1
|
Ma B, Kamle S, Sadanaga T, Lee CM, Lee JH, Yee DC, Zhu Z, Silverman EK, DeMeo DL, Choi AMK, Lee CG, Elias JA. Chitinase 3-like-1 Inhibits Innate Antitumor and Tissue Remodeling Immune Responses by Regulating CD47-SIRPα- and CD24-Siglec10-Mediated Phagocytosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1279-1291. [PMID: 39291933 DOI: 10.4049/jimmunol.2400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Innate immune responses such as phagocytosis are critically linked to the generation of adaptive immune responses against the neoantigens in cancer and the efferocytosis that is essential for homeostasis in diseases characterized by lung injury, inflammation, and remodeling as in chronic obstructive pulmonary disease (COPD). Chitinase 3-like-1 (CHI3L1) is induced in many cancers where it inhibits adaptive immune responses by stimulating immune checkpoint molecules (ICPs) and portends a poor prognosis. CHI3L1 is also induced in COPD where it regulates epithelial cell death. In this study, we demonstrate that pulmonary melanoma metastasis inhibits macrophage phagocytosis by stimulating the CD47-SIRPα and CD24-Siglec10 phagocytosis checkpoint pathways while inhibiting macrophage "eat me" signals from calreticulin and HMGB1. We also demonstrate that these effects on macrophage phagocytosis are associated with CHI3L1 stimulation of the SHP-1 and SHP-2 phosphatases and inhibition of the accumulation and phosphorylation of cytoskeleton-regulating nonmuscle myosin IIa. This inhibition of innate immune responses such as phagocytosis provides a mechanistic explanation for the ability of CHI3L1 to stimulate ICPs and inhibit adaptive immune responses in cancer and diseases such as COPD. The ability of CHI3L1 to simultaneously inhibit innate immune responses, stimulate ICPs, inhibit T cell costimulation, and regulate a number of other oncogenic and inflammation pathways suggests that CHI3L1-targeted therapeutics are promising interventions in cancer, COPD, and other disorders.
Collapse
Affiliation(s)
- Bing Ma
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Suchitra Kamle
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Takayuki Sadanaga
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Chang-Min Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Joyce H Lee
- Johns Hopkins School of Medicine, Baltimore, MD
| | - Daniel C Yee
- Division of Pulmonary, Allergy and Critical Care Medicine, Columbia University Medical Center, New York, NY
| | - Zhou Zhu
- Department of Pediatrics, Brown University, Providence, RI
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA
| | - Dawn L DeMeo
- Channing Division of Network Medicine, Brigham and Woman's Hospital, Harvard Medical School, Boston, MA
| | | | - Chun Geun Lee
- Molecular Microbiology and Immunology, Brown University, Providence, RI
| | - Jack A Elias
- Molecular Microbiology and Immunology, Brown University, Providence, RI
- Department of Medicine, Brown University, Providence, RI
| |
Collapse
|
2
|
Levantovsky RM, Tastad C, Zhang J, Gettler K, Sabic K, Werner R, Chasteau C, Korie U, Paguay D, Bao M, Han H, Maskey N, Talware S, Patel M, Argmann C, Suarez-Farinas M, Harpaz N, Chuang LS, Cho JH. Multimodal single-cell analyses reveal mechanisms of perianal fistula in diverse patients with Crohn's disease. MED 2024; 5:886-908.e11. [PMID: 38663404 PMCID: PMC11317226 DOI: 10.1016/j.medj.2024.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 12/08/2023] [Accepted: 03/28/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Crohn's disease complicated by perianal fistulae is more prevalent and severe in patients of African ancestry. METHODS We profiled single cells from diverse patients with Crohn's disease with perianal fistula from colorectal mucosa and fistulous tracts. Immunofluorescence was performed to validate predicted cell-cell interactions. Unstimulated monocytes were chronically cultured in diverse cohorts. A subset was analyzed by single-nucleus RNA + ATAC sequencing. FINDINGS Fistulous tract cells from complete proctectomies demonstrated enrichment of myeloid cells compared to paired rectal tissues. Ligand-receptor analysis highlights myeloid-stromal cross-talk and cellular senescence, with cellular co-localization validated by immunofluorescence. Chitinase-3 like-protein-1 (CHI3L1) is a top upregulated gene in stromal cells from fistulae expressing both destructive and fibrotic gene signatures. Monocyte cultures from patients of African ancestry and controls demonstrated differences in CHI3L1 and oncostatin M (OSM) expression upon differentiation compared to individuals of European ancestry. Activating protein-1 footprints are present in ATAC-seq peaks in stress response genes, including CHI3L1 and OSM; genome-wide chromatin accessibility including JUN footprints was observed, consistent with reported mechanisms of inflammatory memory. Regulon analyses confirm known cell-specific transcription factor regulation and implicate novel ones in fibroblast subsets. All pseudo-bulked clusters demonstrate enrichment of genetic loci, establishing multicellular contributions. In the most significant African American Crohn's genetic locus, upstream of prostaglandin E receptor 4, lymphoid-predominant ATAC-seq peaks were observed, with predicted RORC footprints. CONCLUSIONS Population differences in myeloid-stromal cross-talk implicate fibrotic and destructive fibroblasts, senescence, epigenetic memory, and cell-specific enhancers in perianal fistula pathogenesis. The transcriptomic and epigenetic data provided here may guide optimization of promising mesenchymal stem cell therapies for perianal fistula. FUNDING This work was supported by grants U01DK062422, U24DK062429, and R01DK123758.
Collapse
Affiliation(s)
- Rachel M Levantovsky
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Tastad
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayu Zhang
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kyle Gettler
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ksenija Sabic
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Werner
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Colleen Chasteau
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ujunwa Korie
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Diana Paguay
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michelle Bao
- Division of Pediatric Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Huajun Han
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Sayali Talware
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Noam Harpaz
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ling-Shiang Chuang
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Judy H Cho
- Department of Pathology, Molecular, and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
3
|
Fan Y, Meng Y, Hu X, Liu J, Qin X. Uncovering novel mechanisms of chitinase-3-like protein 1 in driving inflammation-associated cancers. Cancer Cell Int 2024; 24:268. [PMID: 39068486 PMCID: PMC11282867 DOI: 10.1186/s12935-024-03425-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that is induced and regulated by multiple factors during inflammation in enteritis, pneumonia, asthma, arthritis, and other diseases. It is associated with the deterioration of the inflammatory environment in tissues with chronic inflammation caused by microbial infection or autoimmune diseases. The expression of CHI3L1 expression is upregulated in several malignant tumors, underscoring the crucial role of chronic inflammation in the initiation and progression of cancer. While the precise mechanism connecting inflammation and cancer is unclear, the involvement of CHI3L1 is involved in chronic inflammation, suggesting its role as a contributing factor to in the link between inflammation and cancer. CHI3L1 can aggravate DNA oxidative damage, induce the cancerous phenotype, promote the development of a tumor inflammatory environment and angiogenesis, inhibit immune cells, and promote cancer cell growth, invasion, and migration. Furthermore, it participates in the initiation of cancer progression and metastasis by binding with transmembrane receptors to mediate intracellular signal transduction. Based on the current research on CHI3L1, we explore introduce the receptors that interact with CHI3L1 along with the signaling pathways that may be triggered during chronic inflammation to enhance tumorigenesis and progression. In the last section of the article, we provide a brief overview of anti-inflammatory therapies that target CHI3L1.
Collapse
Affiliation(s)
- Yan Fan
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Yuan Meng
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xingwei Hu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China
| | - Xiaosong Qin
- Department of Laboratory Medicine, Liaoning Clinical Research Center for Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110122, China.
- Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, Liaoning Province, China.
| |
Collapse
|
4
|
Su PC, Chen CY, Yu MH, Kuo IY, Yang PS, Hsu CH, Hou YC, Hsieh HT, Chang CP, Shan YS, Wang YC. Fully human chitinase-3 like-1 monoclonal antibody inhibits tumor growth, fibrosis, angiogenesis, and immune cell remodeling in lung, pancreatic, and colorectal cancers. Biomed Pharmacother 2024; 176:116825. [PMID: 38820971 DOI: 10.1016/j.biopha.2024.116825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024] Open
Abstract
Considering the limited efficacy of current therapies in lung, colorectal, and pancreatic cancers, innovative combination treatments with diverse mechanisms of action are needed to improve patients' outcomes. Chitinase-3 like-1 protein (CHI3L1) emerges as a versatile factor with significant implications in various diseases, particularly cancers, fostering an immunosuppressive tumor microenvironment for cancer progression. Therefore, pre-clinical validation is imperative to fully realize its potential in cancer treatment. We developed phage display-derived fully human monoclonal CHI3L1 neutralizing antibodies (nAbs) and verified the nAbs-antigen binding affinity and specificity in lung, pancreatic and colorectal cancer cell lines. Tumor growth signals, proliferation and migration ability were all reduced by CHI3L1 nAbs in vitro. Orthotopic or subcutaneous tumor mice model and humanized mouse model were established for characterizing the anti-tumor properties of two CHI3L1 nAb leads. Importantly, CHI3L1 nAbs not only inhibited tumor growth but also mitigated fibrosis, angiogenesis, and restored immunostimulatory functions of immune cells in pancreatic, lung, and colorectal tumor mice models. Mechanistically, CHI3L1 nAbs directly suppressed the activation of pancreatic stellate cells and the transformation of macrophages into myofibroblasts, thereby attenuating fibrosis. These findings strongly support the therapeutic potential of CHI3L1 nAbs in overcoming clinical challenges, including the failure of gemcitabine in pancreatic cancer.
Collapse
Affiliation(s)
- Pei-Chia Su
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Ching-Yu Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Min-Hua Yu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan
| | - Pei-Shan Yang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Ching-Hsuan Hsu
- AP Biosciences, Inc, No. 508, Sec. 7, Zhongxiao E. Rd, Taipei 115011, Taiwan
| | - Ya-Chin Hou
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan; Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan
| | - Hsin-Ta Hsieh
- AP Biosciences, Inc, No. 508, Sec. 7, Zhongxiao E. Rd, Taipei 115011, Taiwan
| | - Chih-Peng Chang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan; Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.138, Sheng-Li Road, Tainan 70403, Taiwan.
| | - Yi-Ching Wang
- Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan; Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, Ta-Hsueh Road, Tainan 70101, Taiwan.
| |
Collapse
|
5
|
Mizoguchi E, Sadanaga T, Nanni L, Wang S, Mizoguchi A. Recently Updated Role of Chitinase 3-like 1 on Various Cell Types as a Major Influencer of Chronic Inflammation. Cells 2024; 13:678. [PMID: 38667293 PMCID: PMC11049018 DOI: 10.3390/cells13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Linda Nanni
- Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Siyuan Wang
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| |
Collapse
|
6
|
Salembier R, De Haes C, Bellemans J, Demeyere K, Van Den Broeck W, Sanders NN, Van Laere S, Lyons TR, Meyer E, Steenbrugge J. Chitin-mediated blockade of chitinase-like proteins reduces tumor immunosuppression, inhibits lymphatic metastasis and enhances anti-PD-1 efficacy in complementary TNBC models. Breast Cancer Res 2024; 26:63. [PMID: 38605414 PMCID: PMC11007917 DOI: 10.1186/s13058-024-01815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/23/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND Chitinase-like proteins (CLPs) play a key role in immunosuppression under inflammatory conditions such as cancer. CLPs are enzymatically inactive and become neutralized upon binding of their natural ligand chitin, potentially reducing CLP-driven immunosuppression. We investigated the efficacy of chitin treatment in the context of triple-negative breast cancer (TNBC) using complementary mouse models. We also evaluated the immunomodulatory influence of chitin on immune checkpoint blockade (ICB) and compared its efficacy as general CLP blocker with blockade of a single CLP, i.e. chitinase 3-like 1 (CHI3L1). METHODS Female BALB/c mice were intraductally injected with luciferase-expressing 4T1 or 66cl4 cells and systemically treated with chitin in combination with or without anti-programmed death (PD)-1 ICB. For single CLP blockade, tumor-bearing mice were treated with anti-CHI3L1 antibodies. Metastatic progression was monitored through bioluminescence imaging. Immune cell changes in primary tumors and lymphoid organs (i.e. axillary lymph nodes and spleen) were investigated through flow cytometry, immunohistochemistry, cytokine profiling and RNA-sequencing. CHI3L1-stimulated RAW264.7 macrophages were subjected to 2D lymphatic endothelial cell adhesion and 3D lymphatic integration in vitro assays for studying macrophage-mediated lymphatic remodeling. RESULTS Chitin significantly reduced primary tumor progression in the 4T1-based model by decreasing the high production of CLPs that originate from tumor-associated neutrophils (TANs) and Stat3 signaling, prominently affecting the CHI3L1 and CHI3L3 primary tumor levels. It reduced immunosuppressive cell types and increased anti-tumorigenic T-cells in primary tumors as well as axillary lymph nodes. Chitin also significantly reduced CHI3L3 primary tumor levels and immunosuppression in the 66cl4-based model. Compared to anti-CHI3L1, chitin enhanced primary tumor growth reduction and anti-tumorigenicity. Both treatments equally inhibited lymphatic adhesion and integration of macrophages, thereby hampering lymphatic tumor cell spreading. Upon ICB combination therapy, chitin alleviated anti-PD-1 resistance in both TNBC models, providing a significant add-on reduction in primary tumor and lung metastatic growth compared to chitin monotherapy. These add-on effects occurred through additional increase in CD8α+ T-cell infiltration and activation in primary tumor and lymphoid organs. CONCLUSIONS Chitin, as a general CLP blocker, reduces CLP production, enhances anti-tumor immunity as well as ICB responses, supporting its potential clinical relevance in immunosuppressed TNBC patients.
