1
|
Sererols-Viñas L, Garcia-Vicién G, Ruiz-Blázquez P, Lee TF, Lee YA, Gonzalez-Sanchez E, Vaquero J, Moles A, Filliol A, Affò S. Hepatic Stellate Cells Functional Heterogeneity in Liver Cancer. Semin Liver Dis 2025. [PMID: 40043738 DOI: 10.1055/a-2551-0724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Hepatic stellate cells (HSCs) are the liver's pericytes, and play key roles in liver homeostasis, regeneration, fibrosis, and cancer. Upon injury, HSCs activate and are the main origin of myofibroblasts and cancer-associated fibroblasts (CAFs) in liver fibrosis and cancer. Primary liver cancer has a grim prognosis, ranking as the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) being the predominant type, followed by intrahepatic cholangiocarcinoma (iCCA). Moreover, the liver hosts 35% of all metastatic lesions. The distinct spatial distribution and functional roles of HSCs across these malignancies represent a significant challenge for universal therapeutic strategies, requiring a nuanced and tailored understanding of their contributions. This review examines the heterogeneous roles of HSCs in liver cancer, focusing on their spatial localization, dynamic interactions within the tumor microenvironment (TME), and emerging therapeutic opportunities, including strategies to modulate their activity, and harness their potential as targets for antifibrotic and antitumor interventions.
Collapse
Affiliation(s)
- Laura Sererols-Viñas
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Gemma Garcia-Vicién
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Paloma Ruiz-Blázquez
- University of Barcelona, Barcelona, Spain
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Ting-Fang Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ester Gonzalez-Sanchez
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain
| | - Javier Vaquero
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
- HepatoBiliary Tumours Lab, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-Universidad de Salamanca, Salamanca, Spain
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Anna Moles
- Tissue Remodeling Fibrosis and Cancer Group, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Barcelona, Spain
- Institute of Biomedical Research of Barcelona (IDIBAPS), Barcelona, Spain
- CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aveline Filliol
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Silvia Affò
- Tumor Microenvironment Plasticity and Heterogeneity Research Group, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
2
|
Zhu S, Zhang Y, Li C, Deng Z, Yin Y, Dong Z, Kuang L, Li C, Hu X, Yin T, Wang Y. Multiple synergistic anti-aging effects of vascular cell adhesion molecule 1 functionalized nanoplatform to improve age-related neurodegenerative diseases. J Control Release 2025; 379:363-376. [PMID: 39798706 DOI: 10.1016/j.jconrel.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/29/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Aging is a critical factor in the onset and progression of neurodegenerative diseases and cognitive decline, with aging-related neuroinflammation and cellular senescence being major contributors. In the aging brain, the cerebral vascular endothelium overexpresses vascular cell adhesion molecule 1 (VCAM1), activating microglia and leading to neuroinflammation and cognitive impairment. Quercetin, a natural neuroprotective agent widely used for treating neurodegenerative diseases, their therapeutic efficacy, however, is limited by its poor water solubility and inability to penetrate the blood-brain barrier (BBB). To address these challenges, we developed a multifunctional micellar platform (Anti-VCAM1-GM1@Q) to improve age-related neurodegenerative diseases. The micelles incorporate anti-VCAM1 antibodies to target cerebral vascular endothelial cells and block VCAM1. Additionally, monosialoganglioside (GM1) was utilized to deliver quercetin due to its biparental properties, high BBB permeability, and neuroprotective effects. Anti-VCAM1-GM1@Q micelles demonstrated strong anti-aging properties. They improved quercetin's bioavailability, effectively penetrated the BBB, targeted cerebral vascular endothelial cells, and reduced neuroinflammation. In animal models, these micelles provided effective neuroprotection, improved memory function and age-related cognitive impairment, and mitigated age-related neurodegeneration. Notably, this system exhibited remarkable treatment efficacy and high safety, indicating substantial potential for clinical translational applications.
Collapse
Affiliation(s)
- Siqing Zhu
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Yu Zhang
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Chang Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China; Medical Imaging Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, No. 1, Jiankang Road, Chongqing, China
| | - Zhiqing Deng
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Ying Yin
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Zhufeng Dong
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Lei Kuang
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Chuanming Li
- Medical Imaging Department, Chongqing University Central Hospital, Chongqing Emergency Medical Center, No. 1, Jiankang Road, Chongqing, China
| | - Xiaoye Hu
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China.
| | - Yazhou Wang
- School of Medicine, Chongqing University, 131 Yubei Street, Shapingba District, Chongqing 400044, China.
| |
Collapse
|
3
|
Weiqin L, Qi W, Lin J, Shuxia C, Chang L. Unveiling the role of ACTL6A in uveal melanoma metastasis and immune microenvironment. Int Immunopharmacol 2025; 147:113841. [PMID: 39746274 DOI: 10.1016/j.intimp.2024.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To predict and evaluate the possible mechanisms and clinical value of ACTL6A in the prognosis and development of UM. METHODS Bioinformatics analyze the relationship between ACTL6A and immunity in UM, which derived from TCGA, Gene Expression Omnibus (GEO) databases. Tumor-infltrated immune cells were demonstrated using QUANTISEQ and MCP-counter. Furthermore, scRNA-seq was used to detect ACTL6A expression, distribution, immune infiltration and revealing the gene expression profile of UM. RESULTS The expression of ACTL6A was lower in UM compared with pantumor in TCGA databases. Kaplan-Meier analysis revealed that downregulated ACTL6A was associated with poor OS, and ACTL6A was associated with cancer stem cells (CSCs) and immune infiltration. Moreover, ACTL6A might act as a chemotherapy resistance gene and closely relate- to epithelial-mesenchymal transition. Analysis in 8 GSE databases showed that IL13, TPTE, IL17B and CCL22 genes were significantly overexpressed in metastatic UM. Furthermore, the single-cell transcriptomic profling identified a new cell cluster - as a unique type of immune cell, which associating with malignant cell heterogeneity and complexity, and further revealing that the metastasis of UM is mainly associated with CD4 Tconv, B , CD8 Tex, and Plasma cells. CONCLUSIONS Downregulated ACTL6A acts as a risk factor for poor prognosis in UM, which implies as an potential prognostic marker for independent targeted immunotherapy.
Collapse
Affiliation(s)
- Liu Weiqin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China
| | - Wan Qi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; West China Hospital of Sichuan University, 610041 Chengdu, China
| | - Jin Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China; The First Affiliated Hospital of Shandong First Medical University, jinan 250014, China
| | - Chen Shuxia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; The First Affiliated Hospital of Shandong First Medical University, jinan 250014, China; Pathology Department, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510060, China
| | - Liu Chang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology Visual Science, Guangzhou 510060, China; Guangdong Provincial Clinical Research Center for Ocular Diseases, Guangzhou 510060, China.
| |
Collapse
|
4
|
Chen G, Li W, Ge R, Guo T, Zhang Y, Zhou C, Lin M. NUSAP1 Promotes Immunity and Apoptosis by the SHCBP1/JAK2/STAT3 Phosphorylation Pathway to Induce Dendritic Cell Generation in Hepatocellular Carcinoma. J Immunother 2025; 48:46-57. [PMID: 38980111 PMCID: PMC11753460 DOI: 10.1097/cji.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024]
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and is associated with high morbidity and mortality rates. The aims of this study were to investigate the immune-promoting action of nucleolar and spindle-associated protein 1 (NUSAP1) and identify an immunotherapy target for HCC. The Cancer Genome Atlas (TCGA) was used to analyze interaction molecules and immune correlation. The interaction between NUSAP1 and SHC binding and spindle associated 1 (SHCBP1) was examined. The role of the SHCBP1/Janus kinase 2/signal transducer and activator of transcription 3 (SHCBP1/JAK2/STAT3) pathway in this process was explored. After co-culture with HCC cell lines, the differentiation of peripheral blood mononuclear cells (PBMCs) into dendritic cells (DC) was evaluated by measuring the expression of surface factors CD1a and CD86. Pathological tissues from 50 patients with HCC were collected to validate the results of cell experiments. The expression levels of CD1a and CD86 in tissues were also determined. The results show that NUSAP1 interacted with SHCBP1 and was positively correlated with DC. In HCC cell lines, an interaction was observed between NUSAP1 and SHCBP1. It was verified that NUSAP1 inhibited the JAK2/STAT3 phosphorylation pathway by blocking SHCBP1. After co-culture, the levels of CD1a and CD86 in PBMC were elevated. In the clinical specimens, CD1a and CD86 expression levels were significantly higher in the high-NUSAP1 group versus the low-NUSAP1 group. In Summary, NUSAP1 enhanced immunity by inhibiting the SHCBP1/JAK2/STAT3 phosphorylation pathway and promoted DC generation and HCC apoptosis. NUSAP1 may be a target of immunotherapy for HCC.
Collapse
Affiliation(s)
- Guojie Chen
- Medical School of Nantong University, Nantong, Jiangsu, China
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - WenYa Li
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ruomu Ge
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Ting Guo
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Yuhan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenglin Zhou
- Laboratory Department, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| | - Mei Lin
- Clinical Laboratory, Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, Jiangsu, China
| |
Collapse
|
5
|
Cao Z, Quazi S, Arora S, Osellame LD, Burvenich IJ, Janes PW, Scott AM. Cancer-associated fibroblasts as therapeutic targets for cancer: advances, challenges, and future prospects. J Biomed Sci 2025; 32:7. [PMID: 39780187 PMCID: PMC11715488 DOI: 10.1186/s12929-024-01099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Research into cancer treatment has been mainly focused on developing therapies to directly target cancer cells. Over the past decade, extensive studies have revealed critical roles of the tumour microenvironment (TME) in cancer initiation, progression, and drug resistance. Notably, cancer-associated fibroblasts (CAFs) have emerged as one of the primary contributors in shaping TME, creating a favourable environment for cancer development. Many preclinical studies have identified promising targets on CAFs, demonstrating remarkable efficacy of some CAF-targeted treatments in preclinical models. Encouraged by these compelling findings, therapeutic strategies have now advanced into clinical evaluation. We aim to provide a comprehensive review of relevant subjects on CAFs, including CAF-related markers and targets, their multifaceted roles, and current landscape of ongoing clinical trials. This knowledge can guide future research on CAFs and advocate for clinical investigations targeting CAFs.
Collapse
Affiliation(s)
- Zhipeng Cao
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
| | - Sadia Quazi
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sakshi Arora
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Laura D Osellame
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ingrid J Burvenich
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Peter W Janes
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia.
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, 3084, Australia.
- Department of Medicine, University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
6
|
Lind HT, Hall SC, Strait AA, Goon JB, Aleman JD, Chen SMY, Karam SD, Young CD, Wang JH, Wang XJ. MHC class I upregulation contributes to the therapeutic response to radiotherapy in combination with anti-PD-L1/anti-TGF-β in squamous cell carcinomas with enhanced CD8 T cell memory-driven response. Cancer Lett 2025; 608:217347. [PMID: 39580046 PMCID: PMC11875078 DOI: 10.1016/j.canlet.2024.217347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Radiation therapy (RT), a mainstay treatment for head and neck squamous cell carcinoma (HNSCC), kills cancer cells and modulates the tumor immune microenvironment. We sought to assess the effect of RT in combination with PD-L1/TGF-β dual blockade in squamous cell carcinomas (SCC) and analyze the underlying mechanisms. We transplanted mouse SCC cells derived from keratin-15 (K15) stem cells harboring KrasG12D/Smad4-/- mutations into syngeneic recipients and irradiated tumors followed by PD-L1/TGF-β dual blockade. We identified a responder line and a non-responder line to this combination therapy. Responder hosts eradicated SCCs by the combined therapy and rejected re-transplanted SCC cells 6 months post tumor eradication, which correlated with clonotype expansions of splenic CD8 T cells and effector memory gene expression identified by single cell sequencing of TCR and transcriptomes, respectively. Mechanistically, RT upregulated MHC-I (major histocompatibility complex I) and its transcriptional regulators including NLRC5, in SCCs of the responders but not non-responders. These data are consistent with the TCGA HNSCC database in which NLRC5 correlated to MHC-I genes and CD8 T cell gene expression. Functional contribution of MHC-I to PD-L1/TGF-β blockade response was confirmed by knocking out beta-2-microglobulin in responder cells that attenuated the response to the same therapy. Thus, the therapeutic effectiveness appeared to largely depend on cancer-cell MHC-I expression, triggering CD8 T cell effector memory-driven responses against tumor cell antigens. Identifying the differential RT response to MHC-I induction may serve as a predictive marker for stratifying patients that are most likely to benefit from this combination therapy.
