow RNA-seq data of non-APL AML were obtained by two independent online datasets (TCGA-LAML and BEAT-AML). LASSO regression model was conducted to a new prediction model of ECHDC3-related genes. In addition, the ECHDC3 signature was further explored by GO, KEGG, GSEA, and immuno-infiltration analysis. By RNA interference, the function of ECHDC3 in mitochondrial DNA (mt-DNA) transcriptome and chemoresistance was further explored, and the GSE52919 database re-verified the ECHDC3 chemoresistance feature.ResultsBy Kaplan-Meier analysis, patients with ECHDC3high demonstrated inferior overall survival (OS) compared to those with ECHDC3low both in the training (2-year OS, 55.6% vs. 100%, p = 0.011) and validation cohorts (5-year OS, 9.6% vs. 24.3%, p = 0.002). In addition, ECHDC3high predicted inferior OS in the subgroup of patients with ELN 2017 intermediated (int) risk (5-year OS, 9.5% vs. 26.3%, p = 0.039) or FLT3+NPM1− adverse (adv) risk (4-year OS, 6.4% vs. 31.8%, p = 0.003). In multivariate analysis, ECHDC3 was an independent risk factor of inferior OS (HR 1.159, 95% CI 1.013–1.326, p = 0.032). In the prediction model combining ECHDC3 and nine selected genes (RPS6KL1, RELL2, FAM64A, SPATS2L, MEIS3P1, CDCP1, CD276, IL1R2, and OLFML2A) by Lasso regression, patients with high risk showed inferior 5-year OS (9.3% vs. 23.5%, p < 0.001). Bioinformatic analysis suggested that ECHDC3 alters the bone marrow microenvironment by inducing NK, resting mast cell, and monocyte differentiation. Knocking down ECHDC3 in AML cells by RNAi promoted the death of leukemia cells with cytarabine and doxorubicin.ConclusionThese bioinformatic analyses and experimental verification indicated that high ECHDC3 expression might be a poor prognostic biomarker for non-APL AML, which might be a potential target for reverting chemoresistance.
Collapse
Affiliation(s)
| | | | | | - Meng Lv
- *Correspondence: Meng Lv, ; Li-Juan Hu,
| |
Collapse
|
24
|
Wang J, Song R, Lan R, Hao M, Liu G, Liu M, Sun S, Chen C, Che H. Peanut allergen induces more serious allergic reactions than other allergens involving MAPK signaling pathways. Food Funct 2022; 13:8818-8828. [PMID: 35920097 DOI: 10.1039/d2fo00777k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There is no universally accepted uniform research to classify the severity of allergic reactions triggered by different food allergens. We established a food allergy model based on repeated intragastric administrations of proteins from peanut, egg, milk, or soybean mixed with cholera toxin followed by oral food challenges with a high dose of the sensitizing proteins. Increased specific IgE, specific IgG1, allergic symptom scores, histamine, murine mast cell proteases-1, vascular leakage, Th2 cytokines, and mast cell infiltration in the lungs and intestine were found in the allergic groups via enzyme-linked immunosorbent assay, hematoxylin-eosin, and toluidine blue staining. Each sensitized group showed a decrease in body temperature and Th1 cytokines after oral food challenge. The increased levels of Th2 cytokines, IL-25, IL-33, and TSLP, and related asthma genes ARG1, DCN, LTB4R1 and NFKBIA as well as the activation of MAPK signaling pathways were also revealed by quantitative real-time PCR and western blotting. In terms of the severity of food allergies, peanut allergy was the most serious followed by egg and milk, and soybean allergy was the least severe. Compared to other allergic groups, asthma genes were regulated through the MAPK signaling pathways to produce related Th2 cytokines in peanut allergy; consequently, mice in the peanut group exhibited more severe allergic reactions. Comparison of the severity of food allergies is required for the development of milder prevention for severe food allergies.
Collapse
Affiliation(s)
- Junjuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Ruolin Song
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Ruoxi Lan
- Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Mengzhen Hao
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Guirong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Manman Liu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Shanfeng Sun
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Cheng Chen
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China.
| |
Collapse
|
25
|
Klueber J, Czolk R, Codreanu-Morel F, Montamat G, Revets D, Konstantinou M, Cosma A, Hunewald O, Skov PS, Ammerlaan W, Hilger C, Bindslev-Jensen C, Ollert M, Kuehn A. High-dimensional immune profiles correlate with phenotypes of peanut allergy during food-allergic reactions. Allergy 2022; 78:1020-1035. [PMID: 35700055 DOI: 10.1111/all.15408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Food challenges carry a burden of safety, effort and resources. Clinical reactivity and presentation, such as thresholds and symptoms, are considered challenging to predict ex vivo. AIMS To identify changes of peripheral immune signatures during oral food challenges (OFC) that correlate with the clinical outcome in patients with peanut allergy (PA). METHODS Children with a positive (OFC+ , n = 16) or a negative (OFC- , n = 10) OFC-outcome were included (controls, n = 7). Single-cell mass cytometry/unsupervised analysis allowed unbiased immunophenotyping during OFC. RESULTS Peripheral immune profiles correlated with OFC outcome. OFC+ -profiles revealed mainly decreased Th2 cells, memory Treg and activated NK cells, which had an increased homing marker expression signifying immune cell migration into effector tissues along with symptom onset. OFC- -profiles had also signs of ongoing inflammation, but with a signature of a controlled response, lacking homing marker expression and featuring a concomitant increase of Th2-shifted CD4+ T cells and Treg cells. Low versus high threshold reactivity-groups had differential frequencies of intermediate monocytes and myeloid dendritic cells at baseline. Low threshold was associated with increased CD8+ T cells and reduced memory cells (central memory [CM] CD4+ [Th2] T cells, CM CD8+ T cells, Treg). Immune signatures also discriminated patients with preferential skin versus gastrointestinal symptoms, whereby skin signs correlated with increased expression of CCR4, a molecule enabling skin trafficking, on various immune cell types. CONCLUSION We showed that peripheral immune signatures reflected dynamics of clinical outcome during OFC with peanut. Those immune alterations hold promise as a basis for predictive OFC biomarker discovery to monitor disease outcome and therapy of PA.
