1
|
Pan J, Wang J, Zhao Y, Han B, Shu G, Ma M, Wang X, Wei X, Hou W, Sun SK. Real-time detection of gastrointestinal leaks via bismuth chelate-enhanced X-ray gastroenterography. Biomaterials 2024; 311:122646. [PMID: 38852553 DOI: 10.1016/j.biomaterials.2024.122646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Anastomotic leaks are among the most dreaded complications following gastrointestinal (GI) surgery, and contrast-enhanced X-ray gastroenterography is considered the preferred initial diagnostic method for GI leaks. However, from fundamental research to clinical practice, the only oral iodinated contrast agents currently available for GI leaks detection are facing several challenges, including low sensitivity, iodine allergy, and contraindications in patients with thyroid diseases. Herein, we propose a cinematic contrast-enhanced X-ray gastroenterography for the real-time detection of GI leaks with an iodine-free bismuth chelate (Bi-DTPA) for the first time. The Bi-DTPA, synthesized through a straightforward one-pot method, offers distinct advantages such as no need for purification, a nearly 100 % yield, large-scale production capability, and good biocompatibility. The remarkable X-ray attenuation properties of Bi-DTPA enable real-time dynamic visualization of whole GI tract under both X-ray gastroenterography and computed tomography (CT) imaging. More importantly, the leaky site and severity can be both clearly displayed during Bi-DTPA-enhanced gastroenterography in a rat model with esophageal leakage. The proposed movie-like Bi-DTPA-enhanced X-ray imaging approach presents a promising alternative to traditional GI radiography based on iodinated molecules. It demonstrates significant potential in addressing concerns related to iodine-associated adverse effects and offers an alternative method for visually detecting gastrointestinal leaks.
Collapse
Affiliation(s)
- Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jiaojiao Wang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Yujie Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Bing Han
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Gang Shu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xu Wang
- Tianjin Key Laboratory of Technologies Enabling Development on Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Key Laboratory of Digestive Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Wenjing Hou
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Key Laboratory of Digestive Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China.
| |
Collapse
|
2
|
He P, Huang S, Wang R, Yang Y, Yang S, Wang Y, Qi M, Li J, Liu X, Zhang X, Feng M. Novel nitroxoline derivative combating resistant bacterial infections through outer membrane disruption and competitive NDM-1 inhibition. Emerg Microbes Infect 2024; 13:2294854. [PMID: 38085067 PMCID: PMC10829846 DOI: 10.1080/22221751.2023.2294854] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/11/2023] [Indexed: 02/01/2024]
Abstract
ABSTRACTNew Delhi metallo-β-lactamase-1 (NDM-1) has rapidly disseminated worldwide, leading to multidrug resistance and worse clinical prognosis. Designing and developing effective NDM-1 inhibitors is a critical and urgent challenge. In this study, we constructed a library of long-lasting nitroxoline derivatives and identified ASN-1733 as a promising dual-functional antibiotic. ASN-1733 can effectively compete for Ca2+ on the bacterial surface, causing the detachment of lipopolysaccharides (LPS), thereby compromising the outer membrane integrity and permeability and exhibiting broad-spectrum bactericidal activity. Moreover, ASN-1733 demonstrated wider therapeutic applications than nitroxoline in mouse sepsis, thigh and mild abdominal infections. Furthermore, ASN-1733 can effectively inhibit the hydrolytic capability of NDM-1 and exhibits synergistic killing effects in combination with meropenem against NDM-1 positive bacteria. Mechanistic studies using enzymatic experiments and computer simulations revealed that ASN-1733 can bind to key residues on Loop10 of NDM-1, hindering substrate entry into the enzyme's active site and achieving potent inhibitory activity (Ki = 0.22 µM), even in the presence of excessive Zn2+. These findings elucidate the antibacterial mechanism of nitroxoline and its derivatives, expand their potential application in the field of antibacterial agents and provide new insights into the development of novel NDM-1 inhibitors.
Collapse
Affiliation(s)
- Peng He
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Sijing Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Rui Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Yunkai Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Shangye Yang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Yue Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Mengya Qi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Jiyang Li
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, People’s Republic of China
| |
Collapse
|
3
|
Hollow SE, Johnstone TC. Synthesis and structural characterization of the heavy tricysteinylpnictines, models of protein-bound As(III), Sb(III), and Bi(III). Dalton Trans 2024. [PMID: 39589169 PMCID: PMC11590777 DOI: 10.1039/d4dt02476a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
The heavier group 15 elements As, Sb, and Bi are more restricted in their biochemistry than the nearly ubiquitous lighter congeners N and P, but organisms do encounter compounds of these elements as environmental toxins, starting materials for secondary metabolite biosynthesis, substrates for primary metabolism, or exogenously applied medicines. Under many physiological conditions, these compounds are transformed into pnictogen(III) species, the soft Lewis acidic character of which leads them to interact strongly with biologically relevant soft Lewis bases such as small-molecule thiols or cysteine residues of proteins and peptides. The archetypal complexes As(Cys)3, Sb(Cys)3, and Bi(Cys)3 have been studied in the past but a lack of detailed information about their molecular structures has hampered the analysis of protein structures featuring As(III), Sb(III), and Bi(III) bound to cysteine thiolate residues. In many cases, the formation of such protein adducts is proposed to play a key role in the mechanism of action of inorganic drugs that feature these elements. Here, we refine synthetic strategies to access As(Cys)3, Sb(Cys)3, and Bi(Cys)3, describe their crystal structures, analyze structural trends across the series and across Pn(SR)3 compounds deposited in the Cambridge Structural Database, and compare their features to the structures of proteins with these centers bound to Cys3 motifs. Significant differences were noted for many of the protein structures.
Collapse
Affiliation(s)
- Sophia E Hollow
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| | - Timothy C Johnstone
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064, USA.
| |
Collapse
|
4
|
Lv D, Xu Z, Yang H, Rong Y, Zhao Z, Hu Z, Yin R, Guo R, Cao X, Tang B. Hollow Bismuth Nanoparticle-Loaded Gelatin Hydrogel Regulates M2 Polarization of Macrophages to Promote Infected Wound Healing. Biomater Res 2024; 28:0105. [PMID: 39529659 PMCID: PMC11551490 DOI: 10.34133/bmr.0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Open wounds face severe bacterial infection, which affects the quality of healing. Photothermal antimicrobial therapy has received increasing attention as a broad-spectrum antimicrobial treatment that can avoid drug resistance. A variety of metallic materials have been used in the development of photothermal agents. However, there are few studies on bismuth as a photothermal agent and its use in tissue repair, so there is still a lack of clear understanding of its biomedical function. Here, a hollow bismuth nanosphere prepared from bismuth metal was developed for drug loading and photothermal antibacterial effect. The photothermal conversion efficiency of the hollow bismuth spheres reached 16.1%, and the bismuth-loaded gelatin-oxidized dextran (ODex)-based hydrogel achieves good antibacterial effects both in vivo and in vitro. The bismuth-loaded hydrogel can also promote the angiogenesis of human umbilical vein endothelial cells (HUVECs) and improve the proliferation of human keratinocytes cells (HaCaT) and the quality of wound healing. This discovery provides a new idea for the application of metal bismuth in the field of tissue repair and regeneration.