Collapse
Affiliation(s)
- Hanne T Lind
- Department of Pathology, University of California, Davis, CA, USA
| | - Spencer C Hall
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander A Strait
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jack B Goon
- Department of Pathology, University of California, Davis, CA, USA
| | - John D Aleman
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Samantha M Y Chen
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, MO, USA
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jing H Wang
- UPMC Hillman Cancer Center, Division of Hematology and Oncology, Department of Medicine, Department of Immunology, University of Pittsburg, Pittsburgh, PA, USA
| | - Xiao-Jing Wang
- Department of Pathology, University of California, Davis, CA, USA; Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; VA Northern California Health Care System, Sacramento, CA, USA.
| |
Collapse
|
7
|
Yuan J, Yang L, Zhang H, Beeraka NM, Zhang D, Wang Q, Wang M, Pr HV, Sethi G, Wang G. Decoding tumor microenvironment: EMT modulation in breast cancer metastasis and therapeutic resistance, and implications of novel immune checkpoint blockers. Biomed Pharmacother 2024; 181:117714. [PMID: 39615165 DOI: 10.1016/j.biopha.2024.117714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/15/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) play crucial roles in the initiation and progression of tumors. TME is composed of various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as non-cellular components like extracellular matrix (ECM) proteins and soluble factors. These elements interact with tumor cells through a complex network of signaling pathways involving cytokines, growth factors, metabolites, and non-coding RNA-carrying exosomes. Hypoxic conditions within the TME further modulate these interactions, collectively influencing tumor growth, metastatic potential, and response to therapy. EMT represents a dynamic and reversible process where epithelial cells undergo phenotypic changes to adopt mesenchymal characteristics in several cancers, including breast cancers. This transformation enhances cell motility and imparts stem cell-like properties, which are closely associated with increased metastatic capability and resistance to conventional cancer treatments. Thus, understanding the crosstalk between the TME and EMT is essential for unraveling the underlying mechanisms of breast cancer metastasis and therapeutic resistance. This review uniquely examines the intricate interplay between the tumor TME and epithelial-mesenchymal transition EMT in driving breast cancer metastasis and treatment resistance. It explores the therapeutic potential of targeting the TME-EMT axis, specifically through CD73-TGF-β dual-blockade, to improve outcomes in triple-negative breast cancer. Additionally, it underscores new strategies to enhance immune checkpoint blockade (ICB) responses by modulating EMT, thereby offering innovative insights for more effective cancer treatment.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Li Yang
- Department of Clinical Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hua Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Narasimha M Beeraka
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow 119991, Russia; Raghavendra Institute of Pharmaceutical Education and Research (RIPER), Chiyyedu, Anantapuramu, Andhra Pradesh 515721, India; Department of Studies in Molecular Biology, Faculty of Science and Technology, University of Mysore, Mysore, Karnataka, 570006, India.
| | - Danfeng Zhang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Qun Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Minghua Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Hemanth Vikram Pr
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, India.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Geng Wang
- Department of Breast, Thyroid and Vascular Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
8
|
Wang H, Wang T, Yan S, Tang J, Zhang Y, Wang L, Xu H, Tu C. Crosstalk of pyroptosis and cytokine in the tumor microenvironment: from mechanisms to clinical implication. Mol Cancer 2024; 23:268. [PMID: 39614288 PMCID: PMC11607834 DOI: 10.1186/s12943-024-02183-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024] Open
Abstract
In the realm of cancer research, the tumor microenvironment (TME) plays a crucial role in tumor initiation and progression, shaped by complex interactions between cancer cells and surrounding non-cancerous cells. Cytokines, as essential immunomodulatory agents, are secreted by various cellular constituents within the TME, including immune cells, cancer-associated fibroblasts, and cancer cells themselves. These cytokines facilitate intricate communication networks that significantly influence tumor initiation, progression, metastasis, and immune suppression. Pyroptosis contributes to TME remodeling by promoting the release of pro-inflammatory cytokines and sustaining chronic inflammation, impacting processes such as immune escape and angiogenesis. However, challenges remain due to the complex interplay among cytokines, pyroptosis, and the TME, along with the dual effects of pyroptosis on cancer progression and therapy-related complications like cytokine release syndrome. Unraveling these complexities could facilitate strategies that balance inflammatory responses while minimizing tissue damage during therapy. This review delves into the complex crosstalk between cytokines, pyroptosis, and the TME, elucidating their contribution to tumor progression and metastasis. By synthesizing emerging therapeutic targets and innovative technologies concerning TME, this review aims to provide novel insights that could enhance treatment outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Shuxiang Yan
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yibo Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, Hunan, 410011, China.
| | - Haodong Xu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Shenzhen Research Institute of Central South University, Guangdong, 518063, China.
- Hunan Engineering Research Center of AI Medical Equipment, The Second Xiangya Hospital of Central, South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Liu S, Wei Z, Ding H. The role of the SOX2 gene in cervical cancer: focus on ferroptosis and construction of a predictive model. J Cancer Res Clin Oncol 2024; 150:509. [PMID: 39580372 PMCID: PMC11585523 DOI: 10.1007/s00432-024-05973-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/24/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The intricate interplay between stemness markers and cell death pathways significantly influences the pathophysiology of cervical cancer. SOX2, a pivotal regulator of stem cell pluripotency, has recently been implicated in the modulation of ferroptosis, a specialized form of iron-dependent cell death, in cancer dynamics. This study delineates the role of SOX2 in the ferroptotic landscape of cervical carcinoma. OBJECTIVE To delineate the association between SOX2 expression and ferroptosis in cervical cancer and develop a robust, SOX2-centric model for predicting prognosis and enhancing personalized treatment. METHODS A multidimensional approach integrating advanced bioinformatics, comprehensive molecular profiling, and state-of-the-art machine learning algorithms was employed to assess SOX2 expression patterns and their correlation with ferroptosis marker expression patterns in cervical cancer tissues. A prognostic model incorporating the expression levels of SOX2 and ferroptosis indicators was meticulously constructed. RESULTS This investigation revealed a profound and intricate correlation between SOX2 expression and ferroptotic processes in cervical cancer, substantiated by robust molecular evidence. The developed predictive model based on SOX2 expression exhibited superior prognostic accuracy and may guide therapeutic decision-making. CONCLUSION This study underscores the critical role of SOX2 in orchestrating the ferroptosis pathway in cervical cancer and presents a novel prognostic framework. The SOX2-centric predictive model represents a significant advancement in prognosis evaluation, offering a gateway to personalized treatment for gynaecologic cancers.
Collapse
Affiliation(s)
- Shenping Liu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
| | - Zhi Wei
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
| | - Huiqing Ding
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
10
|
Huang Z, Li M, Gu B, Chen J, Liu S, Tan P, Fu W. Ferroptosis-related LINC02535/has-miR-30c-5p/EIF2S1 axis as a novel prognostic biomarker involved in immune infiltration and progression of PDAC. Cell Signal 2024; 123:111338. [PMID: 39117252 DOI: 10.1016/j.cellsig.2024.111338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND PDAC, also known as pancreatic ductal adenocarcinoma, is often diagnosed at a late stage due to nonspecific symptoms and a distinct lack of reliable biomarkers for timely diagnosis. Ferroptosis, a novel non-apoptotic cell death mode discovered in recent years, is strongly linked to the progression of PDAC and the evasion of the immune system. The objective of this study is to discover a novel ceRNA biomarker associated with ferroptosis and investigate its possible molecular mechanisms and therapeutic potential in PDAC. METHODS Based on the FerrDb and TCGA databases, the R survival package was used to screen for ferroptosis-related mRNAs associated with PDAC prognosis. The ferroptosis-related ceRNA network was identified by miRTarBase, miRNet, and starBase and visualized using Cytoscape. The LASSO regression analysis was used to build a risk model associated with ceRNA. Additionally, we investigated the correlation between the ceRNA axis and the infiltration of immune cells in PDAC by employing the ssGSEA algorithm. Spearman correlation analysis was used to investigate the association between the ceRNA network and the expression levels of immune checkpoint genes in PDAC. The prediction of potential medications for PAAD patients with high risk scores was conducted using the R package oncoPredict and the Genomics of Drug Sensitivity in Cancer (GDSC) repository. Expression levels of LINC02535 in clinical specimens and PDAC cell lines were determined using qRT-PCR. CCK-8, colony formation, EdU, wound healing, and transwell assays were performed to assess the impact of reducing LINC02535 on the growth, migration, and invasion of PDAC cell lines BxPC3 and PANC1. RESULTS We first discovered a new LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis and created a prognostic nomogram for predicting overall survival. Meanwhile, the risk scores of the LINC02535/miR-30c-5p/EIF2S1 axis associated with ferroptosis were linked to immune subtypes in PDAC. The high immune infiltration subtype exhibited elevated ceRNA risk scores and EIF2S1 expression. The correlation analysis revealed a positive correlation between ceRNA risk scores and four immune cells, namely Activated CD4 T cell, Memory B cell, Neutrophil, and Type 2 T helper cell, as well as four immune checkpoint genes, namely CD274, HAVCR2, PDCD1LG2, and TIGIT. The analysis of drug sensitivity indicated that individuals with a high-risk score may exhibit greater sensitivity to inhibitors targeting MEK1/2 compared to those with a low-risk score. In our validation experiments, it was observed that the expression of LINC02535 was increased in both PDAC tissues and cell lines. Additionally, the inhibition of LINC02535 resulted in decreased proliferation, migration, and invasion of PDAC cells. Rescue experiments demonstrated that LINC02535 promoted PDAC cell growth and metastasis by upregulating EIF2S1 expression. CONCLUSION To summarize, a novel ferroptosis-associated LINC02535/miR-30c-5p/EIF2S1 ceRNA network for PDAC patients was established. The analysis of this network's functionality offers potential insights for clinical decision-making and the advancement of precision medicine.
Collapse
MESH Headings
- Humans
- Ferroptosis/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Prognosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Gene Expression Regulation, Neoplastic
- Disease Progression
- Cell Line, Tumor
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Mo Li
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Boyuan Gu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China
| | - Peng Tan
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China; Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
11
|
Shang B, Qiao H, Wang L, Wang J. In-depth study of pyroptosis-related genes and immune infiltration in colon cancer. PeerJ 2024; 12:e18374. [PMID: 39494275 PMCID: PMC11529595 DOI: 10.7717/peerj.18374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Background Pyroptosis is a form of regulated necrosis that occurs in many cell and tissue types and plays a critical role in tumor progression. The diagnostic value of pyroptosis-related genes (PRGs) in colon cancer has been widely investigated. In the present study, we explored the relationship between PRG expression and colon cancer. Methods We retrieved genomic and clinical data pertaining to The Cancer Genome Atlas-Colon Adenocarcinoma from the UCSC Xena database, along with the corresponding genome annotation information from the GENCODE data portal. Utilising these data and a list of 33 pyrogenic genes, we performed principal component analysis and unsupervised clustering analysis to assess the pyroptosis subtypes. We analysed the differential expression between these subtypes to obtain PRGs, ultimately selecting 10 PRGs. We conducted Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, gene set variation analysis, protein-protein interaction, and immune infiltration analyses of these PRGs. We validated the expression of TNNC1 via immunohistochemistry (IHC) and real-time quantitative PCR. Results After rigorous screening, excluding patients with incomplete survival data and unmatched transcriptomes, we refined our study cohort to 431 patients. We performed differential mRNA analysis and identified 445 PRGs, 10 of which were selected as hub genes. These genes were associated with various immune cell types. Specifically, TNNC1 expression was positively associated with immature dendritic cells and NK CD56+ cells. IHC staining indicated higher TNNC1 expression levels in tumor samples. Notably, TNNC1 expression levels were high in all the colon cancer cell lines, particularly in SW480 cells. Conclusion In this study, we explored the characteristics of PRGs in colon cancer and identified novel biological targets for early individualised treatment and accurate diagnosis of colon cancer, thus contributing to the advancement of clinical oncology.