Collapse
Affiliation(s)
- Julia Klueber
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Françoise Codreanu-Morel
- Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg
| | - Guillem Montamat
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Dominique Revets
- National Cytometry Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Maria Konstantinou
- National Cytometry Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Oliver Hunewald
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Per Stahl Skov
- RefLab ApS, Copenhagen, Denmark.,Institute of Immunology, National University of Copenhagen, Copenhagen, Denmark
| | - Wim Ammerlaan
- Integrated BioBank of Luxembourg, Luxembourg Institute of Health, Dudelange, Luxembourg
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense C, Denmark
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
26
|
Xie Q, Xue W. IgE-Mediated food allergy: Current diagnostic modalities and novel biomarkers with robust potential. Crit Rev Food Sci Nutr 2022; 63:10148-10172. [PMID: 35587740 DOI: 10.1080/10408398.2022.2075312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Food allergy (FA) is a serious public health issue afflicting millions of people globally, with an estimated prevalence ranging from 1-10%. Management of FA is challenging due to overly restrictive diets and the lack of diagnostic approaches with high accuracy and prediction. Although measurement of serum-specific antibodies combined with patient medical history and skin prick test is a useful diagnostic tool, it is still an imprecise predictor of clinical reactivity with a high false-positive rate. The double-blind placebo-controlled food challenge represents the gold standard for FA diagnosis; however, it requires large healthcare and involves the risk of acute onset of allergic reactions. Improvement in our understanding of the molecular mechanism underlying allergic disease pathology, development of omics-based methods, and advances in bioinformatics have boosted the generation of a number of robust diagnostic biomarkers of FA. In this review, we discuss how traditional diagnostic modalities guide appropriate diagnosis and management of FA in clinical practice, as well as uncover the potential of the latest biomarkers for the diagnosis, monitoring, and prediction of FA. We also raise perspectives for precise and targeted medical intervention to fill the gap in the diagnosis of FA.
Collapse
Affiliation(s)
- Qiang Xie
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
27
|
Application of (multi-)omics approaches for advancing food allergy: an updated review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Björkander S, Merid SK, Brodin D, Brandström J, Fagerström-Billai F, van der Heiden M, Konradsen JR, Kabesch M, van Drunen CM, Golebski K, Maitland-van der Zee AH, Potočnik U, Vijverberg SJH, Nopp A, Nilsson C, Melén E. Transcriptome changes during peanut oral immunotherapy and omalizumab treatment. Pediatr Allergy Immunol 2022; 33:e13682. [PMID: 34669990 DOI: 10.1111/pai.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Sophia Björkander
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Simon Kebede Merid
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - David Brodin
- Bioinformatics and Expression Core Facility, Karolinska Institutet, Huddinge, Sweden
| | - Josef Brandström
- Clinical Epidemiology Division, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | | | - Marieke van der Heiden
- Department of Medical Microbiology and Infection Prevention, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Jon R Konradsen
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Kabesch
- Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
| | - Cornelis M van Drunen
- Department of Otorhinolaryngology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Korneliusz Golebski
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Uroš Potočnik
- Faculty of Medicine, Center for Human Molecular Genetics and Pharmacogenomics, University of Maribor, Maribor, Slovenia.,Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
| | - Susanne J H Vijverberg
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Anna Nopp
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden.,Sachs Children and Youth Hospital, Stockholm, Sweden
| | - Caroline Nilsson
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden.,Sachs Children and Youth Hospital, Stockholm, Sweden
| | - Erik Melén
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden.,Sachs Children and Youth Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Devonshire AL, Fan H, Pujato M, Paranjpe A, Gursel D, Schipma M, Dunn JM, Andorf S, Pongracic JA, Kottyan LC, Kumar R. Whole blood transcriptomics identifies gene expression associated with peanut allergy in infants at high risk. Clin Exp Allergy 2021; 51:1396-1400. [PMID: 34473385 PMCID: PMC9290487 DOI: 10.1111/cea.14008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/08/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Ashley L Devonshire
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hanli Fan
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mario Pujato
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aditi Paranjpe
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Demirkan Gursel
- Pathology Core Facility, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Schipma
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia M Dunn
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Sandra Andorf
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jacqueline A Pongracic
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rajesh Kumar
- Division of Allergy and Immunology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
30
|
Jung SM, Park KS, Kim KJ. Deep phenotyping of synovial molecular signatures by integrative systems analysis in rheumatoid arthritis. Rheumatology (Oxford) 2021; 60:3420-3431. [PMID: 33230538 DOI: 10.1093/rheumatology/keaa751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE RA encompasses a complex, heterogeneous and dynamic group of diseases arising from molecular and cellular perturbations of synovial tissues. The aim of this study was to decipher this complexity using an integrative systems approach and provide novel insights for designing stratified treatments. METHODS An RNA sequencing dataset of synovial tissues from 152 RA patients and 28 normal controls was imported and subjected to filtration of differentially expressed genes, functional enrichment and network analysis, non-negative matrix factorization, and key driver analysis. A naïve Bayes classifier was applied to the independent datasets to investigate the factors associated with treatment outcome. RESULTS A matrix of 1241 upregulated differentially expressed genes from RA samples was classified into three subtypes (C1-C3) with distinct molecular and cellular signatures. C3 with prominent immune cells and proinflammatory signatures had a stronger association with the presence of ACPA and showed a better therapeutic response than C1 and C2, which were enriched with neutrophil and fibroblast signatures, respectively. C2 was more occupied by synovial fibroblasts of destructive phenotype and carried highly expressed key effector molecules of invasion and osteoclastogenesis. CXCR2, JAK3, FYN and LYN were identified as key driver genes in C1 and C3. HDAC, JUN, NFKB1, TNF and TP53 were key regulators modulating fibroblast aggressiveness in C2. CONCLUSIONS Deep phenotyping of synovial heterogeneity captured comprehensive and discrete pathophysiological attributes of RA regarding clinical features and treatment response. This result could serve as a template for future studies to design stratified approaches for RA patients.
Collapse
Affiliation(s)
- Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
31
|
Beckmann ND, Comella PH, Cheng E, Lepow L, Beckmann AG, Tyler SR, Mouskas K, Simons NW, Hoffman GE, Francoeur NJ, Del Valle DM, Kang G, Do A, Moya E, Wilkins L, Le Berichel J, Chang C, Marvin R, Calorossi S, Lansky A, Walker L, Yi N, Yu A, Chung J, Hartnett M, Eaton M, Hatem S, Jamal H, Akyatan A, Tabachnikova A, Liharska LE, Cotter L, Fennessy B, Vaid A, Barturen G, Shah H, Wang YC, Sridhar SH, Soto J, Bose S, Madrid K, Ellis E, Merzier E, Vlachos K, Fishman N, Tin M, Smith M, Xie H, Patel M, Nie K, Argueta K, Harris J, Karekar N, Batchelor C, Lacunza J, Yishak M, Tuballes K, Scott I, Kumar A, Jaladanki S, Agashe C, Thompson R, Clark E, Losic B, Peters L, Roussos P, Zhu J, Wang W, Kasarskis A, Glicksberg BS, Nadkarni G, Bogunovic D, Elaiho C, Gangadharan S, Ofori-Amanfo G, Alesso-Carra K, Onel K, Wilson KM, Argmann C, Bunyavanich S, Alarcón-Riquelme ME, Marron TU, Rahman A, Kim-Schulze S, Gnjatic S, Gelb BD, Merad M, Sebra R, Schadt EE, Charney AW. Downregulation of exhausted cytotoxic T cells in gene expression networks of multisystem inflammatory syndrome in children. Nat Commun 2021; 12:4854. [PMID: 34381049 PMCID: PMC8357784 DOI: 10.1038/s41467-021-24981-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/19/2021] [Indexed: 02/07/2023] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) presents with fever, inflammation and pathology of multiple organs in individuals under 21 years of age in the weeks following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although an autoimmune pathogenesis has been proposed, the genes, pathways and cell types causal to this new disease remain unknown. Here we perform RNA sequencing of blood from patients with MIS-C and controls to find disease-associated genes clustered in a co-expression module annotated to CD56dimCD57+ natural killer (NK) cells and exhausted CD8+ T cells. A similar transcriptome signature is replicated in an independent cohort of Kawasaki disease (KD), the related condition after which MIS-C was initially named. Probing a probabilistic causal network previously constructed from over 1,000 blood transcriptomes both validates the structure of this module and reveals nine key regulators, including TBX21, a central coordinator of exhausted CD8+ T cell differentiation. Together, this unbiased, transcriptome-wide survey implicates downregulation of NK cells and cytotoxic T cell exhaustion in the pathogenesis of MIS-C.