Collapse
Affiliation(s)
- Dongming Lv
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhongye Xu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hao Yang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Yanchao Rong
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zirui Zhao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhicheng Hu
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Rong Yin
- Department of Dermatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering,
Jinan University, Guangzhou 510632, Guangdong, China
| | - Xiaoling Cao
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Bing Tang
- Department of Burns, Wound Repair and Reconstruction, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| |
Collapse
|
5
|
Cheng P, Sun Y, Wang B, Liang S, Yang Y, Gui S, Zhang K, Qu S, Li L. Mechanism of synergistic action of colistin with resveratrol and baicalin against mcr-1-positive Escherichia coli. Biomed Pharmacother 2024; 180:117487. [PMID: 39332187 DOI: 10.1016/j.biopha.2024.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
The rising incidence of colistin (COL) resistance poses a significant challenge, undermining the therapeutic efficacy of COL against life-threatening bacterial infections. Therefore, the urgent identification and development of new therapeutics are imperative. It has been proven that combinations of antibiotics and promising non-antibiotic agents could be a potential strategy to combat infections caused by MDR pathogens. Due to various antimicrobial properties, medicinal plants have attracted significant attention, which could be promising adjuvant. In this study, we investigated the synergistic effects of combining COL with resveratrol (RST) and baicalin (BAI) against mcr-1-positive Escherichia coli through antibiotic susceptibility testing, checkerboard method and time-killing assays. The mechanisms of combination treatment were analyzed using SEM, fluorometric assays and transcriptome analysis. The molecular docking assay was conducted to elucidate potential interactions between RST, BAI and the MCR-1 protein. Finally, we assessed the in vivo efficacy of combination against mcr-1-positive Escherichia coli. The results demonstrated that the combination of RST, BAI and COL showed significant synergistic activity both in vitro and in vivo. Further mechanistic study revealed that the combination could increase the membrane-damaging ability of COL, disrupt the homeostasis of proton motive force (PMF), inhibit the activity of efflux pumps and impair ATP supply. The molecular docking revealed that RST and BAI could bind to MCR-1 stably, indicating the combination of RST and BAI may be an effective MCR-1 inhibitor. Our findings demonstrated that the combination of RST and BAI might be potential COL adjuvant, providing an alternative approach to address mcr-1-positive Escherichia coli infections.
Collapse
Affiliation(s)
- Ping Cheng
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingying Sun
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Botao Wang
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shuying Liang
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuqi Yang
- School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Shixin Gui
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kai Zhang
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
6
|
Wang J, Fu D, Tang C, Shu G, Zhang X, Zhang X, Pan J, Sun SK. Bismuth Chelate-Mediated Digital Subtraction Angiography. Adv Healthc Mater 2024; 13:e2401653. [PMID: 38830126 DOI: 10.1002/adhm.202401653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Indexed: 06/05/2024]
Abstract
Digital subtraction angiography (DSA) is considered the "gold standard" for the diagnosis of vascular diseases. However, the contrast agents used in DSA are limited to iodine (I)-based small molecules, which are unsuitable for patients with contraindications. Here, iodine-free DSA utilizing a bismuth (Bi) chelate, Bi-DTPA Dimeglumine, is proposed for vascular visualization for the first time. Bi-DTPA Dimeglumine possesses a simple synthesis process without the need for purification, large-scale production ability (over 200 g in the lab), superior X-ray imaging capability, renal clearance capacity, and good biocompatibility. Bi-DTPA-enhanced DSA can clearly display the arteries of the rabbit's head and lower limbs, with a minimum vascular resolution of 0.5 mm. The displayed integrity of terminal vessels by Bi-DTPA-enhanced DSA is superior to that of iopromide-enhanced DSA. In a rabbit model of thrombotic disease, Bi-DTPA Dimeglumine-enhanced DSA enables the detection of embolism and subsequent reevaluation of vascular conditions after recanalization therapy. This proposed iodine-free DSA provides a promising and universal approach for diagnosing vascular diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Dianxun Fu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Cong Tang
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Gang Shu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
7
|
Bright R, Sivanantha S, Hayles A, Phuoc Ton T, Ninan N, Luo X, Vasilev K, Truong VK. In Vitro Assessment of Gallium Nanoalloy Hydrogels for Antimicrobial and Wound Healing Applications. ACS APPLIED BIO MATERIALS 2024. [PMID: 39433303 DOI: 10.1021/acsabm.4c01182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Chronic and recurring wounds pose a significant challenge in modern healthcare, leading to substantial morbidity. These wounds allow pathogens to colonize, potentially resulting in local and systemic infections. Current interventions need to be revised and become increasingly less reliable due to the emergence of antibiotic resistance. In the present study, we aim to address these issues by fabricating hydrogels impregnated with gallium-based nanoalloys for their antimicrobial activity. Gallium liquid metal nanoparticles (approximately 100 nm in diameter) were alloyed in different combinations with bismuth and silver ions through a galvanic replacement reaction. These multimetallic hydrogels showed favorable antibacterial activity against the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa, as observed with fluorescence microscopy and inhibition assays. The multimetallic hydrogels showed no toxicity against murine macrophages or human dermal fibroblasts and enhanced in vitro wound healing. The development of these innovative gallium-based hydrogels represents a promising strategy to combat chronic wounds and their associated complications, offering an effective alternative to current antimicrobial treatments amidst rising antibiotic resistance.
Collapse
Affiliation(s)
- Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Soroopan Sivanantha
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andrew Hayles
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Tan Phuoc Ton
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Neethu Ninan
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Xuan Luo
- College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
8
|
Yong JJM, Gao X, Prakash P, Ang JW, Lai SK, Chen MW, Neo JJL, Lescar J, Li HY, Preiser PR. Red blood cell signaling is functionally conserved in Plasmodium invasion. iScience 2024; 27:111052. [PMID: 39635131 PMCID: PMC11615254 DOI: 10.1016/j.isci.2024.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2024] [Accepted: 09/24/2024] [Indexed: 12/07/2024] Open
Abstract
It is widely recognized that Plasmodium merozoites secrete ligands that interact with RBC receptors. Meanwhile the question on whether these interactions trigger RBC signals essential for invasion remains unresolved. There is evidence that Plasmodium falciparum parasites manipulate native RBC Ca2+ signaling to facilitate invasion. Here, we demonstrate a key role of RBC Ca2+ influx that is conserved across different Plasmodium species during invasion. RH5-basigin interaction triggers RBC cAMP increase to promote Ca2+ influx. The RBC signaling pathways can be blocked by a range of inhibitors during Plasmodium invasion, providing the evidence of a functionally conserved host cAMP-Ca2+ signaling that drives invasion and junction formation. Furthermore, RH5-basigin binding induces a pre-existing multimeric RBC membrane complex to undergo increased protein association containing the cAMP-inducing β-adrenergic receptor. Our work presents evidence of a conserved host cell signaling cascade necessary for Plasmodium invasion and will create opportunities to therapeutically target merozoite invasion.
Collapse
Affiliation(s)
- James Jia Ming Yong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Xiaohong Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Prem Prakash
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jing Wen Ang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Jason Jun Long Neo
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hoi Yeung Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
9
|
Harris-Lee TR, Surman MK, Straiton AJ, Marken F, Johnson AL. Precursor Development and Aerosol-Assisted Chemical Vapour Deposition for BiVO 4 and W-Doped BiVO 4 Photoanodes: A Universal Ligand Approach. CHEMSUSCHEM 2024:e202401452. [PMID: 39388588 DOI: 10.1002/cssc.202401452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Green hydrogen production is a key area of importance for advancing into a completely sustainable world, not only for its use in industry and ammonia production, but also for its potential as a new fuel. One promising method for generating green hydrogen is light-driven water splitting using photoelectrodes. Here, a bismuth vanadate (BiVO4) photoanode deposition process was developed using new, bespoke dual-source precursors, tailored for use in aerosol-assisted chemical vapour deposition (AACVD). The resulting thin films were highly nanostructured and consisted of phase-pure monoclinic BiVO4. Pristine films under 1 sun solar irradiation yielded photocurrent densities of 1.23 mA cm-2 at 1.23 V vs RHE and a peak incident photon-electron conversion efficiency (IPCE) of 82 % at 674 nm, the highest performance of any CVD-grown BiVO4 film to date. A new, AACVD-compatible WO3 precursor was subsequently designed and synthesised for the deposition of W-doped BiVO4 within the same single deposition step.
