1
|
Atkin-Smith GK, Santavanond JP, Light A, Rimes JS, Samson AL, Er J, Liu J, Johnson DN, Le Page M, Rajasekhar P, Yip RKH, Geoghegan ND, Rogers KL, Chang C, Bryant VL, Margetts M, Keightley MC, Kilpatrick TJ, Binder MD, Tran S, Lee EF, Fairlie WD, Ozkocak DC, Wei AH, Hawkins ED, Poon IKH. In situ visualization of endothelial cell-derived extracellular vesicle formation in steady state and malignant conditions. Nat Commun 2024; 15:8802. [PMID: 39438460 PMCID: PMC11496675 DOI: 10.1038/s41467-024-52867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Endothelial cells are integral components of all vasculature within complex organisms. As they line the blood vessel wall, endothelial cells are constantly exposed to a variety of molecular factors and shear force that can induce cellular damage and stress. However, how endothelial cells are removed or eliminate unwanted cellular contents, remains unclear. The generation of large extracellular vesicles (EVs) has emerged as a key mechanism for the removal of cellular waste from cells that are dying or stressed. Here, we used intravital microscopy of the bone marrow to directly measure the kinetics of EV formation from endothelial cells in vivo under homoeostatic and malignant conditions. These large EVs are mitochondria-rich, expose the 'eat me' signal phosphatidylserine, and can interact with immune cell populations as a potential clearance mechanism. Elevated levels of circulating EVs correlates with degradation of the bone marrow vasculature caused by acute myeloid leukaemia. Together, our study provides in vivo spatio-temporal characterization of EV formation in the murine vasculature and suggests that circulating, large endothelial cell-derived EVs can provide a snapshot of vascular damage at distal sites.
Collapse
Affiliation(s)
- Georgia K Atkin-Smith
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| | - Jascinta P Santavanond
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Amanda Light
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Joel S Rimes
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andre L Samson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Jeremy Er
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Joy Liu
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Darryl N Johnson
- Materials Characterisation and Fabrication Platform, Department of Chemical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Mélanie Le Page
- ARAFlowCore, Alfred Research Alliance, Monash University, Melbourne, VIC, Australia
| | - Pradeep Rajasekhar
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Raymond K H Yip
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Niall D Geoghegan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Rogers
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Catherine Chang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Clinical Immunology and Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Mai Margetts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - M Cristina Keightley
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Department of Rural Clinical Sciences, La Trobe Rural Health School, Bendigo, VIC, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Sharon Tran
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Walter D Fairlie
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Dilara C Ozkocak
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology Department, Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Edwin D Hawkins
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| | - Ivan K H Poon
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
- Research Centre for Extracellular Vesicles, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Mesaros O, Onciul M, Matei E, Joldes C, Jimbu L, Neaga A, Serban O, Zdrenghea M, Nanut AM. Macrophages as Potential Therapeutic Targets in Acute Myeloid Leukemia. Biomedicines 2024; 12:2306. [PMID: 39457618 PMCID: PMC11505058 DOI: 10.3390/biomedicines12102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
Acute myeloid leukemia (AML) is a heterogenous malignant hemopathy, and although new drugs have emerged recently, current treatment options still show limited efficacy. Therapy resistance remains a major concern due to its contribution to treatment failure, disease relapse, and increased mortality among patients. The underlying mechanisms of resistance to therapy are not fully understood, and it is crucial to address this challenge to improve therapy. Macrophages are immune cells found within the bone marrow microenvironment (BMME), of critical importance for leukemia development and progression. One defining feature of macrophages is their plasticity, which allows them to adapt to the variations in the microenvironment. While this adaptability is advantageous during wound healing, it can also be exploited in cancer scenarios. Thus, clinical and preclinical investigations that target macrophages as a therapeutic strategy appear promising. Existing research indicates that targeting macrophages could enhance the effectiveness of current AML treatments. This review addresses the importance of macrophages as therapeutic targets including relevant drugs investigated in clinical trials such as pexidartinib, magrolimab or bexmarilimab, but also provides new insights into lesser-known therapies, like macrophage receptor with a collagenous structure (MACRO) inhibitors and Toll-like receptor (TLR) agonists.
Collapse
Affiliation(s)
- Oana Mesaros
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Madalina Onciul
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
| | - Emilia Matei
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Pathology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Corina Joldes
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 19-21 Croitorilor Str., 400162 Cluj-Napoca, Romania
| | - Laura Jimbu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Alexandra Neaga
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Oana Serban
- Regina Maria” Regional Laboratory in Cluj-Napoca, 109 Observatorului Str., 400363 Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Babes Str., 400012 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Oncology Institute, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| | - Ana Maria Nanut
- Regina Maria” Regional Laboratory in Cluj-Napoca, 34-36 Republicii Str., 400015 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
4
|
Chen DW, Fan JM, Schrey JM, Mitchell DV, Jung SK, Hurwitz SN, Perez EB, Muraro MJ, Carroll M, Taylor DM, Kurre P. Inflammatory recruitment of healthy hematopoietic stem and progenitor cells in the acute myeloid leukemia niche. Leukemia 2024; 38:741-750. [PMID: 38228679 PMCID: PMC10997516 DOI: 10.1038/s41375-024-02136-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Inflammation in the bone marrow (BM) microenvironment is a constitutive component of leukemogenesis in acute myeloid leukemia (AML). Current evidence suggests that both leukemic blasts and stroma secrete proinflammatory factors that actively suppress the function of healthy hematopoietic stem and progenitor cells (HSPCs). HSPCs are also cellular components of the innate immune system, and we reasoned that they may actively propagate the inflammation in the leukemic niche. In two separate congenic models of AML we confirm by evaluation of the BM plasma secretome and HSPC-selective single-cell RNA sequencing (scRNA-Seq) that multipotent progenitors and long-lived stem cells adopt inflammatory gene expression programs, even at low leukemic infiltration of the BM. In particular, we observe interferon gamma (IFN-γ) pathway activation, along with secretion of its chemokine target, CXCL10. We show that AML-derived nanometer-sized extracellular vesicles (EVAML) are sufficient to trigger this inflammatory HSPC response, both in vitro and in vivo. Altogether, our studies indicate that HSPCs are an unrecognized component of the inflammatory adaptation of the BM by leukemic cells. The pro-inflammatory conversion and long-lived presence of HSPCs in the BM along with their regenerative re-expansion during remission may impact clonal selection and disease evolution.
Collapse
Affiliation(s)
- Ding-Wen Chen
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jian-Meng Fan
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Julie M Schrey
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dana V Mitchell
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seul K Jung
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephanie N Hurwitz
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Martin Carroll
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Deanne M Taylor
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Mason-Osann E, Pomeroy AE, Palmer AC, Mettetal JT. Synergistic Drug Combinations Promote the Development of Resistance in Acute Myeloid Leukemia. Blood Cancer Discov 2024; 5:95-105. [PMID: 38232314 PMCID: PMC10905516 DOI: 10.1158/2643-3230.bcd-23-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/30/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024] Open
Abstract
Combination therapy is an important part of cancer treatment and is often employed to overcome or prevent drug resistance. Preclinical screening strategies often prioritize synergistic drug combinations; however, studies of antibiotic combinations show that synergistic drug interactions can accelerate the emergence of resistance because resistance to one drug depletes the effect of both. In this study, we aimed to determine whether synergy drives the development of resistance in cancer cell lines using live-cell imaging. Consistent with prior models of tumor evolution, we found that when controlling for activity, drug synergy is associated with increased probability of developing drug resistance. We demonstrate that these observations are an expected consequence of synergy: the fitness benefit of resisting a drug in a combination is greater in synergistic combinations than in nonsynergistic combinations. These data have important implications for preclinical strategies aiming to develop novel combinations of cancer therapies with robust and durable efficacy. SIGNIFICANCE Preclinical strategies to identify combinations for cancer treatment often focus on identifying synergistic combinations. This study shows that in AML cells combinations that rely on synergy can increase the likelihood of developing resistance, suggesting that combination screening strategies may benefit from a more holistic approach rather than focusing on drug synergy. See related commentary by Bhola and Letai, p. 81. This article is featured in Selected Articles from This Issue, p. 80.
Collapse
Affiliation(s)
| | - Amy E. Pomeroy
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam C. Palmer
- Department of Pharmacology, Computational Medicine Program, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | |
Collapse
|
6
|
Kovuru N, Mochizuki-Kashio M, Menna T, Jeffrey G, Hong Y, Me Yoon Y, Zhang Z, Kurre P. Deregulated protein homeostasis constrains fetal hematopoietic stem cell pool expansion in Fanconi anemia. Nat Commun 2024; 15:1852. [PMID: 38424108 PMCID: PMC10904799 DOI: 10.1038/s41467-024-46159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Demand-adjusted and cell type specific rates of protein synthesis represent an important safeguard for fate and function of long-term hematopoietic stem cells. Here, we identify increased protein synthesis rates in the fetal hematopoietic stem cell pool at the onset of hematopoietic failure in Fanconi Anemia, a prototypical DNA repair disorder that manifests with bone marrow failure. Mechanistically, the accumulation of misfolded proteins in Fancd2-/- fetal liver hematopoietic stem cells converges on endoplasmic reticulum stress, which in turn constrains midgestational expansion. Restoration of protein folding by the chemical chaperone tauroursodeoxycholic acid, a hydrophilic bile salt, prevents accumulation of unfolded proteins and rescues Fancd2-/- fetal liver long-term hematopoietic stem cell numbers. We find that proteostasis deregulation itself is driven by excess sterile inflammatory activity in hematopoietic and stromal cells within the fetal liver, and dampened Type I interferon signaling similarly restores fetal Fancd2-/- long-term hematopoietic stem cells to wild type-equivalent numbers. Our study reveals the origin and pathophysiological trigger that gives rise to Fanconi anemia hematopoietic stem cell pool deficits. More broadly, we show that fetal protein homeostasis serves as a physiological rheostat for hematopoietic stem cell fate and function.