Collapse
Affiliation(s)
- Robbe Salembier
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Caro De Haes
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Julie Bellemans
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kristel Demeyere
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Wim Van Den Broeck
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Niek N Sanders
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Gene Therapy, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Traci R Lyons
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Cancer Center Young Women's Breast Cancer Translational Program, Aurora, CO, USA
| | - Evelyne Meyer
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Jonas Steenbrugge
- Laboratory of Biochemistry, Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
- Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
7
|
Marastoni D, Foschi M, Eccher C, Crescenzo F, Mazziotti V, Tamanti A, Bajrami A, Camera V, Ziccardi S, Guandalini M, Bosello F, Anni D, Virla F, Turano E, Romoli M, Mariotti R, Pizzini FB, Bonetti B, Calabrese M. CSF levels of Chitinase3like1 correlate with early response to cladribine in multiple sclerosis. Front Immunol 2024; 15:1343892. [PMID: 38404586 PMCID: PMC10885800 DOI: 10.3389/fimmu.2024.1343892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Background Cladribine has been introduced as a high-efficacy drug for treating relapsing-remitting multiple sclerosis (RRMS). Initial cohort studies showed early disease activity in the first year after drug initiation. Biomarkers that can predict early disease activity are needed. Aim To estimate cerebrospinal fluid (CSF) markers of clinical and radiological responses after initiation of cladribine. Methods Forty-two RRMS patients (30F/12M) treated with cladribine were included in a longitudinal prospective study. All patients underwent a CSF examination at treatment initiation, clinical follow-up including Expanded Disability Status Scale (EDSS) assessment, and a 3T MRI scan after 6,12 and 24 months, including the evaluation of white matter (WM) and cortical lesions (CLs). CSF levels of 67 inflammatory markers were assessed with immune-assay multiplex techniques. The 'no evidence of disease activity' (NEDA-3) status was assessed after two years and defined by no relapses, no disability worsening measured by EDSS and no MRI activity, including CLs. Results Three patients were lost at follow-up. At the end of follow-up, 19 (48%) patients remained free from disease activity. IFNgamma, Chitinase3like1, IL32, Osteopontin, IL12(p40), IL34, IL28A, sTNFR2, IL20 and CCL2 showed the best association with disease activity. When added in a multivariate regression model including age, sex, and baseline EDSS, Chitinase 3 like1 (p = 0.049) significantly increased in those patients with disease activity. Finally, ROC analysis with Chitinase3like1 added to a model with EDSS, sex, age previous relapses, WM lesion number, CLs, number of Gad enhancing lesions and spinal cord lesions provided an AUC of 0.76 (95%CI 0.60-0.91). Conclusions CSF Chitinase 3 like1 might provide prognostic information for predicting disease activity in the first years after initiation of cladribine. The drug's effect on chronic macrophage and microglia activation deserves further evaluation.
Collapse
Affiliation(s)
- Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Matteo Foschi
- Neurology Unit, Department of Neuroscience, Multiple Sclerosis Center, S. Maria delle Croci Hospital, AUSL, Romagna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Chiara Eccher
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Valentina Mazziotti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Albulena Bajrami
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Camera
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Ziccardi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maddalena Guandalini
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Bosello
- Eye Clinic, Department of Surgery, Dentistry, Maternity, and Infant, University of Verona, Verona, Italy
| | - Daniela Anni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federica Virla
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Ermanna Turano
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Romoli
- Neurology and Stroke Unit, Ospedale “Bufalini”, Cesena, Italy
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Bruno Bonetti
- Neurology A, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Yu JE, Yeo IJ, Han SB, Yun J, Kim B, Yong YJ, Lim YS, Kim TH, Son DJ, Hong JT. Significance of chitinase-3-like protein 1 in the pathogenesis of inflammatory diseases and cancer. Exp Mol Med 2024; 56:1-18. [PMID: 38177294 PMCID: PMC10834487 DOI: 10.1038/s12276-023-01131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 01/06/2024] Open
Abstract
Chitinase-3-like protein 1 (CHI3L1) is a secreted glycoprotein that mediates inflammation, macrophage polarization, apoptosis, and carcinogenesis. The expression of CHI3L1 is strongly upregulated by various inflammatory and immunological diseases, including several cancers, Alzheimer's disease, and atherosclerosis. Several studies have shown that CHI3L1 can be considered as a marker of disease diagnosis, prognosis, disease activity, and severity. In addition, the proinflammatory action of CHI3L1 may be mediated via responses to various proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ. Therefore, CHI3L1 may contribute to a vast array of inflammatory diseases. However, its pathophysiological and pharmacological roles in the development of inflammatory diseases remain unclear. In this article, we review recent findings regarding the roles of CHI3L1 in the development of inflammatory diseases and suggest therapeutic approaches that target CHI3L1.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
- College of Pharmacy, Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Bongcheol Kim
- Senelix Co. Ltd., 25, Beobwon-ro 11-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Yoon Ji Yong
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Young-Soo Lim
- PRESTI GEBIOLOGICS Co. Ltd., Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28161, Republic of Korea
| | - Tae Hun Kim
- Autotelic Bio Inc., Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongju-si, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
9
|
Díaz-Basabe A, Lattanzi G, Perillo F, Amoroso C, Baeri A, Farini A, Torrente Y, Penna G, Rescigno M, Ghidini M, Cassinotti E, Baldari L, Boni L, Vecchi M, Caprioli F, Facciotti F, Strati F. Porphyromonas gingivalis fuels colorectal cancer through CHI3L1-mediated iNKT cell-driven immune evasion. Gut Microbes 2024; 16:2388801. [PMID: 39132842 PMCID: PMC11321422 DOI: 10.1080/19490976.2024.2388801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
The interaction between the gut microbiota and invariant Natural Killer T (iNKT) cells plays a pivotal role in colorectal cancer (CRC). The pathobiont Fusobacterium nucleatum influences the anti-tumor functions of CRC-infiltrating iNKT cells. However, the impact of other bacteria associated with CRC, like Porphyromonas gingivalis, on their activation status remains unexplored. In this study, we demonstrate that mucosa-associated P. gingivalis induces a protumour phenotype in iNKT cells, subsequently influencing the composition of mononuclear-phagocyte cells within the tumor microenvironment. Mechanistically, in vivo and in vitro experiments showed that P. gingivalis reduces the cytotoxic functions of iNKT cells, hampering the iNKT cell lytic machinery through increased expression of chitinase 3-like-1 protein (CHI3L1). Neutralization of CHI3L1 effectively restores iNKT cell cytotoxic functions suggesting a therapeutic potential to reactivate iNKT cell-mediated antitumour immunity. In conclusion, our data demonstrate how P. gingivalis accelerates CRC progression by inducing the upregulation of CHI3L1 in iNKT cells, thus impairing their cytotoxic functions and promoting host tumor immune evasion.
Collapse
Affiliation(s)
- Angélica Díaz-Basabe
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Georgia Lattanzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Chiara Amoroso
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Alberto Baeri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Andrea Farini
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yvan Torrente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Centro Dino Ferrari, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milano, Italy
| | - Giuseppe Penna
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Rescigno
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Michele Ghidini
- Medical Oncology, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Cassinotti
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Ludovica Baldari
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Boni
- Department of General and Minimally Invasive Surgery, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesco Strati
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
10
|
Xiao LY, Su YL, Huang SY, Chen YH, Hsueh PR. Chitinase 3-like-1 Expression in the Microenvironment Is Associated with Neutrophil Infiltration in Bladder Cancer. Int J Mol Sci 2023; 24:15990. [PMID: 37958973 PMCID: PMC10648396 DOI: 10.3390/ijms242115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Bladder cancer is a common cancer with well-established therapeutic strategies. However, recurrence occurs in 50% of patients with non-muscle-invasive bladder cancer, and 20% of patients progress to muscle-invasive bladder cancer. The 5-year survival rate for muscle-invasive bladder cancer patients is disappointingly low, ranging from 36% to 48%. A molecular marker of interest is chitinase 3-like-1 (CHI3L1), which is elevated in various cancers, including bladder cancer. In addition to its role in cancer cells, CHI3L1 also has regulatory abilities in immune cells. Neutrophil infiltration has been shown to positively correlate with overall survival, progression-free survival, and relapse-free survival in bladder cancer patients. However, the relationship between CHI3L1 and neutrophils remain poorly understood. Therefore, this study investigated the relationship between CHI3L1 level and protumor neutrophil infiltration in bladder cancer. We analyzed the GSE128959 dataset and the data of a bladder cancer cohort undergoing chemotherapy. We observed higher expression of CHI3L1 in bladder cancer patients with invasive or chemotherapy-resistance. Our results revealed a positive correlation between CHI3L1 expression and protumor neutrophil infiltration. Elevated CHI3L1 expression was associated with genes which were related to the recruitment and infiltration of neutrophils. Consequently, CHI3L1 may serve as a novel evaluation factor for the degree of neutrophil infiltration in advanced bladder cancer in those scheduled for chemotherapy.
Collapse
Affiliation(s)
- Ling-Yi Xiao
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404327, Taiwan;
| | - Yu-Li Su
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
- Genomic & Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Shih-Yu Huang
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Yi-Hua Chen
- Division of Hematology Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Kaohsiung 83301, Taiwan
| | - Po-Ren Hsueh
- Department of Laboratory Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung 404327, Taiwan;
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan
- Ph.D. Program for Aging, School of Medicine, China Medical University, Taichung 404327, Taiwan
| |
Collapse
|
11
|
Ge L, Wang Y, Liu Z, Du H, Zhao D. Chitinase 3-like 1 plays a pivotal role in airway response of RSV infection via regulating DC functional transition. Int Immunopharmacol 2023; 124:110819. [PMID: 37607465 DOI: 10.1016/j.intimp.2023.110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Dendritic cells (DCs) contribute to immune imbalance and airway hyperresponsiveness (AHR) induced by respiratory syncytial virus (RSV). The aim of present study was to explore the mechanism of RSV regulating naive T cell differentiation through DCs. METHODS We generated a Lentivirus shRNA expression vector to knock down CHI3L1 in mouse lungs and bone marrow-derived dendritic cells (BMDCs). Then we investigated the effect of CHI3L1 knockdown on MAPK/ERK pathway, PI3K/AKT pathway, mature DCs represented by molecular markers, naive T cell differentiation and related cytokine expression in vitro and in vivo models of RSV. RESULTS RSV elevated CHI3L1 expression in lung DCs and BMDCs. Knockdown of CHI3L1 impeded RSV-induced activation of MAPK/ERK and PI3K/AKT signaling pathways, attenuated CD86 and OX40L expression in mature DCs, reduced the proportion of Th2 and Th17 cells, and increased the proportion of Treg cells. In addition, by blocking CHI3L1, RSV-infected mice shown relief of airway resistance, the downregulation of Th2/Th17 like cytokines IL-4, IL-13 and IL-17 levels, and the upregulation of IL-10. CONCLUSION Our data show that CHI3L1 promotes RSV induced immune imbalance and airway hyperresponsiveness by regulating the functional transformation of DCs.