Collapse
Affiliation(s)
- Thom R Harris-Lee
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- School of Chemistry, Monash University, Clayton, Vic, 3800, Australia
| | - Matthew K Surman
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrew J Straiton
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Frank Marken
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Andrew L Johnson
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
10
|
Xia Y, Wei X, Gao P, Wang C, de Jong A, Chen JHK, Rodríguez-Sánchez MJ, Rodríguez-Nogales A, Diez-Echave P, Gálvez J, García F, Wu W, Kao RYT, Li H, Cebrián R, Kuipers OP, Sun H. Bismuth-based drugs sensitize Pseudomonas aeruginosa to multiple antibiotics by disrupting iron homeostasis. Nat Microbiol 2024; 9:2600-2613. [PMID: 39294461 DOI: 10.1038/s41564-024-01807-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 09/20/2024]
Abstract
Pseudomonas aeruginosa infections are difficult to treat due to rapid development of antibiotic drug resistance. The synergistic combination of already-in-use drugs is an alternative to developing new antibiotics to combat antibiotic-resistant bacteria. Here we demonstrate that bismuth-based drugs (bismuth subsalicylate, colloidal bismuth subcitrate) in combination with different classes of antibiotics (tetracyclines, macrolides, quinolones, rifamycins and so on) can eliminate multidrug-resistant P. aeruginosa and do not induce development of antibiotic resistance. Bismuth disrupts iron homeostasis by binding to P. aeruginosa siderophores. Inside cells, bismuth inhibits the electron transport chain, dissipates the proton motive force and impairs efflux pump activity by disrupting iron-sulfur cluster-containing enzymes, including respiration complexes. As a result, bismuth facilitates antibiotic accumulation inside bacteria, enhancing their efficacy. The combination therapy shows potent antibacterial efficacy and low toxicity in an ex vivo bacteraemia model and increases the survival rate of mice in in vivo mouse lung-infection models. Our findings highlight the potential of bismuth-based drugs to be repurposed to combat P. aeruginosa infections in combination with clinically used antibiotics.
Collapse
Affiliation(s)
- Yushan Xia
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chenyuan Wang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Jonathan Hon Kwan Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Department of Microbiology, The University of Hong Kong and Queen Mary Hospital, Hong Kong, China
| | - María José Rodríguez-Sánchez
- Department of Digestive system, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Patricia Diez-Echave
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, Instituto de Investigación Biosanitaria ibs. GRANADA, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Biomedical Research Network Center, Liver and Digestive Diseases (CIBER-EHD), Granada, Spain
| | - Federico García
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital San Cecilio, Granada, Spain
- Biomedicinal Research Network Center, Infectious Diseases (CIBER-INFEC), Granada, Spain
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China
| | - Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs. GRANADA, University Hospital San Cecilio, Granada, Spain.
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Shen Z, Gao X, Huang D, Xu X, Shen J. The potential of Gynostemma pentaphyllum in the treatment of hyperlipidemia and its interaction with the LOX1-PI3K-AKT-eNOS pathway. Food Sci Nutr 2024; 12:8000-8012. [PMID: 39479713 PMCID: PMC11521742 DOI: 10.1002/fsn3.4250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 11/02/2024] Open
Abstract
Gynostemma pentaphyllum, a traditional Chinese medicine, is widely used to treat various diseases, but its therapeutic effects and mechanisms of action on hyperlipidemia remain unclear. This study aims to investigate the effects of Danshen leaf on hyperlipidemia through network pharmacology, molecular docking, and cellular experiments, elucidating its multifaceted mechanism of action within the LOX1-PI3K-AKT-eNOS pathway. First, the active ingredients and targets of G. pentaphyllum were screened using the Traditional Chinese Medicine Systems Pharmacology database. Then, targets for hyperlipidemia were identified using the OMIM and GeneCards databases, and potential therapeutic targets for G. pentaphyllum in treating hyperlipidemia were determined. An active ingredient-target network was constructed using Cytoscape software, and a protein-protein interaction (PPI) network was built and visualized using the STRING database and Cytoscape software. Finally, GO functional and KEGG pathway enrichment analyses were performed, and the predicted mechanisms were validated through molecular docking and cell experiments. 85 targets for G. pentaphyllum and 1556 for Hyperlipidemia were screened, with 53 common targets. Twenty-four active ingredients of G. pentaphyllum were found to be involved in the treatment of hyperlipidemia. Key nodes such as Rhamnazin, Isofucosterol, and quercetin, and targets NCOA2, NR3C2, PGR, and PPARG showed high relevance. In the PPI network, 8 nodes, including IL6, PPARG, and VEGFA, exhibited high centrality. GO functional and KEGG pathway enrichment analyses indicated that G. pentaphyllum may treat hyperlipidemia by influencing various biological functions and pathways, such as DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, and lipid and atherosclerosis. Cell experiments demonstrated that G. pentaphyllum significantly regulated the expression of key proteins in the LOX1-PI3K-AKT-eNOS pathway, thereby improving hyperlipidemia. G. pentaphyllum improves hyperlipidemia by mediating the LOX1-PI3K-AKT-eNOS pathway. This study provides a new theoretical basis and experimental evidence for applying G. pentaphyllum to treating hyperlipidemia.
Collapse
Affiliation(s)
- Zhuyang Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xin Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Dan Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xiaojin Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Jianping Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western MedicineNanjing University of ChineseNanjingChina
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| |
Collapse
|
12
|
Chen B, Wang W, Hu M, Liang Y, Wang N, Li C, Li Y. "Photo-Thermo-Electric" Dental Implant for Anti-Infection and Enhanced Osteoimmunomodulation. ACS NANO 2024; 18:24968-24983. [PMID: 39192736 DOI: 10.1021/acsnano.4c05859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The dental implant market has experienced explosive growth, owing to the widespread acceptance of implants as the core of oral rehabilitation. Clinically, achieving simultaneous anti-infective effects and rapid osseointegration is a crucial but challenging task for implants. The demand for implants with long-term broad-spectrum antibacterial and immune-osteogenic properties is growing. Existing methods are limited by a lack of safety, efficiency, short-lasting anti-infective ability, and inadequate consideration of the immunomodulatory effects on osteogenesis. Herein, a ZnO/black TiO2-x heterojunction surface structure was designed as a near-infrared (NIR) light-responsive nanofilm immobilized on a titanium (Ti) implant surface. This nanofilm introduces abundant oxygen vacancies and heterojunctions, which enhance the photothermal and photoelectric abilities of Ti implants under NIR illumination by narrowing the band gap and improving interfacial charge transfer. The "photo-thermo-electric" implant exhibits excellent broad-spectrum antibacterial efficacy against three dental pathogenic bacteria (Porphyromonas gingivalis, Fusobacterium nucleatum, and Staphylococcus aureus, >99.4%) by destroying the bacterial membrane and increasing the production of intracellular reactive oxygen species. Additionally, the implant can effectively eliminate mature multispecies biofilms and kill bacteria inside the biofilms under NIR irradiation. Meanwhile, this implant can also induce the pro-regenerative transformation of macrophages and promote osteoblast proliferation and differentiation. Moreover, in vivo results confirmed the superior antibacterial and osteoimmunomodulatory properties of this dental implant. RNA sequencing revealed that the underlying osteogenic mechanisms involve activation of the Wnt/β-catenin signaling pathway and bone development. Overall, this versatile "photo-thermo-electric" platform endows implants with anti-infection and bone integration performance simultaneously, which holds great potential for dental implants.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Wanmeng Wang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Meilin Hu
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Yunkai Liang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Ning Wang
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin 300070, P. R. China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin 300070, P. R. China
| |
Collapse
|
13
|
Wang H, Hsu JC, Song W, Lan X, Cai W, Ni D. Nanorepair medicine for treatment of organ injury. Natl Sci Rev 2024; 11:nwae280. [PMID: 39257435 PMCID: PMC11384914 DOI: 10.1093/nsr/nwae280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Organ injuries, such as acute kidney injury, ischemic stroke, and spinal cord injury, often result in complications that can be life-threatening or even fatal. Recently, many nanomaterials have emerged as promising agents for repairing various organ injuries. In this review, we present the important developments in the field of nanomaterial-based repair medicine, herein referred to as 'nanorepair medicine'. We first introduce the disease characteristics associated with different types of organ injuries and highlight key examples of relevant nanorepair medicine. We then provide a summary of existing strategies in nanorepair medicine, including organ-targeting methodologies and potential countermeasures against exogenous and endogenous pathologic risk factors. Finally, we offer our perspectives on current challenges and future expectations for the advancement of nanomedicine designed for organ injury repair.