Collapse
Affiliation(s)
- Narasaiah Kovuru
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Makiko Mochizuki-Kashio
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuning Hong
- La Trobe University, Department of Biochemistry and Chemistry, Melbourne, Australia
| | - Young Me Yoon
- Committee on Immunology, Graduate Program in Biosciences, University of Chicago, Chicago, IL, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol 2024; 15:1339971. [PMID: 38426096 PMCID: PMC10902444 DOI: 10.3389/fimmu.2024.1339971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Aplastic anemia (AA) and hypoplastic myelodysplastic syndrome are paradigms of autoimmune hematopoietic failure (AHF). Myelodysplastic syndrome and acute myeloid leukemia are unequivocal myeloid neoplasms (MNs). Currently, AA is also known to be a clonal hematological disease. Genetic aberrations typically observed in MNs are detected in approximately one-third of AA patients. In AA patients harboring MN-related genetic aberrations, a poor response to immunosuppressive therapy (IST) and an increased risk of transformation to MNs occurring either naturally or after IST are predicted. Approximately 10%-15% of patients with severe AA transform the disease phenotype to MNs following IST, and in some patients, leukemic transformation emerges during or shortly after IST. Phenotypic transformations between AHF and MNs can occur reciprocally. A fraction of advanced MN patients experience an aplastic crisis during which leukemic blasts are repressed. The switch that shapes the disease phenotype is a change in the strength of extramedullary inflammation. Both AHF and MNs have an immune-active bone marrow (BM) environment (BME). In AHF patients, an inflamed BME can be evoked by infiltrated immune cells targeting neoplastic molecules, which contributes to the BM-specific autoimmune impairment. Autoimmune responses in AHF may represent an antileukemic mechanism, and inflammatory stressors strengthen antileukemic immunity, at least in a significant proportion of patients who have MN-related genetic aberrations. During active inflammatory episodes, normal and leukemic hematopoieses are suppressed, which leads to the occurrence of aplastic cytopenia and leukemic cell regression. The successful treatment of underlying infections mitigates inflammatory stress-related antileukemic activities and promotes the penetration of leukemic hematopoiesis. The effect of IST is similar to that of treating underlying infections. Investigating inflammatory stress-powered antileukemic immunity is highly important in theoretical studies and clinical practice, especially given the wide application of immune-activating agents and immune checkpoint inhibitors in the treatment of hematological neoplasms.
Collapse
Affiliation(s)
- Xi-Chen Zhao
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Bo Ju
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Nuan-Nuan Xiu
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Xiao-Yun Sun
- Department of Hematology, The Central Hospital of Qingdao West Coast New Area, Qingdao, Shandong, China
| | - Fan-Jun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Kwon R, Yeung CCS. Advances in next-generation sequencing and emerging technologies for hematologic malignancies. Haematologica 2024; 109:379-387. [PMID: 37584286 PMCID: PMC10828783 DOI: 10.3324/haematol.2022.282442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/17/2023] [Indexed: 08/17/2023] Open
Abstract
Innovations in molecular diagnostics have often evolved through the study of hematologic malignancies. Examples include the pioneering characterization of the Philadelphia chromosome by cytogenetics in the 1970s, the implementation of polymerase chain reaction for high-sensitivity detection and monitoring of mutations and, most recently, targeted next- generation sequencing to drive the prognostic and therapeutic assessment of leukemia. Hematologists and hematopath- ologists have continued to advance in the past decade with new innovations improving the type, amount, and quality of data generated for each molecule of nucleic acid. In this review article, we touch on these new developments and discuss their implications for diagnostics in hematopoietic malignancies. We review advances in sequencing platforms and library preparation chemistry that can lead to faster turnaround times, novel sequencing techniques, the development of mobile laboratories with implications for worldwide benefits, the current status of sample types, improvements to quality and reference materials, bioinformatic pipelines, and the integration of machine learning and artificial intelligence into mol- ecular diagnostic tools for hematologic malignancies.
Collapse
Affiliation(s)
- Regina Kwon
- Department of Laboratory Medicine and Pathology, University of Washington
| | - Cecilia C. S. Yeung
- Department of Laboratory Medicine and Pathology, University of Washington
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| |
Collapse
|
9
|
Tissot FS, Gonzalez-Anton S, Lo Celso C. Intravital Microscopy to Study the Effect of Matrix Metalloproteinase Inhibition on Acute Myeloid Leukemia Cell Migration in the Bone Marrow. Methods Mol Biol 2024; 2747:211-227. [PMID: 38038943 DOI: 10.1007/978-1-0716-3589-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Hematopoiesis is the process through which all mature blood cells are formed and takes place in the bone marrow (BM). Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. AML progression causes drastic remodeling of the BM microenvironment, making it no longer supportive of healthy hematopoiesis and leading to clinical cytopenia in patients. Understanding the mechanisms by which AML cells shape the BM to their benefit would lead to the development of new therapeutic strategies. While the role of extracellular matrix (ECM) in solid cancer has been extensively studied during decades, its role in the BM and in leukemia progression has only begun to be acknowledged. In this context, intravital microscopy (IVM) gives the unique insight of direct in vivo observation of AML cell behavior in their environment during disease progression and/or upon drug treatments. Here we describe our protocol for visualizing and analyzing MLL-AF9 AML cell dynamics upon systemic inhibition of matrix metalloproteinases (MMP), combining confocal and two-photon microscopy and focusing on cell migration.
Collapse
Affiliation(s)
- Floriane S Tissot
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Sara Gonzalez-Anton
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
10
|
Choi S, Valente D, Virone‐Oddos A, Mauriac C. Developing a mechanistic translational PK/PD model for a trifunctional NK cell engager to predict the first-in-human dose for acute myeloid leukemia. Clin Transl Sci 2024; 17:e13689. [PMID: 37990450 PMCID: PMC10772472 DOI: 10.1111/cts.13689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023] Open
Abstract
Natural killer cell engagers (NKCEs), a treatment that stimulates innate immunity, have lately gained attention owing to their favorable safety profile, and their efficacy. Natural killer (NK) cell activation is driven by immune synapse formation between drugs, NK cells, and tumor cells. However, no clear translational modeling approach has been reported for first-in-human (FIH) dose estimation of humanized NKCEs. We developed the first translational mechanistic synapse-driven pharmacokinetic/pharmacodynamic (PK/PD) model for a trifunctional NKp46/CD16a-CD123 (CD123-NKCE) by integrating (i) in vitro target cell cytotoxicity in MOLM-13 tumor cell lines at varying effector-to-tumor cell ratios and incubation intervals; (ii) nonhuman primate PK and profiles of CD123+ cells and NKP46+ NK cells; and (iii) healthy human or patients with acute myeloid leukemia system-specific parameters. To depict direct tumor cell killing by the innate immunity, no transit compartment was included in PK/PD model structures. Model predictions suggested an intrapatient dose escalation of 10/30/100 μg/kg twice weekly to be selected as the starting dose in the FIH trial. However, sensitivity analyses revealed that CD123+ cell growth rate constant and maximal tumor killing rate constant were the key uncertainties to the recommended active dose. This novel translational model structure can be used as the basis to predict clinical PK/PD data for CD123-NKCE, and the translational strategy may serve as a foundation for future advancements of NKCEs.
Collapse
|
11
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
12
|
Jia B, Zhao C, Minagawa K, Shike H, Claxton DF, Ehmann WC, Rybka WB, Mineishi S, Wang M, Schell TD, Prabhu KS, Paulson RF, Zhang Y, Shultz LD, Zheng H. Acute Myeloid Leukemia Causes T Cell Exhaustion and Depletion in a Humanized Graft-versus-Leukemia Model. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1426-1437. [PMID: 37712758 DOI: 10.4049/jimmunol.2300111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is, in many clinical settings, the only curative treatment for acute myeloid leukemia (AML). The clinical benefit of alloSCT greatly relies on the graft-versus-leukemia (GVL) effect. However, AML relapse remains the top cause of posttransplant death; this highlights the urgent need to enhance GVL. Studies of human GVL have been hindered by the lack of optimal clinically relevant models. In this article, we report, the successful establishment of a novel (to our knowledge) humanized GVL model system by transplanting clinically paired donor PBMCs and patient AML into MHC class I/II knockout NSG mice. We observed significantly reduced leukemia growth in humanized mice compared with mice that received AML alone, demonstrating a functional GVL effect. Using this model system, we studied human GVL responses against human AML cells in vivo and discovered that AML induced T cell depletion, likely because of increased T cell apoptosis. In addition, AML caused T cell exhaustion manifested by upregulation of inhibitory receptors, increased expression of exhaustion-related transcription factors, and decreased T cell function. Importantly, combined blockade of human T cell-inhibitory pathways effectively reduced leukemia burden and reinvigorated CD8 T cell function in this model system. These data, generated in a highly clinically relevant humanized GVL model, not only demonstrate AML-induced inhibition of alloreactive T cells but also identify promising therapeutic strategies targeting T cell depletion and exhaustion for overcoming GVL failure and treating AML relapse after alloSCT.
Collapse
Affiliation(s)
- Bei Jia
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Chenchen Zhao
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Kentaro Minagawa
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Hiroko Shike
- Department of Pathology, Penn State University College of Medicine, Hershey, PA
| | - David F Claxton
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - W Christopher Ehmann
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Witold B Rybka
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Shin Mineishi
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
| | - Ming Wang
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Todd D Schell
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| | - K Sandeep Prabhu
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA
| | - Yi Zhang
- Center for Discovery and Innovation, Hackensack Meridian Health, Edison, NJ
| | - Leonard D Shultz
- Department of Immunology, The Jackson Laboratory, Bar Harbor, ME
| | - Hong Zheng
- Penn State Cancer Institute, Penn State University College of Medicine, Hershey, PA
- Department of Microbiology and Immunology, Penn State University College of Medicine, Hershey, PA
| |
Collapse
|
13
|
Wang Y, Zhang Z, He H, Song J, Cui Y, Chen Y, Zhuang Y, Zhang X, Li M, Zhang X, Zhang MQ, Shi M, Yi C, Wang J. Aging-induced pseudouridine synthase 10 impairs hematopoietic stem cells. Haematologica 2023; 108:2677-2689. [PMID: 37165848 PMCID: PMC10542847 DOI: 10.3324/haematol.2022.282211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/04/2023] [Indexed: 05/12/2023] Open
Abstract
Aged hematopoietic stem cells (HSC) exhibit compromised reconstitution capacity and differentiation-bias towards myeloid lineage, however, the molecular mechanism behind it remains not fully understood. In this study, we observed that the expression of pseudouridine (Ψ) synthase 10 is increased in aged hematopoietic stem and progenitor cells (HSPC) and enforced protein of Ψ synthase 10 (PUS10) recapitulates the phenotype of aged HSC, which is not achieved by its Ψ synthase activity. Consistently, we observed no difference of transcribed RNA pseudouridylation profile between young and aged HSPC. No significant alteration of hematopoietic homeostasis and HSC function is observed in young Pus10-/- mice, while aged Pus10-/- mice exhibit mild alteration of hematopoietic homeostasis and HSC function. Moreover, we observed that PUS10 is ubiquitinated by E3 ubiquitin ligase CRL4DCAF1 complex and the increase of PUS10 in aged HSPC is due to aging-declined CRL4DCAF1- mediated ubiquitination degradation signaling. Taken together, this study for the first time evaluated the role of PUS10 in HSC aging and function, and provided a novel insight into HSC rejuvenation and its clinical application.