Collapse
Affiliation(s)
- Bingbing Shang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
- Emergency Department, The Second Hospital of Dalian Medical University, Dalian, China
| | - Haiyan Qiao
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Liang Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| | - Jingyu Wang
- Laboratory Animal Center, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Chen J, Cao W, Li Y, Zhu J. Comprehensive analysis of the expression level, prognostic value, and immune infiltration of cuproptosis-related genes in human breast cancer. Medicine (Baltimore) 2024; 103:e40132. [PMID: 39432636 PMCID: PMC11495725 DOI: 10.1097/md.0000000000040132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND As a novel cell death form, cuproptosis results from copper combining with lipidated proteins in the tricarboxylic acid cycle. To the best of our knowledge no study has yet comprehensively analyzed the relationship between cuproptosis-related genes and breast cancer. METHODS The expression, prognostic value, mutations, chemosensitivity, and immune infiltration of cuproptosis-related genes in breast carcinoma patients were analyzed, PPI networks were constructed, and enrichment analyses were performed based on these genes. TIMER, UALCAN, Kaplan-Meier plotter, Human Protein Atlas, cBioPortal, STRING, GeneMANIA, DAVID, and R program v4.0.3 were used to accomplish the analyses above. RESULTS Compared to normal breast tissues, FDX1, LIAS, LIPT1, DLD, DLAT, PDHA1, MTF1, and GLS were down-regulated in breast cancer tissues, while CDKN2A was up-regulated. High expression of FDX1, LIAS, DLD, DLAT, MTF1, GLS, and CDKN2A were associated with favorable overall survival. Cuproptosis-related genes showed a high alteration rate (51.3%) in breast cancer, contributing to worse clinical outcomes. The expression levels of FDX1, LIPT1, DLD, DLAT, PDHA1, PDHB, MTF1, GLS, and CDKN2A were associated positively with 1 or more immune cell infiltrations in breast cancer. Patients with high levels of B cell, CD4+ T cell, CD8+ T cell, and dendritic cell infiltration had a higher survival rate at 10 years. CONCLUSION This study comprehensively investigated relationships between cuproptosis and breast cancer by bioinformatic analyses. We found that cuproptosis-related genes were generally lowly expressed in breast carcinoma tissue. As the critical gene of cuproptosis, high expression of FDX1 was related to favorable prognoses in breast cancer patients; thus, it might be a potential prognostic marker. Moreover, genes associated with cuproptosis were linked to immune infiltration in breast cancer and this relationship affected the prognosis of breast cancer.
Collapse
Affiliation(s)
- Jian Chen
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Emergency Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Cao
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingliang Li
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jia Zhu
- Breast Disease Center, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Li W, Ke D, Xu Y, Wang Y, Wang Q, Tan J, Wu H, Cheng X. The immunological and prognostic significance of the diabetes mellitus-related gene WFS1 in endometrial cancer. Front Immunol 2024; 15:1464421. [PMID: 39478865 PMCID: PMC11521820 DOI: 10.3389/fimmu.2024.1464421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Background Diabetes is associated with the incidence and prognosis of various malignancies, most notably endometrial cancer (EC). This study investigated the connection between diabetes and EC, with a specific focus on elucidating the biological implications of the diabetes mellitus (DM)-related gene WFS1. Methods Using the CTD, GeneCards, and GSEA databases, we identified WFS1 as a diabetes-related gene and then conducted an extensive investigation focusing on WFS1 in the context of EC. First, we identified WFS1 as the target gene and obtained EC data from the TCGA database. Then, comprehensive analyses and verification experiments, including differential expression analysis, prognostic modeling, functional enrichment analysis, gene mutation profiling, assessment of immune cell infiltration, immunophenoscore (IPS), tumor stemness index scoring, drug sensitivity analysis, single-cell transcriptomic analysis, glycolytic pathway analysis, and clinical verification, were performed to comprehensively evaluate the clinical value of WFS1 in EC. Results The EC group had significantly lower WFS1 expression, with an AUC of 0.857 for the ROC diagnostic curve. Overall survival analysis revealed that WFS1 was an independent risk factor for EC; low WFS1 expression was correlated with a poor prognosis. Stemness index analysis revealed that decreased WFS1 expression was associated with increased tumor grade and enhanced tumor stemness, suggesting increased malignancy of EC. In addition, WFS1 expression was correlated with tumor microenvironment features such as immune cell infiltration. WFS1 was also associated with tumor drug resistance. Conclusion EC patients with low WFS1 expression have a worse prognosis. WFS1 can be used as diagnostic and prognostic marker for EC.
Collapse
Affiliation(s)
- Wenzhe Li
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Da Ke
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Yi Xu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Ya Wang
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Qian Wang
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Jie Tan
- Department of Hematology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Hongyan Wu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| | - Xianglin Cheng
- Department of Hubei Provincial Clinical Research Center for Personalized Diagnosis and Treatment of Cancer, The First Affiliated Hospital of Yangtze University, Jingzhou First People’s Hospital, Jingzhou, Hubei, China
| |
Collapse
|
14
|
Lemaitre L, Adeniji N, Suresh A, Reguram R, Zhang J, Park J, Reddy A, Trevino AE, Mayer AT, Deutzmann A, Hansen AS, Tong L, Arjunan V, Kambham N, Visser BC, Dua MM, Bonham CA, Kothary N, D'Angio HB, Preska R, Rosen Y, Zou J, Charu V, Felsher DW, Dhanasekaran R. Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease. NATURE CANCER 2024; 5:1534-1556. [PMID: 39304772 DOI: 10.1038/s43018-024-00828-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Hepatocellular carcinoma (HCC) frequently recurs from minimal residual disease (MRD), which persists after therapy. Here, we identified mechanisms of persistence of residual tumor cells using post-chemoembolization human HCC (n = 108 patients, 1.07 million cells) and a transgenic mouse model of MRD. Through single-cell high-plex cytometric imaging, we identified a spatial neighborhood within which PD-L1 + M2-like macrophages interact with stem-like tumor cells, correlating with CD8+ T cell exhaustion and poor survival. Further, through spatial transcriptomics of residual HCC, we showed that macrophage-derived TGFβ1 mediates the persistence of stem-like tumor cells. Last, we demonstrate that combined blockade of Pdl1 and Tgfβ excluded immunosuppressive macrophages, recruited activated CD8+ T cells and eliminated residual stem-like tumor cells in two mouse models: a transgenic model of MRD and a syngeneic orthotopic model of doxorubicin-resistant HCC. Thus, our spatial analyses reveal that PD-L1+ macrophages sustain MRD by activating the TGFβ pathway in stem-like cancer cells and targeting this interaction may prevent HCC recurrence from MRD.
Collapse
Affiliation(s)
- Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Reshma Reguram
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Amit Reddy
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | | | | | - Anja Deutzmann
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Aida S Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Ling Tong
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA
| | - Vinodhini Arjunan
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA, USA
| | - Neeraja Kambham
- Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Monica M Dua
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - C Andrew Bonham
- Department of Surgery, Stanford University, Stanford, CA, USA
| | - Nishita Kothary
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | | | - Yanay Rosen
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - James Zou
- Department of Biomedical Data Science and Computer Science, Stanford University, Stanford, CA, USA
| | - Vivek Charu
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Dean W Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|
15
|
Jiang Y, Li W, Zhang J, Liu K, Wu Y, Wang Z. NFS1 as a Candidate Prognostic Biomarker for Gastric Cancer Correlated with Immune Infiltrates. Int J Gen Med 2024; 17:3855-3868. [PMID: 39253726 PMCID: PMC11382660 DOI: 10.2147/ijgm.s444443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024] Open
Abstract
Background Cysteine desulfurase (NFS1) is closely associated with the occurrence and development of human tumors, but its relationship with the prognosis and immunity of gastric cancer (GC) patients remains unclear. Methods To study the relationship between NFS1 and GC, GC-related data of TCGA were downloaded and analyzed. At the same time, Tumor Immune Estimation Resource (TIMER) and Kaplan‒Meier Plotter were used for relevant online analysis. Clinical samples were collected for immunohistochemical testing to validate the results. Results The mRNA and protein levels of NFS1 in GC tissues were significantly higher than those in normal tissues. In terms of the operating characteristic curve (ROC), the area under the curve (AUC) was 0.793, indicating that NFS1 had a high diagnostic value for GC. Further analysis showed that NFS1 expression was highly correlated with the depth of tumor invasion, lymph node metastasis, and tumor stage. Survival analysis showed that patients with high expression of NFS1 had a poorer prognosis, and NFS1 was an independent risk factor. Enrichment analysis by GO, KEGG, and GSEA showed that NFS1 was enriched in immune-related pathways. The expression of NFS1 was significantly positively correlated with the proportion of macrophages M0 and plasma cells but negatively correlated with the proportion of B cells memory, monocytes, and mast cells resting. In addition, NFS1 expression was significantly correlated with TMB levels and responses to immunotherapy. Conclusion Our results suggest that NFS1 may be a potential biomarker for the diagnosis and prediction of prognosis and immunotherapy efficacy in GC.
Collapse
Affiliation(s)
- You Jiang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| | - Wenbo Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
- Department of General Surgery, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| | - Jun Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| | - Kun Liu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| | - Yuee Wu
- Department of Electrocardiogram Diagnosis, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230060, People's Republic of China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230011, People's Republic of China
| |
Collapse
|
16
|
Nan Y, Bai Y, Hu X, Zhou K, Wu T, Zhu A, Li M, Dou Z, Cao Z, Zhang X, Xu S, Zhang Y, Lin J, Zeng X, Fan J, Zhang X, Wang X, Ju D. Targeting IL-33 reprograms the tumor microenvironment and potentiates antitumor response to anti-PD-L1 immunotherapy. J Immunother Cancer 2024; 12:e009236. [PMID: 39231544 PMCID: PMC11409265 DOI: 10.1136/jitc-2024-009236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The main challenge against patients with cancer to derive benefits from immune checkpoint inhibitors targeting PD-1/PD-L1 appears to be the immunosuppressive tumor microenvironment (TME), in which IL-33/ST2 signal fulfills critical functions. However, whether IL-33 limits the therapeutic efficacy of anti-PD-L1 remains uncertain. METHODS Molecular mechanisms of IL-33/ST2 signal on anti-PD-L1 treatment lewis lung carcinoma tumor model were assessed by RNA-seq, ELISA, WB and immunofluorescence (IF). A sST2-Fc fusion protein was constructed for targeting IL-33 and combined with anti-PD-L1 antibody for immunotherapy in colon and lung tumor models. On this basis, bifunctional fusion proteins were generated for PD-L1-targeted blocking of IL-33 in tumors. The underlying mechanisms of dual targeting of IL-33 and PD-L1 revealed by RNA-seq, scRNA-seq, FACS, IF and WB. RESULTS After anti-PD-L1 administration, tumor-infiltrating ST2+ regulatory T cells (Tregs) were elevated. Blocking IL-33/ST2 signal with sST2-Fc fusion protein potentiated antitumor efficacy of PD-L1 antibody by enhancing T cell responses in tumor models. Bifunctional fusion protein anti-PD-L1-sST2 exhibited enhanced antitumor efficacy compared with combination therapy, not only inhibited tumor progression and extended the survival, but also provided long-term protective antitumor immunity. Mechanistically, the superior antitumor activity of targeting IL-33 and PD-L1 originated from reducing immunosuppressive factors, such as Tregs and exhausted CD8+ T cells while increasing tumor-infiltrating cytotoxic T lymphocyte cells. CONCLUSIONS In this study, we demonstrated that IL-33/ST2 was involved in the immunosuppression mechanism of PD-L1 antibody therapy, and blockade by sST2-Fc or anti-PD-L1-sST2 could remodel the inflammatory TME and induce potent antitumor effect, highlighting the potential therapeutic strategies for the tumor treatment by simultaneously targeting IL-33 and PD-L1.