Collapse
Affiliation(s)
- Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jessica C Hsu
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Wenyu Song
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430073, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan 430073, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
14
|
Huang L, Deng J, Su Y, Hu X, Zhang Y, Hong S, Lin X. Thermal-Responsive Antibacterial Hydrogel with Photothermal Therapy and Improving Wound Microenvironment for Promote Healing. Antioxidants (Basel) 2024; 13:857. [PMID: 39061925 PMCID: PMC11274332 DOI: 10.3390/antiox13070857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Skin damage is one of the most prevalent human injuries, which affects the health of human beings. However, skin damage is often accompanied by bacterial infection and wound microenvironment changes, causing damage to normal cells and inhibiting wound healing. Herein, we designed a thermal-responsive antibacterial hydrogel (GAG hydrogel) loaded with catalase (CAT)-like Au@Pt@MgSiO3 nanoparticles (APM NPs) and gentamicin (GM) to promote wound healing. The GAG hydrogel was used in a photothermal therapy (PTT)/antibiotic combination to kill bacteria, reduce the use of antibiotics, improve the wound microenvironment, promote cell proliferation, and accelerate wound healing. Under near-infrared laser irradiation, APM NPs in the hydrogel generated local hyperthermia to kill bacteria. Meanwhile, the generated heat led to a change in the hydrogel's morphology, enabling it to release GM and APM NPs to prevent the overuse of antibiotics. Subsequently, the CAT-like ability of the APM NPs decreased the oxidative stress caused by hydrogen peroxide (H2O2), thus remodeling the wound microenvironment. Then, the weakly acidic microenvironment of the wound caused the decomposition of the APM NPs and the release of magnesium ions (Mg2+), promoting the growth and migration of cells for wound healing. Therefore, the studied thermal-responsive antibacterial (GAG) hydrogel has potential in the field of wound healing.
Collapse
Affiliation(s)
- Linjie Huang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, China; (L.H.); (Y.S.); (X.H.); (Y.Z.)
| | - Jingwen Deng
- Department of Otorhinolaryngology, Fujian Medical University Union Hospital, Fuzhou 350001, China;
| | - Yina Su
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, China; (L.H.); (Y.S.); (X.H.); (Y.Z.)
| | - Xueqi Hu
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, China; (L.H.); (Y.S.); (X.H.); (Y.Z.)
| | - Yichao Zhang
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, China; (L.H.); (Y.S.); (X.H.); (Y.Z.)
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, China; (L.H.); (Y.S.); (X.H.); (Y.Z.)
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University, Fuzhou 350122, China; (L.H.); (Y.S.); (X.H.); (Y.Z.)
| |
Collapse
|
15
|
Wei X, Chan CL, Zhou Y, Tang K, Chen J, Wang S, Chan JFW, Yuan S, Li H, Sun H. Mechanistic insights into bismuth(iii) inhibition of SARS-CoV-2 helicase. Chem Sci 2024; 15:10065-10072. [PMID: 38966375 PMCID: PMC11220592 DOI: 10.1039/d3sc06961c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 resulted in a global public health crisis. In addition to vaccines, the development of effective therapy is highly desirable. Targeting a protein that plays a critical role in virus replication may allow pan-spectrum antiviral drugs to be developed. Among SARS-CoV-2 proteins, helicase (i.e., non-structural protein 13) is considered as a promising antiviral drug target due to its highly conserved sequence, unique structure and function. Herein, we demonstrate SARS-CoV-2 helicase as a target of bismuth-based antivirals in virus-infected mammalian cells by a metal-tagged antibody approach. To search for more potent bismuth-based antivirals, we further screened a panel of bismuth compounds towards inhibition of ATPase and DNA unwinding activity of nsp13 and identified a highly potent bismuth compound Bi(5-aminotropolonate)3, namely Bi(Tro-NH2)3 with an IC50 of 30 nM for ATPase. We show that bismuth-based compounds inhibited nsp13 unwinding activity via disrupting the binding of ATP and the DNA substrate to viral helicase. Binding of Bi(iii) to nsp13 also abolished the interaction between nsp12 and nsp13 as evidenced by immunofluorescence and co-immunoprecipitation assays. Finally, we validate our in vitro data in SARS-CoV-2 infected mammalian cells. Notably, Bi(6-TG)3 exhibited an EC50 of 1.18 ± 0.09 μM with a selective index of 847 in VeroE6-TMPRSS2 infected cells. This study highlights the important role of helicase for the development of more effective antiviral drugs to combat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xueying Wei
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Chun-Lung Chan
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Ying Zhou
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Kaiming Tang
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jingxin Chen
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Suyu Wang
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Jasper Fuk-Woo Chan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Shuofeng Yuan
- Department of Microbiology and State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongyan Li
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| | - Hongzhe Sun
- Department of Chemistry and CAS-HKU Joint Laboratory of Metallomics on Heath and Environment, The University of Hong Kong Pokfulam Hong Kong Special Administrative Region China
| |
Collapse
|
16
|
Inge AK. In the pink with bismuth subsalicylate. Nat Chem 2024; 16:1210. [PMID: 38977872 DOI: 10.1038/s41557-024-01567-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Affiliation(s)
- A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
17
|
Contini L, Paul A, Mazzei L, Ciurli S, Roncarati D, Braga D, Grepioni F. Is bismuth(III) able to inhibit the activity of urease? Puzzling results in the quest for soluble urease complexes for agrochemical and medicinal applications. Dalton Trans 2024; 53:10553-10562. [PMID: 38847020 DOI: 10.1039/d4dt00778f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Bismuth(III) complexes have been reported to act as inhibitors of the enzyme urease, ubiquitously present in soils and implicated in the pathogenesis of several microorganisms. The general insolubility of Bi(III) complexes in water at neutral pH, however, is an obstacle to their utilization. In our quest to improve the solubility of Bi(III) complexes, we selected a compound reported to inhibit urease, namely [Bi(HEDTA)]·2H2O, and co-crystallized it with (i) racemic DL-histidine to obtain the conglomerate [Bi2(HEDTA)2(μ-D-His)2]·6H2O + [Bi2(HEDTA)2(μ-L-His)2]·6H2O, (ii) enantiopure L-histidine to yield [Bi2(HEDTA)2(μ-L-His)2]·6H2O, and (iii) cytosine to obtain [Bi(HEDTA)]·Cyt·2H2O. All compounds, synthesised by mechanochemical methods and by slurry, were characterized in the solid state by calorimetric (DSC and TGA) and spectroscopic (IR) methods, and their structures were determined using powder X-ray diffraction (PXRD) data. All compounds show an appreciable solubility in water, with values ranging from 6.8 mg mL-1 for the starting compound [Bi(HEDTA)]·2H2O to 36 mg mL-1 for [Bi2(HEDTA)2(μ-L-His)2]·6H2O. The three synthesized compounds as well as [Bi(HEDTA)]·2H2O were then tested for inhibition activity against urease. Surprisingly, no enzymatic inhibition was observed during in vitro assays using Canavalia ensiformis urease and in vivo assays using cultures of Helicobacter pylori, raising questions on the efficacy of Bi(III) compounds to counteract the negative effects of urease activity in the agro-environment and in human health.