Collapse
Affiliation(s)
- Yuqian Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084
| | | | - Hanqing He
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084
| | - Jinghui Song
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Yang Cui
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084
| | - Yunan Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing
| | - Yuan Zhuang
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing
| | - Xiaoting Zhang
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191
| | - Xinxiang Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing
| | - Michael Q Zhang
- School of Medicine, Tsinghua University, Beijing 100084, China; MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for Synthetic and Systems Biology, BNRist; Department of Automation, Tsinghua University, Beijing 100084, China; Department of Biological Sciences, Center for Systems Biology, the University of Texas, Richardson, TX 75080-3021.
| | - Minglei Shi
- School of Medicine, Tsinghua University, Beijing 100084.
| | - Chengqi Yi
- Department of Basic Medical Sciences, School of Medicine, Institute for Immunology, Beijing Key Lab for Immunological Research on Chronic Diseases, THU-PKU Center for Life Sciences, Tsinghua University, Beijing.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084.
| |
Collapse
|
14
|
Humphries S, Bond DR, Germon ZP, Keely S, Enjeti AK, Dun MD, Lee HJ. Crosstalk between DNA methylation and hypoxia in acute myeloid leukaemia. Clin Epigenetics 2023; 15:150. [PMID: 37705055 PMCID: PMC10500762 DOI: 10.1186/s13148-023-01566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Acute myeloid leukaemia (AML) is a deadly disease characterised by the uncontrolled proliferation of immature myeloid cells within the bone marrow. Altered regulation of DNA methylation is an important epigenetic driver of AML, where the hypoxic bone marrow microenvironment can help facilitate leukaemogenesis. Thus, interactions between epigenetic regulation and hypoxia signalling will have important implications for AML development and treatment. MAIN BODY This review summarises the importance of DNA methylation and the hypoxic bone marrow microenvironment in the development, progression, and treatment of AML. Here, we focus on the role hypoxia plays on signalling and the subsequent regulation of DNA methylation. Hypoxia is likely to influence DNA methylation through altered metabolic pathways, transcriptional control of epigenetic regulators, and direct effects on the enzymatic activity of epigenetic modifiers. DNA methylation may also prevent activation of hypoxia-responsive genes, demonstrating bidirectional crosstalk between epigenetic regulation and the hypoxic microenvironment. Finally, we consider the clinical implications of these interactions, suggesting that reduced cell cycling within the hypoxic bone marrow may decrease the efficacy of hypomethylating agents. CONCLUSION Hypoxia is likely to influence AML progression through complex interactions with DNA methylation, where the therapeutic efficacy of hypomethylating agents may be limited within the hypoxic bone marrow. To achieve optimal outcomes for AML patients, future studies should therefore consider co-treatments that can promote cycling of AML cells within the bone marrow or encourage their dissociation from the bone marrow.
Collapse
Affiliation(s)
- Sam Humphries
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Danielle R Bond
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Zacary P Germon
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Immune Health Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Anoop K Enjeti
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
- Department of Haematology, Calvary Mater Hospital, Waratah, NSW, 2298, Australia
- New South Wales Health Pathology, John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Matthew D Dun
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | - Heather J Lee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|
15
|
Yue S, An J, Zhang Y, Li J, Zhao C, Liu J, Liang L, Sun H, Xu Y, Zhong Z. Exogenous Antigen Upregulation Empowers Antibody Targeted Nanochemotherapy of Leukemia. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209984. [PMID: 37321606 DOI: 10.1002/adma.202209984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Acute myeloid leukemia (AML) is afflicted by a high-mortality rate and few treatment options. The lack of specific surface antigens severely hampers the development of targeted therapeutics and cell therapy. Here, it is shown that exogenous all-trans retinoic acid (ATRA) mediates selective and transient CD38 upregulation on leukemia cells by up to 20-fold, which enables high-efficiency targeted nanochemotherapy of leukemia with daratumumab antibody-directed polymersomal vincristine sulfate (DPV). Strikingly, treatment of two CD38-low expressing AML orthotopic models with ATRA and DPV portfolio strategies effectively eliminates circulating leukemia cells and leukemia invasion into bone marrow and organs, leading to exceptional survival benefits with 20-40% of mice becoming leukemia-free. The combination of exogenous CD38 upregulation and antibody-directed nanotherapeutics provides a unique and powerful targeted therapy for leukemia.
Collapse
Affiliation(s)
- Shujing Yue
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Jingnan An
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Soochow University, Suzhou, 215007, P. R. China
| | - Cenzhu Zhao
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Jingyi Liu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Lanlan Liang
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Xu
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
16
|
Hockney S, Parker J, Turner JE, Todd X, Todryk S, Gieling RG, Hilgen G, Simoes DCM, Pal D. Next generation organoid engineering to replace animals in cancer drug testing. Biochem Pharmacol 2023; 213:115586. [PMID: 37164297 DOI: 10.1016/j.bcp.2023.115586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cancer therapies have several clinical challenges associated with them, namely treatment toxicity, treatment resistance and relapse. Due to factors ranging from patient profiles to the tumour microenvironment (TME), there are several hurdles to overcome in developing effective treatments that have low toxicity that can mitigate emergence of resistance and occurrence of relapse. De novo cancer development has the highest drug attrition rates with only 1 in 10,000 preclinical candidates reaching the market. To alleviate this high attrition rate, more mimetic and sustainable preclinical models that can capture the disease biology as in the patient, are required. Organoids and next generation 3D tissue engineering is an emerging area that aims to address this problem. Advancement of three-dimensional (3D) in vitro cultures into complex organoid models incorporating multiple cell types alongside acellular aspects of tissue microenvironments can provide a system for therapeutic testing. Development of microfluidic technologies have furthermore increased the biomimetic nature of these models. Additionally, 3D bio-printing facilitates generation of tractable ex vivo models in a controlled, scalable and reproducible manner. In this review we highlight some of the traditional preclinical models used in cancer drug testing and debate how next generation organoids are being used to replace not only animal models, but also some of the more elementary in vitro approaches, such as cell lines. Examples of applications of the various models will be appraised alongside the future challenges that still need to be overcome.
Collapse
Affiliation(s)
- Sean Hockney
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jessica Parker
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jasmin E Turner
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Xanthea Todd
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Stephen Todryk
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Roben Ger Gieling
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gerrit Hilgen
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Davina Camargo Madeira Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Deepali Pal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
17
|
Nizharadze T, Becker NB, Höfer T. Quantitating CD8 + T cell memory development. Trends Immunol 2023; 44:519-529. [PMID: 37277233 DOI: 10.1016/j.it.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 06/07/2023]
Abstract
In acute immune responses to infection, memory T cells develop that can spawn recall responses. This process has not been observable directly in vivo. Here we highlight the utility of mathematical inference to derive quantitatively testable models of mammalian CD8+ T cell memory development from complex experimental data. Previous inference studies suggested that precursors of memory T cells arise early during the immune response. Recent work has both validated a crucial prediction of this T cell diversification model and refined the model. While multiple developmental routes to distinct memory subsets might exist, a branch point occurs early in proliferating T cell blasts, from which separate differentiation pathways emerge for slowly dividing precursors of re-expandable memory cells and rapidly dividing effectors.
Collapse
Affiliation(s)
- Tamar Nizharadze
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany
| | - Nils B Becker
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Alberti G, Arsuffi C, Pievani A, Salerno D, Mantegazza F, Dazzi F, Biondi A, Tettamanti S, Serafini M. Engineering tandem CD33xCD146 CAR CIK (cytokine-induced killer) cells to target the acute myeloid leukemia niche. Front Immunol 2023; 14:1192333. [PMID: 37304257 PMCID: PMC10247966 DOI: 10.3389/fimmu.2023.1192333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
In acute myeloid leukemia (AML), malignant stem cells hijack the normal bone marrow niche where they are largely protected from the current therapeutic approaches. Thus, eradicating these progenitors is the ultimate challenge in the treatment of this disease. Specifically, the development of chimeric antigen receptors (CARs) against distinct mesenchymal stromal cell subpopulations involved in the maintenance of leukemic stem cells within the malignant bone marrow microenvironment could represent a new strategy to improve CAR T-cell therapy efficacy, which is still unsuccessful in AML. As a proof of concept, we generated a novel prototype of Tandem CAR, with one specificity directed against the leukemic cell marker CD33 and the other against the mesenchymal stromal cell marker CD146, demonstrating its capability of simultaneously targeting two different cell types in a 2D co-culture system. Interestingly, we could also observe an in vitro inhibition of CAR T cell functionality mediated by stromal cells, particularly in later effector functions, such as reduction of interferon-gamma and interleukin-2 release and impaired proliferation of the CAR+ effector Cytokine-Induced Killer (CIK) cells. Taken together, these data demonstrate the feasibility of a dual targeting model against two molecules, which are expressed on two different target cells, but also highlight the immunomodulatory effect on CAR CIK cells exerted by stromal cells, confirming that the niche could be an obstacle to the efficacy of CAR T cells. This aspect should be considered in the development of novel CAR T cell approaches directed against the AML bone marrow niche.
Collapse
Affiliation(s)
- Gaia Alberti
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Corinne Arsuffi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Alice Pievani
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Domenico Salerno
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Universita di Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Francesco Mantegazza
- School of Medicine and Surgery, BioNanoMedicine Center NANOMIB, Universita di Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Francesco Dazzi
- School of Cardiovascular Sciences, King’s College London, London, United Kingdom
| | - Andrea Biondi
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza (MB), Italy
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Sarah Tettamanti
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Marta Serafini
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
19
|
Ma J, Wen X, Xu Z, Xia P, Jin Y, Lin J, Qian J. Abnormal regulation of miR-29b-ID1 signaling is involved in the process of decitabine resistance in leukemia cells. Cell Cycle 2023; 22:1215-1231. [PMID: 37032592 PMCID: PMC10193880 DOI: 10.1080/15384101.2023.2200312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Decitabine (DAC) is an inhibitor of DNA methyltransferase used to treat leukemia, but primary or secondary resistance to DAC may develop during therapy. The mechanisms related to DAC resistance remain poorly understood. In this study, we find that miR-29b expression was decreased in various leukemia cell lines and AML patients and was associated with poor prognosis. In DAC-sensitive cells, miR-29b inhibited cell growth, promoted apoptosis, and increased the sensitivity to DAC. Similarly, it exerted anti-leukemic effects in DAC-resistant cells. When the miR-29b promoter in DAC-resistant cells was demethylated, its expression was not up-regulated. Furthermore, the expression of ID1, one of the target genes of miR-29b, was down-regulated in miR-29b transfected leukemic cells. ID1 promoted cell growth, inhibited cell apoptosis, and decreased DAC sensitivity in leukemic cells in vitro and in vivo. ID1 was down-regulated in DAC-sensitive cells treated with DAC, while it was up-regulated in DAC-resistant cells. Interestingly, the ID1 promoter region was completely unmethylated in both DAC-resistant cells and sensitive cells before DAC treatment. The growth inhibition, increased DAC sensitivity, and apoptosis induced by miR-29b can be eliminated by increasing ID1 expression. These results suggested that DAC regulates ID1 expression by acting on miR-29b. Abnormal ID1 expression of ID1 that is methylation independent and induced by miR-29b may be involved in the process of leukemia cells acquiring DAC resistance.