Collapse
Affiliation(s)
- Lingli Ge
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Yuxin Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Zhi Liu
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Hui Du
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China; Children's digital health and data Center of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
12
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
13
|
Jiang W, Zhu F, Xu H, Xu L, Li H, Yang X, Khan Afridi S, Lai S, Qiu X, Liu C, Li H, Long Y, Wang Y, Connolly K, Elias JA, Lee CG, Cui Y, Huang YWA, Qiu W, Tang C. CHI3L1 signaling impairs hippocampal neurogenesis and cognitive function in autoimmune-mediated neuroinflammation. SCIENCE ADVANCES 2023; 9:eadg8148. [PMID: 37756391 PMCID: PMC10530095 DOI: 10.1126/sciadv.adg8148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1) is primarily secreted by activated astrocytes in the brain and is known as a reliable biomarker for inflammatory central nervous system (CNS) conditions such as neurodegeneration and autoimmune disorders like neuromyelitis optica (NMO). NMO is an astrocyte disease caused by autoantibodies targeting the astroglial protein aquaporin 4 (AQP4) and leads to vision loss, motor deficits, and cognitive decline. In this study examining CHI3L1's biological function in neuroinflammation, we found that CHI3L1 expression correlates with cognitive impairment in our NMO patient cohort. Activated astrocytes secrete CHI3L1 in response to AQP4 autoantibodies, and this inhibits the proliferation and neuronal differentiation of neural stem cells. Mouse models showed decreased hippocampal neurogenesis and impaired learning behaviors, which could be rescued by depleting CHI3L1 in astrocytes. The molecular mechanism involves CHI3L1 engaging the CRTH2 receptor and dampening β-catenin signaling for neurogenesis. Blocking this CHI3L1/CRTH2/β-catenin cascade restores neurogenesis and improves cognitive deficits, suggesting the potential for therapeutic development in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Fan Zhu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huiming Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Li Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Haoyang Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Xin Yang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Shabbir Khan Afridi
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Shuiqing Lai
- Department of Endocrinology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong Province 510080, China
| | - Xiusheng Qiu
- Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Chunxin Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Huilu Li
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Youming Long
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, 250 Changgang East Road, Guangzhou, Guangdong Province 510260, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Kevin Connolly
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Jack A. Elias
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Chun Geun Lee
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Yaxiong Cui
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Innovation Center for Structural Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 70 Ship Street, Providence, RI 02903, USA
- Center for Translational Neuroscience, Carney Institute for Brain Science, Brown University, 70 Ship Street, Providence, RI 02903, USA
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| | - Changyong Tang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Guangzhou, Guangdong Province 510630, China
| |
Collapse
|
14
|
Johansen AZ, Novitski SI, Hjaltelin JX, Theile S, Boisen MK, Brunak S, Madsen DH, Nielsen DL, Chen IM. Plasma YKL-40 is associated with prognosis in patients with metastatic pancreatic cancer receiving immune checkpoint inhibitors in combination with radiotherapy. Front Immunol 2023; 14:1228907. [PMID: 37744345 PMCID: PMC10513102 DOI: 10.3389/fimmu.2023.1228907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Background YKL-40, also known as chitinase-3-like protein 1 (CHI3L1), is a secreted glycoprotein produced by various cell types including stromal, immune, and cancer cells. It contributes to cancer progression through tumor-promoting inflammation and has been shown to inhibit the cytotoxicity of T and NK lymphocytes. In vivo studies have demonstrated synergistic anti-cancer effects of blocking YKL-40 in combination with immune checkpoint inhibitors (ICIs). Biomarkers for the prediction of the response to ICIs are highly needed. We investigated the association between plasma YKL-40 and clinical benefit and survival in patients with metastatic pancreatic cancer (mPC) receiving ICIs and stereotactic body radiotherapy (SBRT). Methods Blood samples were collected from 84 patients with mPC who participated in the randomized phase II CheckPAC study, in which patients received nivolumab with or without ipilimumab combined with a single fraction of SBRT. Plasma YKL-40 was measured using a commercial ELISA kit. Results Elevated baseline plasma YKL-40 was an independent predictor of shorter overall survival (OS) (HR 2.19, 95% CI 1.21-3.95). A ≥ 40% decrease in plasma YKL-40 during treatment was associated with longer progression-free survival (p = 0.009) and OS (p = 0.0028). There was no correlation between plasma YKL-40 and the tumor burden marker CA19-9 at baseline or during treatment. Conclusion This study contributes new knowledge regarding YKL-40 as a predictor of clinical benefit from ICIs and radiotherapy. These exploratory results warrant further investigation of YKL-40 as a biomarker for patients treated with immunotherapies. Clinical trial registration Clinicaltrials.gov, identifier NCT02866383.
Collapse
Affiliation(s)
- Astrid Z. Johansen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Sif I. Novitski
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jessica X. Hjaltelin
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Susann Theile
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Mogens K. Boisen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel H. Madsen
- National Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte L. Nielsen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inna M. Chen
- Department of Oncology, Copenhagen University Hospital – Herlev and Gentofte, Herlev, Denmark
| |
Collapse
|
15
|
Ma J, Huang L, Gao YB, Li MX, Chen LL, Yang L. Circ_TNFRSF21 promotes cSCC metastasis and M2 macrophage polarization via miR-214-3p/CHI3L1. J Dermatol Sci 2023; 111:32-42. [PMID: 37442735 DOI: 10.1016/j.jdermsci.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (cSCC) is a highly invasive disease with the potential to metastasize and cause fatality. Therefore, it is crucial to understand the mechanism behind cSCC in order to devise effective strategies to combat this disease. OBJECTIVE We investigated the function of circ_TNFRSF21/miR-214-3p/CHI3L1 axis in cSCC. METHODS The features of circ_TNFRSF21 was characterized using Sanger sequencing, and RNase R/actinomycin D treatment. Genes and M1/M2 markers levels were assessed by qRT-PCR and IHC. The proliferation, migration, and invasion of cells were evaluated by CCK-8, colony formation, EdU incorporation, and transwell assays. Tumor growth and metastasis in vivo were evaluated by nude mouse xenograft model. Interactions of circ_TNFRSF21/miR-214-3p and miR-214-3p/CHI3L1 were validated by RNA immunoprecipitation and dual luciferase assay. RESULTS Circ_TNFRSF21 and CHI3L1 expression were elevated in both human cSCC tissues and cells, whereas miR-214-3p was reduced. Circ_TNFRSF21 silencing or miR-214-3p overexpression suppressed cSCC cell proliferation, migration, invasion, and M2 macrophage polarization. Circ_TNFRSF21 functioned as a sponge for miR-214-3p while miR-214-3p directly targeted CHI3L1. Knockdown of miR-214-3p reversed the effects of circ_TNFRSF21 knockdown on cSCC development, while CHI3L1 upregulation reversed the effects of miR-214-3p overexpression. Furthermore, knockdown of circ_TNFRSF21 inhibited cSCC tumor growth and metastasis in vivo. CONCLUSION Circ_TNFRSF21 plays a significant role in cSCC progression by enhancing cell proliferation, migration, invasion, and M2 macrophage polarization through inhibiting miR-214-3p and subsequent disinhibition of CHI3L1. These findings deepen our understanding of the molecular mechanism of cSCC and propose the circ_TNFRSF21/miR-214-3p/CHI3L1 axis as promising diagnosis markers or therapeutic targets for cSCC.
Collapse
Affiliation(s)
- Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Yan-Bin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Min-Xiong Li
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Liang-Long Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangdong Province, PR China.
| |
Collapse
|
16
|
Curtiss ML, Rosenberg AF, Scharer CD, Mousseau B, Benavides NAB, Bradley JE, León B, Steele C, Randall TD, Lund FE. Chitinase-3-like 1 regulates T H2 cells, T FH cells and IgE responses to helminth infection. Front Immunol 2023; 14:1158493. [PMID: 37575256 PMCID: PMC10415220 DOI: 10.3389/fimmu.2023.1158493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Data from patient cohorts and mouse models of atopic dermatitis, food allergy and asthma strongly support a role for chitinase-3-like-1 protein (CHI3L1) in allergic disease. Methods To address whether Chi3l1 also contributes to TH2 responses following nematode infection, we infected Chi3l1 -/- mice with Heligmosomoides polygyrus (Hp) and analyzed T cell responses. Results As anticipated, we observed impaired TH2 responses in Hp-infected Chi3l1 -/- mice. However, we also found that T cell intrinsic expression of Chi3l1 was required for ICOS upregulation following activation of naïve CD4 T cells and was necessary for the development of the IL-4+ TFH subset, which supports germinal center B cell reactions and IgE responses. We also observed roles for Chi3l1 in TFH, germinal center B cell, and IgE responses to alum-adjuvanted vaccination. While Chi3l1 was critical for IgE humoral responses it was not required for vaccine or infection-induced IgG1 responses. Discussion These results suggest that Chi3l1 modulates IgE responses, which are known to be highly dependent on IL-4-producing TFH cells.
Collapse
Affiliation(s)
- Miranda L. Curtiss
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Medicine, Section of Allergy and Immunology, Birmingham VA Medical Center, Birmingham, AL, United States
| | - Alexander F. Rosenberg
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Informatics Institute, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Betty Mousseau
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Natalia A. Ballesteros Benavides
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, University of Alabama Birmingham (UAB), Birmingham, AL, United States
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - John E. Bradley
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Beatriz León
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA, United States
| | - Troy D. Randall
- Department of Medicine, Division of Rheumatology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| | - Frances E. Lund
- Department of Microbiology, University of Alabama Birmingham (UAB), Birmingham, AL, United States
| |
Collapse
|
17
|
Connolly K, Lehoux M, O’Rourke R, Assetta B, Erdemir GA, Elias JA, Lee CG, Huang YWA. Potential role of chitinase-3-like protein 1 (CHI3L1/YKL-40) in neurodegeneration and Alzheimer's disease. Alzheimers Dement 2023; 19:9-24. [PMID: 35234337 PMCID: PMC9437141 DOI: 10.1002/alz.12612] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/18/2023]
Abstract
Chitinase-3-like protein 1 (CHI3L1/YKL-40) has long been known as a biomarker for early detection of neuroinflammation and disease diagnosis of Alzheimer's disease (AD). In the brain, CHI3L1 is primarily provided by astrocytes and heralds the reactive, neurotoxic state triggered by inflammation and other stress signals. However, how CHI3L1 acts in neuroinflammation or how it contributes to AD and relevant neurodegenerative conditions remains unknown. In peripheral tissues, our group and others have uncovered that CHI3L1 is a master regulator for a wide range of injury and repair events, including the innate immunity pathway that resembles the neuroinflammation process governed by microglia and astrocytes. Based on assessment of current knowledge regarding CHI3L1 biology, we hypothesize that CHI3L1 functions as a signaling molecule mediating distinct neuroinflammatory responses in brain cells and misfunctions to precipitate neurodegeneration. We also recommend future research directions to validate such assertions for better understanding of disease mechanisms.
Collapse
Affiliation(s)
- Kevin Connolly
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University
| | - Mikael Lehoux
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Ryan O’Rourke
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Graduate Program in Pathobiology, Brown University
| | - Benedetta Assetta
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Guzide Ayse Erdemir
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University
| | - Jack A Elias
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Molecular Microbiology and Immunology, Brown University
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology, Brown University
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University,Department of Neurology, Warren Alpert Medical School of Brown University,Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University
| |
Collapse
|
18
|
Clark GC, Elfsmark L, Armstrong S, Essex-Lopresti A, Gustafsson Å, Ryan Y, Moore K, Paszkiewicz K, Green AC, Hiscox JA, David J, Jonasson S. From "crisis to recovery": A complete insight into the mechanisms of chlorine injury in the lung. Life Sci 2022; 312:121252. [PMID: 36460096 DOI: 10.1016/j.lfs.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/11/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Chlorine (Cl2) gas is a toxic industrial chemical (TIC) that poses a hazard to human health following accidental and/or intentional (e.g. terrorist) release. By using a murine model of sub-lethal Cl2 exposure we have examined the airway hyper responsiveness, cellular infiltrates, transcriptomic and proteomic responses of the lung. In the "crisis" phase at 2 h and 6 h there is a significant decreases in leukocytes within bronchoalveolar lavage fluid accompanied by an upregulation within the proteome of immune pathways ultimately resulting in neutrophil influx at 24 h. A flip towards "repair" in the transcriptome and proteome occurs at 24 h, neutrophil influx and an associated drop in the lung function persisting until 14 d post-exposure and subsequent "recovery" after 28 days. Collectively, this research provides new insights into the mechanisms of damage, early global responses and processes of repair induced in the lung following the inhalation of Cl2.