Collapse
Affiliation(s)
- Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yu Bai
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaozhi Hu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Kaicheng Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Tao Wu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - An Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Mengyang Li
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Zihan Dou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Zhonglian Cao
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xumeng Zhang
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, Michigan, USA
| | - Shuwen Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Yuanzhen Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Jun Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xian Zeng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Jiajun Fan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xuebin Wang
- Department of pharmacy, Shanghai Children’s Hospital, School of medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
17
|
Li Y, Wang N, Yang G. Multi-omic analysis and validation reveal ZBP1 as a potential prognostic and immunotherapy-related biomarker in head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101901. [PMID: 38688403 DOI: 10.1016/j.jormas.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Patients with head and neck squamous cell carcinoma (HNSCC) exhibit unfavorable clinical outcomes, accompanied by high morbidity/mortality. In recent years, the management of HNSCC has encountered a significant obstacle. Z-DNA binding protein 1 (ZBP1) exerts crucial biological functions in chronic inflammatory disease and cancer. The aim of this research was to identify the possible function of ZBP1 in HNSCC. METHODS The Cancer Genome Atlas (TCGA) database was used to collect the gene expression profile and corresponding clinical data. The gene expression, clinical prognosis, genetic alteration, immune characteristics, and subgroup analyses were performed. Meanwhile, an independent cohort (consisting of 66 tumor samples and 37 controls) was employed to validate the expression of ZBP1. RESULTS Comparing to the normal controls, ZBP1 was upregulated in tumor samples. Low ZBP1 expression predicted undesirable clinical outcomes of HNSCC patients based on the survival analysis. Furthermore, the somatic mutations increased in low ZBP1 expression group. Immune characteristics analysis indicated a positive correlation of ZBP1 expression with the infiltration of immune cells, the expression of immunoregulatory genes and immune checkpoints. In the meantime, single-cell transcriptome analysis unveiled the expression of ZBP1 in tumor microenvironment (TME). In addition, differential gene expression analysis revealed that the expression of ZBP1 primarily contributes to the activation of T cells. Ultimately, ZBP1-associated prognostic and immune features in different subgroups of HNSCC patients were further investigated according to the subgroup analysis. CONCLUSION Our study comprehensively disclosed that ZBP1 may have the potential to become a meaningful prognostic and immunotherapy-related biomarker for HNSCC.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Oncology, The Third Central Hospital of Tianjin, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Ning Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China; Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, 300170, China.
| | - Guoyue Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China; The Third Central Hospital of Tianjin, Tianjin 300170, China.
| |
Collapse
|
18
|
Andrini E, Ricco G, Zappi A, Aloi S, Giordano M, Altimari A, Gruppioni E, Maloberti T, de Biase D, Campana D, Lamberti G. Challenges and future perspectives for the use of temozolomide in the treatment of SCLC. Cancer Treat Rev 2024; 129:102798. [PMID: 38970838 DOI: 10.1016/j.ctrv.2024.102798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/09/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Small-cell lung cancer (SCLC), accounting for 10-20 % of all lung tumors, represents the most aggressive high-grade neuroendocrine carcinoma. Most patients are diagnosed with extensive-stage SCLC (ES-SCLC), with brian metastases identified in ∼ 80 % of cases during the disease cours, and the prognosis is dismal, with a 5-year survival rate of less than 5 %. Current available treatments in the second-line setting are limited, and topotecan has long been the only FDA-approved drug in relapsed or refractory ES-SCLC, until the recent approval of lurbinectedin, a selective inhibitor of RNA polymerase II. Temozolomide (TMZ) is an oral alkylating agent, which showed single-agent activity in SCLC, particularly among patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation. Several studies have revealed the synergistic activity of temozolomide with poly-ADP-ribose polymerase (PARP) inhibitors, that prevent repair of TMZ-induced DNA damage. This review focuses on the rationale for the use of TMZ in ES-SCLC and provides an overview of the main trials that have evaluated and are currently investigating its role, both as a single-agent and in combinations, in relapse or refractory disease.
Collapse
Affiliation(s)
- Elisa Andrini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Gianluca Ricco
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Arianna Zappi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Serena Aloi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Mirela Giordano
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy.
| | - Annalisa Altimari
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Elisa Gruppioni
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Thais Maloberti
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Dario de Biase
- Solid Tumor Molecular Pathology Laboratory, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy; Department of Pharmacy and Biotechnology (FaBit), University of Bologna, Bologna, Italy.
| | - Davide Campana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| | - Giuseppe Lamberti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
19
|
Ye P, Luo S, Huang J, Fu X, Chi X, Cha JH, Chen Y, Mai Y, Hsu KW, Yan X, Yang WH. TESC associated with poor prognosis enhances cancer stemness and migratory properties in liver cancer. Clin Exp Med 2024; 24:206. [PMID: 39207564 PMCID: PMC11362204 DOI: 10.1007/s10238-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Liver cancer stem cells (LCSCs) are responsible for recurrence, metastasis, and drug resistance in liver cancer. However, the genes responsible for inducing LCSCs have not been fully identified. Based on our previous study, we found that tescalcin (TESC), a calcium-binding EF hand protein that plays a crucial role in chromatin remodeling, transcriptional regulation, and epigenetic modifications, was up-regulated in LCSCs of spheroid cultures. By searching the Cancer Genome Atlas, International Cancer Genome Consortium, Human Protein Atlas, and Kaplan-Meier Plotter databases, we found that TESC expression was significantly elevated in liver cancer compared with that in normal liver tissue and was predictive of a decreased overall survival rate. Multivariate Cox analysis revealed TESC to be an independent prognostic factor for survival. High TESC expression was positively associated with cancer stem cell pathways, cancer stem cell surface markers, stemness transcription factors, epithelial-mesenchymal transition (EMT) factors, immune checkpoint proteins, and various cancer-related biological processes in liver cancer. Furthermore, TESC was implicated as promoting cancer stem cell properties through its influence on EMT. We demonstrated that TESC is a novel stemness-related gene that can serve as an independent prognostic factor for liver cancer.
Collapse
Affiliation(s)
- Peng Ye
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shahang Luo
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junyu Huang
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xihua Fu
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoxia Chi
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jong-Ho Cha
- Department of Biomedical Science, College of Medicine, and Program in Biomedical Sciences and Engineering, Inha University, Incheon, South Korea
| | - Yumei Chen
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yanjun Mai
- Infection Medicine Research Institute of Panyu District, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Kai-Wen Hsu
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung, Taiwan.
| | - Xiuwen Yan
- Affiliated Cancer Hospital and Institute, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Wen-Hao Yang
- Graduate Institute of Cell Biology, China Medical University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
20
|
Chia ZJ, Cao YN, Little PJ, Kamato D. Transforming growth factor-β receptors: versatile mechanisms of ligand activation. Acta Pharmacol Sin 2024; 45:1337-1348. [PMID: 38351317 PMCID: PMC11192764 DOI: 10.1038/s41401-024-01235-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
Transforming growth factor-β (TGF-β) signaling is initiated by activation of transmembrane TGF-β receptors (TGFBR), which deploys Smad2/3 transcription factors to control cellular responses. Failure or dysregulation in the TGF-β signaling pathways leads to pathological conditions. TGF-β signaling is regulated at different levels along the pathways and begins with the liberation of TGF-β ligand from its latent form. The mechanisms of TGFBR activation display selectivity to cell types, agonists, and TGF-β isoforms, enabling precise control of TGF-β signals. In addition, the cell surface compartments used to release active TGF-β are surprisingly vibrant, using thrombospondins, integrins, matrix metalloproteinases and reactive oxygen species. The scope of TGFBR activation is further unfolded with the discovery of TGFBR activation initiated by other signaling pathways. The unique combination of mechanisms works in series to trigger TGFBR activation, which can be explored as therapeutic targets. This comprehensive review provides valuable insights into the diverse mechanisms underpinning TGFBR activation, shedding light on potential avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Zheng-Jie Chia
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Ying-Nan Cao
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Peter J Little
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia
- Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Danielle Kamato
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Discovery Biology, School of Environment and Science, Griffith University, Brisbane, QLD, 4111, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
21
|
Kamya P, Ozerov IV, Pun FW, Tretina K, Fokina T, Chen S, Naumov V, Long X, Lin S, Korzinkin M, Polykovskiy D, Aliper A, Ren F, Zhavoronkov A. PandaOmics: An AI-Driven Platform for Therapeutic Target and Biomarker Discovery. J Chem Inf Model 2024; 64:3961-3969. [PMID: 38404138 PMCID: PMC11134400 DOI: 10.1021/acs.jcim.3c01619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/27/2024]
Abstract
PandaOmics is a cloud-based software platform that applies artificial intelligence and bioinformatics techniques to multimodal omics and biomedical text data for therapeutic target and biomarker discovery. PandaOmics generates novel and repurposed therapeutic target and biomarker hypotheses with the desired properties and is available through licensing or collaboration. Targets and biomarkers generated by the platform were previously validated in both in vitro and in vivo studies. PandaOmics is a core component of Insilico Medicine's Pharma.ai drug discovery suite, which also includes Chemistry42 for the de novo generation of novel small molecules, and inClinico─a data-driven multimodal platform that forecasts a clinical trial's probability of successful transition from phase 2 to phase 3. In this paper, we demonstrate how the PandaOmics platform can efficiently identify novel molecular targets and biomarkers for various diseases.
Collapse
Affiliation(s)
- Petrina Kamya
- Insilico
Medicine Canada Inc., 3710-1250 René-Lévesque Blvd. W, Montreal, Quebec, Canada H3B 4W8
| | - Ivan V. Ozerov
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Frank W. Pun
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Kyle Tretina
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Tatyana Fokina
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Shan Chen
- Insilico
Medicine Shanghai Limited, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Vladimir Naumov
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Xi Long
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Sha Lin
- Insilico
Medicine Shanghai Limited, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Mikhail Korzinkin
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
| | - Daniil Polykovskiy
- Insilico
Medicine Canada Inc., 3710-1250 René-Lévesque Blvd. W, Montreal, Quebec, Canada H3B 4W8
| | - Alex Aliper
- Insilico
Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, P.O.
Box 145748, Masdar City, Abu Dhabi, United Arab Emirates
| | - Feng Ren
- Insilico
Medicine Shanghai Limited, Suite 901, Tower C, Changtai Plaza, 2889 Jinke Road, Pudong New District, Shanghai 201203, China
| | - Alex Zhavoronkov
- Insilico
Medicine Hong Kong Limited, Hong Kong Science and Technology Park, Hong Kong
- Insilico
Medicine AI Limited, Level 6, Unit 08, Block A, IRENA HQ Building, P.O.
Box 145748, Masdar City, Abu Dhabi, United Arab Emirates
- Buck
Institute for Research on Aging, Novato, California 94945, United States
| |
Collapse
|
22
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Gao Y, Wu R, Pei Z, Ke C, Zeng D, Li X, Zhang Y. Cell cycle associated protein 1 associates with immune infiltration and ferroptosis in gastrointestinal cancer. Heliyon 2024; 10:e28794. [PMID: 38586390 PMCID: PMC10998105 DOI: 10.1016/j.heliyon.2024.e28794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
Background Cell Cycle-Associated Protein 1 (CAPRIN1) play an important role in cell proliferation, oxidative stress, and inflammatory response. Nonetheless, its role in tumor immunity and ferroptosis is largely unknown in gastrointestinal cancer patients. Methods Through comprehensive bioinformatics, we investigate CAPRIN1 expression patterns and its role in diagnosis, functional signaling pathways, tumor immune infiltration and ferroptosis of different gastrointestinal cancer subtypes. Besides, immunohistochemistry (IHC) and immune blot were used to validate our esophagus cancer clinical data. The ferroptotic features of CAPRIN1 in vitro were assessed through knockdown assays in esophagus cancer cells. Results CAPRIN1 expression was significantly upregulated, correlated with poor prognosis, and served as an independent risk factor for most gastrointestinal cancer. Moreover, CAPRIN1 overexpression positively correlated with gene markers of most infiltrating immune cells, and immune checkpoints. CAPRIN1 knockdown significantly decreased the protein level of major histocompatibility complex class I molecules. We also identified a link between CAPRIN1 and ferroptosis-related genes in gastrointestinal cancer. Knockdown of CAPRIN1 significantly increased the production of lipid reactive oxygen species and malondialdehyde. Inhibition of CAPRIN1 expression promoted ferroptotic cell death induced by RAS-selective lethal 3 and erastin in human esophagus cancer cells. Conclusion Collectively, our results demonstrate that CAPRIN1 is aberrantly expressed in gastrointestinal cancer, is associated with poor prognosis, and could potentially influence immune infiltration and ferroptosis.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Ruimin Wu
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Pei
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Changbin Ke
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Daobing Zeng
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaohui Li
- Department of Pharmacy, Taihe Hospital, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P.R. China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
24
|
Guo M, Liu MYR, Brooks DG. Regulation and impact of tumor-specific CD4 + T cells in cancer and immunotherapy. Trends Immunol 2024; 45:303-313. [PMID: 38508931 DOI: 10.1016/j.it.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/22/2024]
Abstract
CD4+ T cells are crucial in generating and sustaining immune responses. They orchestrate and fine-tune mammalian innate and adaptive immunity through cell-based interactions and the release of cytokines. The role of these cells in contributing to the efficacy of antitumor immunity and immunotherapy has just started to be uncovered. Yet, many aspects of the CD4+ T cell response are still unclear, including the differentiation pathways controlling such cells during cancer progression, the external signals that program them, and how the combination of these factors direct ensuing immune responses or immune-restorative therapies. In this review, we focus on recent advances in understanding CD4+ T cell regulation during cancer progression and the importance of CD4+ T cells in immunotherapies.