Collapse
Affiliation(s)
- Noam D Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
| | - Phillip H Comella
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esther Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Lepow
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aviva G Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Konstantinos Mouskas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicole W Simons
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel E Hoffman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy J Francoeur
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | | | - Gurpawan Kang
- Department of Medicine, Division of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anh Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Emily Moya
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lillian Wilkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christie Chang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Marvin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharlene Calorossi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alona Lansky
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura Walker
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nancy Yi
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alex Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Chung
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Melody Eaton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandra Hatem
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hajra Jamal
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alara Akyatan
- Department of of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Tabachnikova
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lora E Liharska
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Liam Cotter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fennessy
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akhil Vaid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guillermo Barturen
- Department of Medical Genomics, Center for Genomics and Oncological Research Pfizer/University of Granada/Andalusian Regional Government (GENYO), Granada, Spain
| | - Hardik Shah
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ying-Chih Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shwetha Hara Sridhar
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Soto
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Swaroop Bose
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Kent Madrid
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Ethan Ellis
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Elyze Merzier
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Konstantinos Vlachos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Nataly Fishman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Manying Tin
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Melissa Smith
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Hui Xie
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manishkumar Patel
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kai Nie
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kimberly Argueta
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jocelyn Harris
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Neha Karekar
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Craig Batchelor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Lacunza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mahlet Yishak
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kevin Tuballes
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ieisha Scott
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arvind Kumar
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Suraj Jaladanki
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charuta Agashe
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ryan Thompson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
| | - Evan Clark
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bojan Losic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lauren Peters
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panagiotis Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jun Zhu
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenhui Wang
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Benjamin S Glicksberg
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Girish Nadkarni
- Mount Sinai COVID Informatics Center, New York, NY, USA
- Department of Medicine, Mount Sinai, New York, NY, USA
- Hasso Plattner Institute for Digital Health at Mount Sinai, New York, NY, USA
- Charles Bronfman Institute for Personalized Medicine, New York, NY, USA
| | - Dusan Bogunovic
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cordelia Elaiho
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sandeep Gangadharan
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - George Ofori-Amanfo
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kasey Alesso-Carra
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenan Onel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karen M Wilson
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marta E Alarcón-Riquelme
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas U Marron
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Hematology and Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mindich Child Health and Development Institute at Mount Sinai, New York, NY, USA
| | - Miriam Merad
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA
- Black Family Stem Cell Institute, New York, NY, USA
- Sema4, a Mount Sinai Venture, Stamford, CT, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
- Sema4, a Mount Sinai Venture, Stamford, CT, USA.
| | - Alexander W Charney
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute of Data Science and Genomics Technology, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mount Sinai COVID Informatics Center, New York, NY, USA.
| |
Collapse
|
32
|
Zhang Y, Huang Y, Chen WX, Xu ZM. Identification of key genes in allergic rhinitis by bioinformatics analysis. J Int Med Res 2021; 49:3000605211029521. [PMID: 34334005 PMCID: PMC8326637 DOI: 10.1177/03000605211029521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective This study aimed to explore the potential molecular mechanism of allergic rhinitis (AR) and identify gene signatures by analyzing microarray data using bioinformatics methods. Methods The dataset GSE19187 was used to screen differentially expressed genes (DEGs) between samples from patients with AR and healthy controls. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were applied for the DEGs. Subsequently, a protein–protein interaction (PPI) network was constructed to identify hub genes. GSE44037 and GSE43523 datasets were screened to validate critical genes. Results A total of 156 DEGs were identified. GO analysis verified that the DEGs were enriched in antigen processing and presentation, the immune response, and antigen binding. KEGG analysis demonstrated that the DEGs were enriched in Staphylococcus aureus infection, rheumatoid arthritis, and allograft rejection. PPI network and module analysis predicted seven hub genes, of which six (CD44, HLA-DPA1, HLA-DRB1, HLA-DRB5, MUC5B, and CD274) were identified in the validation dataset. Conclusions Our findings suggest that hub genes play important roles in the development of AR.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Yue Huang
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Wen-Xia Chen
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Zheng-Min Xu
- Department of Otolaryngology-Head and Neck Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
33
|
Systems genetics in diversity outbred mice inform BMD GWAS and identify determinants of bone strength. Nat Commun 2021; 12:3408. [PMID: 34099702 PMCID: PMC8184749 DOI: 10.1038/s41467-021-23649-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWASs) for osteoporotic traits have identified over 1000 associations; however, their impact has been limited by the difficulties of causal gene identification and a strict focus on bone mineral density (BMD). Here, we use Diversity Outbred (DO) mice to directly address these limitations by performing a systems genetics analysis of 55 complex skeletal phenotypes. We apply a network approach to cortical bone RNA-seq data to discover 66 genes likely to be causal for human BMD GWAS associations, including the genes SERTAD4 and GLT8D2. We also perform GWAS in the DO for a wide-range of bone traits and identify Qsox1 as a gene influencing cortical bone accrual and bone strength. In this work, we advance our understanding of the genetics of osteoporosis and highlight the ability of the mouse to inform human genetics. Osteoporosis GWAS faces two challenges, causal gene discovery and a lack of phenotypic diversity. Here, the authors use the Diversity Outbred mouse population to inform human GWAS using networks and map genetic loci for 55 bone traits, identifying new potential bone strength genes.