Collapse
Affiliation(s)
- Graeme C Clark
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK; Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK.
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Stuart Armstrong
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Angela Essex-Lopresti
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Åsa Gustafsson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Yan Ryan
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Karen Moore
- University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Konrad Paszkiewicz
- University of Exeter, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - A Christopher Green
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Julian A Hiscox
- Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK
| | - Jonathan David
- Chemical, Biological and Radiological Division, DSTL Porton Down, Salisbury SP4 0JQ, UK
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
19
|
Shi M, Ge Q, Wang X, Diao W, Yang B, Sun S, Wang G, Liu T, Chan AML, Gao Z, Wang Y, Wang Y. Functional analysis of the short splicing variant encoded by CHI3L1/YKL-40 in glioblastoma. Front Oncol 2022; 12:910728. [PMID: 36408158 PMCID: PMC9666495 DOI: 10.3389/fonc.2022.910728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2023] Open
Abstract
The glycoprotein YKL-40 has been well studied as a serum biomarker of prognosis and disease status in glioblastoma. YKL-40 is a chitinase-like protein with defective chitinase activity that plays an important role in promoting cell proliferation, migration, and metastasis in glioblastoma multiforme (GBM). The short variant (SV) of YKL-40, generated by an alternative splicing event that splices out exon 8, was reported in the early developing human musculoskeletal system, although its role in GBM is still unknown. Our results showed that individual glioblastoma cell lines displayed increased expression of the short variant of YKL-40 after low serum treatment. In addition, unlike the full-length (FL) version, which was localized to all cell compartments, the short isoform could not be secreted and was localized only to the cytoplasm. Functionally, FL YKL-40 promoted cell proliferation and migration, whereas SV YKL-40 suppressed them. Transcriptome analysis revealed that these opposing roles of the two isoforms may be modulated by differentially regulating several oncogenic-related pathways, including p53, the G2/M checkpoint, and MYC-related signaling. This study may provide new ideas for the development of targeted anti-YKL-40 therapy in GBM treatment.
Collapse
Affiliation(s)
- Mengqi Shi
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Qianyun Ge
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Xinrong Wang
- Community Healthcare Center, The Second People’s Hospital of Weifang, Weifang, China
| | - Wenbin Diao
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Ben Yang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Sipeng Sun
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Guohui Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Tian Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Andrew Man-Lok Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Zhiqin Gao
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yi Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| | - Yubing Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, China
| |
Collapse
|
20
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
21
|
Pan Z, Li Q, Feng Y, Gao C, Pan F. Identification and analysis of a CD8+ T cell-related prognostic signature for colorectal cancer based on bulk RNA sequencing and scRNA sequencing data: A STROBE-compliant retrospective study. Medicine (Baltimore) 2022; 101:e30758. [PMID: 36181098 PMCID: PMC9524952 DOI: 10.1097/md.0000000000030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide, leading to a large number of cancer-related mortalities. Aberrant CD8+ T cell infiltration plays a critical role in tumor progression and patient prognosis. This study aimed to identify a prognostic model for CRC based on CD8+ T cell-related genes. The infiltration levels of immune cells in CRC tissues were accessed by the ESTIMATE algorithm. Weighted gene co-expression network analysis (WGCNA) analysis was used to select CD8+ T cell-related genes. Prognostic genes were identified using Cox regression analysis and Kaplan-Meier curves. The least absolute shrinkage and selection operator (LASSO) algorithm was used to construct prognostic models. Gene set enrichment analysis (GSEA) was performed to annotate enriched gene sets. Single-cell RNA (scRNA) sequencing analysis was used to examine gene expression in different cell types. We found that the downregulated infiltration level of CD8+ T cells was an independent prognostic factor for CRC and selected a cluster of differentially expressed genes correlated with CD8+ T cell infiltration (CD8TDEGs). Subsequently, we identified 18 prognostic CD8TDEGs, according to which patients were reclassified into two clusters with distinct overall survival. Seven prognostic CD8TDEGs were selected to calculate the constructed prognostic model's risk scores. Interestingly, although CRC tissues with higher risk scores had higher infiltration levels of CD8+ T cells, the level of immune checkpoint genes was also high. Moreover, the scRNA-sequencing analysis showed that the expression levels of CD8TDEGs in the prognostic model varied among different types of cells. This study constructed a novel prognostic model for CRC and provided a foundation for targeting CD8+ T cell infiltration to improve the survival of CRC patients.
Collapse
Affiliation(s)
- Zhenguo Pan
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Qianjun Li
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Yanling Feng
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Chengcheng Gao
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
| | - Feng Pan
- Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, Huai’an, China
- *Correspondence: Feng Pan, Department of Gastroenterology, The Affiliated Huaian No. 1 People’s Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huaiyin District, Huai’an 223300, China (e-mail: )
| |
Collapse
|
22
|
The Modeling Analysis and Effect of CHI3L1 and CD31-Marked Microvessel Density in the Occurrence and Development of Cervical Squamous Cell Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3516335. [PMID: 35761838 PMCID: PMC9233584 DOI: 10.1155/2022/3516335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/18/2022]
Abstract
Background Chitinase-3-like protein 1 (CHI3Ll) has been identified as a novel tumor marker in several cancers. The objective of this study was to detect the expression of Chitinase-3-like protein 1 (CHI3L1) and CD31-labeled microvessel density (MVD) in cervical squamous cell carcinoma (CSCC) and to assess its prognostic impact. Methods Elivision™ plus immunohistochemical method was used to detect CHI3L1 expression and MVD in different cervical tissues. We analyzed the relationship between CHI3L1 and MVD in CSCC tissues and investigated the relationship between CHI3L1, MVD, and clinicopathological parameters. Univariate and multivariate survival analyses were performed to assess the impact on progression-free survival (PFS) and overall survival (OS). Results The positive expression rate of CHI3L1 protein in CSCC tissues (69.9%, 72/103) was significantly higher than that in high-grade cervical intraepithelial lesions (53.3%, 32/60), low-grade cervical intraepithelial lesions (25%, 15/60), and normal cervical tissues (16.7%, 10/60). MVD values ranged from 6 to 64 in CSCC, and no microvascular formation was observed in normal cervical tissues, high-grade intraepithelial lesions, or low-grade intraepithelial lesions. The high expression of CHI3L1 and MVD was significantly correlated with the invasion depth, differentiation degree, vascular invasion, and lymph node metastasis of CSCC (all P < 0.05). In CSCC, the expression of MVD in the CHI3L1 high-expression group (41.35 ± 9.056) was significantly higher than that in the CHI3L1 low-expression group (23.26 ± 11.000, P < 0.05). On univariate Kaplan–Meier analysis, FIGO stage, tumor diameter, lymph node metastasis, vascular invasion, CHI3L1, and MVD of CSCC were related to the prognosis of PFS and OS (all P < 0.05); however, CHI3L1 and MVD were not independent prognostic factors. Conclusion CHI3L1 may be involved in the progression of cervical cancer. Its high expression can promote neovascularization in the tumor microenvironment. CHI3L1 is a potential therapeutic target in the context of cervical cancer.
Collapse
|
23
|
Unleashing cell-penetrating peptide applications for immunotherapy. Trends Mol Med 2022; 28:482-496. [DOI: 10.1016/j.molmed.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
|
24
|
Rah B, Rather RA, Bhat GR, Baba AB, Mushtaq I, Farooq M, Yousuf T, Dar SB, Parveen S, Hassan R, Mohammad F, Qassim I, Bhat A, Ali S, Zargar MH, Afroze D. JAK/STAT Signaling: Molecular Targets, Therapeutic Opportunities, and Limitations of Targeted Inhibitions in Solid Malignancies. Front Pharmacol 2022; 13:821344. [PMID: 35401182 PMCID: PMC8987160 DOI: 10.3389/fphar.2022.821344] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
JAK/STAT signaling pathway is one of the important regulatory signaling cascades for the myriad of cellular processes initiated by various types of ligands such as growth factors, hormones, and cytokines. The physiological processes regulated by JAK/STAT signaling are immune regulation, cell proliferation, cell survival, apoptosis and hematopoiesis of myeloid and non-myeloid cells. Dysregulation of JAK/STAT signaling is reported in various immunological disorders, hematological and other solid malignancies through various oncogenic activation mutations in receptors, downstream mediators, and associated transcriptional factors such as STATs. STATs typically have a dual role when explored in the context of cancer. While several members of the STAT family are involved in malignancies, however, a few members which include STAT3 and STAT5 are linked to tumor initiation and progression. Other STAT members such as STAT1 and STAT2 are pivotal for antitumor defense and maintenance of an effective and long-term immune response through evolutionarily conserved programs. The effects of JAK/STAT signaling and the persistent activation of STATs in tumor cell survival; proliferation and invasion have made the JAK/STAT pathway an ideal target for drug development and cancer therapy. Therefore, understanding the intricate JAK/STAT signaling in the pathogenesis of solid malignancies needs extensive research. A better understanding of the functionally redundant roles of JAKs and STATs may provide a rationale for improving existing cancer therapies which have deleterious effects on normal cells and to identifying novel targets for therapeutic intervention in solid malignancies.
Collapse
|
25
|
Yang PS, Yu MH, Hou YC, Chang CP, Lin SC, Kuo IY, Su PC, Cheng HC, Su WC, Shan YS, Wang YC. Targeting protumor factor chitinase-3-like-1 secreted by Rab37 vesicles for cancer immunotherapy. Am J Cancer Res 2022; 12:340-361. [PMID: 34987649 PMCID: PMC8690922 DOI: 10.7150/thno.65522] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Chitinase 3-like-1 (CHI3L1) is a secretion glycoprotein associated with the immunosuppressive tumor microenvironment (TME). The secretory mode of CHI3L1 makes it a promising target for cancer treatment. We have previously reported that Rab37 small GTPase mediates secretion of IL-6 in macrophages to promote cancer progression, whereas the roles of Rab37 in the intracellular trafficking and exocytosis of CHI3L1 are unclear. Methods: We examined the concentration of CHI3L1 in the culture medium of splenocytes and bone marrow derived macrophages (BMDMs) from wild-type or Rab37 knockout mice, and macrophage or T cell lines expressing wild type, active GTP-bound or inactive GDP-bound Rab37. Vesicle isolation, total internal reflection fluorescence microscopy, and real-time confocal microscopy were conducted. We developed polyclonal neutralizing-CHI3L1 antibodies (nCHI3L1 Abs) to validate the therapeutic efficacy in orthotopic lung, pancreas and colon cancer allograft models. Multiplex fluorescence immunohistochemistry was performed to detect the protein level of Rab37 and CHI3L1, and localization of the tumor-infiltrating immune cells in allografts from mice or tumor specimens from cancer patients. Results: We demonstrate a novel secretion mode of CHI3L1 mediated by the small GTPase Rab37 in T cells and macrophages. Rab37 mediated CHI3L1 intracellular vesicle trafficking and exocytosis in a GTP-dependent manner, which is abolished in the splenocytes and BMDMs from Rab37 knockout mice and attenuated in macrophage or T cell lines expressing the inactive Rab37. The secreted CHI3L1 activated AKT, ß-catenin and NF-κB signal pathways in cancer cells and macrophages to foster a protumor TME characterized by activating M2 macrophages and increasing the population of regulatory T cells. Our developed nCHI3L1 Abs showed the dual properties of reducing tumor growth/metastases and eliciting an immunostimulatory TME in syngeneic orthotopic lung, pancreas and colon tumor models. Clinically, high plasma level or intratumoral expression of CHI3L1 correlated with poor survival in 161 lung cancer, 155 pancreatic cancer and 180 colon cancer patients. Conclusions: These results provide the first evidence that Rab37 mediates CHI3L1 secretion in immune cells and highlight nCHI3L1 Abs that can simultaneously target both cancer cells and tumor microenvironment.