Collapse
Affiliation(s)
- Mengdi Guo
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Melissa Yi Ran Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - David G Brooks
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
25
|
Guo D, Feng Y, Liu P, Yang S, Zhao W, Li H. Identification and prognostic analysis of ferroptosis‑related gene HSPA5 to predict the progression of lung squamous cell carcinoma. Oncol Lett 2024; 27:186. [PMID: 38464337 PMCID: PMC10921261 DOI: 10.3892/ol.2024.14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, is implicated in the development and therapeutic responses of cancer. However, the role of ferroptosis-related gene profiles in lung squamous cell carcinoma (LSCC) remains largely unknown. The present study aimed to identify the prognostic roles of ferroptosis-related genes in LSCC. Sequencing data from the Cancer Genome Atlas were analyzed and ferroptosis-related gene expression between tumor and para-tumor tissue was identified. The prognostic role of these genes was also assessed using Kaplan-Meier analyses and univariate and multivariate Cox proportional hazards regression model analyses. Immunological correlation, tumor stemness, drug sensitivity and the transcriptional differences of heat shock protein (HSP)A5 in LSCC were also analyzed. Thereafter, the expression of HSPA5 in 100 patients with metastatic LSCC was evaluated using immunohistochemistry (IHC) and the clinical significance of these markers with different risk factors was assessed. Of the 22 ferroptosis-related genes, the expression of HSPA5, HSPB1, glutathione peroxidase 4, Fanconi anemia complementation group D2, CDGSH iron sulfur domain 1, farnesyl-diphosphate farnesyltransferase 1, nuclear factor erythroid 2 like 2, solute carrier (SLC)1A5, ribosomal protein L8, nuclear receptor coactivator 4, transferrin receptor and SLC7A11 was significantly increased in LSCC compared with adjacent tissues. However, only high expression of HSPA5 was able to predict progression-free survival (PFS) and disease-free survival in LSCC. Although HSPA5 was also significantly elevated in patients with lung adenocarcinoma, HSPA5 expression did not predict the prognosis of patients with lung adenocarcinoma. Of note, a higher expression of HSPA5 was related to higher responses to chemotherapy but not to immunotherapy. In addition, HSPA5 expression was positively correlated with 'ferroptosis', 'cellular responses to hypoxia', 'tumor proliferation signature', 'G2M checkpoint', 'MYC targets' and 'TGFB'. IHC analysis also demonstrated that a high expression of HSPA5 in patients with metastatic LSCC in the study cohort was associated with shorter PFS and overall survival. In conclusion, the present study demonstrated that the expression of the ferroptosis-related gene HSPA5 may be a negative prognostic marker for LSCC.
Collapse
Affiliation(s)
- Di Guo
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Yonghai Feng
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Peijie Liu
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Shanshan Yang
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wenfei Zhao
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hongyun Li
- Department of Respiratory and Critical Care Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
26
|
Zhang J, Yu J, Liu M, Xie Z, Lei X, Yang X, Huang S, Deng X, Wang Z, Tang G. Small-molecule modulators of tumor immune microenvironment. Bioorg Chem 2024; 145:107251. [PMID: 38442612 DOI: 10.1016/j.bioorg.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
In recent years, tumor immunotherapy, aimed at increasing the activity of immune cells and reducing immunosuppressive effects, has attracted wide attention. Among them, immune checkpoint blocking (ICB) is the most commonly explored therapeutic approach. All approved immune checkpoint inhibitors (ICIs) are clinically effective monoclonal antibodies (mAbs). Compared with biological agents, small-molecule drugs have many unique advantages in tumor immunotherapy. Therefore, they also play an important role. Immunosuppressive signals such as PD-L1, IDO1, and TGF-β, etc. overexpressed in tumor cells form the tumor immunosuppressive microenvironment. In addition, the efficacy of multi-pathway combined immunotherapy has also been reported and verified. Here, we mainly reviewed the mechanism of tumor immunotherapy, analyzed the research status of small-molecule modulators, and discussed drug candidates' structure-activity relationship (SAR). It provides more opportunities for further research to design more immune small-molecule modulators with novel structures.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Meijing Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhizhong Xie
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiaoyan Yang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Sheng Huang
- Jiuzhitang Co., Ltd, Changsha, Hunan 410007, China
| | - Xiangping Deng
- The First Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Zhe Wang
- The Second Affiliated Hospital, Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
27
|
Guo S, Wang Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: implications for innovative immunotherapy strategies. Front Oncol 2024; 14:1349308. [PMID: 38590651 PMCID: PMC10999533 DOI: 10.3389/fonc.2024.1349308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDAC), stands as the fourth leading cause of cancer-related deaths in the United States, marked by challenging treatment and dismal prognoses. As immunotherapy emerges as a promising avenue for mitigating PDAC's malignant progression, a comprehensive understanding of the tumor's immunosuppressive characteristics becomes imperative. This paper systematically delves into the intricate immunosuppressive network within PDAC, spotlighting the significant crosstalk between immunosuppressive cells and factors in the hypoxic acidic pancreatic tumor microenvironment. By elucidating these mechanisms, we aim to provide insights into potential immunotherapy strategies and treatment targets, laying the groundwork for future studies on PDAC immunosuppression. Recognizing the profound impact of immunosuppression on PDAC invasion and metastasis, this discussion aims to catalyze the development of more effective and targeted immunotherapies for PDAC patients.
Collapse
Affiliation(s)
- Songyu Guo
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Zhenxia Wang
- Department of Hepatic-Biliary-Pancreatic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
28
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
29
|
Zhao JW, Zhao WY, Cui XH, Xing L, Shi JC, Yu L. The role of the mitochondrial ribosomal protein family in detecting hepatocellular carcinoma and predicting prognosis, immune features, and drug sensitivity. Clin Transl Oncol 2024; 26:496-514. [PMID: 37407805 DOI: 10.1007/s12094-023-03269-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common types of malignant tumors, with a slow onset, rapid progression, and frequent recurrence. Previous research has implicated mitochondrial ribosomal genes in the development, metastasis, and prognosis of various cancers. However, further research is necessary to establish a link between mitochondrial ribosomal protein (MRP) family expression and HCC diagnosis, prognosis, ferroptosis-related gene (FRG) expression, m6A modification-related gene expression, tumor immunity, and drug sensitivity. METHODS Bioinformatics resources were used to analyze data from patients with HCC retrieved from the TCGA, ICGC, and GTEx databases (GEPIA, UALCAN, Xiantao tool, cBioPortal, STRING, Cytoscape, TISIDB, and GSCALite). RESULTS Among the 82 MRP family members, 14 MRP genes (MRPS21, MRPS23, MRPL9, DAP3, MRPL13, MRPL17, MRPL24, MRPL55, MRPL16, MRPL14, MRPS17, MRPL47, MRPL21, and MRPL15) were significantly upregulated differentially expressed genes (DEGs) in HCC tumor samples in comparison to normal samples. Receiver-operating characteristic curve analysis indicated that all 14 DEGs show good diagnostic performance. Furthermore, TCGA analysis revealed that the mRNA expression of 39 MRPs was associated with overall survival (OS) in HCC. HCC was divided into two molecular subtypes (C1 and C2) with distinct prognoses using clustering analysis. The clusters showed different FRG expression and m6A methylation profiles and immune features, and prognostic models showed that the model integrating 5 MRP genes (MRPS15, MRPL3, MRPL9, MRPL36, and MRPL37) and 2 FRGs (SLC1A5 and SLC5A11) attained a greater clinical net benefit than three other prognostic models. Finally, analysis of the CTRP and GDSC databases revealed several potential drugs that could target prognostic MRP genes. CONCLUSION We identified 14 MRP genes as HCC diagnostic markers. We investigated FRG and m6A modification-related gene expression profiles and immune features in patients with HCC, and developed and validated a model incorporating MRP and FRG expression that accurately and reliably predicts HCC prognosis and may predict disease progression and treatment response.
Collapse
Affiliation(s)
- Jin-Wei Zhao
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Wei-Yi Zhao
- Medical College of YanBian University, YanBian, 133000, China
| | - Xin-Hua Cui
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Lin Xing
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Jia-Cheng Shi
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China
| | - Lu Yu
- Department of Hepatopancreatobiliary Surgery of Second Hospital of Jilin University, State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, No. 218, Ziqiang Street, Nanguan District, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
30
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
31
|
Li K, Liu W, Yu H, Chen J, Tang W, Wang J, Qi M, Sun Y, Xu X, Zhang J, Li X, Guo W, Li X, Song S, Tang S. 68Ga-FAPI PET imaging monitors response to combined TGF-βR inhibition and immunotherapy in metastatic colorectal cancer. J Clin Invest 2024; 134:e170490. [PMID: 38175716 PMCID: PMC10866654 DOI: 10.1172/jci170490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUNDImproving and predicting tumor response to immunotherapy remains challenging. Combination therapy with a transforming growth factor-β receptor (TGF-βR) inhibitor that targets cancer-associated fibroblasts (CAFs) is promising for the enhancement of efficacy of immunotherapies. However, the effect of this approach in clinical trials is limited, requiring in vivo methods to better assess tumor responses to combination therapy.METHODSWe measured CAFs in vivo using the 68Ga-labeled fibroblast activation protein inhibitor-04 (68Ga-FAPI-04) for PET/CT imaging to guide the combination of TGF-β inhibition and immunotherapy. One hundred thirty-one patients with metastatic colorectal cancer (CRC) underwent 68Ga-FAPI and 18F-fluorodeoxyglucose (18F-FDG) PET/CT imaging. The relationship between uptake of 68Ga-FAPI and tumor immunity was analyzed in patients. Mouse cohorts of metastatic CRC were treated with the TGF-βR inhibitor combined with KN046, which blocks programmed death ligand 1 (PD-L1) and CTLA-4, followed by 68Ga-FAPI and 18F-FDG micro-PET/CT imaging to assess tumor responses.RESULTSPatients with metastatic CRC demonstrated high uptake rates of 68Ga-FAPI, along with suppressive tumor immunity and poor prognosis. The TGF-βR inhibitor enhanced tumor-infiltrating T cells and significantly sensitized metastatic CRC to KN046. 68Ga-FAPI PET/CT imaging accurately monitored the dynamic changes of CAFs and tumor response to combined the TGF-βR inhibitor with immunotherapy.CONCLUSION68Ga-FAPI PET/CT imaging is powerful in assessing tumor immunity and the response to immunotherapy in metastatic CRC. This study supports future clinical application of 68Ga-FAPI PET/CT to guide precise TGF-β inhibition plus immunotherapy in CRC patients, recommending 68Ga-FAPI and 18F-FDG dual PET/CT for CRC management.TRIAL REGISTRATIONCFFSTS Trial, ChiCTR2100053984, Chinese Clinical Trial Registry.FUNDINGNational Natural Science Foundation of China (82072695, 32270767, 82272035, 81972260).