Collapse
|
34
|
Benedé S, Lozano-Ojalvo D, Cristobal S, Costa J, D'Auria E, Velickovic TC, Garrido-Arandia M, Karakaya S, Mafra I, Mazzucchelli G, Picariello G, Romero-Sahagun A, Villa C, Roncada P, Molina E. New applications of advanced instrumental techniques for the characterization of food allergenic proteins. Crit Rev Food Sci Nutr 2021; 62:8686-8702. [PMID: 34060381 DOI: 10.1080/10408398.2021.1931806] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Current approaches based on electrophoretic, chromatographic or immunochemical principles have allowed characterizing multiple allergens, mapping their epitopes, studying their mechanisms of action, developing detection and diagnostic methods and therapeutic strategies for the food and pharmaceutical industry. However, some of the common structural features related to the allergenic potential of food proteins remain unknown, or the pathological mechanism of food allergy is not yet fully understood. In addition, it is also necessary to evaluate new allergens from novel protein sources that may pose a new risk for consumers. Technological development has allowed the expansion of advanced technologies for which their whole potential has not been entirely exploited and could provide novel contributions to still unexplored molecular traits underlying both the structure of food allergens and the mechanisms through which they sensitize or elicit adverse responses in human subjects, as well as improving analytical techniques for their detection. This review presents cutting-edge instrumental techniques recently applied when studying structural and functional aspects of proteins, mechanism of action and interaction between biomolecules. We also exemplify their role in the food allergy research and discuss their new possible applications in several areas of the food allergy field.
Collapse
Affiliation(s)
- Sara Benedé
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| | - Daniel Lozano-Ojalvo
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, Jaffe Food Allergy Institute, New York, NY, USA
| | - Susana Cristobal
- Department of Biomedical and Clinical Sciences, Cell Biology, Faculty of Medicine, Linköping University, Linköping, Sweden.,IKERBASQUE, Basque Foundation for Science, Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
| | - Joana Costa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Enza D'Auria
- Clinica Pediatrica, Ospedale dei Bambini Vittore Buzzi, Università degli Studi, Milano, Italy
| | - Tanja Cirkovic Velickovic
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia.,Ghent University Global Campus, Incheon, South Korea.,Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - María Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir, Turkey
| | - Isabel Mafra
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Liege, Belgium
| | - Gianluca Picariello
- Institute of Food Sciences, National Research Council (CNR), Avellino, Italy
| | - Alejandro Romero-Sahagun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Caterina Villa
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Paola Roncada
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | - Elena Molina
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC-UAM), Madrid, Spain
| |
Collapse
|
35
|
Schubert K, Karkossa I, Schor J, Engelmann B, Steinheuer LM, Bruns T, Rolle-Kampczyk U, Hackermüller J, von Bergen M. A Multi-Omics Analysis of Mucosal-Associated-Invariant T Cells Reveals Key Drivers of Distinct Modes of Activation. Front Immunol 2021; 12:616967. [PMID: 34108957 PMCID: PMC8183572 DOI: 10.3389/fimmu.2021.616967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
The function of mucosal-associated invariant T (MAIT) cells highly depends on the mode of activation, either by recognition of bacterial metabolites via their T cell receptor (TCR) or in a TCR-independent manner via cytokines. The underlying molecular mechanisms are not entirely understood. To define the activation of MAIT cells on the molecular level, we applied a multi-omics approach with untargeted transcriptomics, proteomics and metabolomics. Transcriptomic analysis of E. coli- and TCR-activated MAIT cells showed a distinct transcriptional reprogramming, including altered pathways, transcription factors and effector molecules. We validated the consequences of this reprogramming on the phenotype by proteomics and metabolomics. Thus, and to distinguish between TCR-dependent and -independent activation, MAIT cells were stimulated with IL12/IL18, anti-CD3/CD28 or both. Only a combination of both led to full activation of MAIT cells, comparable to activation by E. coli. Using an integrated network-based approach, we identified key drivers of the distinct modes of activation, including cytokines and transcription factors, as well as negative feedback regulators like TWIST1 or LAG3. Taken together, we present novel insights into the biological function of MAIT cells, which may represent a basis for therapeutic approaches to target MAIT cells in pathological conditions.
Collapse
Affiliation(s)
- Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Jana Schor
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Lisa Maria Steinheuer
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Tony Bruns
- Department of Medicine III, University Hospital Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Aachen, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Jörg Hackermüller
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
- Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
36
|
Krempski JW, Warren C, Han X, Zhang W, He Z, Lejeune S, Nadeau K. Food Allergies: An Example of Translational Research. Immunol Allergy Clin North Am 2021; 41:143-163. [PMID: 33863476 DOI: 10.1016/j.iac.2021.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Food allergies have been rising in prevalence since the 1990s, imposing substantial physical, psychosocial, and economic burdens on affected patients and their families. Until recently, the only therapy for food allergy was strict avoidance of the allergenic food. Recent advances in translational studies, however, have led to insights into allergic sensitization and tolerance. This article provides an overview of cutting-edge research into food allergy and immune tolerance mechanisms utilizing mouse models, human studies, and systems biology approaches. This research is being translated and implemented in the clinical setting to improve diagnosis and reduce food allergy's public health burden.
Collapse
Affiliation(s)
- James Walter Krempski
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA.
| | - Christopher Warren
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Xiaorui Han
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Wenming Zhang
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Ziyuan He
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Stéphanie Lejeune
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Stanford, CA, USA
| |
Collapse
|
37
|
Baumann R, Untersmayr E, Zissler UM, Eyerich S, Adcock IM, Brockow K, Biedermann T, Ollert M, Chaker AM, Pfaar O, Garn H, Thwaites RS, Togias A, Kowalski ML, Hansel TT, Jakwerth CA, Schmidt‐Weber CB. Noninvasive and minimally invasive techniques for the diagnosis and management of allergic diseases. Allergy 2021; 76:1010-1023. [PMID: 33128851 DOI: 10.1111/all.14645] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 12/12/2022]
Abstract
Allergic diseases of the (upper and lower) airways, the skin and the gastrointestinal tract, are on the rise, resulting in impaired quality of life, decreased productivity, and increased healthcare costs. As allergic diseases are mostly tissue-specific, local sampling methods for respective biomarkers offer the potential for increased sensitivity and specificity. Additionally, local sampling using noninvasive or minimally invasive methods can be cost-effective and well tolerated, which may even be suitable for primary or home care sampling. Non- or minimally invasive local sampling and diagnostics may enable a more thorough endotyping, may help to avoid under- or overdiagnosis, and may provide the possibility to approach precision prevention, due to early diagnosis of these local diseases even before they get systemically manifested and detectable. At the same time, dried blood samples may help to facilitate minimal-invasive primary or home care sampling for classical systemic diagnostic approaches. This EAACI position paper contains a thorough review of the various technologies in allergy diagnosis available on the market, which analytes or biomarkers are employed, and which samples or matrices can be used. Based on this assessment, EAACI position is to drive these developments to efficiently identify allergy and possibly later also viral epidemics and take advantage of comprehensive knowledge to initiate preventions and treatments.