Collapse
|
26
|
Abstract
About 30 years ago, the discovery of CPP improved the therapeutic approach to treat diseases and extended the range of potential targets to intracellular molecules. There are potential drug candidates for FDA approval based on active studies in basic research, preclinical, and clinical trials. Various attempts by CPP application to control the diseases such as allergy, autoimmunity, cancer, and infection demonstrated a strategy to make a new drug pipeline for successful discovery of a biologic drug for immune modulation. However, there are still no CPP-based drug candidates for immune-related diseases in the clinical stage. To control immune responses successfully, not only increasing delivery efficiency of CPPs but also selecting potential target cells and cargoes could be important issues. In particular, as it becomes possible to control intracellular targets, efforts to find various novel potential target are being attempted. In this chapter, we focused on CPP-based approaches to treat diseases through modulation of immune responses and discussed for perspectives on future direction of the research for successful application of CPP technology to immune modulation and disease therapy in clinical trial.
Collapse
Affiliation(s)
- Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Natural Sciences, Hanyang University, Seoul, Republic of Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Li N, Wang J, Zhan X. Identification of Immune-Related Gene Signatures in Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Front Immunol 2021; 12:752643. [PMID: 34887858 PMCID: PMC8649721 DOI: 10.3389/fimmu.2021.752643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/22/2021] [Indexed: 12/25/2022] Open
Abstract
Accumulating evidence indicates that immunotherapy helped to improve the survival and quality-of-life of patients with lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) besides chemotherapy and gene targeting treatment. This study aimed to develop immune-related gene signatures in LUAD and LUSC subtypes, respectively. LUAD and LUSC samples were divided into high- and low-abundance groups of immune cell infiltration (Immunity_H and Immunity_L) based on the abundance of immune cell infiltrations. The distribution of immune cells was significantly different between the high- and low-immunity subtypes in LUAD and LUSC samples. The differentially expressed genes (DEGs) between those two groups in LUAD and LUSC contain some key immune-related genes, such as PDL1, PD1, CTLA-4, and HLA families. The DEGs were enriched in multiple immune-related pathways. Furthermore, the seven-immune-related-gene-signature (CD1B, CHRNA6, CLEC12B, CLEC17A, CLNK, INHA, and SLC14A2) prognostic model-based high- and low-risk groups were significantly associated with LUAD overall survival and clinical characteristics. The eight-immune-related-gene-signature (C4BPB, FCAMR, GRAPL, MAP1LC3C, MGC2889, TRIM55, UGT1A1, and VIPR2) prognostic model-based high- and low-risk groups were significantly associated with LUSC overall survival and clinical characteristics. The prognostic models were tested as good ones by receiver operating characteristic, principal component analysis, univariate and multivariate analysis, and nomogram. The verifications of these two immune-related-gene-signature prognostic models showed consistency in the train and test cohorts of LUAD and LUSC. In addition, patients with LUAD in the low-risk group responded better to immunotherapy than those in the high-risk group. This study revealed two reliable immune-related-gene-signature models that were significantly associated with prognosis and tumor microenvironment cell infiltration in LUAD and LUSC, respectively. Evaluation of the integrated characterization of multiple immune-related genes and pathways could help to predict the response to immunotherapy and monitor immunotherapy strategies.
Collapse
Affiliation(s)
- Na Li
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China
| | - Jiahong Wang
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Jinan, China.,Medical Science and Technology Innovation Center, Shandong First Medical University, Jinan, China.,Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, Jinan, China
| |
Collapse
|
28
|
Yu JE, Yeo IJ, Son DJ, Yun J, Han SB, Hong JT. Anti-Chi3L1 antibody suppresses lung tumor growth and metastasis through inhibition of M2 polarization. Mol Oncol 2021; 16:2214-2234. [PMID: 34861103 PMCID: PMC9168758 DOI: 10.1002/1878-0261.13152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/29/2021] [Accepted: 12/01/2021] [Indexed: 11/08/2022] Open
Abstract
Chitinase 3-like 1 (Chi3L1) is associated with various biological processes, such as inflammation, tissue repair, proliferation, cell survival, invasion, and extracellular matrix remodeling. Recent studies indicated that Chi3L1 is critical for cancer development and metastasis. In this study, we demonstrate that Chi3L1 serum and tissue levels were significantly increased in lung cancer patients compared with controls. We previously developed an anti-Chi3L1-humanized antibody, and here, we investigate its antitumor and antimetastatic effect. The anti-Chi3L1 antibody attenuated tumor growth and metastasis both in vitro and in vivo in a lung cancer mouse model. These inhibitory effects are associated with signal transducer and activator of transcription 6 (STAT6)-dependent M2 polarization inhibition. Proteomics analysis revealed that plasminogen (PLG) interacts with Chi3L1 and affects M2 polarization. Chi3L1 plays a critical role in lung cancer progression, and the anti-Chi3L1 antibody could be a new anticancer therapy.
Collapse
Affiliation(s)
- Ji Eun Yu
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju-si, Korea
| |
Collapse
|
29
|
Darwich A, Silvestri A, Benmebarek MR, Mouriès J, Cadilha B, Melacarne A, Morelli L, Supino D, Taleb A, Obeck H, Sustmann C, Losurdo A, Masci G, Curigliano G, Kobold S, Penna G, Rescigno M. Paralysis of the cytotoxic granule machinery is a new cancer immune evasion mechanism mediated by chitinase 3-like-1. J Immunother Cancer 2021; 9:jitc-2021-003224. [PMID: 34824159 PMCID: PMC8627417 DOI: 10.1136/jitc-2021-003224] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 01/05/2023] Open
Abstract
Background Natural killer (NK) cells require a functional lytic granule machinery to mediate effective antitumor responses. Evading the lytic cargo deployed at the immune synapse (IS) could be a critical step for cancer progression through yet unidentified mechanisms. Methods NK cell antibody-dependent cellular cytotoxicity (ADCC) is a major determinant of the clinical efficacy of some therapeutic antibodies including the anti-HER2 Trastuzumab. Thus, we screened sera of Trastuzumab-resistant HER2 +patients with breast cancer for molecules that could inhibit NK cell ADCC. We validated our findings in vitro using cytotoxicity assays and confocal imaging of the lytic granule machinery and in vivo using syngeneic and xenograft murine models. Results We found that sera from Trastuzumab-refractory patients could inhibit healthy NK cell ADCC in vitro. These sera contained high levels of the inflammatory protein chitinase 3-like 1 (CHI3L1) compared with sera from responders and healthy controls. We demonstrate that recombinant CHI3L1 inhibits both ADCC and innate NK cell cytotoxicity. Mechanistically, CHI3L1 prevents the correct polarization of the microtubule-organizing center along with the lytic granules to the IS by hindering the receptor of advanced glycation end-products and its downstream JNK signaling. In vivo, CHI3L1 administration drastically impairs the control of NK cell-sensitive tumors, while CHI3L1 blockade synergizes with ADCC to cure mice with HER2 +xenografts. Conclusion Our work highlights a new paradigm of tumor immune escape mediated by CHI3L1 which acts on the cytotoxic machinery and prevents granule polarization. Targeting CHI3L1 could mitigate immune escape and potentiate antibody and cell-based immunotherapies.
Collapse
Affiliation(s)
- Abbass Darwich
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | | - Juliette Mouriès
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Bruno Cadilha
- Division for Clinical Pharmacology, Ludwig-Maximilians-Universitat Munchen, Munich, Germany
| | | | | | - Domenico Supino
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Hannah Obeck
- Department of Medicine IV, Ludwig-Maximilians-Universitat Munchen, Munchen, Bayern, Germany
| | | | | | | | | | - Sebastian Kobold
- Division of Clinical Pharmacology, Ludwig-Maximilians-Universitat Munchen, Munich, UK
| | | | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Milan, Italy .,Humanitas Mirasole SpA, Rozzano, Lombardia, Italy
| |
Collapse
|
30
|
Kamle S, Ma B, He CH, Akosman B, Zhou Y, Lee CM, El-Deiry WS, Huntington K, Liang O, Machan JT, Kang MJ, Shin HJ, Mizoguchi E, Lee CG, Elias JA. Chitinase 3-like-1 is a therapeutic target that mediates the effects of aging in COVID-19. JCI Insight 2021; 6:e148749. [PMID: 34747367 PMCID: PMC8663553 DOI: 10.1172/jci.insight.148749] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/29/2021] [Indexed: 01/08/2023] Open
Abstract
COVID-19 is caused by SARS-CoV-2 (SC2) and is more prevalent and severe in elderly and patients with comorbid diseases (CM). Because chitinase 3-like-1 (CHI3L1) is induced during aging and CM, the relationships between CHI3L1 and SC2 were investigated. Here, we demonstrate that CHI3L1 is a potent stimulator of the SC2 receptor angiotensin converting enzyme 2 (ACE2) and viral spike protein priming proteases (SPP), that ACE2 and SPP are induced during aging, and that anti-CHI3L1, kasugamycin, and inhibitors of phosphorylation abrogate these ACE2- and SPP-inductive events. Human studies also demonstrate that the levels of circulating CHI3L1 are increased in the elderly and patients with CM, where they correlate with COVID-19 severity. These studies demonstrate that CHI3L1 is a potent stimulator of ACE2 and SPP, that this induction is a major mechanism contributing to the effects of aging during SC2 infection, and that CHI3L1 co-opts the CHI3L1 axis to augment SC2 infection. CHI3L1 plays a critical role in the pathogenesis of and is an attractive therapeutic target in COVID-19.
Collapse
Affiliation(s)
| | - Bing Ma
- Molecular Microbiology and Immunology
| | | | | | - Yang Zhou
- Molecular Microbiology and Immunology
| | | | - Wafik S. El-Deiry
- Pathology and Laboratory Medicine
- Hematology-Oncology Division, Department of Medicine
- The Joint Program in Cancer Biology
- Cancer Center at Brown University, and
| | - Kelsey Huntington
- Pathology and Laboratory Medicine
- Hematology-Oncology Division, Department of Medicine
- The Joint Program in Cancer Biology
- Cancer Center at Brown University, and
| | - Olin Liang
- Hematology-Oncology Division, Department of Medicine
- The Joint Program in Cancer Biology
- Cancer Center at Brown University, and
| | - Jason T. Machan
- Department of Biostatistics, Lifespan Health System, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hyeon Jun Shin
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Emiko Mizoguchi
- Molecular Microbiology and Immunology
- Department of Immunology, Kurume University, School of Medicine, Kurume, Fukuoka, Japan
| | | | - Jack A. Elias
- Molecular Microbiology and Immunology
- The Joint Program in Cancer Biology
- Cancer Center at Brown University, and
- Department of Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
31
|
Robust immune response stimulated by in situ injection of CpG/αOX40/cGAMP in αPD-1-resistant malignancy. Cancer Immunol Immunother 2021; 71:1597-1609. [PMID: 34731284 PMCID: PMC9188536 DOI: 10.1007/s00262-021-03095-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/19/2021] [Indexed: 12/16/2022]
Abstract
Recently, the emergence of immunotherapy has revolutionized traditional tumour treatment. However, effective treatments for patients exhibiting αPD-1 resistance are still lacking. In our study, a combination of cytosine-phosphate-guanine oligodeoxynucleotides (CpG-ODNs), anti-OX40 and cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) injection in situ systematically generated a robust antitumour immune response in TC1 and B16 cells, which are αPD-1-resistant malignancies. More precisely, this method activates both adaptive and innate immunity. Additionally, in situ vaccination with CpG/αOX40/cGAMP fully activates the production of cytokines. However, the combination of αPD-1 does not improve the efficacy of triple therapy, prompting further questions. Collectively, the combination of CpG/αOX40/cGAMP causes the regression of various αPD-1-resistant tumours through the full mobilization of innate and adaptive immunity. In addition, we explored the therapeutic effect of triple therapy on the αPD-1-sensitive cell line CT26. The results showed that triple therapy could significantly enhance the therapeutic effect of αPD-1, and some mice even achieved complete tumour regression after the combined application of αPD-1 and triple treatment.