Collapse
Affiliation(s)
- Laura Contini
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Arundhati Paul
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Dario Braga
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| | - Fabrizia Grepioni
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy.
| |
Collapse
|
18
|
Meng W, Liu C, Wu G, Bai Z, Wang Z, Chen S, Wan S, Liu W. Design, synthesis and antibacterial activity evaluation of ebselen derivatives in NDM-1 producing bacteria. RSC Med Chem 2024; 15:1959-1972. [PMID: 38903944 PMCID: PMC11107446 DOI: 10.1039/d4md00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/10/2024] [Indexed: 06/22/2024] Open
Abstract
New Delhi-β-lactamase-1 (NDM-1) is a type of metal-β-lactamase. NDM-1-expressing bacteria can spread rapidly across the globe via plasmid transfer, which greatly undermines the clinical efficacy of the carbapenem. Research on NDM-1 inhibitors has attracted extensive attention. However, there are currently no clinically available NDM-1 inhibitors. Our research group has reported that 1,2-benzisoselenazol-3(2H)-one derivatives as covalent NDM-1 inhibitors can restore the efficacy of meropenem (Mem) against NDM-1 producing strains. In this study, 22 compounds were designed and synthesized, which restored the Mem susceptibility of NDM-1-expressing Escherichia coli. and its minimum inhibitory concentration (MIC) was reduced by 2-16 times. Representative compound A4 showed significant synergistic antibacterial activity against NDM-1-producing carbapenem-resistant Enterobacteriaceae (CRE) isolates. The in vitro NDM-1 enzyme inhibitory activity test showed that the IC50 was 1.26 ± 0.37 μM, which had low cytotoxicity. When combined with meropenem, it showed good combined antibacterial activity. Electrospray ionization mass spectrometry (ESI-MS) analysis demonstrates that compound A4 covalently binds to NDM-1 enzyme. In summary, compound A4 is a potent NDM-1 covalent inhibitor and provides a potential lead compound for drug development in resistant bacteria.
Collapse
Affiliation(s)
- Wanli Meng
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Chenyu Liu
- Faculty of Science, Hong Kong Polytechnic University Kowloon 100872 Hong Kong China
| | - Guangxin Wu
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Zhongyue Bai
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Zhihao Wang
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Sheng Chen
- Faculty of Science, Hong Kong Polytechnic University Kowloon 100872 Hong Kong China
| | - Shengbiao Wan
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| | - Wandong Liu
- Key Laboratory of Marine Pharmacology, Ministry of Education, College of Medicine, Ocean University of China Qingdao 266003 China
| |
Collapse
|
19
|
Salpadoru T, Pinks KE, Lieberman JA, Cotton K, Wozniak KL, Gerasimchuk N, Patrauchan MA. Novel antimony-based antimicrobial drug targets membranes of Gram-positive and Gram-negative bacterial pathogens. Microbiol Spectr 2024; 12:e0423423. [PMID: 38651882 PMCID: PMC11237720 DOI: 10.1128/spectrum.04234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant worldwide public health crisis that continues to threaten our ability to successfully treat bacterial infections. With the decline in effectiveness of conventional antimicrobial therapies and the lack of new antibiotic pipelines, there is a renewed interest in exploring the potential of metal-based antimicrobial compounds. Antimony-based compounds with a long history of use in medicine have re-emerged as potential antimicrobial agents. We previously synthesized a series of novel organoantimony(V) compounds complexed with cyanoximates with a strong potential of antimicrobial activity against several AMR bacterial and fungal pathogens. Here, five selected compounds were studied for their antibacterial efficacy against three important bacterial pathogens: Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus. Among five tested compounds, SbPh4ACO showed antimicrobial activity against all three bacterial strains with the MIC of 50-100 µg/mL. The minimum bactericidal concentration/MIC values were less than or equal to 4 indicating that the effects of SbPh4ACO are bactericidal. Moreover, ultra-thin electron microscopy revealed that SbPh4ACO treatment caused membrane disruption in all three strains, which was further validated by increased membrane permeability. We also showed that SbPh4ACO acted synergistically with the antibiotics, polymyxin B and cefoxitin used to treat AMR strains of P. aeruginosa and S. aureus, respectively, and that at synergistic MIC concentration 12.5 µg/mL, its cytotoxicity against the cell lines, Hela, McCoy, and A549 dropped below the threshold. Overall, the results highlight the antimicrobial potential of novel antimony-based compound, SbPh4ACO, and its use as a potentiator of other antibiotics against both Gram-positive and Gram-negative bacterial pathogens. IMPORTANCE Antibiotic resistance presents a critical global public health crisis that threatens our ability to combat bacterial infections. In light of the declining efficacy of traditional antibiotics, the use of alternative solutions, such as metal-based antimicrobial compounds, has gained renewed interest. Based on the previously synthesized innovative organoantimony(V) compounds, we selected and further characterized the antibacterial efficacy of five of them against three important Gram-positive and Gram-negative bacterial pathogens. Among these compounds, SbPh4ACO showed broad-spectrum bactericidal activity, with membrane-disrupting effects against all three pathogens. Furthermore, we revealed the synergistic potential of SbPh4ACO when combined with antibiotics, such as cefoxitin, at concentrations that exert no cytotoxic effects tested on three mammalian cell lines. This study offers the first report on the mechanisms of action of novel antimony-based antimicrobial and presents the therapeutic potential of SbPh4ACO in combating both Gram-positive and Gram-negative bacterial pathogens while enhancing the efficacy of existing antibiotics.
Collapse
Affiliation(s)
- Tarosha Salpadoru
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kevin E. Pinks
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Jacob A. Lieberman
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Kaitlyn Cotton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Karen L. Wozniak
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nikolay Gerasimchuk
- Department of Chemistry and Biochemistry, Missouri State University, Springfield, Missouri, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
20
|
Mo H, Zhang T, Zhang J, Peng S, Xiang F, Li H, Ge Y, Yao L, Hu L. Ferrous sulphate triggers ferroptosis in Candida albicans and cures vulvovaginal candidiasis in a mouse model. Microbiol Res 2024; 283:127704. [PMID: 38554652 DOI: 10.1016/j.micres.2024.127704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Candida albicans is the most leading cause of life-threatening fungal invasive infections, especially for vulvovaginal candidiasis (VVC). Resistance and tolerance to common fungicide has risen great demands on alternative strategies for treating C. albicans infections. In the present study, ferroptosis has been proven to occur in C. albicans by directly exposed to FeSO4 via induing hallmarks of ferroptosis, including Fe2+ overload burden, ROS eruption and lipid peroxidation. Transcriptomic profile gave the great hints of the possible mechanism for fungal ferroptosis that FeSO4 disturb pathways associated to ribosome, tyrosine metabolism, triglyceride metabolism and thiamine metabolism, thus mobilizing death-related gene synthesis. Inspired by the results, a FeSO4-loaded hydrogel was prepared as an antifungal agent to treat C. albicans infection. This hydrogel exhibited excellent dressing properties and maintained superior antifungal activity by characterization tests. Besides, mice treated by this composite hydrogel displayed excellent therapeutic efficacy. These results highlighted the potential therapeutic use of FeSO4 as an innovative strategy in treating C. albicans infections by targeting ferroptosis.
Collapse
Affiliation(s)
- Haizhen Mo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tao Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiayi Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shurui Peng
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Fukun Xiang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lishan Yao
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Liangbin Hu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
21
|
Cheng D, Tian R, Pan T, Yu Q, Wei L, Liyin J, Dai Y, Wang X, Tan R, Qu H, Lu M. High-performance lung-targeted bio-responsive platform for severe colistin-resistant bacterial pneumonia therapy. Bioact Mater 2024; 35:517-533. [PMID: 38404643 PMCID: PMC10885821 DOI: 10.1016/j.bioactmat.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
Polymyxins are the last line of defense against multidrug-resistant (MDR) Gram-negative bacterial infections. However, this last resort has been threatened by the emergence of superbugs carrying the mobile colistin resistance gene-1 (mcr-1). Given the high concentration of matrix metalloproteinase 3 (MMP-3) in bacterial pneumonia, limited plasma accumulation of colistin (CST) in the lung, and potential toxicity of ionic silver (Ag+), we designed a feasible clinical transformation platform, an MMP-3 high-performance lung-targeted bio-responsive delivery system, which we named "CST&Ag@CNMS". This system exhibited excellent lung-targeting ability (>80% in lungs), MMP-3 bio-responsive release property (95% release on demand), and synergistic bactericidal activity in vitro (2-4-fold minimum inhibitory concentration reduction). In the mcr-1+ CST-resistant murine pneumonia model, treatment with CST&Ag@CNMS improved survival rates (70% vs. 20%), reduced bacteria burden (2-3 log colony-forming unit [CFU]/g tissue), and considerably mitigated inflammatory response. In this study, CST&Ag@CNMS performed better than the combination of free CST and AgNO3. We also demonstrated the superior biosafety and biodegradability of CST&Ag@CNMS both in vitro and in vivo. These findings indicate the clinical translational potential of CST&Ag@CNMS for the treatment of lung infections caused by CST-resistant bacteria carrying mcr-1.