Collapse
Affiliation(s)
- Ralf Baumann
- Medical Faculty Institute for Molecular Medicine Medical School Hamburg (MSH) – Medical University Hamburg Germany
- RWTH Aachen University Hospital Institute for Occupational, Social and Environmental Medicine Aachen Germany
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Ulrich M. Zissler
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Ian M. Adcock
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Knut Brockow
- Department of Dermatology and Allergy Biederstein School of Medicine Technische Universität München Munich Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein School of Medicine Technische Universität München Munich Germany
| | - Markus Ollert
- Department of Infection and Immunity Luxembourg Institute of Health (LIH) Esch‐sur‐Alzette Luxembourg
- Department of Dermatology and Allergy Center Odense Research Centre for Anaphylaxis (ORCA) University of Southern Denmark Odense Denmark
| | - Adam M. Chaker
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
- Department of Otolaryngology Allergy Section Klinikum Rechts der Isar Technical University of Munich Munich Germany
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery University Hospital Marburg Philipps‐Universität Marburg Marburg Germany
| | - Holger Garn
- Biochemical Pharmacological Center (BPC) ‐ Molecular Diagnostics, Translational Inflammation Research Division & Core Facility for Single Cell Multiomics Philipps University of Marburg ‐ Medical Faculty Member of the German Center for Lung Research (DZL) Universities of Giessen and Marburg Lung Center (UGMLC) Marburg Germany
| | - Ryan S. Thwaites
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Alkis Togias
- Division of Allergy, Immunology and Transplantation National Institute of Allergy and Infectious Diseases National Institutes of Health Bethesda MD USA
| | - Marek L. Kowalski
- Department of Immunology and Allergy Medical University of Lodz Lodz Poland
| | - Trevor T. Hansel
- National Heart and Lung Institute Imperial College London, and Royal Brompton and Harefield NHS Trust London UK
| | - Constanze A. Jakwerth
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) Technical University and Helmholtz Zentrum München München Germany
- Member of the German Center of Lung Research (DZL) and the Helmholtz I&I Initiative Munich Germany
| |
Collapse
|
38
|
Abstract
The risk factors for food allergy (FA) include both genetic variants and environmental factors. Advances using both candidate-gene association studies and genome-wide approaches have led to the identification of FA-associated genes involved in immune responses and skin barrier functions. Epigenetic changes have also been associated with the risk of FA. In this chapter, we outline current understanding of the genetics, epigenetics and the interplay with environmental risk factors associated with FA. Future studies of gene-environment interactions, gene-gene interactions, and multi-omics integration may help shed light on the mechanisms of FA, and lead to improved diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Elisabet Johansson
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA
| | - Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229-3026, USA.
| |
Collapse
|
39
|
Iweala OI, Choudhary SK, Addison CT, Commins SP. T and B Lymphocyte Transcriptional States Differentiate between Sensitized and Unsensitized Individuals in Alpha-Gal Syndrome. Int J Mol Sci 2021; 22:ijms22063185. [PMID: 33804792 PMCID: PMC8003943 DOI: 10.3390/ijms22063185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/08/2021] [Accepted: 03/17/2021] [Indexed: 12/12/2022] Open
Abstract
The mechanisms of pathogenesis driving alpha-gal syndrome (AGS) are not fully understood. Differences in immune gene expression between AGS individuals and non-allergic controls may illuminate molecular pathways and targets critical for AGS development. We performed immune expression profiling with RNA from the peripheral blood mononuclear cells (PBMCs) of seven controls, 15 AGS participants, and two participants sensitized but not allergic to alpha-gal using the NanoString nCounter PanCancer immune profiling panel, which includes 770 genes from 14 different cell types. The top differentially expressed genes (DEG) between AGS subjects and controls included transcription factors regulating immune gene expression, such as the NFκB pathway (NFKBIA, NFKB2, REL), antigen presentation molecules, type 2/allergic immune responses, itch, and allergic dermatitis. The differential expression of genes linked to T and B cell function was also identified, including transcription factor BCL-6, markers of antigen experience (CD44) and memory (CD27), chemokine receptors (CXCR3, CXCR6), and regulators of B-cell proliferation, cell cycle entry and immunoglobulin production (CD70). The PBMCs from AGS subjects also had increased TNF and IFN-gamma mRNA expression compared to controls. AGS is associated with a distinct gene expression profile in circulating PBMCs. DEGs related to antigen presentation, antigen-experienced T-cells, and type 2 immune responses may promote the development of alpha-gal specific IgE and the maintenance of AGS.
Collapse
Affiliation(s)
- Onyinye I. Iweala
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence:
| | - Shailesh K. Choudhary
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Claire T. Addison
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott P. Commins
- Department of Pediatrics, University of North Carolina Food Allergy Initiative, Division of Allergy, Immunology and Rheumatology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (S.K.C.); (C.T.A.); (S.P.C.)
- Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
40
|
Czolk R, Klueber J, Sørensen M, Wilmes P, Codreanu-Morel F, Skov PS, Hilger C, Bindslev-Jensen C, Ollert M, Kuehn A. IgE-Mediated Peanut Allergy: Current and Novel Predictive Biomarkers for Clinical Phenotypes Using Multi-Omics Approaches. Front Immunol 2021; 11:594350. [PMID: 33584660 PMCID: PMC7876438 DOI: 10.3389/fimmu.2020.594350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/11/2020] [Indexed: 01/22/2023] Open
Abstract
Food allergy is a collective term for several immune-mediated responses to food. IgE-mediated food allergy is the best-known subtype. The patients present with a marked diversity of clinical profiles including symptomatic manifestations, threshold reactivity and reaction kinetics. In-vitro predictors of these clinical phenotypes are evasive and considered as knowledge gaps in food allergy diagnosis and risk management. Peanut allergy is a relevant disease model where pioneer discoveries were made in diagnosis, immunotherapy and prevention. This review provides an overview on the immune basis for phenotype variations in peanut-allergic individuals, in the light of future patient stratification along emerging omic-areas. Beyond specific IgE-signatures and basophil reactivity profiles with established correlation to clinical outcome, allergenomics, mass spectrometric resolution of peripheral allergen tracing, might be a fundamental approach to understand disease pathophysiology underlying biomarker discovery. Deep immune phenotyping is thought to reveal differential cell responses but also, gene expression and gene methylation profiles (eg, peanut severity genes) are promising areas for biomarker research. Finally, the study of microbiome-host interactions with a focus on the immune system modulation might hold the key to understand tissue-specific responses and symptoms. The immune mechanism underlying acute food-allergic events remains elusive until today. Deciphering this immunological response shall enable to identify novel biomarker for stratification of patients into reaction endotypes. The availability of powerful multi-omics technologies, together with integrated data analysis, network-based approaches and unbiased machine learning holds out the prospect of providing clinically useful biomarkers or biomarker signatures being predictive for reaction phenotypes.