Collapse
|
32
|
Williams MM, Hafeez SA, Christenson JL, O’Neill KI, Hammond NG, Richer JK. Reversing an Oncogenic Epithelial-to-Mesenchymal Transition Program in Breast Cancer Reveals Actionable Immune Suppressive Pathways. Pharmaceuticals (Basel) 2021; 14:ph14111122. [PMID: 34832904 PMCID: PMC8622696 DOI: 10.3390/ph14111122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Approval of checkpoint inhibitors for treatment of metastatic triple negative breast cancer (mTNBC) has opened the door for the use of immunotherapies against this disease. However, not all patients with mTNBC respond to current immunotherapy approaches such as checkpoint inhibitors. Recent evidence demonstrates that TNBC metastases are more immune suppressed than primary tumors, suggesting that combination or additional immunotherapy strategies may be required to activate an anti-tumor immune attack at metastatic sites. To identify other immune suppressive mechanisms utilized by mTNBC, our group and others manipulated oncogenic epithelial-to-mesenchymal transition (EMT) programs in TNBC models to reveal differences between this breast cancer subtype and its more epithelial counterpart. This review will discuss how EMT modulation revealed several mechanisms, including tumor cell metabolism, cytokine milieu and secretion of additional immune modulators, by which mTNBC cells may suppress both the innate and adaptive anti-tumor immune responses. Many of these pathways/proteins are under preclinical or clinical investigation as therapeutic targets in mTNBC and other advanced cancers to enhance their response to chemotherapy and/or checkpoint inhibitors.
Collapse
|
33
|
Huang J, Gu Z, Xu Y, Jiang L, Zhu W, Wang W. CHI3L1 (Chitinase 3 Like 1) upregulation is associated with macrophage signatures in esophageal cancer. Bioengineered 2021; 12:7882-7892. [PMID: 34612767 PMCID: PMC8806503 DOI: 10.1080/21655979.2021.1974654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chitinase-3 like-protein-1 (CHI3L1) has been found to be overexpressed in many cancers and increased CHI3L1 level in serum seems to correlate with a poor prognosis in patients with metastatic cancer. However, the expression of CHI3L1 and its potential role in esophageal cancer remains unclear. We retrieved publicly available RNA-seq datasets of esophageal cancer tissues and normal esophageal tissues. We analyzed the correlation between CHI3L1 expression with different clinical parameters (such as T stages, N stage, response to treatment and tumor residues after treatment), the relationship between CHI3L1 expression level and prognosis, and the relationship between CHI3L1 expression and different immune cell signatures in esophageal cancer tissues. A transgenic mouse model of esophageal carcinoma was used to validate CHI3L1 expression and its association with macrophage signature gene expression. The effect of recombinant CHI3L1 on macrophage polarization was assessed in cell model. We showed the upregulation of CHI3L1 in esophageal cancer tissues in comparison to normal esophageal tissues, and its upregulation was positively associated with tumor size. The analysis of immunological signatures and CHI3L1 expression indicated that CHI3L1 level was highly correlated with increased expression of macrophage signature genes in esophageal tumor tissues. CHI3L1 was also upregulated in the esophagus dysplasia tissues in a transgenic mouse model. Recombinant CHI3L1 treatment favored M2 gene expression in LPS-stimulated RAW 264.7 macrophage cell line. CHI3L1 overexpression may favor macrophage recruitment in esophageal tumor tissues. Future studies are needed to delineate the mechanisms of CHI3L1-mediated macrophage recruitment and polarization in tumor tissues.
Collapse
Affiliation(s)
- Jing Huang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Zhenlin Gu
- Department of Vascular Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Yingying Xu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Lei Jiang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Weiguo Zhu
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| | - Wanwei Wang
- Department of Radiation Oncology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, China
| |
Collapse
|
34
|
Inflammatory Biomarker Score Identifies Patients with Six-Fold Increased Risk of One-Year Mortality after Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13184599. [PMID: 34572824 PMCID: PMC8466571 DOI: 10.3390/cancers13184599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary For 20 years, the CA 19-9 blood test has been the only broadly used biomarker of pancreatic ductal adenocarcinoma (PDAC). We lack easily available biomarkers to help differentiate patients between good, intermediate and poor survivors at the time of PDAC diagnosis. Using one of the largest studies of patients with PDAC, we found that a simple combination of blood tests, namely CRP, CA 19-9 and IL-6, into a single biomarker score was a better marker of one-year survival than the currently recommended CA 19-9 alone or any other combination of the four inflammatory biomarkers examined (CRP, CA 19-9, IL-6 and YKL-40). However, since this is the first study examining this inflammatory biomarker score, future validation studies are needed. Moreover, CRP outperformed CA 19-9 in the majority of patients, thus questioning the routine use of CA 19-9 in patients with PDAC. Abstract We examined whether elevated plasma C-reactive protein (CRP), carbohydrate antigen (CA) 19-9, interleukin-6 (IL-6) and YKL-40, individually or combined, can identify poor survivors among patients with pancreatic ductal adenocarcinoma (PDAC). We measured CRP, CA 19-9, IL-6 and YKL-40 in 993 patients at the time of PDAC diagnosis. The biomarker score was the sum of biomarker categories, coded 0, 1 and 2 for low, intermediate and high plasma concentrations, respectively. High vs. low levels of CRP, CA 19-9 and IL-6 were each independently associated with a two-fold increased risk of one-year mortality. CRP performed best in patients with advanced and CA 19-9 in patients with low cancer stages. YKL-40 was not associated with mortality and, therefore, was not included in the biomarker score. Compared to the biomarker score = 0, the multifactorially adjusted hazard ratios for one-year mortality were 1.56 (95% confidence interval: 0.99–2.44) for score = 1, 2.22 (1.41–3.49) for score = 2, 3.44 (2.20–5.38) for score = 3, 5.13 (3.21–8.17) for score = 4 and 6.32 (3.84–10.41) for score = 5–6 (p-value for trend = 3 × 10−31). This score performed better than any single biomarker or combination of biomarkers when examined in similarly sized or other categories. In conclusion, a combination score of elevated CRP, CA 19-9 and IL-6 identified patients with six-fold higher one-year mortality.
Collapse
|
35
|
Oh IH, Pyo JS, Son BK. Prognostic Impact of YKL-40 Immunohistochemical Expression in Patients with Colorectal Cancer. Curr Oncol 2021; 28:3139-3149. [PMID: 34436040 PMCID: PMC8395453 DOI: 10.3390/curroncol28040274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/13/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
This study aims to examine the clinicopathological and prognostic significance of the YKL-40 immunohistochemical expression of tumor and immune cells through human colorectal cancer (CRC) tissue. We performed immunohistochemistry for YKL-40 and investigated the clinicopathological and prognostic impact of the YKL-40 expression of tumor (T-YKL-40) and immune cells (I-YKL-40) in CRC. We also evaluated the correlation between YKL-40 and PD-L1 expression and the immunoscore. YKL-40 was expressed in 22.6% and 64.2% of T-YKL-40 and I-YKL-40, respectively, out of the 265 CRC tissues. The I-YKL-40 expression significantly correlated with well and moderately differentiated tumors. The PD-L1 expression in immune cells significantly correlated with the I-YKL-40 expression, but not T-YKL-40 expression (p = 0.020 and p = 0.846, respectively). The I-YKL-40 expression significantly correlated with a worse overall survival rate but not recurrence-free survival (p = 0.047 and p = 0.080, respectively). However, there was no significant correlation between the T-YKL-40 expression and survival. In CRCs with a high immunoscore, patients with I-YKL-40 expression demonstrated worse overall and recurrence-free survival than those without I-YKL-40 expression. Our results demonstrated that I-YKL-40 expression significantly correlated with tumor differentiation and PD-L1 expression in immune cells. I-YKL-40 expression can be useful for the prognostic stratification of CRC patients.
Collapse
Affiliation(s)
- Il Hwan Oh
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Jung-Soo Pyo
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| | - Byoung Kwan Son
- Department of Internal Medicine, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu-si 11759, Korea;
| |
Collapse
|
36
|
Kim WJ, Kim GR, Cho HJ, Choi JM. The Cysteine-Containing Cell-Penetrating Peptide AP Enables Efficient Macromolecule Delivery to T Cells and Controls Autoimmune Encephalomyelitis. Pharmaceutics 2021; 13:pharmaceutics13081134. [PMID: 34452095 PMCID: PMC8401785 DOI: 10.3390/pharmaceutics13081134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
T cells are key immune cells involved in the pathogenesis of several diseases, rendering them important therapeutic targets. Although drug delivery to T cells is the subject of continuous research, it remains challenging to deliver drugs to primary T cells. Here, we used a peptide-based drug delivery system, AP, which was previously developed as a transdermal delivery peptide, to modulate T cell function. We first identified that AP-conjugated enhanced green fluorescent protein (EGFP) was efficiently delivered to non-phagocytic human T cells. We also confirmed that a nine-amino acid sequence with one cysteine residue was the optimal sequence for protein delivery to T cells. Next, we identified the biodistribution of AP-dTomato protein in vivo after systemic administration, and transduced it to various tissues, such as the spleen, liver, intestines, and even to the brain across the blood–brain barrier. Next, to confirm AP-based T cell regulation, we synthesized the AP-conjugated cytoplasmic domain of CTLA-4, AP-ctCTLA-4 peptide. AP-ctCTLA-4 reduced IL-17A expression under Th17 differentiation conditions in vitro and ameliorated experimental autoimmune encephalomyelitis, with decreased numbers of pathogenic IL-17A+GM-CSF+ CD4 T cells. These results collectively suggest the AP peptide can be used for the successful intracellular regulation of T cell function, especially in the CNS.
Collapse
Affiliation(s)
- Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (W.-J.K.); (G.-R.K.); (H.-J.C.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Gil-Ran Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (W.-J.K.); (G.-R.K.); (H.-J.C.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Hyun-Jung Cho
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (W.-J.K.); (G.-R.K.); (H.-J.C.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea; (W.-J.K.); (G.-R.K.); (H.-J.C.)
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea
- Correspondence: ; Tel.: +82-2-2220-4765
| |
Collapse
|
37
|
Liu Z, Wang S, Tapeinos C, Torrieri G, Känkänen V, El-Sayed N, Python A, Hirvonen JT, Santos HA. Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Adv Drug Deliv Rev 2021; 174:576-612. [PMID: 34019958 DOI: 10.1016/j.addr.2021.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/04/2021] [Accepted: 05/15/2021] [Indexed: 02/08/2023]
Abstract
Ribonucleic acid interference (RNAi) is an innovative treatment strategy for a myriad of indications. Non-viral synthetic nanoparticles (NPs) have drawn extensive attention as vectors for RNAi due to their potential advantages, including improved safety, high delivery efficiency and economic feasibility. However, the complex natural process of RNAi and the susceptible nature of oligonucleotides render the NPs subject to particular design principles and requirements for practical fabrication. Here, we summarize the requirements and obstacles for fabricating non-viral nano-vectors for efficient RNAi. To address the delivery challenges, we discuss practical guidelines for materials selection and NP synthesis in order to maximize RNA encapsulation efficiency and protection against degradation, and to facilitate the cytosolic release of oligonucleotides. The current status of clinical translation of RNAi-based therapies and further perspectives for reducing the potential side effects are also reviewed.
Collapse
|
38
|
Yoosuf N, Maciejewski M, Ziemek D, Jelinsky SA, Folkersen L, Müller M, Sahlström P, Vivar N, Catrina A, Berg L, Klareskog L, Padyukov L, Brynedal B. Early Prediction of Clinical Response to Anti-TNF Treatment using Multi-omics and Machine Learning in Rheumatoid Arthritis. Rheumatology (Oxford) 2021; 61:1680-1689. [PMID: 34175943 PMCID: PMC8996791 DOI: 10.1093/rheumatology/keab521] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/18/2021] [Accepted: 06/21/2021] [Indexed: 11/18/2022] Open
Abstract
Objectives Advances in immunotherapy by blocking TNF have remarkably improved treatment outcomes for Rheumatoid arthritis (RA) patients. Although treatment specifically targets TNF, the downstream mechanisms of immune suppression are not completely understood. The aim of this study was to detect biomarkers and expression signatures of treatment response to TNF inhibition. Methods Peripheral blood mononuclear cells (PBMCs) from 39 female patients were collected before anti-TNF treatment initiation (day 0) and after 3 months. The study cohort included patients previously treated with MTX who failed to respond adequately. Response to treatment was defined based on the EULAR criteria and classified 23 patients as responders and 16 as non-responders. We investigated differences in gene expression in PBMCs, the proportion of cell types and cell phenotypes in peripheral blood using flow cytometry and the level of proteins in plasma. Finally, we used machine learning models to predict non-response to anti-TNF treatment. Results The gene expression analysis in baseline samples revealed notably higher expression of the gene EPPK1 in future responders. We detected the suppression of genes and proteins following treatment, including suppressed expression of the T cell inhibitor gene CHI3L1 and its protein YKL-40. The gene expression results were replicated in an independent cohort. Finally, machine learning models mainly based on transcriptomic data showed high predictive utility in classifying non-response to anti-TNF treatment in RA. Conclusions Our integrative multi-omics analyses identified new biomarkers for the prediction of response, found pathways influenced by treatment and suggested new predictive models of anti-TNF treatment in RA patients.