Collapse
Affiliation(s)
- Decui Cheng
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Pan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Qiang Yu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jiaozhi Liyin
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yunqi Dai
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Xiaoli Wang
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Ruoming Tan
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Hongping Qu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025, China
| | - Min Lu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Ding J, Wang X, Liu W, Ding C, Wu J, He R, Zhang X. Biofilm Microenvironment Activated Antibiotic Adjuvant for Implant-Associated Infections by Systematic Iron Metabolism Interference. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400862. [PMID: 38408138 PMCID: PMC11077648 DOI: 10.1002/advs.202400862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Hematoma, a risk factor of implant-associated infections (IAIs), creates a Fe-rich environment following implantation, which proliferates the growth of pathogenic bacteria. Fe metabolism is a major vulnerability for pathogens and is crucial for several fundamental physiological processes. Herein, a deferiprone (DFP)-loaded layered double hydroxide (LDH)-based nanomedicine (DFP@Ga-LDH) that targets the Fe-rich environments of IAIs is reported. In response to acidic changes at the infection site, DFP@Ga-LDH systematically interferes with bacterial Fe metabolism via the substitution of Ga3+ and Fe scavenging by DFP. DFP@Ga-LDH effectively reverses the Fe/Ga ratio in Pseudomonas aeruginosa, causing comprehensive interference in various Fe-associated targets, including transcription and substance metabolism. In addition to its favorable antibacterial properties, DFP@Ga-LDH functions as a nano-adjuvant capable of delaying the emergence of antibiotic resistance. Accordingly, DFP@Ga-LDH is loaded with a siderophore antibiotic (cefiderocol, Cefi) to achieve the antibacterial nanodrug DFP@Ga-LDH-Cefi. Antimicrobial and biosafety efficacies of DFP@Ga-LDH-Cefi are validated using ex vivo human skin and mouse IAI models. The pivotal role of the hematoma-created Fe-rich environment of IAIs is highlighted, and a nanoplatform that efficiently interferes with bacterial Fe metabolism is developed. The findings of the study provide promising guidance for future research on the exploration of nano-adjuvants as antibacterial agents.
Collapse
Affiliation(s)
- Jianing Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xin Wang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Wei Liu
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Cheng Ding
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Jianrong Wu
- Shanghai Institute of Ultrasound in MedicineShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Renke He
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| | - Xianlong Zhang
- Department of OrthopaedicsShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200233P. R. China
| |
Collapse
|
23
|
Schwarte JV, Crochet A, Fromm KM. 4-[(E)-2-(1-Pyrenyl)Vinyl]Pyridine Complexes: How to Modulate the Toxicity of Heavy Metal Ions to Target Microbial Infections. Molecules 2024; 29:1565. [PMID: 38611844 PMCID: PMC11013842 DOI: 10.3390/molecules29071565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pyrene derivatives are regularly proposed for use in biochemistry as dyes due to their photochemical characteristics. Their antibacterial properties are, however, much less well understood. New complexes based on 4-[(E)-2-(1-pyrenyl)vinyl]pyridine (PyPe) have been synthesized with metal ions that are known to possess antimicrobial properties, such as zinc(II), cadmium(II), and mercury(II). The metal ion salts, free ligand, combinations thereof, and the coordination compounds themselves were tested for their antibacterial properties through microdilution assays. We found that the ligand is able to modulate the antibacterial properties of transition metal ions, depending on the complex stability, the distance between the ligand and the metal ions, and the metal ions themselves. The coordination by the ligand weakened the antibacterial properties of heavy metal ions (Cd(II), Hg(II), Bi(III)), allowing the bacteria to survive higher concentrations thereof. Mixing the ligand and the metal ion salts without forming the complex beforehand enhanced the antibacterial properties of the cations. Being non-cytotoxic itself, the ligand therefore balances the biological consequences of heavy metal ions between toxicity and therapeutic weapons, depending on its use as a coordinating ligand or simple adjuvant.
Collapse
Affiliation(s)
- Justine V. Schwarte
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Aurélien Crochet
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Fribourg Center for Nanomaterials, 1700 Fribourg, Switzerland
| | - Katharina M. Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
- Fribourg Center for Nanomaterials, 1700 Fribourg, Switzerland
- NCCR Bio-Inspired Materials, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
24
|
Chen J, Zhou Y, Wei X, Xu X, Qin Z, Ong CP, Ye ZW, Jin DY, Boitrel B, Yuan S, Chan JFW, Li H, Sun H. Development of Pan-Anti-SARS-CoV-2 Agents through Allosteric Inhibition of nsp14/nsp10 Complex. ACS Infect Dis 2024; 10:858-869. [PMID: 37897418 DOI: 10.1021/acsinfecdis.3c00356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
SARS-CoV-2 nsp14 functions both as an exoribonuclease (ExoN) together with its critical cofactor nsp10 and as an S-adenosyl methionine-dependent (guanine-N7) methyltransferase (MTase), which makes it an attractive target for the development of pan-anti-SARS-CoV-2 drugs. Herein, we screened a panel of compounds (and drugs) and found that certain compounds, especially Bi(III)-based compounds, could allosterically inhibit both MTase and ExoN activities of nsp14 potently. We further demonstrated that Bi(III) binds to both nsp14 and nsp10, resulting in the release of Zn(II) ions from the enzymes as well as alternation of protein quaternary structures. The in vitro activities of the compounds were also validated in SARS-CoV-2-infected mammalian cells. Importantly, we showed that nsp14 serves as an authentic target of Bi(III)-based antivirals in SARS-CoV-2-infected mammalian cells by quantification of both the protein and inhibitor. This study highlights the importance of nsp14/nsp10 as a potential target for the development of pan-antivirals against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jingxin Chen
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Ying Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Xueying Wei
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Xiaohan Xu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Zhenzhi Qin
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Chon Phin Ong
- School of Biomedical Sciences, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Zi-Wei Ye
- School of Biomedical Sciences, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Dong-Yan Jin
- School of Biomedical Sciences, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Bernard Boitrel
- University of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, Rennes 35000, France
| | - Shuofeng Yuan
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Jasper F-W Chan
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Hongyan Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| | - Hongzhe Sun
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics on Health and Environment, The University of Hong Kong, Pokfulam Road, Pokfulam, Hong Kong 999077, P. R. China
| |
Collapse
|
25
|
Rao S, Sun Z, Liu Q, Cheng C, Jin C, Gao J, Li B, Li Y, Liu L, Yang J, Zhu Y. Engineering Atomic Ag 1-N 6 Sites with Enhanced Performance of Eradication Drug-Resistant Bacteria over Visible-Light-Driven Antibacterial Membrane. ACS NANO 2024; 18:7074-7083. [PMID: 38386076 DOI: 10.1021/acsnano.3c10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Utilizing visible light for water disinfection is a more convenient, safe, and practical alternative to ultraviolet-light sterilization. Herein, we developed silver (Ag) single-atom anchored g-C3N4 (P-CN) nanosheets (Ag1/CN) and then utilized a spin-coating method to fabricate the Ag1/CN-based-membrane for effective antibacterial performance in natural water and domestic wastewater. The incorporated Ag single atom formed a Ag1-N6 motif, which increased the charge density around the N atoms, resulting in a built-in electric field ∼17.2 times stronger than that of pure P-CN and optimizing the dynamics of reactive oxygen species (ROS) production. Additionally, the Ag1-N6 motif inhibited the release of Ag ions, ensuring good biocompatibility. Based on the first-principles calculation, the adsorption energy of O2 on the Ag1/CN (-0.32 eV) was lower than that of P-CN (-0.07 eV), indicating that loaded Ag single atom can lower the energy barrier for O2 activation, generating extra *OH radicals that cooperated with *O2- to effectively neutralize bacteria. As a result, the Ag1/CN powder-catalyst with the concentration of 30 ppm demonstrated a 99.9% antibacterial efficiency against drug-resistant bacteria (Escherichia coli, Staphylococcus aureus, kanamycin-resistant Escherichia coli, and methicillin-resistant Staphylococcus aureus) under visible-light irradiation for 4 h. This efficacy was 24.8 times higher than that of the P-CN powder catalyst. Moreover, the Ag1/CN-based-membrane can maintain a 99.9% bactericidal efficiency for natural water and domestic wastewater treatment using a homemade flow device, demonstrating its potential for water disinfection. Notably, the visible-light-driven antibacterial efficiency of the Ag1/CN catalyst outperformed the majority of the reported g-C3N4-based catalysts/membranes.