Collapse
Affiliation(s)
- Jichun Ma
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiangmei Wen
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zijun Xu
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peihui Xia
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiang Lin
- Department of central lab, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Hematology, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
20
|
Zhao X, Wang Z, Ji X, Bu S, Fang P, Wang Y, Wang M, Yang Y, Zhang W, Leung AY, Shi P. Discrete single-cell microRNA analysis for phenotyping the heterogeneity of acute myeloid leukemia. Biomaterials 2022; 291:121869. [DOI: 10.1016/j.biomaterials.2022.121869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 11/28/2022]
|
21
|
Jolly A, Fanti AK, Kongsaysak-Lengyel C, Claudino N, Gräßer I, Becker NB, Höfer T. CycleFlow simultaneously quantifies cell-cycle phase lengths and quiescence in vivo. CELL REPORTS METHODS 2022; 2:100315. [PMID: 36313807 PMCID: PMC9606136 DOI: 10.1016/j.crmeth.2022.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 07/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
Populations of stem, progenitor, or cancer cells show proliferative heterogeneity in vivo, comprising proliferating and quiescent cells. Consistent quantification of the quiescent subpopulation and progression of the proliferating cells through the individual phases of the cell cycle has not been achieved. Here, we describe CycleFlow, a method that robustly infers this comprehensive information from standard pulse-chase experiments with thymidine analogs. Inference is based on a mathematical model of the cell cycle, with realistic waiting time distributions for the G1, S, and G2/M phases and a long-term quiescent G0 state. We validate CycleFlow with an exponentially growing cancer cell line in vitro. Applying it to T cell progenitors in steady state in vivo, we uncover strong proliferative heterogeneity, with a minority of CD4+CD8+ T cell progenitors cycling very rapidly and then entering quiescence. CycleFlow is suitable as a routine method for quantitative cell-cycle analysis.
Collapse
Affiliation(s)
- Adrien Jolly
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ann-Kathrin Fanti
- Division of Cellular Immunology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Nina Claudino
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ines Gräßer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Nils B. Becker
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
22
|
Pal D, Blair H, Parker J, Hockney S, Beckett M, Singh M, Tirtakusuma R, Nelson R, McNeill H, Angel SH, Wilson A, Nizami S, Nakjang S, Zhou P, Schwab C, Sinclair P, Russell LJ, Coxhead J, Halsey C, Allan JM, Harrison CJ, Moorman AV, Heidenreich O, Vormoor J. hiPSC-derived bone marrow milieu identifies a clinically actionable driver of niche-mediated treatment resistance in leukemia. Cell Rep Med 2022; 3:100717. [PMID: 35977468 PMCID: PMC9418860 DOI: 10.1016/j.xcrm.2022.100717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 05/18/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022]
Abstract
Leukemia cells re-program their microenvironment to augment blast proliferation and enhance treatment resistance. Means of clinically targeting such niche-driven treatment resistance remain ambiguous. We develop human induced pluripotent stem cell (hiPSC)-engineered niches to reveal druggable cancer-niche dependencies. We reveal that mesenchymal (iMSC) and vascular niche-like (iANG) hiPSC-derived cells support ex vivo proliferation of patient-derived leukemia cells, affect dormancy, and mediate treatment resistance. iMSCs protect dormant and cycling blasts against dexamethasone, while iANGs protect only dormant blasts. Leukemia proliferation and protection from dexamethasone-induced apoptosis is dependent on cancer-niche interactions mediated by CDH2. Consequently, we test CDH2 antagonist ADH-1 (previously in Phase I/II trials for solid tumors) in a very aggressive patient-derived xenograft leukemia mouse model. ADH-1 shows high in vivo efficacy; ADH-1/dexamethasone combination is superior to dexamethasone alone, with no ADH-1-conferred additional toxicity. These findings provide a proof-of-concept starting point to develop improved, potentially safer therapeutics targeting niche-mediated cancer dependencies in blood cancers.
Collapse
Affiliation(s)
- Deepali Pal
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK.
| | - Helen Blair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Jessica Parker
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Sean Hockney
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST UK
| | - Melanie Beckett
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Mankaran Singh
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Ricky Tirtakusuma
- Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Ryan Nelson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Hesta McNeill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Sharon H Angel
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Aaron Wilson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Salem Nizami
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Sirintra Nakjang
- Bioinformatics Support Unit, William Leech Building, The Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Peixun Zhou
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Claire Schwab
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Paul Sinclair
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Lisa J Russell
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Jonathan Coxhead
- Genomics Core Facility, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| | - Christina Halsey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow, G61 1QH UK
| | - James M Allan
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Christine J Harrison
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Anthony V Moorman
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK
| | - Olaf Heidenreich
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Josef Vormoor
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Herschel Building Level 6, Brewery Lane, Newcastle upon Tyne, NE1 7RU UK; Princess Maxima Centrum for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
23
|
Dozzo A, Galvin A, Shin JW, Scalia S, O'Driscoll CM, Ryan KB. Modelling acute myeloid leukemia (AML): What's new? A transition from the classical to the modern. Drug Deliv Transl Res 2022:10.1007/s13346-022-01189-4. [PMID: 35930221 DOI: 10.1007/s13346-022-01189-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 11/24/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy affecting myeloid cells in the bone marrow (BM) but can spread giving rise to impaired hematopoiesis. AML incidence increases with age and is associated with poor prognostic outcomes. There has been a disconnect between the success of novel drug compounds observed in preclinical studies of hematological malignancy and less than exceptional therapeutic responses in clinical trials. This review aims to provide a state-of-the-art overview on the different preclinical models of AML available to expand insights into disease pathology and as preclinical screening tools. Deciphering the complex physiological and pathological processes and developing predictive preclinical models are key to understanding disease progression and fundamental in the development and testing of new effective drug treatments. Standard scaffold-free suspension models fail to recapitulate the complex environment where AML occurs. To this end, we review advances in scaffold/matrix-based 3D models and outline the most recent advances in on-chip technology. We also provide an overview of clinically relevant animal models and review the expanding use of patient-derived samples, which offer the prospect to create more "patient specific" screening tools either in the guise of 3D matrix models, microphysiological "organ-on-chip" tools or xenograft models and discuss representative examples.
Collapse
Affiliation(s)
| | - Aoife Galvin
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, 909 S. Wolcott Ave, Chicago, IL, 5091 COMRB, USA
| | - Santo Scalia
- Università degli Studi di Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Caitriona M O'Driscoll
- School of Pharmacy, University College Cork, Cork, Ireland.,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland
| | - Katie B Ryan
- School of Pharmacy, University College Cork, Cork, Ireland. .,SSPC Centre for Pharmaceutical Research, School of Pharmacy, University College Cork, Cork, Ireland.
| |
Collapse
|
24
|
Morcos MNF, Li C, Munz CM, Greco A, Dressel N, Reinhardt S, Sameith K, Dahl A, Becker NB, Roers A, Höfer T, Gerbaulet A. Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis. Nat Commun 2022; 13:4504. [PMID: 35922411 PMCID: PMC9349191 DOI: 10.1038/s41467-022-31914-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Hematopoietic stem cells (HSCs) produce highly diverse cell lineages. Here, we chart native lineage pathways emanating from HSCs and define their physiological regulation by computationally integrating experimental approaches for fate mapping, mitotic tracking, and single-cell RNA sequencing. We find that lineages begin to split when cells leave the tip HSC population, marked by high Sca-1 and CD201 expression. Downstream, HSCs either retain high Sca-1 expression and the ability to generate lymphocytes, or irreversibly reduce Sca-1 level and enter into erythro-myelopoiesis or thrombopoiesis. Thrombopoiesis is the sum of two pathways that make comparable contributions in steady state, a long route via multipotent progenitors and CD48hi megakaryocyte progenitors (MkPs), and a short route from HSCs to developmentally distinct CD48−/lo MkPs. Enhanced thrombopoietin signaling differentially accelerates the short pathway, enabling a rapid response to increasing demand. In sum, we provide a blueprint for mapping physiological differentiation fluxes from HSCs and decipher two functionally distinct pathways of native thrombopoiesis. Hematopoietic stem cells produce diverse cell lineages. Here, the authors apply single-cell RNA-seq, computational integration of non-perturbative approaches for fate-mapping, and mitotic tracking to chart lineage decisions in native hematopoiesis and identify megakaryocyte progenitors that directly link HSCs to megakaryocytes.
Collapse
Affiliation(s)
- Mina N F Morcos
- Institute for Immunology, Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Congxin Li
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120, Heidelberg, Germany.,Institute for Biomedical Genetics, University of Stuttgart, 70569, Stuttgart, Germany
| | - Clara M Munz
- Institute for Immunology, Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Alessandro Greco
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany
| | - Nicole Dressel
- Institute for Immunology, Faculty of Medicine, TU Dresden, 01307, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Katrin Sameith
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, TU Dresden, 01307, Dresden, Germany
| | - Nils B Becker
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120, Heidelberg, Germany
| | - Axel Roers
- Institute for Immunology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center, 69120, Heidelberg, Germany. .,Faculty of Biosciences, Heidelberg University, 69120, Heidelberg, Germany.
| | - Alexander Gerbaulet
- Institute for Immunology, Faculty of Medicine, TU Dresden, 01307, Dresden, Germany.
| |
Collapse
|
25
|
Emmrich S, Trapp A, Tolibzoda Zakusilo F, Straight ME, Ying AK, Tyshkovskiy A, Mariotti M, Gray S, Zhang Z, Drage MG, Takasugi M, Klusmann J, Gladyshev VN, Seluanov A, Gorbunova V. Characterization of naked mole-rat hematopoiesis reveals unique stem and progenitor cell patterns and neotenic traits. EMBO J 2022; 41:e109694. [PMID: 35694726 PMCID: PMC9340489 DOI: 10.15252/embj.2021109694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Naked mole rats (NMRs) are the longest-lived rodents yet their stem cell characteristics remain enigmatic. Here, we comprehensively mapped the NMR hematopoietic landscape and identified unique features likely contributing to longevity. Adult NMRs form red blood cells in spleen and marrow, which comprise a myeloid bias toward granulopoiesis together with decreased B-lymphopoiesis. Remarkably, youthful blood and marrow single-cell transcriptomes and cell compositions are largely maintained until at least middle age. Similar to primates, the primitive stem and progenitor cell (HSPC) compartment is marked by CD34 and THY1. Stem cell polarity is seen for Tubulin but not CDC42, and is not lost until 12 years of age. HSPC respiration rates are as low as in purified human stem cells, in concert with a strong expression signature for fatty acid metabolism. The pool of quiescent stem cells is higher than in mice, and the cell cycle of hematopoietic cells is prolonged. By characterizing the NMR hematopoietic landscape, we identified resilience phenotypes such as an increased quiescent HSPC compartment, absence of age-related decline, and neotenic traits likely geared toward longevity.