Collapse
Affiliation(s)
- Niyaz Yoosuf
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.,Translational Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | - Malin Müller
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Peter Sahlström
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Nancy Vivar
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Anca Catrina
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Louise Berg
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Boel Brynedal
- Translational Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Melanoma Associated Chitinase 3-Like 1 Promoted Endothelial Cell Activation and Immune Cell Recruitment. Int J Mol Sci 2021; 22:ijms22083912. [PMID: 33920100 PMCID: PMC8069096 DOI: 10.3390/ijms22083912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022] Open
Abstract
Chitinase 3-like 1 (CHI3L1) is an enzymatically inactive mammalian chitinase that is associated with tumor inflammation. Previous research indicated that CHI3L1 is able to interact with different extracellular matrix components, such as heparan sulfate. In the present work, we investigated whether the interaction of CHI3L1 with the extracellular matrix of melanoma cells can trigger an inflammatory activation of endothelial cells. The analysis of the melanoma cell secretome indicated that CHI3L1 increases the abundance of various cytokines, such as CC-chemokine ligand 2 (CCL2), and growth factors, such as vascular endothelial growth factor A (VEGF-A). Using a solid-phase binding assay, we found that heparan sulfate-bound VEGF-A and CCL2 were displaced by recombinant CHI3L1 in a dose-dependent manner. Microfluidic experiments indicated that the CHI3L1 altered melanoma cell secretome promoted immune cell recruitment to the vascular endothelium. In line with the elevated VEGF-A levels, CHI3L1 was also able to promote angiogenesis through the release of extracellular matrix-bound pro-angiogenic factors. In conclusion, we showed that CHI3L1 is able to affect the tumor cell secretome, which in turn can regulate immune cell recruitment and blood vessel formation. Accordingly, our data suggest that the molecular targeting of CHI3L1 in the course of cancer immunotherapies can tune patients’ response and antitumoral inflammation.
Collapse
|
40
|
Holst CB, Pedersen H, Obara EAA, Vitting-Seerup K, Jensen KE, Skjøth-Rasmussen J, Lund EL, Poulsen HS, Johansen JS, Hamerlik P. Perspective: targeting VEGF-A and YKL-40 in glioblastoma - matter matters. Cell Cycle 2021; 20:702-715. [PMID: 33779510 PMCID: PMC8078714 DOI: 10.1080/15384101.2021.1901037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are heterogeneous highly vascular brain tumors exploiting the unique microenvironment in the brain to resist treatment and anti-tumor responses. Anti-angiogenic agents, immunotherapy, and targeted therapy have been studied extensively in GBM patients over a number of decades with minimal success. Despite maximal efforts, prognosis remains dismal with an overall survival of approximately 15 months. Bevacizumab, a humanized anti-vascular endothelial growth factor (VEGF) antibody, underwent accelerated approval by the U.S. Food and Drug Administration in 2009 for the treatment of recurrent GBM based on promising preclinical and early clinical studies. Unfortunately, subsequent clinical trials did not find overall survival benefit. Pursuing pleiotropic targets and leaning toward multitarget strategies may be a key to more effective therapeutic intervention in GBM, but preclinical evaluation requires careful consideration of model choices. In this study, we discuss bevacizumab resistance, dual targeting of pro-angiogenic modulators VEGF and YKL-40 in the context of brain tumor microenvironment, and how model choice impacts study conclusions and its translational significance.
Collapse
Affiliation(s)
- Camilla Bjørnbak Holst
- Department of Medicine, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark.,Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark.,Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Pedersen
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | | | - Kristoffer Vitting-Seerup
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | - Kamilla Ellermann Jensen
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| | | | - Eva Løbner Lund
- Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology, Department of Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Medicine, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Danish Cancer Society, Copenhagen, Denmark
| |
Collapse
|
41
|
Liu Q, Chen X, Liu C, Pan L, Kang X, Li Y, Du C, Dong S, Xiang AP, Xu Y, Zhang Q. Mesenchymal stem cells alleviate experimental immune-mediated liver injury via chitinase 3-like protein 1-mediated T cell suppression. Cell Death Dis 2021; 12:240. [PMID: 33664231 PMCID: PMC7933182 DOI: 10.1038/s41419-021-03524-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/19/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022]
Abstract
Liver diseases with different pathogenesis share common pathways of immune-mediated injury. Chitinase-3-like protein 1 (CHI3L1) was induced in both acute and chronic liver injuries, and recent studies reported that it possesses an immunosuppressive ability. CHI3L1 was also expressed in mesenchymal stem cells (MSCs), thus we investigates the role of CHI3L1 in MSC-based therapy for immune-mediated liver injury here. We found that CHI3L1 was highly expressed in human umbilical cord MSCs (hUC-MSCs). Downregulating CHI3L1 mitigated the ability of hUC-MSCs to inhibit T cell activation, proliferation and inflammatory cytokine secretion in vitro. Using Concanavalin A (Con A)-induced liver injury mouse model, we found that silencing CHI3L1 significantly abrogated the hUC-MSCs-mediated alleviation of liver injury, accompanying by weakened suppressive effects on infiltration and activation of hepatic T cells, and secretion of pro-inflammatory cytokines. In addition, recombinant CHI3L1 (rCHI3L1) administration inhibited the proliferation and function of activated T cells, and alleviated the Con A-induced liver injury in mice. Mechanistically, gene set enrichment analysis showed that JAK/STAT signalling pathway was one of the most significantly enriched gene pathways in T cells co-cultured with hUC-MSCs with CHI3L1 knockdown, and further study revealed that CHI3L1 secreted by hUC-MSCs inhibited the STAT1/3 signalling in T cells by upregulating peroxisome proliferator-activated receptor δ (PPARδ). Collectively, our data showed that CHI3L1 was a novel MSC-secreted immunosuppressive factor and provided new insights into therapeutic treatment of immune-mediated liver injury.
Collapse
Grants
- This work was supported by the National Key Research and Development Program of China (2017YFA0106100, 2018YFA0107203, 2017YFA010550), National Natural Science Foundation of China (81971526, 81670601, 81760112, 31601184, 81870449, 81970537, 81970109), Guangdong Basic and Applied Basic Research Foundation (2020A1515010272, 2020A1515011385), Key project fund of Guangdong Natural Science Foundation (2017A030311034), Special fund for frontier and key technology innovation of Guangdong (2015B020226004) and National Keypoint Research and Invention program of the thirteenth (2018ZX10723203), the Key Scientific and Technological Projects of Guangdong Province (2019B020236004, 2019B020234001, 2019B020235002, 2017B020230004), Key Scientific and Technological Program of Guangzhou City (201803040011, 201802020023), Pearl River S&T Nova Program of Guangzhou (201906010095), Fundamental Research Funds for the Central Universities (20ykpy149).
Collapse
Affiliation(s)
- Qiuli Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
| | - Xiaoyong Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, 510080, Guangzhou, China
| | - Chang Liu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Lijie Pan
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Xinmei Kang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Yanli Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Cong Du
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China
| | - Shuai Dong
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China
| | - Andy Peng Xiang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Center for Stem Cell Biology and Tissue Engineering, Ministry of Education, Sun Yat-sen University, 510080, Guangzhou, China.
| | - Yan Xu
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
| | - Qi Zhang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, 510630, Guangzhou, China.
| |
Collapse
|
42
|
Kamle S, Ma B, He CH, Akosman B, Zhou Y, Lee CM, El-Deiry WS, Huntington K, Liang O, Machan JT, Kang MJ, Shin HJ, Mizoguchi E, Lee CG, Elias JA. Chitinase 3-like-1 is a Therapeutic Target That Mediates the Effects of Aging in COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.05.425478. [PMID: 33442679 PMCID: PMC7805436 DOI: 10.1101/2021.01.05.425478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
COVID-19 is caused by the SARS-CoV-2 (SC2) virus and is more prevalent and severe in the elderly and patients with comorbid diseases (CM). Because chitinase 3-like-1 (CHI3L1) is induced during aging and CM, the relationships between CHI3L1 and SC2 were investigated. Here we demonstrate that CHI3L1 is a potent stimulator of the SC2 receptor ACE2 and viral spike protein priming proteases (SPP), that ACE2 and SPP are induced during aging and that anti-CHI3L1, kasugamycin and inhibitors of phosphorylation, abrogate these ACE2- and SPP- inductive events. Human studies also demonstrated that the levels of circulating CHI3L1 are increased in the elderly and patients with CM where they correlate with COVID-19 severity. These studies demonstrate that CHI3L1 is a potent stimulator of ACE2 and SPP; that this induction is a major mechanism contributing to the effects of aging during SC2 infection and that CHI3L1 coopts the CHI3L1 axis to augment SC2 infection. CHI3L1 plays a critical role in the pathogenesis of and is an attractive therapeutic target in COVID-19.
Collapse
|
43
|
Ding L, Tang S, Wyatt TA, Knoell DL, Oupický D. Pulmonary siRNA delivery for lung disease: Review of recent progress and challenges. J Control Release 2021; 330:977-991. [PMID: 33181203 DOI: 10.1016/j.jconrel.2020.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/12/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023]
Abstract
Lung diseases are a leading cause of mortality worldwide and there exists urgent need for new therapies. Approval of the first siRNA treatments in humans has opened the door for further exploration of this therapeutic strategy for other disease states. Pulmonary delivery of siRNA-based biopharmaceuticals offers the potential to address multiple unmet medical needs in lung-related diseases because of the specific physiology of the lung and characteristic properties of siRNA. Inhalation-based siRNA delivery designed for efficient, targeted delivery to specific cells within the lung holds great promise. Efficient delivery of siRNA directly to the lung, however, is relatively complex. This review focuses on the barriers that impact pulmonary siRNA delivery and successful recent approaches to advance this field forward. We focus on the pulmonary barriers that affect siRNA delivery, the disease-dependent pathological changes and their role in pulmonary disease and impact on siRNA delivery, as well as the recent development on the pulmonary siRNA delivery systems.
Collapse
Affiliation(s)
- Ling Ding
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Department of Veterans Affairs Nebraska, Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Daren L Knoell
- Department of Pharmacy Practice and Science, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
44
|
Mackel JJ, Garth JM, Jones M, Ellis DA, Blackburn JP, Yu Z, Matalon S, Curtiss M, Lund FE, Hastie AT, Meyers DA, Steele C. Chitinase 3-like-1 protects airway function despite promoting type 2 inflammation during fungal-associated allergic airway inflammation. Am J Physiol Lung Cell Mol Physiol 2021; 320:L615-L626. [PMID: 33533316 DOI: 10.1152/ajplung.00528.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Joseph J Mackel
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Jaleesa M Garth
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - MaryJane Jones
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | - Diandra A Ellis
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| | | | - Zhihong Yu
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Sadis Matalon
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama
| | - Miranda Curtiss
- Department of Medicine, University of Alabama Birmingham, Birmingham, Alabama.,Department of Microbiology, University of Alabama Birmingham, Birmingham, Alabama
| | - Frances E Lund
- Department of Microbiology, University of Alabama Birmingham, Birmingham, Alabama
| | - Annette T Hastie
- Department of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | | | - Chad Steele
- Department of Microbiology and Immunology, Tulane University, New Orleans, Louisiana
| |
Collapse
|
45
|
Pinteac R, Montalban X, Comabella M. Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e921. [PMID: 33293459 PMCID: PMC7803328 DOI: 10.1212/nxi.0000000000000921] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Chitinases are hydrolytic enzymes widely distributed in nature. Despite their physiologic and pathophysiologic roles are not well understood, chitinases are emerging as biomarkers in a broad range of neurologic disorders, where in many cases, protein levels measured in the CSF have been shown to correlate with disease activity and progression. In this review, we will summarize the structural features of human chitinases and chitinase-like proteins and their potential physiologic and pathologic functions in the CNS. We will also review existing evidence for the role of chitinases and chitinase-like proteins as diagnostic and prognostic biomarkers in inflammatory, neurodegenerative diseases, and psychiatric disorders. Finally, we will comment on future perspectives of chitinase studies in neurologic conditions.