Collapse
Affiliation(s)
- Rebecca Czolk
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Julia Klueber
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Martin Sørensen
- Department of Pediatric and Adolescent Medicine, University Hospital of North Norway, Tromsø, Norway
- Pediatric Research Group, Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Françoise Codreanu-Morel
- Department of Allergology and Immunology, Centre Hospitalier de Luxembourg-Kanner Klinik, Luxembourg, Luxembourg
| | - Per Stahl Skov
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
- RefLab ApS, Copenhagen, Denmark
- Institute of Immunology, National University of Copenhagen, Copenhagen, Denmark
| | - Christiane Hilger
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Carsten Bindslev-Jensen
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Annette Kuehn
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
41
|
Irizar H, Kanchan K, Mathias RA, Bunyavanich S. Advancing Food Allergy Through Omics Sciences. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2021; 9:119-129. [PMID: 32777389 PMCID: PMC7855623 DOI: 10.1016/j.jaip.2020.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Since the publication of the first draft of the human genome, there has been an explosion of new technologies with increasing power to interrogate the totality of biological molecules (eg, DNA, RNA, proteins, metabolites) and their modifications (eg, DNA methylation, histone modifications). These technologies, collectively called omics, have been widely applied in the last 2 decades to study biological systems to gain deeper insight into mechanisms driving the physiology and pathophysiology of human health and disease. Because of its complex, multifactorial nature, food allergy is especially well suited to be investigated using omics approaches. In this rostrum, we review how omic technologies have been applied to explore diverse aspects of food allergy, including adaptive and innate immune processes in food-allergic responses, the role of the microbiome in food allergy risk, metabolic changes in the gut and blood associated with food allergy, and the identification of biomarkers and potential therapeutic targets for the condition. We discuss the strengths and limitations of the studies performed thus far and the need to adopt systems biology approaches that integrate data from multiple omics to fully leverage the potential of these technologies to advance food allergy research and care.
Collapse
Affiliation(s)
- Haritz Irizar
- Division of Psychiatry, University College London, London, United Kingdom; Department of Genetics & Genomic Sciences and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Kanika Kanchan
- Department of Medicine, Johns Hopkins University, Baltimore, Md
| | | | - Supinda Bunyavanich
- Department of Genetics & Genomic Sciences and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
42
|
Xu CJ, Gruzieva O, Qi C, Esplugues A, Gehring U, Bergström A, Mason D, Chatzi L, Porta D, Lodrup Carlsen KC, Baïz N, Madore AM, Alenius H, van Rijkom B, Jankipersadsing SA, van der Vlies P, Kull I, van Hage M, Bustamante M, Lertxundi A, Torrent M, Santorelli G, Fantini MP, Hovland V, Pesce G, Fyhrquist N, Laatikainen T, Nawijn MC, Li Y, Wijmenga C, Netea MG, Bousquet J, Anto JM, Laprise C, Haahtela T, Annesi-Maesano I, Carlsen KH, Gori D, Kogevinas M, Wright J, Söderhäll C, Vonk JM, Sunyer J, Melén E, Koppelman GH. Shared DNA methylation signatures in childhood allergy: The MeDALL study. J Allergy Clin Immunol 2020; 147:1031-1040. [PMID: 33338541 DOI: 10.1016/j.jaci.2020.11.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Differential DNA methylation associated with allergy might provide novel insights into the shared or unique etiology of asthma, rhinitis, and eczema. OBJECTIVE We sought to identify DNA methylation profiles associated with childhood allergy. METHODS Within the European Mechanisms of the Development of Allergy (MeDALL) consortium, we performed an epigenome-wide association study of whole blood DNA methylation by using a cross-sectional design. Allergy was defined as having symptoms from at least 1 allergic disease (asthma, rhinitis, or eczema) and positive serum-specific IgE to common aeroallergens. The discovery study included 219 case patients and 417 controls at age 4 years and 228 case patients and 593 controls at age 8 years from 3 birth cohorts, with replication analyses in 325 case patients and 1111 controls. We performed additional analyses on 21 replicated sites in 785 case patients and 2124 controls by allergic symptoms only from 8 cohorts, 3 of which were not previously included in analyses. RESULTS We identified 80 differentially methylated CpG sites that showed a 1% to 3% methylation difference in the discovery phase, of which 21 (including 5 novel CpG sites) passed genome-wide significance after meta-analysis. All 21 CpG sites were also significantly differentially methylated with allergic symptoms and shared between asthma, rhinitis, and eczema. The 21 CpG sites mapped to relevant genes, including ACOT7, LMAN3, and CLDN23. All 21 CpG sties were differently methylated in asthma in isolated eosinophils, and 10 were replicated in respiratory epithelium. CONCLUSION Reduced whole blood DNA methylation at 21 CpG sites was significantly associated with childhood allergy. The findings provide novel insights into the shared molecular mechanisms underlying asthma, rhinitis, and eczema.
Collapse
Affiliation(s)
- Cheng-Jian Xu
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Cancan Qi
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ana Esplugues
- Nursing Department, Faculty of Nursing and Chiropody, Universitat de València, València, Spain; FISABIO-Universitat Jaume I-Universitat de València Joint Research Unit of Epidemiology and Environmental Health, València, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ulrike Gehring
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Anna Bergström
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dan Mason
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Daniela Porta
- Department of Epidemiology, Lazio Regional Health Service, Rome, Italy
| | - Karin C Lodrup Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Nour Baïz
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Anne-Marie Madore
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada
| | - Harri Alenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Bianca van Rijkom
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Soesma A Jankipersadsing
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Pieter van der Vlies
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; HZPC Research BV, Metslawier, The Netherlands
| | - Inger Kull
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Marianne van Hage
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Karolinska University Hospital, Stockholm, Sweden
| | - Mariona Bustamante
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; Preventive Medicine and Public Health Department, University of Basque Country (UPV/EHU), Leioa, Bizkaia, Spain; Health Research institute Biodonostia, Donostia-San Sebastian, Gipuzkoa, Spain
| | - Matias Torrent
- Health Research Institute of the Balearic Islands, Spain; ib-salut, Area de Salut de Menorca, Spain
| | | | - Maria Pia Fantini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Vegard Hovland
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Giancarlo Pesce
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | | | - Nanna Fyhrquist
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Human Microbiome Program, Medicum, University of Helsinki, Helsinki, Finland
| | - Tiina Laatikainen
- Finnish Institute for Health and Welfare, Helsinki, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Martijn C Nawijn
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Pathology and Medical Biology, Experimental Pulmonology and Inflammation Research, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yang Li
- Centre for Individualized Infection Medicine, CiiM, a joint venture between Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands; Department for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jean Bousquet
- University Hospital, Montpellier, France; Department of Dermatology, Charité, Berlin, Germany
| | - Josep M Anto
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Catherine Laprise
- Département des sciences fondamentales, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre intersectoriel en santé durable, Université du Québec à Chicoutimi, Saguenay, Québec City, Canada; Centre de santé et de services sociaux du Saguenay-Lac-Saint-Jean, Saguenay, Québec, Canada