Collapse
Affiliation(s)
| | | | | | | | - Albert K Ying
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Alexander Tyshkovskiy
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Marco Mariotti
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Spencer Gray
- Department of BiologyUniversity of RochesterRochesterNYUSA
| | - Zhihui Zhang
- Department of BiologyUniversity of RochesterRochesterNYUSA
| | - Michael G Drage
- Pathology and Laboratory MedicineUniversity of Rochester Medical CenterRochesterNYUSA
| | | | - Jan‐Henning Klusmann
- Pediatric Hematology and OncologyMartin‐Luther‐University Halle‐WittenbergHalleGermany
| | - Vadim N Gladyshev
- Division of GeneticsDepartment of MedicineBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | | | - Vera Gorbunova
- Department of BiologyUniversity of RochesterRochesterNYUSA
| |
Collapse
|
26
|
Pirillo C, Birch F, Tissot FS, Anton SG, Haltalli M, Tini V, Kong I, Piot C, Partridge B, Pospori C, Keeshan K, Santamaria S, Hawkins E, Falini B, Marra A, Duarte D, Lee CF, Roberts E, Lo Celso C. Metalloproteinase inhibition reduces AML growth, prevents stem cell loss, and improves chemotherapy effectiveness. Blood Adv 2022; 6:3126-3141. [PMID: 35157757 PMCID: PMC9131921 DOI: 10.1182/bloodadvances.2021004321] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/25/2022] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. Its prognosis remains poor, highlighting the need for new therapeutic and precision medicine approaches. AML symptoms often include cytopenias linked to loss of healthy hematopoietic stem and progenitor cells (HSPCs). The mechanisms behind HSPC decline are complex and still poorly understood. Here, intravital microscopy (IVM) of a well-established experimental model of AML allows direct observation of the interactions between healthy and malignant cells in the bone marrow (BM), suggesting that physical dislodgment of healthy cells by AML through damaged vasculature may play an important role. Multiple matrix metalloproteinases (MMPs), known to remodel extracellular matrix, are expressed by AML cells and the BM microenvironment. We reason MMPs could be involved in cell displacement and vascular leakiness; therefore, we evaluate the therapeutic potential of MMP pharmacological inhibition using the broad-spectrum inhibitor prinomastat. IVM analyses of prinomastat-treated mice reveal reduced vascular permeability and healthy cell clusters in circulation and lower AML infiltration, proliferation, and cell migration. Furthermore, treated mice have increased retention of healthy HSPCs in the BM and increased survival following chemotherapy. Analysis of a human AML transcriptomic database reveals widespread MMP deregulation, and human AML cells show susceptibility to MMP inhibition. Overall, our results suggest that MMP inhibition could be a promising complementary therapy to reduce AML growth and limit HSPC loss and BM vascular damage caused by MLL-AF9 and possibly other AML subtypes.
Collapse
Affiliation(s)
- Chiara Pirillo
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Flora Birch
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Floriane S. Tissot
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Sara Gonzalez Anton
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Myriam Haltalli
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Valentina Tini
- Institute of Haematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Isabella Kong
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | - Cécile Piot
- The Francis Crick Institute, London, United Kingdom
| | - Ben Partridge
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Constandina Pospori
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Karen Keeshan
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Edwin Hawkins
- The Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
| | - Brunangelo Falini
- Institute of Haematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Andrea Marra
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- Institute of Haematology, Centro di Ricerca Emato-Oncologica (CREO), University of Perugia, Perugia, Italy
| | - Delfim Duarte
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- Instituto de Investigação e Inovação em Saúde (i3S) Universidade do Porto, Porto, Portugal
- Department of Onco-Hematology, Instituto Português de Oncologia (IPO), Porto, Portugal; and
- Department of Biomedicine, Unit of Biochemistry, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Edward Roberts
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Jia Q, Chu H, Jin Z, Long H, Zhu B. High-throughput single-сell sequencing in cancer research. Signal Transduct Target Ther 2022; 7:145. [PMID: 35504878 PMCID: PMC9065032 DOI: 10.1038/s41392-022-00990-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/23/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022] Open
Abstract
With advances in sequencing and instrument technology, bioinformatics analysis is being applied to batches of massive cells at single-cell resolution. High-throughput single-cell sequencing can be utilized for multi-omics characterization of tumor cells, stromal cells or infiltrated immune cells to evaluate tumor progression, responses to environmental perturbations, heterogeneous composition of the tumor microenvironment, and complex intercellular interactions between these factors. Particularly, single-cell sequencing of T cell receptors, alone or in combination with single-cell RNA sequencing, is useful in the fields of tumor immunology and immunotherapy. Clinical insights obtained from single-cell analysis are critically important for exploring the biomarkers of disease progression or antitumor treatment, as well as for guiding precise clinical decision-making for patients with malignant tumors. In this review, we summarize the clinical applications of single-cell sequencing in the fields of tumor cell evolution, tumor immunology, and tumor immunotherapy. Additionally, we analyze the tumor cell response to antitumor treatment, heterogeneity of the tumor microenvironment, and response or resistance to immune checkpoint immunotherapy. The limitations of single-cell analysis in cancer research are also discussed.
Collapse
Affiliation(s)
- Qingzhu Jia
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Han Chu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.,Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Zheng Jin
- Research Institute, GloriousMed Clinical Laboratory Co., Ltd, Shanghai, 201318, China
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China. .,Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
28
|
Wang N, Yang B, Jin J, He Y, Wu X, Yang Y, Zhou W, He Z. Circular RNA circ_0040823 inhibits the proliferation of acute myeloid leukemia cells and induces apoptosis by regulating miR-516b/PTEN. J Gene Med 2021; 24:e3404. [PMID: 34913223 DOI: 10.1002/jgm.3404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/26/2021] [Accepted: 12/13/2021] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Endogenous circular RNAs (circRNAs) and microRNAs (miRNAs) have been shown to regulate the pathogenesis of acute myeloid leukemia (AML). The current study aimed to identify the role of circRNA 0040823 (circ_0040823) in AML. METHODS Microarray datasets were analyzed to identify differentially expressed circRNAs in AML patients. Peripheral blood samples were obtained from healthy volunteers and AML patients for the measurement of circ_0040823 and miR-516b levels. The overexpression or knockdown of a target gene in AML cells was achieved by the transfection with lentiviral vectors or small interfering RNAs. BALB/c nude mice were inoculated with AML cells and monitored for tumor growth. Dual-luciferase reporter assay, RNA immunoprecipitation, and RNA pull-down assay were used to determine the binding relationship between circRNA and miRNA. RESULTS circ_0040823 was significantly downregulated in AML patients and leukemia cells. Overexpression of circ_0040823 inhibited AML cell proliferation, and induced apoptosis and cell cycle arrest. Upregulation of circ_0040823 also repressed the growth of xenograft tumors in vivo. circ_0040823 acted as a miR-516b sponge and regulated key cellular events in leukemia cells via downregulating miR-516b. Moreover, tumor suppressor phosphatase and tensin homolog (PTEN) was a downstream target of miR-516b. The inhibition of miR-516b impaired the proliferation capacity of leukemia cells and induced apoptosis, while PTEN deficiency attenuated these effects. CONCLUSION This study showed that circ_0040823 inhibited proliferation and induced apoptosis of AML cells by sponging miR-516b, thereby diminishing the regulatory effect of miR-516b on PTEN. These findings identified circ_0040823/miR-516b/PTEN as a new therapeutic target for AML.
Collapse
Affiliation(s)
- Nianxue Wang
- Department of Immunology, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Bin Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Jiao Jin
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Yu He
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Xijun Wu
- Department of Clinical Lab, The Second People's Hospital of Guiyang, Guiyang City, Guizhou Province, China
| | - Yichen Yang
- Department of Central Laboratory, Guizhou Provincial People's Hospital, Guiyang City, Guizhou Province, China
| | - Weijun Zhou
- Department of Immunology, Guizhou Medical University, Guiyang City, Guizhou Province, China
| | - Zhixu He
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang City, Guizhou Province, China.,Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi City, Guizhou Province, China
| |
Collapse
|
29
|
Shi M, Niu J, Niu X, Guo H, Bai Y, Shi J, Li W, Sun K, Chen Y, Shao F. Lin28A/CENPE Promoting the Proliferation and Chemoresistance of Acute Myeloid Leukemia. Front Oncol 2021; 11:763232. [PMID: 34868981 PMCID: PMC8632764 DOI: 10.3389/fonc.2021.763232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
The prognosis of chemoresistant acute myeloid leukemia (AML) is still poor, mainly owing to the sustained proliferation ability of leukemic cells, while the microtubules have a major role in sustaining the continuity of cell cycle. In the present study, we have identified CENPE, a microtubular kinesin-like motor protein that is highly expressed in the peripheral blood of patients with chemoresistant AML. In our in vitro studies, knockdown of CENPE expression resulted in the suppression of proliferation of myeloid leukemia cells and reversal of cytarabine (Ara-C) chemoresistance. Furthermore, Lin28A, one of the RNA-binding oncogene proteins that increase cell proliferation and invasion and contribute to unfavorable treatment responses in certain malignancies, was found to be remarkably correlated with CENPE expression in chemoresistance AML. Overexpression of LIN28A promoted the proliferation and Ara-C chemoresistance of leukemic cells. RIP assay, RNA pull-down, and dual luciferase reporter analyses indicated that LIN28A bound specifically to the promoter region GGAGA of CENPE. In addition, the impacts of LIN28A on cell growth, apoptosis, cell cycle progression, and Ara-C chemoresistance were reverted by the knockdown of CENPE. Hence, Lin28A/CENPE has enhanced the proliferation and chemoresistance of AML, and therefore, it could be a prospective candidate for AML treatment.
Collapse
Affiliation(s)
- Mingyue Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Junwei Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaona Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Honggang Guo
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Yanliang Bai
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Jie Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Weiya Li
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Kai Sun
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuqing Chen
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Fengmin Shao
- Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Cosgrove J, Hustin LSP, de Boer RJ, Perié L. Hematopoiesis in numbers. Trends Immunol 2021; 42:1100-1112. [PMID: 34742656 DOI: 10.1016/j.it.2021.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
Hematopoiesis is a dynamic process in which stem and progenitor cells give rise to the ~1013 blood and immune cells distributed throughout the human body. We argue that a quantitative description of hematopoiesis can help consolidate existing data, identify knowledge gaps, and generate new hypotheses. Here, we review known numbers in murine and, where possible, human hematopoiesis, and consolidate murine numbers into a set of reference values. We present estimates of cell numbers, division and differentiation rates, cell size, and macromolecular composition for each hematopoietic cell type. We also propose guidelines to improve the reporting of measurements and highlight areas in which quantitative data are lacking. Overall, we show how quantitative approaches can be used to understand key properties of hematopoiesis.