Collapse
Affiliation(s)
- Ke Li
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Wei Liu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Hang Yu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Jiwei Chen
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenxuan Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianpeng Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Qi
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Yuyun Sun
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xiaoping Xu
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Ji Zhang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Xinxiang Li
- Department of Oncology and
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Oncology and
- Department of Gastrointestinal Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shaoli Song
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| | - Shuang Tang
- Cancer Institute, Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
- Center for Biomedical Imaging, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Molecular Imaging Probes, Shanghai, China
- Department of Oncology and
| |
Collapse
|
32
|
Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplant 2024; 33:9636897241231892. [PMID: 38433349 PMCID: PMC10913519 DOI: 10.1177/09636897241231892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Immune cell therapy as a revolutionary treatment modality, significantly transformed cancer care. It is a specialized form of immunotherapy that utilizes living immune cells as therapeutic reagents for the treatment of cancer. Unlike traditional drugs, cell therapies are considered "living drugs," and these products are currently customized and require advanced manufacturing techniques. Although chimeric antigen receptor (CAR)-T cell therapies have received tremendous attention in the industry regarding the treatment of hematologic malignancies, their effectiveness in treating solid tumors is often restricted, leading to the emergence of alternative immune cell therapies. Tumor-infiltrating lymphocytes (TIL) cell therapy, cytokine-induced killer (CIK) cell therapy, dendritic cell (DC) vaccines, and DC/CIK cell therapy are designed to use the body's natural defense mechanisms to target and eliminate cancer cells, and usually have fewer side effects or risks. On the other hand, cell therapies, such as chimeric antigen receptor-T (CAR-T) cell, T cell receptor (TCR)-T, chimeric antigen receptor-natural killer (CAR-NK), or CAR-macrophages (CAR-M) typically utilize either autologous stem cells, allogeneic or xenogeneic cells, or genetically modified cells, which require higher levels of manipulation and are considered high risk. These high-risk cell therapies typically hold special characteristics in tumor targeting and signal transduction, triggering new anti-tumor immune responses. Recently, significant advances have been achieved in both basic and clinical researches on anti-tumor mechanisms, cell therapy product designs, and technological innovations. With swift technological integration and a high innovation landscape, key future development directions have emerged. To meet the demands of cell therapy technological advancements in treating cancer, we comprehensively and systematically investigate the technological innovation and clinical progress of immune cell therapies in this study. Based on the therapeutic mechanisms and methodological features of immune cell therapies, we analyzed the main technical advantages and clinical transformation risks associated with these therapies. We also analyzed and forecasted the application prospects, providing references for relevant enterprises with the necessary information to make informed decisions regarding their R&D direction selection.
Collapse
Affiliation(s)
- Jia Han
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bowen Zhang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Senyu Zheng
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Yuan Jiang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Zhang
- Shanghai World Trade Organization Affairs Consultation Center, Shanghai, China
| | - Kaiyun Mao
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
33
|
Wan B, Zhang W, Deng X, Lu Y, Zhang Z, Yang Y. Molecular Expression and Prognostic Implications of Krüppel-Like Factor 3 (KLF3) in Clear Cell Renal Cell Carcinoma. Crit Rev Eukaryot Gene Expr 2024; 34:45-59. [PMID: 38073441 DOI: 10.1615/critreveukaryotgeneexpr.2023049010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
A major subtype of renal cancer is clear cell renal cell carcinoma (ccRCC). Krüppel-like factor 3 (KLF3) dysfunction is also revealed leading to poor prognosis in multiple cancer types. However, dysregulation and molecular dynamics of KLF3 underlying ccRCC progression still remains elusive. Here KLF3 gene and protein expressions in ccRCC were explored using data cohorts from The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), Clinical Proteomic Tumor Analysis Consortium (CPTAC) and verified them in our patient cohort. Correlations of KLF3 expression with clinicopathological features, epigenetic modification, and immune microenvironment characteristics were further investigated. KLF3 was significantly down-regulated expressed in ccRCC tissues compared to adjacent normal controls. Adverse pathological parameters and poor prognosis were associated with lower expression of KLF3. Mechanically, KLF3 regulation was mainly attributed to CpG island methylation. KLF3-high expression subgroup was significantly enriched in cell signaling pathways most associated with EMT markers, angiogenesis, inflammatory response, apoptosis, TGF-β, degradation of ECM, G2M checkpoint, and PI3K-AKT-mTOR. Based on GDSC database, KLF3 upregulation was identified to be associated with higher sensitivities towards PI3K-Akt-mTOR pathway inhibitors such as PI-103, PIK-93, and OSI-027. In addition, patients with down-regulated KLF3 expressions were found more sensitive towards Trametinib, Cetuximab, and Erlotinib. Collectively, our findings suggest that KLF3 may act as a suitable biomarker for prognosis prediction, tumor microenvironment (TME) phenotype identification, thereby helping ccRCC patients to make better therapeutic decisions.
Collapse
Affiliation(s)
- Bin Wan
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Wensheng Zhang
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Xinxi Deng
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Yigang Lu
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Zhuo Zhang
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| | - Yang Yang
- Department of Urology, The First People's Hospital of Jiujiang in Jiangxi Province, Jiujiang City, 332000, Jiangxi Province, China
| |
Collapse
|
34
|
Su Y, Wang F, Lei Z, Li J, Ma M, Yan Y, Zhang W, Chen X, Xu B, Hu T. An Integrated Multi-Omics Analysis Identifying Immune Subtypes of Pancreatic Cancer. Int J Mol Sci 2023; 25:142. [PMID: 38203311 PMCID: PMC10779306 DOI: 10.3390/ijms25010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Limited studies have explored novel pancreatic cancer (PC) subtypes or prognostic biomarkers based on the altered activity of relevant signaling pathway gene sets. Here, we employed non-negative matrix factorization (NMF) to identify three immune subtypes of PC based on C7 immunologic signature gene set activity in PC and normal samples. Cluster 1, the immune-inflamed subtype, showed a higher response rate to immune checkpoint blockade (ICB) and had the lowest tumor immune dysfunction and exclusion (TIDE) scores. Cluster 2, the immune-excluded subtype, exhibited strong associations with stromal activation, characterized by elevated expression levels of transforming growth factor (TGF)-β, cell adhesion, extracellular matrix remodeling, and epithelial-to-mesenchymal transition (EMT) related genes. Cluster 3, the immune-desert subtype, displayed limited immune activity. For prognostic prediction, we developed an immune-related prognostic risk model (IRPM) based on four immune-related prognostic genes in pancreatic cancer, RHOF, CEP250, TSC1, and KIF20B. The IRPM demonstrated excellent prognostic efficacy and successful validation in an external cohort. Notably, the key gene in the prognostic model, RHOF, exerted significant influence on the proliferation, migration, and invasion of pancreatic cancer cells through in vitro experiments. Furthermore, we conducted a comprehensive analysis of somatic mutational landscapes and immune landscapes in PC patients with different IRPM risk scores. Our findings accurately stratified patients based on their immune microenvironment and predicted immunotherapy responses, offering valuable insights for clinicians in developing more targeted clinical strategies.
Collapse
Affiliation(s)
- Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Fen Wang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Ziyu Lei
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Jiangquan Li
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Miaomiao Ma
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Ying Yan
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Xiaolei Chen
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
| | - Beibei Xu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (F.W.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
35
|
Constantin M, Chifiriuc MC, Mihaescu G, Vrancianu CO, Dobre EG, Cristian RE, Bleotu C, Bertesteanu SV, Grigore R, Serban B, Cirstoiu C. Implications of oral dysbiosis and HPV infection in head and neck cancer: from molecular and cellular mechanisms to early diagnosis and therapy. Front Oncol 2023; 13:1273516. [PMID: 38179168 PMCID: PMC10765588 DOI: 10.3389/fonc.2023.1273516] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck cancer (HNC) is the sixth most common type of cancer, with more than half a million new cases annually. This review focuses on the role of oral dysbiosis and HPV infection in HNCs, presenting the involved taxons, molecular effectors and pathways, as well as the HPV-associated particularities of genetic and epigenetic changes and of the tumor microenvironment occurred in different stages of tumor development. Oral dysbiosis is associated with the evolution of HNCs, through multiple mechanisms such as inflammation, genotoxins release, modulation of the innate and acquired immune response, carcinogens and anticarcinogens production, generation of oxidative stress, induction of mutations. Thus, novel microbiome-derived biomarkers and interventions could significantly contribute to achieving the desideratum of personalized management of oncologic patients, regarding both early diagnosis and treatment. The results reported by different studies are not always congruent regarding the variations in the abundance of different taxons in HNCs. However, there is a consistent reporting of a higher abundance of Gram-negative species such as Fusobacterium, Leptotrichia, Treponema, Porphyromonas gingivalis, Prevotella, Bacteroidetes, Haemophilus, Veillonella, Pseudomonas, Enterobacterales, which are probably responsible of chronic inflammation and modulation of tumor microenvironment. Candida albicans is the dominant fungi found in oral carcinoma being also associated with shorter survival rate. Specific microbial signatures (e.g., F. nucleatum, Bacteroidetes and Peptostreptococcus) have been associated with later stages and larger tumor, suggesting their potential to be used as biomarkers for tumor stratification and prognosis. On the other hand, increased abundance of Corynebacterium, Kingella, Abiotrophia is associated with a reduced risk of HNC. Microbiome could also provide biomarkers for differentiating between oropharyngeal and hypopharyngeal cancers as well as between HPV-positive and HPV-negative tumors. Ongoing clinical trials aim to validate non-invasive tests for microbiome-derived biomarkers detection in oral and throat cancers, especially within high-risk populations. Oro-pharyngeal dysbiosis could also impact the HNCs therapy and associated side-effects of radiotherapy, chemotherapy, and immunotherapy. HPV-positive tumors harbor fewer mutations, as well as different DNA methylation pattern and tumor microenvironment. Therefore, elucidation of the molecular mechanisms by which oral microbiota and HPV infection influence the HNC initiation and progression, screening for HPV infection and vaccination against HPV, adopting a good oral hygiene, and preventing oral dysbiosis are important tools for advancing in the battle with this public health global challenge.