Collapse
Affiliation(s)
- Rucsanda Pinteac
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Xavier Montalban
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Manuel Comabella
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
46
|
Madan K, Madan M, Sharma S, Paliwal S. Chitinases: Therapeutic Scaffolds for Allergy and Inflammation. ACTA ACUST UNITED AC 2020; 14:46-57. [PMID: 31934842 PMCID: PMC7509760 DOI: 10.2174/1872213x14666200114184054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/19/2019] [Accepted: 12/10/2019] [Indexed: 11/25/2022]
Abstract
Background: Chitinases are the evolutionary conserved glycosidic enzymes that are characterized by their ability to cleave the naturally abundant polysaccharide chitin. The potential role of chitinases has been identified in the manifestation of various allergies and inflammatory diseases. In recent years, chitinases inhibitors are emerging as an alluring area of interest for the researchers and scientists and there is a dire need for the development of potential and safe chitinase antagonists for the prophylaxis and treatment of several diseases. Objective: The present review expedites the role of chitinases and their inhibitors in inflammation and related disorders. Methods: At first, an exhaustive survey of literature and various patents available related to chitinases were carried out. Useful information on chitinases and their inhibitor was gathered from the authentic scientific databases namely SCOPUS, EMBASE, PUBMED, GOOGLE SCHOLAR, MEDLINE, EMBASE, EBSCO, WEB OF SCIENCE, etc. This information was further analyzed and compiled up to prepare the framework of the review article. The search strategy was conducted by using queries with key terms “ chitin”, “chitinase”, “chitotrisidase”, “acidic mammalian chitinase”, “chitinase inhibitors”, “asthma” and “chitinases associated inflammatory disorders”, etc. The patents were searched using the key terms “chitinases and uses thereof”, “chitinase inhibitors”, “chitin-chitinase associated pathological disorders” etc. from www.google.com/patents, www.freepatentsonline.com, and www.scopus.com. Results: The present review provides a vision for apprehending human chitinases and their participation in several diseases. The patents available also signify the extended role and effectiveness of chitinase inhibitors in the prevention and treatment of various diseases viz. asthma, acute and chronic inflammatory diseases, autoimmune diseases, dental diseases, neurologic diseases, metabolic diseases, liver diseases, polycystic ovary syndrome, endometriosis, and cancer. In this regard, extensive pre-clinical and clinical investigations are required to develop some novel, potent and selective drug molecules for the treatment of various inflammatory diseases, allergies and cancers in the foreseeable future. Conclusion: In conclusion, chitinases can be used as potential biomarkers in prognosis and diagnosis of several inflammatory diseases and allergies and the design of novel chitinase inhibitors may act as key and rational scaffolds in designing some novel therapeutic agents in the treatment of variety of inflammatory diseases.
Collapse
Affiliation(s)
- Kirtika Madan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
| | - Mansi Madan
- Dr. Ulhas Patil Medical College and Hospital, Jalgaon- 425309, Maharashtra, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan-304022, India
| |
Collapse
|
47
|
Roslind A, Palle C, Johansen JS, Christensen IJ, Nielsen HJ, Mosgaard BJ. Prognostic utility of serum YKL-40 in patients with cervical cancer. Scandinavian Journal of Clinical and Laboratory Investigation 2020; 80:687-693. [PMID: 33186077 DOI: 10.1080/00365513.2020.1846209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Inflammation is one of the hallmarks of cancer and plays a crucial role in the development and progression. The objective of the present study was to investigate if high serum YKL-40 is related to poor prognosis in cervical cancer (CC) patients. A prospective biomarker study of 116 patients with CC (FIGO stage Ia: n = 4; Ib: n = 55; II: n = 26; III: n = 26; IV: n = 5) and 152 patients with cervical intraepithelial neoplasia (CIN). The patients received primary surgery, radiotherapy and chemotherapy according to standard guidelines during the period 2001-2004. Seventy patients died during the follow-up period (median 117 months, range 104-131). Serum concentrations of YKL-40 were measured by ELISA. Serum concentrations of YKL-40 were increased (p < .001) in CC patients (median 76 µg/L, IQR 45-148) compared to CIN patients (44 µg/L, IQR 30-61) and healthy women (41 µg/L, IQR 29-58). YKL-40 was elevated (>age-corrected 95th percentile of YKL-40 in healthy women) in 30 (26%) of the CC patients. Univariate Cox analysis demonstrated that YKL-40 (included as a log-transformed continuous variable (base 2)) was associated with recurrence-free survival (RFS) (HR = 1.48, 95% CI: 1.11-1.98, p = .008) and overall survival (OS) (HR = 1.74, 1.44-2.10, p < .0001). Multivariate Cox analysis showed that stage (II + III vs. I: HR = 2.92, 1.37-6.20, p = .005), YKL-40 (HR = 1.35, 1.06-1.73, p = .018) and age (HR = 1.56, 1.21-1.99, p = .0005) were independent prognostic variables of OS. During treatment, a 2-fold increase in YKL-40 compared to baseline level was associated with short RFS (HR = 1.87, 1.27-2.77, p = .0016) and OS (HR = 1.78, 1.26-2.50, p = .0010). Serum YKL-40 is an independent biomarker of OS in patients with cervical cancer.
Collapse
Affiliation(s)
- Anne Roslind
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Connie Palle
- Department of Gynecology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Julia Sidenius Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ib Jarle Christensen
- Department of Surgical Gastroenterology, Hvidovre Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Hans Jørgen Nielsen
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Surgical Gastroenterology, Hvidovre Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Berit Jul Mosgaard
- Department of Gynecology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Gynecology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
48
|
He CH, Lee CG, Ma B, Kamle S, Choi AMK, Elias JA. N-Glycosylation Regulates Chitinase 3-like-1 and IL-13 Ligand Binding to IL-13 Receptor α2. Am J Respir Cell Mol Biol 2020; 63:386-395. [PMID: 32402213 DOI: 10.1165/rcmb.2019-0446oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Chitinase 3-like-1 (Chi3l1) and IL-13 are both ligands of IL-13 receptor α2 (IL-13Rα2). The binding of the former activates mitogen-activated protein kinase, AKT, and Wnt/β-catenin signaling, and plays important roles in innate and adaptive immunity, cellular apoptosis, oxidative injury, allergic inflammation, tumor metastasis and wound healing, fibrosis, and repair in the lung. In contrast, the latter binding is largely a decoy event that diminishes the effects of IL-13. Here, we demonstrate that IL-13Rα2 N-glycosylation is a critical determinant of which ligand binds. Structure-function evaluations demonstrated that Chi3l1-IL-13Rα2 binding was increased when sites of N-glycosylation are mutated, and studies with tunicamycin and Peptide:N-glycosidase F (PNGase F) demonstrated that Chi3l1-IL-13Rα2 binding and signaling were increased when N-glycosylation was diminished. In contrast, structure-function experiments demonstrated that IL-13 binding to IL-13Rα2 was dependent on each of the four sites of N-glycosylation in IL-13Rα2, and experiments with tunicamycin and PNGase F demonstrated that IL-13-IL-13Rα2 binding was decreased when IL-13Rα2 N-glycosylation was diminished. Studies with primary lung epithelial cells also demonstrated that Chi3l1 inhibited, whereas IL-13 stimulated, N-glycosylation as evidenced by the ability of Chi3l1 to inhibit and IL-13 to stimulate the subunits of the oligosaccharide complex A and B (STT3A and STT3B). These studies demonstrate that N-glycosylation is a critical determinant of Chi3l1 and IL-13 binding to IL-13Rα2, and highlight the ability of Chi3l1 and IL-13 to alter key elements of the N-glycosylation apparatus in a manner that would augment their respective binding.
Collapse
Affiliation(s)
- Chuan Hua He
- Department of Molecular Microbiology and Immunology and
| | - Chun Geun Lee
- Department of Molecular Microbiology and Immunology and
| | - Bing Ma
- Department of Molecular Microbiology and Immunology and
| | | | - Augustine M K Choi
- Department of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Jack A Elias
- Department of Molecular Microbiology and Immunology and.,Department of Medicine, Brown University, Providence, Rhode Island; and
| |
Collapse
|
49
|
Li T, Wu B, Yang T, Zhang L, Jin K. The outstanding antitumor capacity of CD4 + T helper lymphocytes. Biochim Biophys Acta Rev Cancer 2020; 1874:188439. [PMID: 32980465 DOI: 10.1016/j.bbcan.2020.188439] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Over the past decades, tumor-resident immune cells have been extensively studied to dissect their biological functions and clinical roles. Tumor-infiltrating CD8+ T cells, because of their cytotoxic and killing ability, have been under the spotlight for a long time, whereas CD4+ T cells are considered just a supporting actor in the field of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the ability of CD4+ T cells in eradicating solid tumors, and their functions in mediating antitumor immunity have been investigated in various orientations. In this review, we highlight the pivotal role of CD4+ T cells in eliciting vigorous antitumor immune responses, summarize key signaling axes and molecular networks behind these antitumor functions, and also propose possible targets and promising strategies which might translate into more efficient immunotherapies against human cancers.
Collapse
Affiliation(s)
- Tong Li
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bowen Wu
- School of Medicine, Stanford University, Stanford, CA 94304, USA
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ke Jin
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
50
|
Høgdall D, O'Rourke CJ, Dehlendorff C, Larsen OF, Jensen LH, Johansen AZ, Dang H, Factor VM, Grunnet M, Mau-Sørensen M, Oliveira DVNP, Linnemann D, Boisen MK, Wang XW, Johansen JS, Andersen JB. Serum IL6 as a Prognostic Biomarker and IL6R as a Therapeutic Target in Biliary Tract Cancers. Clin Cancer Res 2020; 26:5655-5667. [PMID: 32933994 DOI: 10.1158/1078-0432.ccr-19-2700] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 04/23/2020] [Accepted: 08/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Biliary tract cancer (BTC) is a heterogeneous group of rare gastrointestinal malignancies with dismal prognosis often associated with inflammation. We assessed the prognostic value of IL6 and YKL-40 compared with CA19-9 before and during palliative chemotherapy. We also investigated in mice whether IL6R inhibition in combination with gemcitabine could prolong chemosensitivity. EXPERIMENTAL DESIGN A total of 452 Danish participants with advanced (locally advanced and metastatic) BTC were included from six clinical trials (February 2004 to March 2017). Serum CA19-9, IL6, and YKL-40 were measured before and during palliative treatment. Associations between candidate biomarkers and progression-free survival (PFS) and overall survival (OS) were analyzed by univariate and multivariate Cox regression. Effects of inhibiting IL6R and YKL-40 were assessed in vitro, and of IL6R inhibition in vivo. RESULTS High pretreatment levels of CA19-9, IL6, and YKL-40, and increasing levels during treatment, were associated with short PFS and OS in patients with advanced BTC. IL6 provided independent prognostic information, independent of tumor location and in patients with normal serum CA19-9. ROC analyses showed that IL6 and YKL-40 were predictive of very short OS (OS < 6 months), whereas CA19-9 was best to predict OS > 1.5 years. Treatment with anti-IL6R and gemcitabine significantly diminished tumor growth when compared with gemcitabine monotherapy in an in vivo transplant model of BTC. CONCLUSIONS Serum IL6 and YKL-40 are potential new prognostic biomarkers in BTC. IL6 provides independent prognostic information and may be superior to CA19-9 in certain contexts. Moreover, anti-IL6R should be considered as a new treatment option to sustain gemcitabine response in patients with BTC.
Collapse
Affiliation(s)
- Dan Høgdall
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark. .,Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Colm J O'Rourke
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ole F Larsen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Lars H Jensen
- Department of Oncology, University Hospital of Southern Denmark, Vejle, Denmark
| | - Astrid Z Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Hien Dang
- Division of Surgical Research, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Valentina M Factor
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Mie Grunnet
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Mau-Sørensen
- Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Douglas V N P Oliveira
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dorte Linnemann
- Department of Pathology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Mogens K Boisen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Xin W Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Julia S Johansen
- Department of Oncology, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Medicine, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|