Collapse
Affiliation(s)
- Jason Cosgrove
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Lucie S P Hustin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France.
| |
Collapse
|
31
|
Abstract
Cell cycle involves a series of changes that lead to cell growth and division. Cell cycle analysis is crucial to understand cellular responses to changing environmental conditions. Since its inception, flow cytometry has been particularly useful for cell cycle analysis at single cell level due to its speed and precision. Previously, flow cytometric cell cycle analysis relied solely on the measurement of cellular DNA content. Later, methods were developed for multiparametric analysis. This review explains the journey of flow cytometry to understand different molecular and cellular events underlying cell cycle using various protocols. Recent advances in the field that overcome the shortcomings of traditional flow cytometry and expand its scope for cell cycle studies are also discussed.
Collapse
|
32
|
Stetson LC, Balasubramanian D, Ribeiro SP, Stefan T, Gupta K, Xu X, Fourati S, Roe A, Jackson Z, Schauner R, Sharma A, Tamilselvan B, Li S, de Lima M, Hwang TH, Balderas R, Saunthararajah Y, Maciejewski J, LaFramboise T, Barnholtz-Sloan JS, Sekaly RP, Wald DN. Single cell RNA sequencing of AML initiating cells reveals RNA-based evolution during disease progression. Leukemia 2021; 35:2799-2812. [PMID: 34244611 PMCID: PMC8807029 DOI: 10.1038/s41375-021-01338-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/19/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The prognosis of most patients with AML is poor due to frequent disease relapse. The cause of relapse is thought to be from the persistence of leukemia initiating cells (LIC's) following treatment. Here we assessed RNA based changes in LICs from matched patient diagnosis and relapse samples using single-cell RNA sequencing. Previous studies on AML progression have focused on genetic changes at the DNA mutation level mostly in bulk AML cells and demonstrated the existence of DNA clonal evolution. Here we identified in LICs that the phenomenon of RNA clonal evolution occurs during AML progression. Despite the presence of vast transcriptional heterogeneity at the single cell level, pathway analysis identified common signaling networks involving metabolism, apoptosis and chemokine signaling that evolved during AML progression and become a signature of relapse samples. A subset of this gene signature was validated at the protein level in LICs by flow cytometry from an independent AML cohort and functional studies were performed to demonstrate co-targeting BCL2 and CXCR4 signaling may help overcome therapeutic challenges with AML heterogeneity. It is hoped this work will facilitate a greater understanding of AML relapse leading to improved prognostic biomarkers and therapeutic strategies to target LIC's.
Collapse
Affiliation(s)
- L C Stetson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | | | | | - Tammy Stefan
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Kalpana Gupta
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Xuan Xu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Anne Roe
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zachary Jackson
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Robert Schauner
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Ashish Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Samuel Li
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Marcos de Lima
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Tae Hyun Hwang
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | | | - Yogen Saunthararajah
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Jaroslaw Maciejewski
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Thomas LaFramboise
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - David N Wald
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
- Department of Pathology, University Hospitals Cleveland Medical Center and Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
| |
Collapse
|
33
|
Duchmann M, Laplane L, Itzykson R. Clonal Architecture and Evolutionary Dynamics in Acute Myeloid Leukemias. Cancers (Basel) 2021; 13:4887. [PMID: 34638371 PMCID: PMC8507870 DOI: 10.3390/cancers13194887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022] Open
Abstract
Acute myeloid leukemias (AML) results from the accumulation of genetic and epigenetic alterations, often in the context of an aging hematopoietic environment. The development of high-throughput sequencing-and more recently, of single-cell technologies-has shed light on the intratumoral diversity of leukemic cells. Taking AML as a model disease, we review the multiple sources of genetic, epigenetic, and functional heterogeneity of leukemic cells and discuss the definition of a leukemic clone extending its definition beyond genetics. After introducing the two dimensions contributing to clonal diversity, namely, richness (number of leukemic clones) and evenness (distribution of clone sizes), we discuss the mechanisms at the origin of clonal emergence (mutation rate, number of generations, and effective size of the leukemic population) and the causes of clonal dynamics. We discuss the possible role of neutral drift, but also of cell-intrinsic and -extrinsic influences on clonal fitness. After reviewing available data on the prognostic role of genetic and epigenetic diversity of leukemic cells on patients' outcome, we discuss how a better understanding of AML as an evolutionary process could lead to the design of novel therapeutic strategies in this disease.
Collapse
Affiliation(s)
- Matthieu Duchmann
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université de Paris, 75010 Paris, France;
- Laboratoire d’Hématologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
| | - Lucie Laplane
- Institut d’Histoire et Philosophie des Sciences et des Techniques UMR 8590, CNRS, Université Paris 1 Panthéon-Sorbonne, 75010 Paris, France;
- Gustave Roussy Cancer Center, UMR1287, 94805 Villejuif, France
| | - Raphael Itzykson
- Génomes, Biologie Cellulaire et Thérapeutique U944, INSERM, CNRS, Université de Paris, 75010 Paris, France;
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 75010 Paris, France
| |
Collapse
|
34
|
Kretschmer L, Busch DH, Buchholz VR. A Single-Cell Perspective on Memory T-Cell Differentiation. Cold Spring Harb Perspect Biol 2021; 13:a038067. [PMID: 33903160 PMCID: PMC8411955 DOI: 10.1101/cshperspect.a038067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Memory differentiation of CD4 and CD8 T-cell populations has been extensively studied and many key molecular players and transcriptional networks have been identified. But how regulatory principles, identified on this population level, translate to immune responses that originate from single antigen-specific T cells is only now being elucidated. Here, we provide a short summary of the approaches used for mapping the fate of individual T cells and their progeny in vivo. We then highlight which major questions, with respect to memory T-cell differentiation, have been addressed by studying the development of single-cell-derived T-cell families during infection or vaccination. We discuss how fate decisions of single T cells are modulated by the affinity of their TCR and further shaped through a coregulation of T-cell differentiation and T-cell proliferation. These current findings indicate the early segregation into slowly dividing T central memory precursors (CMPs) and rapidly dividing non-CMPs, as a key event that separates the developmental paths of long- and short-lived T cells.
Collapse
Affiliation(s)
- Lorenz Kretschmer
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich 81675, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich (TUM), Munich 81675 , Germany
| |
Collapse
|
35
|
Loss of erythroblasts in acute myeloid leukemia causes iron redistribution with clinical implications. Blood Adv 2021; 5:3102-3112. [PMID: 34402883 DOI: 10.1182/bloodadvances.2021004373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with poor prognosis and limited treatment strategies. Determining the role of cell-extrinsic regulators of leukemic cells is vital to gain clinical insights into the biology of AML. Iron is a key extrinsic regulator of cancer, but its systemic regulation remains poorly explored in AML. To address this question, we studied iron metabolism in patients with AML at diagnosis and explored the mechanisms involved using the syngeneic MLL-AF9-induced AML mouse model. We found that AML is a disorder with a unique iron profile, not associated with inflammation or transfusion, characterized by high ferritin, low transferrin, high transferrin saturation (TSAT), and high hepcidin. The increased TSAT in particular, contrasts with observations in other cancer types and in anemia of inflammation. Using the MLL-AF9 mouse model of AML, we demonstrated that the AML-induced loss of erythroblasts is responsible for iron redistribution and increased TSAT. We also show that AML progression is delayed in mouse models of systemic iron overload and that elevated TSAT at diagnosis is independently associated with increased overall survival in AML. We suggest that TSAT may be a relevant prognostic marker in AML.
Collapse
|
36
|
Miharada N, Rydström A, Rak J, Larsson J. Uncoupling key determinants of hematopoietic stem cell engraftment through cell-specific and temporally controlled recipient conditioning. Stem Cell Reports 2021; 16:1705-1717. [PMID: 34171287 PMCID: PMC8282468 DOI: 10.1016/j.stemcr.2021.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/03/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are typically characterized by transplantation into irradiated hosts in a highly perturbed microenvironment. Here, we show that selective and temporally controlled depletion of resident HSCs through genetic deletion of Gata2 constitutes efficient recipient conditioning for transplantation without irradiation. Strikingly, we achieved robust engraftment of donor HSCs even when delaying Gata2 deletion until 4 weeks after transplantation, allowing homing and early localization to occur in a completely non-perturbed environment. When HSCs from the congenic strains Ly5.1 and Ly5.2 were competitively transplanted, we found that the more proliferative state of Ly5.2 HSCs was associated with superior long-term engraftment when using conditioning by standard irradiation, while higher CXCR4 expression and a better homing ability of Ly5.1 HSCs strongly favored the outcome in our inducible HSC depletion model. Thus, the mode and timing of recipient conditioning challenges distinct functional features of transplanted HSCs. Inducible gene deletion of Gata2 rapidly and selectively depletes the HSC pool Gata2 deletion constitutes efficient recipient conditioning for HSC transplantation The model enables detection of HSC engraftment in a non-perturbed microenvironment Transplantation without irradiation uniquely challenges homing properties of HSCs
Collapse
Affiliation(s)
- Natsumi Miharada
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Justyna Rak
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden.
| |
Collapse
|
37
|
Chantkran W, Hsieh YC, Zheleva D, Frame S, Wheadon H, Copland M. Interrogation of novel CDK2/9 inhibitor fadraciclib (CYC065) as a potential therapeutic approach for AML. Cell Death Dis 2021; 7:137. [PMID: 34112754 PMCID: PMC8192769 DOI: 10.1038/s41420-021-00496-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/04/2021] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Over the last 50 years, there has been a steady improvement in the treatment outcome of acute myeloid leukemia (AML). However, median survival in the elderly is still poor due to intolerance to intensive chemotherapy and higher numbers of patients with adverse cytogenetics. Fadraciclib (CYC065), a novel cyclin-dependent kinase (CDK) 2/9 inhibitor, has preclinical efficacy in AML. In AML cell lines, myeloid cell leukemia 1 (MCL-1) was downregulated following treatment with fadraciclib, resulting in a rapid induction of apoptosis. In addition, RNA polymerase II (RNAPII)-driven transcription was suppressed, rendering a global gene suppression. Rapid induction of apoptosis was observed in primary AML cells after treatment with fadraciclib for 6-8 h. Twenty-four hours continuous treatment further increased efficacy of fadraciclib. Although preliminary results showed that AML cell lines harboring KMT2A rearrangement (KMT2A-r) are more sensitive to fadraciclib, we found that the drug can induce apoptosis and decrease MCL-1 expression in primary AML cells, regardless of KMT2A status. Importantly, the diversity of genetic mutations observed in primary AML patient samples was associated with variable response to fadraciclib, confirming the need for patient stratification to enable a more effective and personalized treatment approach. Synergistic activity was demonstrated when fadraciclib was combined with the BCL-2 inhibitor venetoclax, or the conventional chemotherapy agents, cytarabine, or azacitidine, with the combination of fadraciclib and azacitidine having the most favorable therapeutic window. In summary, these results highlight the potential of fadraciclib as a novel therapeutic approach for AML.