Collapse
Affiliation(s)
- Shaosheng Rao
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhongti Sun
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qinqin Liu
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chao Cheng
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Cheng Jin
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jinsong Gao
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bing Li
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yi Li
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Lei Liu
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Juan Yang
- Department of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
26
|
Shi X, Dai Y, Lan Z, Wang S, Cui L, Xiao C, Zhao K, Li X, Liu W, Zhang Q. Interplay between the β-lactam side chain and an active-site mobile loop of NDM-1 in penicillin hydrolysis as a potential target for mechanism-based inhibitor design. Int J Biol Macromol 2024; 262:130041. [PMID: 38336327 DOI: 10.1016/j.ijbiomac.2024.130041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Metallo-β-lactamases (MβLs) stand as significant resistant mechanism against β-lactam antibiotics in Gram-negative bacteria. The worldwide dissemination of New Delhi metallo-β-lactamases (NDMs) intensifies antimicrobial resistance, posing severe threats to human health due to the absence of inhibitors available in clinical therapy. L3, a flexible β-hairpin loop flanking the active site in MβLs, has been proven to wield influence over the reaction process by assuming a crucial role in substrate recognition and intermediate stabilization. In principle, it potentially retards product release from the enzyme, consequently reducing the overall turnover rate although the details regarding this aspect remain inadequately elucidated. In this study, we crystallized NDM-1 in complex with three penicillin substrates, conducted molecular dynamics simulations, and measured the steady-state kinetic parameters. These analyses consistently unveiled substantial disparities in their interactions with loop L3. We further synthesized a penicillin V derivative with increased hydrophobicity in the R1 side chain and co-crystallized it with NDM-1. Remarkably, this compound exhibited much stronger dynamic interplay with L3 during molecular dynamics simulation, showed much lower Km and kcat values, and demonstrated moderate inhibitory capacity to NDM-1 catalyzed meropenem hydrolysis. The data presented here may provide a strategic approach for designing mechanism-based MβL inhibitors focusing on structural elements external to the enzyme's active center.
Collapse
Affiliation(s)
- Xiangrui Shi
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Yujie Dai
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zhu Lan
- Institute of Immunology, Army Medical University, Chongqing 400038, China
| | - Sheng Wang
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Avenue, Wuhan, Hubei 430074, China
| | - Liwei Cui
- Institute of Immunology, Army Medical University, Chongqing 400038, China
| | - Chengliang Xiao
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Avenue, Wuhan, Hubei 430074, China
| | - Kunhong Zhao
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minister of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Minister of Education, Guizhou University, Guiyang 550025, China.
| | - Wei Liu
- Institute of Immunology, Army Medical University, Chongqing 400038, China.
| | - Qinghua Zhang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
27
|
Li Y, Qu X, Wang Q, Li S, Zhang Q, Zhang X. Tannic acid and carboxymethyl chitosan-based multi-functional double-layered hydrogel with pH-stimulated response behavior for smart real-time infection monitoring and wound treatment. Int J Biol Macromol 2024; 261:129042. [PMID: 38161021 DOI: 10.1016/j.ijbiomac.2023.129042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The dramatic increase of drug-resistant pathogenic bacteria has seriously effect on human health, appealing the needs of developing theranostic platforms with stimuli-responsive materials to realize the accurate bacterial diagnostics and therapeutics. Herein, a tannic acid and carboxymethyl chitosan-based multifunctional ZIF-90@i-PPOPs-phenol red double-layered hydrogel with stimuli-responsiveness and antibacterial activity was fabricated. The inner layer hydrogel (ZIF-90@i-PPOPs-based TFC hydrogels) was fabricated based on ZIF-90@i-PPOPs, integrate tannic acid and carboxymethyl chitosan linked by formylphenylboronic acid (FPBA), which exhibited outstanding injectable, biodegradability and antibacterial activity. The outer layer hydrogel (PR@PAM hydrogels) were constructed from polyacrylamide (PAM) and pH indicator phenol red, owning porous structure and excellent tissue adhesion. Due to the weakly acidic microenvironment within wound, the inner-layer hydrogel was stimulus-responsively decomposed, resulting in the accurate delivery of the positively charged ZIF-90@i-PPOPs to the lesion site to capture and kill bacteria by enhanced Zn2+ and ROS release. Meantime, the outer-layer hydrogel could real-timely monitor the pH changes to evaluate the wound recovery status. These double-layered hydrogels possessed precisely pH monitoring capacity, excellent antibacterial ability and negligible side effect to normal tissue in vivo, implying the high potential of the suggested hydrogels as theranostic platform for antibacterial treatment.
Collapse
Affiliation(s)
- Yanhong Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyan Qu
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Sheng Li
- Weifang Hospital of Traditional Chinese Medicine, Weifang 261000, China
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaomei Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
28
|
Ding L, Yang Z, Sun B. Understanding blaNDM-1 gene regulation in CRKP infections: toward novel antimicrobial strategies for hospital-acquired pneumonia. Mol Med 2024; 30:29. [PMID: 38395744 PMCID: PMC10893750 DOI: 10.1186/s10020-024-00794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The escalating challenge of Carbapenem-resistant Klebsiella pneumoniae (CRKP) in hospital-acquired pneumonia (HAP) is closely linked to the blaNDM-1 gene. This study explores the regulatory mechanisms of blaNDM-1 expression and aims to enhance antibacterial tactics to counteract the spread and infection of resistant bacteria. METHODS KP and CRKP strains were isolated from HAP patients' blood samples. Transcriptomic sequencing (RNA-seq) identified significant upregulation of blaNDM-1 gene expression in CRKP strains. Bioinformatics analysis revealed blaNDM-1 gene involvement in beta-lactam resistance pathways. CRISPR-Cas9 was used to delete the blaNDM-1 gene, restoring sensitivity. In vitro and in vivo experiments demonstrated enhanced efficacy with Imipenem and Thanatin or Subatan combination therapy. RESULTS KP and CRKP strains were isolated with significant upregulation of blaNDM-1 in CRKP strains identified by RNA-seq. The Beta-lactam resistance pathway was implicated in bioinformatics analysis. Knockout of blaNDM-1 reinstated sensitivity in CRKP strains. Further, co-treatment with Imipenem, Thanatin, or Subactam markedly improved antimicrobial effectiveness. CONCLUSION Silencing blaNDM-1 in CRKP strains from HAP patients weakens their Carbapenem resistance and optimizes antibacterial strategies. These results provide new theoretical insights and practical methods for treating resistant bacterial infections.