Collapse
Affiliation(s)
- Marian Constantin
- Department of Microbiology, Institute of Biology of Romanian Academy, Bucharest, Romania
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Romanian Academy, Bucharest, Romania
| | - Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Elena-Georgiana Dobre
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Immunology Department, “Victor Babes” National Institute of Pathology, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania
- Cellular and Molecular Pathology Department, Ştefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Raluca Grigore
- Coltea Clinical Hospital, ENT, Head & Neck Surgery Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Serban
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Cirstoiu
- University Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
36
|
Wang B, Ou Z, Zhong W, Huang L, Liao W, Sheng Y, Guo Z, Chen J, Yang W, Chen K, Huang X, Yang T, Lin T, Huang J. Effective Antitumor Immunity Can Be Triggered by Targeting VISTA in Combination with a TLR3-Specific Adjuvant. Cancer Immunol Res 2023; 11:1656-1670. [PMID: 37847894 DOI: 10.1158/2326-6066.cir-23-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Resistance to anti-PD-1/PD-L1 treatment is often associated with accumulation of intratumoral inhibitory macrophages. V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a nonredundant immune checkpoint that can induce both T-cell and myeloid-cell immunosuppression. In this study, we found that high levels of VISTA+ immune cells were associated with advanced stage bladder cancer and predicted poor survival in patients. A combination of high infiltration of VISTA+ immune cells and PD-L1+ immune cells or PD-1+ T cells predicted the worst survival. Flow cytometry and multiplex immunofluorescence analyses confirmed that VISTA expression was higher in macrophages than in T cells or neutrophils, and only VISTA+CD163+ macrophage density predicted poor prognosis in patients with bladder cancer. Toll-like receptor (TLR) agonists are known to trigger the innate immune response in macrophages. We found that the VISTA-specific mAb 13F3 augmented the ability of a TLR3-specific adjuvant to induce macrophage activation in vitro. In the MB49 syngeneic mouse model of bladder cancer, treatment with 13F3 curbed tumor growth and prolonged survival when combined with a TLR3-specific adjuvant. The combination treatment reduced the intratumoral frequency of CD206+ anti-inflammatory macrophages and levels of the immunosuppressive molecule TGFβ1, but it upregulated expression of immunostimulatory molecules (Ifna, Ifnb, and Trail) and increased the CD8+ T cell/regulatory T-cell ratio. These findings indicate that elevated VISTA expression in immune cells, particularly macrophages, is associated with an unfavorable prognosis in patients with bladder cancer and suggest that targeting VISTA in combination with a TLR3-specific adjuvant has translational potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Ziwei Ou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenjian Liao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Yiyu Sheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Zhixing Guo
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
| | - Junyu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Ke Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Xiaodong Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Tenghao Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| |
Collapse
|
37
|
Liu Q, Li L, Qin W, Chao T. Repurposing drugs for solid tumor treatment: focus on immune checkpoint inhibitors. Cancer Biol Med 2023; 20:j.issn.2095-3941.2023.0281. [PMID: 37929901 PMCID: PMC10690875 DOI: 10.20892/j.issn.2095-3941.2023.0281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023] Open
Abstract
Cancer remains a significant global health challenge with limited treatment options beyond systemic therapies, such as chemotherapy, radiotherapy, and molecular targeted therapy. Immunotherapy has emerged as a promising therapeutic modality but the efficacy has plateaued, which therefore provides limited benefits to patients with cancer. Identification of more effective approaches to improve patient outcomes and extend survival are urgently needed. Drug repurposing has emerged as an attractive strategy for drug development and has recently garnered considerable interest. This review comprehensively analyses the efficacy of various repurposed drugs, such as transforming growth factor-beta (TGF-β) inhibitors, metformin, receptor activator of nuclear factor-κB ligand (RANKL) inhibitors, granulocyte macrophage colony-stimulating factor (GM-CSF), thymosin α1 (Tα1), aspirin, and bisphosphonate, in tumorigenesis with a specific focus on their impact on tumor immunology and immunotherapy. Additionally, we present a concise overview of the current preclinical and clinical studies investigating the potential therapeutic synergies achieved by combining these agents with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Qingxu Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long Li
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wan Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tengfei Chao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
38
|
Liu H, Tang T. MAPK signaling pathway-based glioma subtypes, machine-learning risk model, and key hub proteins identification. Sci Rep 2023; 13:19055. [PMID: 37925483 PMCID: PMC10625624 DOI: 10.1038/s41598-023-45774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
An early diagnosis and precise prognosis are critical for the treatment of glioma. The mitogen‑activated protein kinase (MAPK) signaling pathway potentially affects glioma, but the exploration of the clinical values of the pathway remains lacking. We accessed data from TCGA, GTEx, CGGA, etc. Up-regulated MAPK signaling pathway genes in glioma were identified and used to cluster the glioma subtypes using consensus clustering. The subtype differences in survival, cancer stemness, and the immune microenvironment were analyzed. A prognostic model was trained with the identified genes using the LASSO method and was validated with three external cohorts. The correlations between the risk model and cancer-associated signatures in cancer were analyzed. Key hub genes of the gene set were identified by hub gene analysis and survival analysis. 47% of the MAPK signaling pathway genes were overexpressed in glioma. Subtypes based on these genes were distinguished in survival, cancer stemness, and the immune microenvironment. A risk model was calculated with high confidence in the prediction of overall survival and was correlated with multiple cancer-associated signatures. 12 hub genes were identified and 8 of them were associated with survival. The MAPK signaling pathway was overexpressed in glioma with prognostic value.
Collapse
Affiliation(s)
- Hengrui Liu
- Xinkaiyuan Pharmaceuticals, Beijing, China
- Guangzhou Regenerative Medicine Research Center, Future Homo Sapiens Institute of Regenerative Medicine Co., Ltd (FHIR), Guangzhou, China
| | - Tao Tang
- Department of Molecular Diagnostics, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China.
- Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.
| |
Collapse
|
39
|
Du Z, Zhang Q, Yang J. Prognostic related gene index for predicting survival and immunotherapeutic effect of hepatocellular carcinoma. Medicine (Baltimore) 2023; 102:e35820. [PMID: 37933057 PMCID: PMC10627638 DOI: 10.1097/md.0000000000035820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common malignant liver tumor. It is an aggressive disease with high mortality rate. In this study, we investigated a new prognosis-related gene index (PRGI) that can predict the survival and efficacy of immunotherapy in patients with HCC. RNA-seq data and clinical data of HCC samples were obtained from the cancer genome atlas and ICGC databases. Prognosis-related genes were obtained using log-rank tests and univariate Cox proportional hazards regression. Univariate and multivariate analyses were performed on the overall survival rate of patients with prognosis-related genes and multiple clinicopathological factors, and a nomogram was constructed. A PRGI was then constructed based on least absolute shrinkage and selection operator or multivariate Cox Iterative Regression. The possible correlation between PRGI and immune cell infiltration or immunotherapy efficacy was discussed. Eight genes were identified to construct the PRGI. PRGI can predict the infiltration of immune cells into the tumor microenvironment of HCC and the response to immunotherapy. PRGI can accurately predict the survival rate of patients with HCC, reflect the immune microenvironment, and predict the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Zhongxiang Du
- Clinical Laboratory, Danyang People’s Hospital of Jiangsu Province, Danyang Hospital Affiliated to Nantong University, Danyang, Jiangsu, China
| | - Qi Zhang
- Clinical Laboratory, Danyang People’s Hospital of Jiangsu Province, Danyang Hospital Affiliated to Nantong University, Danyang, Jiangsu, China
| | - Jie Yang
- Clinical Laboratory, Danyang People’s Hospital of Jiangsu Province, Danyang Hospital Affiliated to Nantong University, Danyang, Jiangsu, China
| |
Collapse
|
40
|
Aliper A, Kudrin R, Polykovskiy D, Kamya P, Tutubalina E, Chen S, Ren F, Zhavoronkov A. Prediction of Clinical Trials Outcomes Based on Target Choice and Clinical Trial Design with Multi-Modal Artificial Intelligence. Clin Pharmacol Ther 2023; 114:972-980. [PMID: 37483175 DOI: 10.1002/cpt.3008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Drug discovery and development is a notoriously risky process with high failure rates at every stage, including disease modeling, target discovery, hit discovery, lead optimization, preclinical development, human safety, and efficacy studies. Accurate prediction of clinical trial outcomes may help significantly improve the efficiency of this process by prioritizing therapeutic programs that are more likely to succeed in clinical trials and ultimately benefit patients. Here, we describe inClinico, a transformer-based artificial intelligence software platform designed to predict the outcome of phase II clinical trials. The platform combines an ensemble of clinical trial outcome prediction engines that leverage generative artificial intelligence and multimodal data, including omics, text, clinical trial design, and small molecule properties. inClinico was validated in retrospective, quasi-prospective, and prospective validation studies internally and with pharmaceutical companies and financial institutions. The platform achieved 0.88 receiver operating characteristic area under the curve in predicting the phase II to phase III transition on a quasi-prospective validation dataset. The first prospective predictions were made and placed on date-stamped preprint servers in 2016. To validate our model in a real-world setting, we published forecasted outcomes for several phase II clinical trials achieving 79% accuracy for the trials that have read out. We also present an investment application of inClinico using date stamped virtual trading portfolio demonstrating 35% 9-month return on investment.
Collapse
Affiliation(s)
- Alex Aliper
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi, United Arab Emirates
| | - Roman Kudrin
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi, United Arab Emirates
| | | | - Petrina Kamya
- Insilico Medicine Canada Inc., Quebec, Montreal, Canada
| | - Elena Tutubalina
- Insilico Medicine Hong Kong Ltd, New Territories, Pak Shek Kok, Hong Kong
| | - Shan Chen
- Insilico Medicine Shanghai Ltd, Pudong New District, Shanghai, China
| | - Feng Ren
- Insilico Medicine Shanghai Ltd, Pudong New District, Shanghai, China
| | - Alex Zhavoronkov
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi, United Arab Emirates
- Insilico Medicine Hong Kong Ltd, New Territories, Pak Shek Kok, Hong Kong
| |
Collapse
|
41
|
Heregger R, Huemer F, Steiner M, Gonzalez-Martinez A, Greil R, Weiss L. Unraveling Resistance to Immunotherapy in MSI-High Colorectal Cancer. Cancers (Basel) 2023; 15:5090. [PMID: 37894457 PMCID: PMC10605634 DOI: 10.3390/cancers15205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths. Incidences of early CRC cases are increasing annually in high-income countries, necessitating effective treatment strategies. Immune checkpoint inhibitors (ICIs) have shown significant clinical efficacy in various cancers, including CRC. However, their effectiveness in CRC is limited to patients with mismatch-repair-deficient (dMMR)/microsatellite instability high (MSI-H) disease, which accounts for about 15% of all localized CRC cases and only 3% to 5% of metastatic CRC cases. However, the varied response among patients, with some showing resistance or primary tumor progression, highlights the need for a deeper understanding of the underlying mechanisms. Elements involved in shaping the response to ICIs, such as tumor microenvironment, immune cells, genetic changes, and the influence of gut microbiota, are not fully understood thus far. This review aims to explore potential resistance or immune-evasion mechanisms to ICIs in dMMR/MSI-H CRC and the cell types involved, as well as possible pitfalls in the diagnosis of this particular subtype.
Collapse
Affiliation(s)
- Ronald Heregger
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Florian Huemer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Markus Steiner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alejandra Gonzalez-Martinez
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Lukas Weiss
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
42
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
43
|
Yao S, Han Y, Yang M, Jin K, Lan H. It's high-time to re-evaluate the value of induced-chemotherapy for reinforcing immunotherapy in colorectal cancer. Front Immunol 2023; 14:1241208. [PMID: 37920463 PMCID: PMC10619163 DOI: 10.3389/fimmu.2023.1241208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
Immunotherapy has made significant advances in the treatment of colorectal cancer (CRC), revolutionizing the therapeutic landscape and highlighting the indispensable role of the tumor immune microenvironment. However, some CRCs have shown poor response to immunotherapy, prompting investigation into the underlying reasons. It has been discovered that certain chemotherapeutic agents possess immune-stimulatory properties, including the induction of immunogenic cell death (ICD), the generation and processing of non-mutated neoantigens (NM-neoAgs), and the B cell follicle-driven T cell response. Based on these findings, the concept of inducing chemotherapy has been introduced, and the combination of inducing chemotherapy and immunotherapy has become a standard treatment option for certain cancers. Clinical trials have confirmed the feasibility and safety of this approach in CRC, offering a promising method for improving the efficacy of immunotherapy. Nevertheless, there are still many challenges and difficulties ahead, and further research is required to optimize its use.
Collapse
Affiliation(s)
- Shiya Yao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yuejun Han
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Mengxiang Yang
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Huanrong Lan
- Department of Surgical Oncology, Hangzhou Cancer Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
44
|
Katagata M, Okayama H, Nakajima S, Saito K, Sato T, Sakuma M, Fukai S, Endo E, Sakamoto W, Saito M, Saze Z, Momma T, Mimura K, Kono K. TIM-3 Expression and M2 Polarization of Macrophages in the TGFβ-Activated Tumor Microenvironment in Colorectal Cancer. Cancers (Basel) 2023; 15:4943. [PMID: 37894310 PMCID: PMC10605063 DOI: 10.3390/cancers15204943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
TGFβ signaling in the tumor microenvironment (TME) drives immune evasion and is a negative predictor of immune checkpoint inhibitor (ICI) efficacy in colorectal cancer (CRC). TIM-3, an inhibitory receptor implicated in anti-tumor immune responses and ICI resistance, has emerged as an immunotherapeutic target. This study investigated TIM-3, M2 macrophages and the TGFβ-activated TME, in association with microsatellite instability (MSI) status and consensus molecular subtypes (CMSs). Transcriptomic cohorts of CRC tissues, organoids and xenografts were examined (n = 2240). TIM-3 and a TGFβ-inducible stromal protein, VCAN, were evaluated in CRC specimens using immunohistochemistry (n = 45). TIM-3 expression on monocytes and generated M2 macrophages was examined by flow cytometry. We found that the expression of HAVCR2 (TIM-3) significantly correlated with the transcriptional signatures of TGFβ, TGFβ-dependent stromal activation and M2 macrophage, each of which were co-upregulated in CMS4, CMS1 and MSI CRCs across all datasets. Tumor-infiltrating TIM-3+ immune cells accumulated in TGFβ-responsive cancer stroma. TIM-3 was increased on M2-polarized macrophages, and on monocytes in response to TGFβ treatment. In conclusion, we identified a close association between TIM-3 and M2-like polarization of macrophages in the TGFβ-rich TME. Our findings provide new insights into personalized immunotherapeutic strategies based on the TME for CRCs.