Collapse
Affiliation(s)
- Wittawat Chantkran
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK ,grid.10223.320000 0004 1937 0490Department of Pathology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Ya-Ching Hsieh
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | - Sheelagh Frame
- grid.481607.c0000 0004 0397 2104Cyclacel Limited, Dundee, UK
| | - Helen Wheadon
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- grid.8756.c0000 0001 2193 314XPaul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
38
|
Jäger P, Geyh S, Twarock S, Cadeddu RP, Rabes P, Koch A, Maus U, Hesper T, Zilkens C, Rautenberg C, Bormann F, Köhrer K, Petzsch P, Wieczorek D, Betz B, Surowy H, Hildebrandt B, Germing U, Kobbe G, Haas R, Schroeder T. Acute myeloid leukemia-induced functional inhibition of healthy CD34+ hematopoietic stem and progenitor cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1270-1284. [PMID: 34013984 DOI: 10.1002/stem.3387] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Accepted: 03/21/2021] [Indexed: 11/11/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by an expansion of leukemic cells and a simultaneous reduction of normal hematopoietic precursors in the bone marrow (BM) resulting in hematopoietic insufficiency, but the underlying mechanisms are poorly understood in humans. Assuming that leukemic cells functionally inhibit healthy CD34+ hematopoietic stem and progenitor cells (HSPC) via humoral factors, we exposed healthy BM-derived CD34+ HSPC to cell-free supernatants derived from AML cell lines as well as from 24 newly diagnosed AML patients. Exposure to AML-derived supernatants significantly inhibited proliferation, cell cycling, colony formation, and differentiation of healthy CD34+ HSPC. RNA sequencing of healthy CD34+ HSPC after exposure to leukemic conditions revealed a specific signature of genes related to proliferation, cell-cycle regulation, and differentiation, thereby reflecting their functional inhibition on a molecular level. Experiments with paired patient samples showed that these inhibitory effects are markedly related to the immunomagnetically enriched CD34+ leukemic cell population. Using PCR, ELISA, and RNA sequencing, we detected overexpression of TGFβ1 in leukemic cells on the transcriptional and protein level and, correspondingly, a molecular signature related to TGFβ1 signaling in healthy CD34+ HSPC. This inhibitory effect of TGFβ1 on healthy hematopoiesis was functionally corrobated and could be pharmacologically reverted by SD208, an inhibitor of TGFβ receptor 1 signaling. Overall, these data indicate that leukemic cells induce functional inhibition of healthy CD34+ HSPC, at least in part, through TGFβ1, suggesting that blockage of this pathway may improve hematopoiesis in AML.
Collapse
Affiliation(s)
- Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stefanie Geyh
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sören Twarock
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ron-Patrick Cadeddu
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Pablo Rabes
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Annemarie Koch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Uwe Maus
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tobias Hesper
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Zilkens
- Department of Orthopaedies and Hand Surgery, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christina Rautenberg
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Beate Betz
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Harald Surowy
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Barbara Hildebrandt
- Institute of Human Genetics, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Schroeder
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
39
|
Tak T, Prevedello G, Simon G, Paillon N, Benlabiod C, Marty C, Plo I, Duffy KR, Perié L. HSPCs display within-family homogeneity in differentiation and proliferation despite population heterogeneity. eLife 2021; 10:60624. [PMID: 34002698 PMCID: PMC8175087 DOI: 10.7554/elife.60624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
High-throughput single-cell methods have uncovered substantial heterogeneity in the pool of hematopoietic stem and progenitor cells (HSPCs), but how much instruction is inherited by offspring from their heterogeneous ancestors remains unanswered. Using a method that enables simultaneous determination of common ancestor, division number, and differentiation status of a large collection of single cells, our data revealed that murine cells that derived from a common ancestor had significant similarities in their division progression and differentiation outcomes. Although each family diversifies, the overall collection of cell types observed is composed of homogeneous families. Heterogeneity between families could be explained, in part, by differences in ancestral expression of cell surface markers. Our analyses demonstrate that fate decisions of cells are largely inherited from ancestor cells, indicating the importance of common ancestor effects. These results may have ramifications for bone marrow transplantation and leukemia, where substantial heterogeneity in HSPC behavior is observed.
Collapse
Affiliation(s)
- Tamar Tak
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Giulio Prevedello
- Institut Curie, PSL Research University, CNRS, Orsay, France.,Université Paris-Saclay, Saclay, France
| | - Gaël Simon
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Noémie Paillon
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Camélia Benlabiod
- INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France.,Université de Paris, Paris, France
| | - Caroline Marty
- Université Paris-Saclay, Saclay, France.,INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Isabelle Plo
- Université Paris-Saclay, Saclay, France.,INSERM, UMR1287, Gustave Roussy, Villejuif, France.,Gustave Roussy, Villejuif, France
| | - Ken R Duffy
- Hamilton Institute, Maynooth University, Co Kildare, Ireland
| | - Leïla Perié
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| |
Collapse
|
40
|
Abstract
The thymidine analogues BrdU (5-bromo-2´-deoxyuridine) and EdU (5-ethynyl-2´-deoxyuridine) are routinely used for determination of the cells synthesizing DNA in the S-phase of the cell cycle. Availability of the anti-BrdU antibody clone MoBu-1 detecting only BrdU allowed to develop a method for the sequential DNA labelling by these two thymidine analogues for determining the cell cycle kinetic parameters.In the current step-by-step protocol, we present` two approaches optimized for in vivo study of the cell cycle and the limitations that such approaches imply: (1) determination of the cell flow rate into the G2-phase by dual EdU/BrdU DNA-labelling method and (2) determination of the outflow of DNA-labelled cells arising from the mitosis.
Collapse
|
41
|
Yamaguchi T, Kawamoto E, Gaowa A, Park EJ, Shimaoka M. Remodeling of Bone Marrow Niches and Roles of Exosomes in Leukemia. Int J Mol Sci 2021; 22:ijms22041881. [PMID: 33668652 PMCID: PMC7918833 DOI: 10.3390/ijms22041881] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/23/2021] [Accepted: 02/11/2021] [Indexed: 12/15/2022] Open
Abstract
Leukemia is a hematological malignancy that originates from hematopoietic stem cells in the bone marrow. Significant progress has made in understanding its pathogensis and in establishing chemotherapy and hematopoietic stem cell transplantation therapy (HSCT). However, while the successive development of new therapies, such as molecular-targeted therapy and immunotherapy, have resulted in remarkable advances, the fact remains that some patients still cannot be saved, and resistance to treatment and relapse are still problems that need to be solved in leukemia patients. The bone marrow (BM) niche is a microenvironment that includes hematopoietic stem cells and their supporting cells. Leukemia cells interact with bone marrow niches and modulate them, not only inducing molecular and functional changes but also switching to niches favored by leukemia cells. The latter are closely associated with leukemia progression, suppression of normal hematopoiesis, and chemotherapy resistance, which is precisely the area of ongoing study. Exosomes play an important role in cell-to-cell communication, not only with cells in close proximity but also with those more distant due to the nature of exosomal circulation via body fluids. In leukemia, exosomes play important roles in leukemogenesis, disease progression, and organ invasion, and their usefulness in the diagnosis and treatment of leukemia has recently been reported. The interaction between leukemia cell-derived exosomes and the BM microenvironment has received particular attention. Their interaction is believed to play a very important role; in addition to their diagnostic value, exosomes could serve as a marker for monitoring treatment efficacy and as an aid in overcoming drug resistance, among the many problems in leukemia patients that have yet to be overcome. In this paper, we will review bone marrow niches in leukemia, findings on leukemia-derived exosomes, and exosome-induced changes in bone marrow niches.
Collapse
Affiliation(s)
- Takanori Yamaguchi
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
- Department of Emergency and Disaster Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu-City, Mie 514-8507, Japan; (T.Y.); (E.K.); (A.G.); (E.J.P.)
- Correspondence: ; Tel.: +81-59-232-5036; Fax: +81-59-231-5209
| |
Collapse
|
42
|
Understanding of the crosstalk between normal residual hematopoietic stem cells and the leukemic niche in acute myeloid leukemia. Exp Hematol 2021; 95:23-30. [PMID: 33497761 DOI: 10.1016/j.exphem.2021.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease, yet clinically most patients present with pancytopenia resulting from bone marrow failure, predisposing them to life-threatening infections and bleeding. The mechanisms by which AML mediates hematopoietic suppression is not well known. Indeed, much effort has so far been focused on how AML remodels the bone marrow niche to make it a more permissive environment, with less focus on how the remodeled niche affects normal hematopoietic cells. In this perspective, we present evidence of the key role of the bone marrow niche in suppressing hematopoietic stem cells (HSCs) during leukemic progression and provide perspectives on how future research on this topic may be exploited to provide treatments for one of the key complications of AML.
Collapse
|
43
|
The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers (Basel) 2021; 13:cancers13020217. [PMID: 33435306 PMCID: PMC7827690 DOI: 10.3390/cancers13020217] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Multiple Myeloma (MM) is a hematologic malignancy caused by aberrant plasma cell proliferation in the bone marrow (BM) and constitutes the second most common hematological disease after non-Hodgkin lymphoma. The disease progression is drastically regulated by the immunosuppressive tumor microenvironment (TME) generated by soluble factors and different cells that naturally reside in the BM. This microenvironment does not remain unchanged and alterations favor cancer dissemination. Despite therapeutic advances over the past 15 years, MM remains incurable and therefore understanding the elements that control the TME in MM would allow better-targeted therapies to cure this disease. In this review, we discuss the main events and changes that occur in the BM milieu during MM development. Abstract Multiple myeloma (MM) is a hematologic cancer characterized by clonal proliferation of plasma cells in the bone marrow (BM). The progression, from the early stages of the disease as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) to MM and occasionally extramedullary disease, is drastically affected by the tumor microenvironment (TME). Soluble factors and direct cell–cell interactions regulate MM plasma cell trafficking and homing to the BM niche. Mesenchymal stromal cells, osteoclasts, osteoblasts, myeloid and lymphoid cells present in the BM create a unique milieu that favors MM plasma cell immune evasion and promotes disease progression. Moreover, TME is implicated in malignant cell protection against anti-tumor therapy. This review describes the main cellular and non-cellular components located in the BM, which condition the immunosuppressive environment and lead the MM establishment and progression.
Collapse
|
44
|
Kim HN, Ruan Y, Ogana H, Kim YM. Cadherins, Selectins, and Integrins in CAM-DR in Leukemia. Front Oncol 2020; 10:592733. [PMID: 33425742 PMCID: PMC7793796 DOI: 10.3389/fonc.2020.592733] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for binding but also initiate the intracellular signaling pathways that are associated with cell proliferation, survival, and drug resistance upon binding to their ligands. Cadherins, selectins, and integrins are well-known cell adhesion molecules that allow binding to neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin, and integrin correlates with the increased drug resistance of leukemia cells. This paper will review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical trials targeting these molecules.