| | - Tari Haahtela
- Skin and Allergy Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Isabella Annesi-Maesano
- Sorbonne University and INSERM, Epidemiology of Allergic and Respiratory Diseases (EPAR) Department, IPLESP, Medical School Saint Antoine, Paris, France
| | - Kai-Håkon Carlsen
- Division of Paediatric and Adolescent Medicine, The Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Davide Gori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - John Wright
- Bradford Institute for Health Research, Bradford, United Kingdom
| | - Cilla Söderhäll
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Judith M Vonk
- GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jordi Sunyer
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain; ISGlobal, Institute of Global Health, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Erik Melén
- Department of Clinical Sciences and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden; Sachs' Children's Hospital, Stockholm, Sweden
| | - Gerard H Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergy, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; GRIAC Research Institute, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Chen X, Zhao X, Hu Y, Zhang B, Zhang Y, Wang S. Lactobacillus rhamnosus GG alleviates β-conglycinin-induced allergy by regulating the T cell receptor signaling pathway. Food Funct 2020; 11:10554-10567. [PMID: 33185639 DOI: 10.1039/d0fo02124e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the need for safe and effective methods for relieving allergies is an important concern. In this study, we evaluated the role of Lactobacillus rhamnosus GG (LGG) in alleviating β-conglycinin (β-CG)-induced allergies and elucidated the related molecular mechanisms. Typical allergy symptoms and inflammatory factors in the serum showed that LGG intervention effectively alleviated β-CG induced allergy in mice, which was better than natural recovery (NR). Intestinal villi were restored and lower levels of CD4+ T cells infiltrated after LGG intervention. We evaluated whether LGG intervention weakened the proliferation ability of the spleen cells of allergic mice, balancing between T/B cells and Th1/Th2 and Th17/Treg cytokines. Transcriptome analysis revealed that 4106 differentially expressed mRNAs were identified by comparing the LGG group and β-CG group, and 546 differentially expressed mRNAs were identified by comparing the LGG group and NR group. KEGG pathway analysis identified that the T cell receptor (TCR) signaling pathway was significantly enriched upon LGG intervention, and the upregulated Ifnar2 and the downregulated Tgfbr2, Il13r2 and Il4ra were further validated by qPCR analysis. Therefore, the above results fully revealed the important role of LGG in alleviating β-CG-induced allergies.
Collapse
Affiliation(s)
- Xiaoxu Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Although the development of effective vaccines has saved countless lives from infectious diseases, the basic workings of the human immune system are complex and have required the development of animal models, such as inbred mice, to define mechanisms of immunity. More recently, new strategies and technologies have been developed to directly explore the human immune system with unprecedented precision. We discuss how these approaches are advancing our mechanistic understanding of human immunology and are facilitating the development of vaccines and therapeutics for infection, autoimmune diseases, and cancer.
Collapse
Affiliation(s)
- Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA.
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Stanford ChEM-H: Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA 94305, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mark M Davis
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
- Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
45
|
Patil SU, Bunyavanich S, Cecilia Berin M. Emerging Food Allergy Biomarkers. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2020; 8:2516-2524. [PMID: 32888527 PMCID: PMC7479640 DOI: 10.1016/j.jaip.2020.04.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The management of food allergy is complicated by the lack of highly predictive biomarkers for diagnosis and prediction of disease course. The measurement of food-specific IgE is a useful tool together with clinical history but is an imprecise predictor of clinical reactivity. The gold standard for diagnosis and clinical research is a double-blind placebo-controlled food challenge. Improvement in our understanding of immune mechanisms of disease, development of high-throughput technologies, and advances in bioinformatics have yielded a number of promising new biomarkers of food allergy. In this review, we will discuss advances in immunoglobulin measurements, the utility of the basophil activation test, T-cell profiling, and the use of -omic technologies (transcriptome, epigenome, microbiome, and metabolome) as biomarker tools in food allergy.
Collapse
Affiliation(s)
- Sarita U. Patil
- Food Allergy Center, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114
- Center for Immunological and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Supinda Bunyavanich
- Jaffe Food Allergy Institute, Department of Pediatrics; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - M. Cecilia Berin
- Jaffe Food Allergy Institute, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
46
|
Wang W, Lyu SC, Ji X, Gupta S, Manohar M, Dhondalay GKR, Chinthrajah S, Andorf S, Boyd SD, Tibshirani R, Galli SJ, Nadeau KC, Maecker HT. Transcriptional changes in peanut-specific CD4+ T cells over the course of oral immunotherapy. Clin Immunol 2020; 219:108568. [PMID: 32783912 DOI: 10.1016/j.clim.2020.108568] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/12/2023]
Abstract
Oral immunotherapy (OIT) can successfully desensitize allergic individuals to offending foods such as peanut. Our recent clinical trial (NCT02103270) of peanut OIT allowed us to monitor peanut-specific CD4+ T cells, using MHC-peptide Dextramers, over the course of OIT. We used a single-cell targeted RNAseq assay to analyze these cells at 0, 12, 24, 52, and 104 weeks of OIT. We found a transient increase in TGFβ-producing cells at 52 weeks in those with successful desensitization, which lasted until 117 weeks. We also performed clustering and identified 5 major clusters of Dextramer+ cells, which we tracked over time. One of these clusters appeared to be anergic, while another was consistent with recently described TFH13 cells. The other 3 clusters appeared to be Th2 cells by their coordinated production of IL-4 and IL-13, but they varied in their expression of STAT signaling proteins and other markers. A cluster with high expression of STAT family members also showed a possible transient increase at week 24 in those with successful desensitization. Single cell TCRαβ repertoire sequences were too diverse to track clones over time. Together with increased TGFβ production, these changes may be mechanistic predictors of successful OIT that should be further investigated.
Collapse
Affiliation(s)
- Weiqi Wang
- Institute for Immunity, Transplantation, Infection, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Shu-Chen Lyu
- Sean Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Xuhuai Ji
- Institute for Immunity, Transplantation, Infection, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Sheena Gupta
- Institute for Immunity, Transplantation, Infection, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Monali Manohar
- Sean Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Gopal K R Dhondalay
- Sean Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Sharon Chinthrajah
- Sean Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Sandra Andorf
- Sean Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Scott D Boyd
- Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Robert Tibshirani
- Department of Biomedical Data Science, Department of Statistics, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Stephen J Galli
- Sean Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, United States of America; Departments of Pathology and of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Kari C Nadeau
- Sean Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA 94305, United States of America
| | - Holden T Maecker
- Institute for Immunity, Transplantation, Infection, Stanford University School of Medicine, Stanford, CA 94305, United States of America.