Collapse
Affiliation(s)
- Masanori Katagata
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Hirokazu Okayama
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Shotaro Nakajima
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Department of Multidisciplinary Treatment of Cancer and Regional Medical Support, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Takahiro Sato
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Mei Sakuma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Satoshi Fukai
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Eisei Endo
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Wataru Sakamoto
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Motonobu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Zenichiro Saze
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Tomoyuki Momma
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
- Department of Blood Transfusion and Transplantation Immunology, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; (M.K.); (S.N.); (K.S.); (T.S.); (M.S.); (S.F.); (E.E.); (W.S.); (M.S.); (Z.S.); (T.M.); (K.M.); (K.K.)
| |
Collapse
|
45
|
Wang MM, Coupland SE, Aittokallio T, Figueiredo CR. Resistance to immune checkpoint therapies by tumour-induced T-cell desertification and exclusion: key mechanisms, prognostication and new therapeutic opportunities. Br J Cancer 2023; 129:1212-1224. [PMID: 37454231 PMCID: PMC10575907 DOI: 10.1038/s41416-023-02361-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Immune checkpoint therapies (ICT) can reinvigorate the effector functions of anti-tumour T cells, improving cancer patient outcomes. Anti-tumour T cells are initially formed during their first contact (priming) with tumour antigens by antigen-presenting cells (APCs). Unfortunately, many patients are refractory to ICT because their tumours are considered to be 'cold' tumours-i.e., they do not allow the generation of T cells (so-called 'desert' tumours) or the infiltration of existing anti-tumour T cells (T-cell-excluded tumours). Desert tumours disturb antigen processing and priming of T cells by targeting APCs with suppressive tumour factors derived from their genetic instabilities. In contrast, T-cell-excluded tumours are characterised by blocking effective anti-tumour T lymphocytes infiltrating cancer masses by obstacles, such as fibrosis and tumour-cell-induced immunosuppression. This review delves into critical mechanisms by which cancer cells induce T-cell 'desertification' and 'exclusion' in ICT refractory tumours. Filling the gaps in our knowledge regarding these pro-tumoral mechanisms will aid researchers in developing novel class immunotherapies that aim at restoring T-cell generation with more efficient priming by APCs and leukocyte tumour trafficking. Such developments are expected to unleash the clinical benefit of ICT in refractory patients.
Collapse
Affiliation(s)
- Mona Meng Wang
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland
- Singapore National Eye Centre and Singapore Eye Research Institute, Singapore, Singapore
| | - Sarah E Coupland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Liverpool Ocular Oncology Research Group (LOORG), Institute of Systems Molecular and Integrative Biology, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Tero Aittokallio
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Institute for Cancer Research, Department of Cancer Genetics, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Carlos R Figueiredo
- Medical Immune Oncology Research Group (MIORG), Institute of Biomedicine, Faculty of Medicine, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku, Turku, Finland.
| |
Collapse
|
46
|
Li Q, Wu K, Zhang Y, Liu Y, Wang Y, Chen Y, Sun S, Duan C. Construction of HBV-HCC prognostic model and immune characteristics based on potential genes mining through protein interaction networks. J Cancer Res Clin Oncol 2023; 149:11263-11278. [PMID: 37358667 DOI: 10.1007/s00432-023-04989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/15/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE To search for human protein-coding genes related to hepatocellular carcinoma (HCC) in the context of hepatitis B virus (HBV) infection, and perform prognosis risk assessment. METHODS Genes related to HBV-HCC were selected through literature screening and protein-protein interaction (PPI) network database analysis. Prognosis potential genes (PPGs) were identified using Cox regression analysis. Patients were divided into high-risk and low-risk groups based on PPGs, and risk scores were calculated. Kaplan-Meier plots were used to analyze overall survival rates, and the results were predicted based on clinicopathological variables. Association analysis was also conducted with immune infiltration, immune therapy, and drug sensitivity. Experimental verification of the expression of PPGs was done in patient liver cancer tissue and normal liver tissue adjacent to tumors. RESULTS The use of a prognosis potential genes risk assessment model can reliably predict the prognosis risk of patients, demonstrating strong predictive ability. Kaplan-Meier analysis showed that the overall survival rate of the low-risk group was significantly higher than that of the high-risk group. There were significant differences between the two subgroups in terms of immune infiltration and IC50 association analysis. Experimental verification revealed that CYP2C19, FLNC, and HNRNPC were highly expressed in liver cancer tissue, while UBE3A was expressed at a lower level. CONCLUSION PPGs can be used to predict the prognosis risk of HBV-HCC patients and play an important role in the diagnosis and treatment of liver cancer. They also reveal their potential role in the tumor immune microenvironment, clinical-pathological characteristics, and prognosis.
Collapse
Affiliation(s)
- Qingxiu Li
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Kejia Wu
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yiqi Zhang
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yuxin Liu
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yalan Wang
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Yong Chen
- Department of Hepatobillary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
| | - Shuangling Sun
- Chongqing Medical and Pharmaceutical College, No. 82, University Town Middle Road, Shapingba District, Chongqing, 400016, China
| | - Changzhu Duan
- Department of Cell Biology and Medical Genetics, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
47
|
Li M, Wu B, Li L, Lv C, Tian Y. Reprogramming of cancer-associated fibroblasts combined with immune checkpoint inhibitors: A potential therapeutic strategy for cancers. Biochim Biophys Acta Rev Cancer 2023; 1878:188945. [PMID: 37356739 DOI: 10.1016/j.bbcan.2023.188945] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Activated fibroblasts, namely cancer-associated fibroblasts (CAFs), are highly heterogeneous in phenotypes, functions, and origins. CAFs originated from varieties of cell types, including local resident fibroblasts, epithelial cells, mesenchymal stromal cells, or others. These cells participate in tumor angiogenesis, mechanics, drug access, and immune suppression, with the latter being particularly important. It was difficult to distinguish CAFs by subsets due to their complex origins until the use of scRNA-seq. Reprogramming CAFs with TGFβ-RI inhibitor, a CXCR4 blocker, or other methods increases T cells activation and infiltration, together with a decrease in CAFs recruitment, thus improving the prognosis. As depletion of CAFs can't bring clinical benefit, the combination of reprogramming CAFs and immune checkpoint inhibitors (ICIs) come into consideration. It has shown better outcomes compared with monotherapy respectively in basic/preclinical researches, and needs more data on clinical trials. Combination therapy may be a promising and expecting method for treatment of cancer.
Collapse
Affiliation(s)
- Min Li
- Department of Mammary Gland, Dalian Women and Children's Medical Center(Group), No. 1 Dunhuang Road, Dalian 116000, Liaoning Province, China; Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao Street, Shenyang 110004, Liaoning Province, China.
| |
Collapse
|
48
|
Pandey P, Khan F. Gut microbiome in cancer immunotherapy: Current trends, translational challenges and future possibilities. Biochim Biophys Acta Gen Subj 2023; 1867:130401. [PMID: 37307905 DOI: 10.1016/j.bbagen.2023.130401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/23/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Gut microbiota is regarded as a crucial regulator of the immune system. Healthy gut microbiota plays a specialized role in host xenobiotics, nutrition, drug metabolism, regulation of the structural integrity of the gut mucosal barrier, defense against infections, and immunomodulation. It is now understood that any imbalance in gut microbiota composition from that present in a healthy state is linked to genetic susceptibility to a number of metabolic disorders, including diabetes, autoimmunity, and cancer. Recent research has suggested that immunotherapy can treat many different cancer types with fewer side effects and better ability to eradicate tumors than conventional chemotherapy or radiotherapy. However, a significant number of patients eventually develop immunotherapy resistance. A strong correlation was observed between the composition of the gut microbiome and the effectiveness of treatment by examining the variations between populations that responded to immunotherapy and those that did not. Therefore, we suggest that modulating the microbiome could be a potential adjuvant therapy for cancer immunotherapy and that the architecture of the gut microbiota may be helpful in explaining the variation in treatment response. Herein, we focus on recent research on the interactions among the gut microbiome, host immunity, and cancer immunotherapy. In addition, we highlighted the clinical manifestations, future opportunities, and limitations of microbiome manipulation in cancer immunotherapy.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, 19, Knowledge Park-II, Institutional Area, Greater Noida 201306, India.
| |
Collapse
|
49
|
Wei HF, Zhang RF, Zhao YC, Tong XS. SERPINB7 as a prognostic biomarker in cervical cancer: Association with immune infiltration and facilitation of the malignant phenotype. Heliyon 2023; 9:e20184. [PMID: 37809412 PMCID: PMC10559959 DOI: 10.1016/j.heliyon.2023.e20184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose The purpose of this study was to investigate the expression patterns, predictive significance, and roles in the immune microenvironment of Serpin Family-B Member 7 (SERPINB7) in cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC). Methods The expression of SERPINB7 and its prognostic relevance were evaluated using RNA-seq data from The Cancer Genome Atlas. SERPINB7 regulation of CESC cell growth and metastasis was investigated using MTT, scratch, and Transwell assays. In vivo effects of SERPINB7 were examined in xenograft model mice and differentially expressed genes (DEGs) associated with SERPINB7 were identified to explore its functional role in oncogenesis. Associations between SERPINB7 levels, chemosensitivity, and immune infiltration were assessed, and mutations and methylation of SERPINB7 were evaluated using the cBioPortal and MethSurv databases, respectively. Results SERPINB7 was up-regulated in CESC samples as well as in other tumors, and patients with higher SERPINB7A mRNA levels exhibited shorter overall survival. The area under the curve for the use of SERPINB7 in CESC diagnosis was above 0.9, and the gene was shown to regulate tumor cell proliferation and metastasis in vitro and in vivo. Overall, 398 DEGs enriched in key CESC progression-related signaling pathways were identified. SERPINB7 expression was additionally correlated with intratumoral immune infiltration and immune checkpoint activity. Patients expressing higher SERPINB7 levels exhibited distinct chemosensitivity profiles, and methylation of the SERPINB7 gene was linked to CESC patient prognostic outcomes. Conclusion SERPINB7 was found to be a crucial regulator of CESC progression, prognosis, and the tumor immune microenvironment, highlighting its potential as a diagnostic and prognostic biomarker and target for CESC immunotherapy.
Collapse
Affiliation(s)
- Hua-Fang Wei
- Department of Internal Medicine-1, Jilin Cancer Hospital, Changchun, Jilin, People's Republic of China
| | - Rui-Feng Zhang
- Department of Internal Medicine-1, Jilin Cancer Hospital, Changchun, Jilin, People's Republic of China
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xian-Shuang Tong
- Department of Internal Medicine-1, Jilin Cancer Hospital, Changchun, Jilin, People's Republic of China
| |
Collapse
|
50
|
Karami Z, Mortezaee K, Majidpoor J. Dual anti-PD-(L)1/TGF-β inhibitors in cancer immunotherapy - Updated. Int Immunopharmacol 2023; 122:110648. [PMID: 37459782 DOI: 10.1016/j.intimp.2023.110648] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy suffers from tumor resistance and relapse in majority of patients due to the suppressive tumor immune microenvironment (TIME). Advances in the field have brought about development of fusion proteins able to target two signaling simultaneously and to exert maximal anti-cancer immunity. Bispecific inhibitors of transforming growth factor (TGF)-β signaling and programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1) are developed to reduce the rate of relapse and to achieve durable anti-cancer therapy. TGF-β is well-known for its immunosuppressive activity, and it takes critical roles in promotion of all tumor hallmarks. Bispecific anti-PD-(L)1/TGF-β inhibitors reinvigorate effector activity of CD8+ T and natural killer (NK) cells, hamper regulatory T cell (Treg) expansion, and increase the density of anti-tumor type 1 macrophages (M1). Responses to the bispecific approach are higher compared with solo anti-PD-(L)1 or TGF-β targeted therapy, and are seemingly more pronounced in human papillomavirus (HPV)+ patients. High expression of PD-L1 or immune-excluded phenotype in a tumor can also be markers of better response to the bispecific strategy. Besides, anti-PD-(L)1/TGF-β inhibitor therapy can be used safely with other therapeutic modalities including vaccination, radiation and chemotherapy.
Collapse
Affiliation(s)
- Zana Karami
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|