Collapse
Affiliation(s)
- Hye Na Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yongsheng Ruan
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| |
Collapse
|
45
|
Haltalli MLR, Watcham S, Wilson NK, Eilers K, Lipien A, Ang H, Birch F, Anton SG, Pirillo C, Ruivo N, Vainieri ML, Pospori C, Sinden RE, Luis TC, Langhorne J, Duffy KR, Göttgens B, Blagborough AM, Lo Celso C. Manipulating niche composition limits damage to haematopoietic stem cells during Plasmodium infection. Nat Cell Biol 2020; 22:1399-1410. [PMID: 33230302 PMCID: PMC7611033 DOI: 10.1038/s41556-020-00601-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
Abstract
Severe infections are a major stress on haematopoiesis, where the consequences for haematopoietic stem cells (HSCs) have only recently started to emerge. HSC function critically depends on the integrity of complex bone marrow (BM) niches; however, what role the BM microenvironment plays in mediating the effects of infection on HSCs remains an open question. Here, using a murine model of malaria and combining single-cell RNA sequencing, mathematical modelling, transplantation assays and intravital microscopy, we show that haematopoiesis is reprogrammed upon infection, whereby the HSC compartment turns over substantially faster than at steady-state and HSC function is drastically affected. Interferon is found to affect both haematopoietic and mesenchymal BM cells and we specifically identify a dramatic loss of osteoblasts and alterations in endothelial cell function. Osteo-active parathyroid hormone treatment abolishes infection-triggered HSC proliferation and-coupled with reactive oxygen species quenching-enables partial rescuing of HSC function.
Collapse
Affiliation(s)
- Myriam L R Haltalli
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Samuel Watcham
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Nicola K Wilson
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | - Kira Eilers
- Department of Life Sciences, Imperial College London, London, UK
| | - Alexander Lipien
- Department of Life Sciences, Imperial College London, London, UK
| | - Heather Ang
- Department of Life Sciences, Imperial College London, London, UK
| | - Flora Birch
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Sara Gonzalez Anton
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Chiara Pirillo
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Nicola Ruivo
- Department of Life Sciences, Imperial College London, London, UK
| | - Maria L Vainieri
- Department of Life Sciences, Imperial College London, London, UK
- AO Research Institute, Davos Platz, Switzerland
| | - Constandina Pospori
- Department of Life Sciences, Imperial College London, London, UK
- The Francis Crick Institute, London, UK
| | - Robert E Sinden
- Department of Life Sciences, Imperial College London, London, UK
| | - Tiago C Luis
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ken R Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Berthold Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
- Department of Haematology, Cambridge Institute for Medical Research, Cambridge, UK
| | | | - Cristina Lo Celso
- Department of Life Sciences, Imperial College London, London, UK.
- The Francis Crick Institute, London, UK.
| |
Collapse
|
46
|
Hematopoietic stem and progenitor cell signaling in the niche. Leukemia 2020; 34:3136-3148. [PMID: 33077865 DOI: 10.1038/s41375-020-01062-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/09/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are responsible for lifelong maintenance of hematopoiesis through self-renewal and differentiation into mature blood cell lineages. Traditional models hold that HSPCs guard homeostatic function and adapt to regenerative demand by integrating cell-autonomous, intrinsic programs with extrinsic cues from the niche. Despite the biologic significance, little is known about the active roles HSPCs partake in reciprocally shaping the function of their microenvironment. Here, we review evidence of signals emerging from HSPCs through secreted autocrine or paracrine factors, including extracellular vesicles, and via direct contact within the niche. We also discuss the functional impact of direct cellular interactions between hematopoietic elements on niche occupancy in the context of leukemic infiltration. The aggregate data support a model whereby HSPCs are active participants in the dynamic adaptation of the stem cell niche unit during development and homeostasis, and under inflammatory stress, malignancy, or transplantation.
Collapse
|
47
|
Hoffmann H, Thiede C, Glauche I, Bornhaeuser M, Roeder I. Differential response to cytotoxic therapy explains treatment dynamics of acute myeloid leukaemia patients: insights from a mathematical modelling approach. J R Soc Interface 2020; 17:20200091. [PMID: 32900301 DOI: 10.1098/rsif.2020.0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Disease response and durability of remission are very heterogeneous in patients with acute myeloid leukaemia (AML). There is increasing evidence that the individual risk of early relapse can be predicted based on the initial treatment response. However, it is unclear how such a correlation is linked to functional aspects of AML progression and treatment. We suggest a mathematical model in which leukaemia-initiating cells and normal/healthy haematopoietic stem and progenitor cells reversibly change between an active state characterized by proliferation and chemosensitivity and a quiescent state, in which the cells do not divide, but are also insensitive to chemotherapy. Applying this model to 275 molecular time courses of nucleophosmin 1-mutated patients, we conclude that the differential chemosensitivity of the leukaemia-initiating cells together with the cells' intrinsic proliferative capacity is sufficient to reproduce both, early relapse as well as long-lasting remission. We can, furthermore, show that the model parameters associated with individual chemosensitivity and proliferative advantage of the leukaemic cells are closely linked to the patients' time to relapse, while a reliable prediction based on early response only is not possible based on the currently available data. Although we demonstrate with our approach, that the complete response data is sufficient to quantify the aggressiveness of the disease, further investigations are necessary to study how an intensive early sampling strategy may prospectively improve risk assessment and help to optimize individual treatments.
Collapse
Affiliation(s)
- H Hoffmann
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - C Thiede
- Medical Clinic and Polyclinic I, University Hospital Dresden Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - I Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - M Bornhaeuser
- Medical Clinic and Polyclinic I, University Hospital Dresden Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - I Roeder
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany
| |
Collapse
|
48
|
Ramos CV, Ballesteros-Arias L, Silva JG, Paiva RA, Nogueira MF, Carneiro J, Gjini E, Martins VC. Cell Competition, the Kinetics of Thymopoiesis, and Thymus Cellularity Are Regulated by Double-Negative 2 to 3 Early Thymocytes. Cell Rep 2020; 32:107910. [DOI: 10.1016/j.celrep.2020.107910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
|
49
|
Waclawiczek A, Hamilton A, Rouault-Pierre K, Abarrategi A, Albornoz MG, Miraki-Moud F, Bah N, Gribben J, Fitzgibbon J, Taussig D, Bonnet D. Mesenchymal niche remodeling impairs hematopoiesis via stanniocalcin 1 in acute myeloid leukemia. J Clin Invest 2020; 130:3038-3050. [PMID: 32364536 PMCID: PMC7260026 DOI: 10.1172/jci133187] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) disrupts the generation of normal blood cells, predisposing patients to hemorrhage, anemia, and infections. Differentiation and proliferation of residual normal hematopoietic stem and progenitor cells (HSPCs) are impeded in AML-infiltrated bone marrow (BM). The underlying mechanisms and interactions of residual hematopoietic stem cells (HSCs) within the leukemic niche are poorly understood, especially in the human context. To mimic AML infiltration and dissect the cellular crosstalk in human BM, we established humanized ex vivo and in vivo niche models comprising AML cells, normal HSPCs, and mesenchymal stromal cells (MSCs). Both models replicated the suppression of phenotypically defined HSPC differentiation without affecting their viability. As occurs in AML patients, the majority of HSPCs were quiescent and showed enrichment of functional HSCs. HSPC suppression was largely dependent on secreted factors produced by transcriptionally remodeled MSCs. Secretome analysis and functional validation revealed MSC-derived stanniocalcin 1 (STC1) and its transcriptional regulator HIF-1α as limiting factors for HSPC proliferation. Abrogation of either STC1 or HIF-1α alleviated HSPC suppression by AML. This study provides a humanized model to study the crosstalk among HSPCs, leukemia, and their MSC niche, and a molecular mechanism whereby AML impairs normal hematopoiesis by remodeling the mesenchymal niche.
Collapse
MESH Headings
- Animals
- Female
- Glycoproteins/genetics
- Glycoproteins/metabolism
- HL-60 Cells
- Hematopoiesis
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Male
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- U937 Cells
Collapse
Affiliation(s)
- Alexander Waclawiczek
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ashley Hamilton
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ander Abarrategi
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| | | | - Farideh Miraki-Moud
- Haemato-Oncology Unit, Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom
| | - Nourdine Bah
- Bioinformatic Core Facility, Francis Crick Institute, London, United Kingdom
| | - John Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - David Taussig
- Haemato-Oncology Unit, Royal Marsden Hospital, Institute of Cancer Research, London, United Kingdom
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, Francis Crick Institute, London, United Kingdom
| |
Collapse
|
50
|
Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, Andreeff M, Krause DS. Bone marrow niches in haematological malignancies. Nat Rev Cancer 2020; 20:285-298. [PMID: 32112045 PMCID: PMC9912977 DOI: 10.1038/s41568-020-0245-2] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Haematological malignancies were previously thought to be driven solely by genetic or epigenetic lesions within haematopoietic cells. However, the niches that maintain and regulate daily production of blood and immune cells are now increasingly being recognized as having an important role in the pathogenesis and chemoresistance of haematological malignancies. Within haematopoietic cells, the accumulation of a small number of recurrent mutations initiates malignancy. Concomitantly, specific alterations of the niches, which support haematopoietic stem cells and their progeny, can act as predisposition events, facilitating mutant haematopoietic cell survival and expansion as well as contributing to malignancy progression and providing protection of malignant cells from chemotherapy, ultimately leading to relapse. In this Perspective, we summarize our current understanding of the composition and function of the specialized haematopoietic niches of the bone marrow during health and disease. We discuss disease mechanisms (rather than malignancy subtypes) to provide a comprehensive description of key niche-associated pathways that are shared across multiple haematological malignancies. These mechanisms include primary driver mutations in bone marrow niche cells, changes associated with increased hypoxia, angiogenesis and inflammation as well as metabolic reprogramming by stromal niche cells. Consequently, remodelling of bone marrow niches can facilitate immune evasion and activation of survival pathways favouring malignant haematopoietic cell maintenance, defence against excessive reactive oxygen species and protection from chemotherapy. Lastly, we suggest guidelines for the handling and biobanking of patient samples and analysis of the niche to ensure that basic research identifying therapeutic targets can be more efficiently translated to the clinic. The hope is that integrating knowledge of how bone marrow niches contribute to haematological disease predisposition, initiation, progression and response to therapy into future clinical practice will likely improve the treatment of these disorders.
Collapse
Affiliation(s)
- Simón Méndez-Ferrer
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- National Health Service Blood and Transplant, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - David P Steensma
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert P Hasserjian
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Irene M Ghobrial
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|