| |
Collapse
|
47
|
Do AN, Watson CT, Cohain AT, Griffin RS, Grishin A, Wood RA, Wesley Burks A, Jones SM, Scurlock A, Leung DYM, Sampson HA, Sicherer SH, Sharp AJ, Schadt EE, Bunyavanich S. Dual transcriptomic and epigenomic study of reaction severity in peanut-allergic children. J Allergy Clin Immunol 2020; 145:1219-1230. [PMID: 31838046 PMCID: PMC7192362 DOI: 10.1016/j.jaci.2019.10.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 10/29/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Unexpected allergic reactions to peanut are the most common cause of fatal food-related anaphylaxis. Mechanisms underlying the variable severity of peanut-allergic reactions remain unclear. OBJECTIVES We sought to expand mechanistic understanding of reaction severity in peanut allergy. METHODS We performed an integrated transcriptomic and epigenomic study of peanut-allergic children as they reacted in vivo during double-blind, placebo-controlled peanut challenges. We integrated whole-blood transcriptome and CD4+ T-cell epigenome profiles to identify molecular signatures of reaction severity (ie, how severely a peanut-allergic child reacts when exposed to peanut). A threshold-weighted reaction severity score was calculated for each subject based on symptoms experienced during peanut challenge and the eliciting dose. Through linear mixed effects modeling, network construction, and causal mediation analysis, we identified genes, CpGs, and their interactions that mediate reaction severity. Findings were replicated in an independent cohort. RESULTS We identified 318 genes with changes in expression during the course of reaction associated with reaction severity, and 203 CpG sites with differential DNA methylation associated with reaction severity. After replicating these findings in an independent cohort, we constructed interaction networks with the identified peanut severity genes and CpGs. These analyses and leukocyte deconvolution highlighted neutrophil-mediated immunity. We identified NFKBIA and ARG1 as hubs in the networks and 3 groups of interacting key node CpGs and peanut severity genes encompassing immune response, chemotaxis, and regulation of macroautophagy. In addition, we found that gene expression of PHACTR1 and ZNF121 causally mediates the association between methylation at corresponding CpGs and reaction severity, suggesting that methylation may serve as an anchor upon which gene expression modulates reaction severity. CONCLUSIONS Our findings enhance current mechanistic understanding of the genetic and epigenetic architecture of reaction severity in peanut allergy.
Collapse
Affiliation(s)
- Anh N Do
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Corey T Watson
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, Ky
| | - Ariella T Cohain
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert S Griffin
- Department of Anesthesia, Hospital for Special Surgery, New York, NY
| | - Alexander Grishin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Robert A Wood
- Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | - A Wesley Burks
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC
| | - Stacie M Jones
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | - Amy Scurlock
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Hospital, Little Rock, Ark
| | | | - Hugh A Sampson
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Scott H Sicherer
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Andrew J Sharp
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Supinda Bunyavanich
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
48
|
Min HK, Moon SJ, Park KS, Kim KJ. Integrated systems analysis of salivary gland transcriptomics reveals key molecular networks in Sjögren's syndrome. Arthritis Res Ther 2019; 21:294. [PMID: 31856901 PMCID: PMC6921432 DOI: 10.1186/s13075-019-2082-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background Treatment of patients with Sjögren’s syndrome (SjS) is a clinical challenge with high unmet needs. Gene expression profiling and integrative network-based approaches to complex disease can offer an insight on molecular characteristics in the context of clinical setting. Methods An integrated dataset was created from salivary gland samples of 30 SjS patients. Pathway-driven enrichment profiles made by gene set enrichment analysis were categorized using hierarchical clustering. Differentially expressed genes (DEGs) were subjected to functional network analysis, where the elements of the core subnetwork were used for key driver analysis. Results We identified 310 upregulated DEGs, including nine known genetic risk factors and two potential biomarkers. The core subnetwork was enriched with the processes associated with B cell hyperactivity. Pathway-based subgrouping revealed two clusters with distinct molecular signatures for the relevant pathways and cell subsets. Cluster 2, with low-grade inflammation, showed a better response to rituximab therapy than cluster 1, with high-grade inflammation. Fourteen key driver genes appeared to be essential signaling mediators downstream of the B cell receptor (BCR) signaling pathway and to have a positive relationship with histopathology scores. Conclusion Integrative network-based approaches provide deep insights into the modules and pathways causally related to SjS and allow identification of key targets for disease. Intervention adjusted to the molecular traits of the disease would allow the achievement of better outcomes, and the BCR signaling pathway and its leading players are promising therapeutic targets.
Collapse
Affiliation(s)
- Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Investigational allergen immunotherapies (AITs) including oral immunotherapy (OIT), sublingual immunotherapy (SLIT), and epicutaneous immunotherapy (EPIT) have proven to increase allergen thresholds required to elicit an allergic reaction in a majority of subjects. However, these studies lack consistent biomarkers to predict therapy outcomes. Here, we will review biomarkers that are currently being investigated for AIT. RECENT FINDINGS The mechanisms underlying the therapeutic benefit of AIT involve various cell types, including mast cells, basophils, T cells, and B cells. Skin prick and basophil activation tests assess effector cell sensitivity to allergen and are decreased in subjects on AIT. Allergen-specific IgE increases initially and decreases with continued therapy, while allergen-specific IgG and IgA increase throughout therapy. Allergen-induced regulatory T cells (Tregs) increase throughout therapy and were found to be associated with sustained unresponsiveness after OIT. Subjects on OIT and SLIT have decreased Th2 cytokine production during therapy. Although trends have been reported, a common limitation of these biomarkers is that none are able to reproducibly predict prognosis during AIT. Further studies are needed to expand the currently available biomarker repertoire to provide personalized approaches to AIT.
Collapse
Affiliation(s)
- LaKeya C Hardy
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 116 Manning Dr., Mary Ellen Jones Building Rm 3310, Chapel Hill, NC, 27599, USA.
- UNC Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Johanna M Smeekens
- UNC Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Michael D Kulis
- UNC Food Allergy Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
50
|
Bunyavanich S, Berin MC. Food allergy and the microbiome: Current understandings and future directions. J Allergy Clin Immunol 2019; 144:1468-1477. [PMID: 31812181 PMCID: PMC6905201 DOI: 10.1016/j.jaci.2019.10.019] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023]
Abstract
Growing evidence points to an important role for the commensal microbiota in susceptibility to food allergy. Epidemiologic studies demonstrate associations between exposures known to modify the microbiome and risk of food allergy. Direct profiling of the gut microbiome in human cohort studies has demonstrated that individuals with food allergy have distinct gut microbiomes compared to healthy control subjects, and dysbiosis precedes the development of food allergy. Mechanistic studies in mouse models of food allergy have confirmed that the composition of the intestinal microbiota can imprint susceptibility or resistance to food allergy on the host and have identified a unique population of microbially responsive RORγt-positive FOXp3-positive regulatory T cells as critical for the maintenance of tolerance to foods. Armed with this new understanding of the role of the microbiota in food allergy and tolerance, therapeutics aimed at modifying the gastrointestinal microbiota are in development. In this article we review key milestones in the development of our current understanding of how the gastrointestinal microbiota contributes to food allergy and discuss our vision for the future of the field.
Collapse
Affiliation(s)
- Supinda Bunyavanich
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY.
| | - M Cecilia Berin
- Division of Allergy and Immunology, Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY; PRIISM Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|