Collapse
Affiliation(s)
- Liang Ding
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Zheng Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China
| | - Baier Sun
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, No. 20, Xisi Road, Chongchuan District, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
29
|
Wu XR, Chen WY, Liu L, Yang KW. Discovery of hydroxamate as a promising scaffold dually inhibiting metallo- and serine-β-lactamases. Eur J Med Chem 2024; 265:116055. [PMID: 38134748 DOI: 10.1016/j.ejmech.2023.116055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
The bacterial infection mediated by β-lactamases MβLs and SβLs has grown into an emergent health threat, however, development of a molecule that dual inhibits both MβLs and SβLs is challenging. In this work, a series of hydroxamates 1a-g, 2a-e, 3a-c, 4a-c were synthesized, characterized by 1H and 13C NMR and confirmed by HRMS. Biochemical assays revealed that these molecules dually inhibited MβLs (NDM-1, IMP-1) and SβLs (KPC-2, OXA-48), with an IC50 value in the range of 0.64-41.08 and 1.01-41.91 μM (except 1a and 1d on SβLs, IC50 > 50 μM), and 1f was found to be the best inhibitor with an IC50 value in the range of 0.64-1.32 and 0.57-1.01 μM, respectively. Mechanism evaluation indicated that 1f noncompetitively and irreversibly inhibited NDM-1 and KPC-2, with Ki value of 2.5 and 0.55 μM, is a time- and dose-dependent inhibitor of both MβLs and SβLs. MIC tests shown that all hydroxamates increased the antimicrobial effect of MER on E. coli-NDM-1 and E. coli-IMP-1 (expect 1b, 1d, 1g and 2d), resulting in a 2-8-fold reduction in MICs of MER, 1e-g, 2b-d, 3a-c and 4b-c decreased 2-4-fold MICs of MER on E. coli-KPC-2, and 1c, 1f-g, 2a-c, 3b, 4a and 4c decreased 2-16-fold MICs of MER on E. coli-OXA-48. Most importantly, 1f-g, 2b-c, 3b and 4c exhibited the dual synergizing inhibition against both E. coli-MβLs and E. coli-SβLs tested, resulting in a 2-8-fold reduction in MICs of MER, and 1f was found to have the best effect on the drug-resistant bacteria tested. Also, 1f shown synergizing antimicrobial effect on five clinical isolates EC04, EC06, EC08, EC10 and EC24 that produce NDM-1, resulting in a 2-8-fold reduction in MIC of MER, but its effect on E. coli and K. pneumonia-KPC-NDM was not to be observed using the same dose of inhibitor. Mice tests shown that the monotherapy of 1f or 4a in combination with MER significantly reduced the bacterial load of E. coli-NDM-1 and E. coli-OXA-48 cells in liver and spleen, respectively. The discovery in this work offered a promising bifunctional scaffold for creating the specific molecules that dually inhibit MβLs and MβLs, in combating antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Xiao-Rong Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Wei-Ya Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Lu Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China
| | - Ke-Wu Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, PR China.
| |
Collapse
|
30
|
Ye S, Zhang H, Lai H, Xu J, Yu L, Ye Z, Yang L. MXene: A wonderful nanomaterial in antibacterial. Front Bioeng Biotechnol 2024; 12:1338539. [PMID: 38361792 PMCID: PMC10867285 DOI: 10.3389/fbioe.2024.1338539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024] Open
Abstract
Increasing bacterial infections and growing resistance to available drugs pose a serious threat to human health and the environment. Although antibiotics are crucial in fighting bacterial infections, their excessive use not only weakens our immune system but also contributes to bacterial resistance. These negative effects have caused doctors to be troubled by the clinical application of antibiotics. Facing this challenge, it is urgent to explore a new antibacterial strategy. MXene has been extensively reported in tumor therapy and biosensors due to its wonderful performance. Due to its large specific surface area, remarkable chemical stability, hydrophilicity, wide interlayer spacing, and excellent adsorption and reduction ability, it has shown wonderful potential for biopharmaceutical applications. However, there are few antimicrobial evaluations on MXene. The current antimicrobial mechanisms of MXene mainly include physical damage, induced oxidative stress, and photothermal and photodynamic therapy. In this paper, we reviewed MXene-based antimicrobial composites and discussed the application of MXene in bacterial infections to guide further research in the antimicrobial field.
Collapse
Affiliation(s)
- Surong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Huichao Zhang
- Stomatology College of Chifeng University, Chifeng, China
| | - Huiyan Lai
- College of Chemistry and Chemical Engineering, Xiamen University, and Discipline of Intelligent Instrument and Equipment, Xiamen, China
| | - Jingyu Xu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ling Yu
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Zitong Ye
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| | - Luyi Yang
- Department of Orthodontics, Hospital of Stomatology, Jilin University, Changchun, China
| |
Collapse
|
31
|
Wu S, Wei Y, Wang Y, Zhang Z, Liu D, Qin S, Shi J, Shen J. Liposomal Antibiotic Booster Potentiates Carbapenems for Combating NDMs-Producing Escherichia coli. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304397. [PMID: 37933983 PMCID: PMC10787095 DOI: 10.1002/advs.202304397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/19/2023] [Indexed: 11/08/2023]
Abstract
Infections caused by Enterobacterales producing New Delhi Metallo-β-lactamases (NDMs), Zn(II)-dependent enzymes hydrolyzing carbapenems, are difficult to treat. Depriving Zn(II) to inactivate NDMs is an effective solution to reverse carbapenems resistance in NDMs-producing bacteria. However, specific Zn(II) deprivation and better bacterial outer membrane penetrability in vivo are challenges. Herein, authors present a pathogen-primed liposomal antibiotic booster (M-MFL@MB), facilitating drugs transportation into bacteria and removing Zn(II) from NDMs. M-MFL@MB introduces bismuth nanoclusters (BiNCs) as a storage tank of Bi(III) for achieving ROS-initiated Zn(II) removal. Inspired by bacteria-specific maltodextrin transport pathway, meropenem-loaded BiNCs are camouflaged by maltodextrin-cloaked membrane fusion liposome to cross the bacterial envelope barrier via selectively targeting bacteria and directly outer membrane fusion. This fusion disturbs bacterial membrane homeostasis, then triggers intracellular ROS amplification, which activates Bi(III)-mediated Zn(II) replacement and meropenem release, realizing more precise and efficient NDMs producer treatment. Benefiting from specific bacteria-targeting, adequate drugs intracellular accumulation and self-activation Zn(II) replacement, M-MFL@MB rescues all mice infected by NDM producer without systemic side effects. Additionally, M-MFL@MB decreases the bacterial outer membrane vesicles secretion, slowing down NDMs producer's transmission by over 35 times. Taken together, liposomal antibiotic booster as an efficient and safe tool provides new strategy for tackling NDMs producer-induced infections.
Collapse
Affiliation(s)
- Sixuan Wu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- School of Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Yongbin Wei
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
| | - Yang Wang
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Dejun Liu
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| | - Shangshang Qin
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Jianzhong Shen
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| |
Collapse
|
32
|
Yang Y, Wen J, Liu L. Heterogeneity of dispersed species in nickel-loaded carbon-based catalysts for near-infrared photoresponsive synergistic antimicrobial therapy. J Colloid Interface Sci 2023; 652:380-387. [PMID: 37604050 DOI: 10.1016/j.jcis.2023.08.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
The development of novel efficient, safe antimicrobial strategies is an urgent need, as the misuse of antibiotics has become a significant threat to human health. Therefore, we have loaded metal Ni with environmentally friendly carbon black as a substrate, with species varying from single atoms to nanoclusters and nanoparticles. The results obtained from the antimicrobial systems and the role of different types of metal species in the photosensitized antimicrobial reactions were compared to better understand the catalytic behavior of different metal entities (single atoms, nanoclusters, and nanoparticles). Furthermore, the antimicrobial mechanisms of these materials were described by physical and chemical characterization, biological experiments, and theoretical calculations. Such systematic studies provide new ideas and prospects for developing more efficient and environmentally friendly antimicrobial materials.
Collapse
Affiliation(s)
- Yang Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jinghong Wen
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, China.
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
33
|
Zehra M, Usmani Y, Shafiq J, Khan A, Zafar M, Raza Mirza M, Shah SR, Al-Harrasi A, Hasan SM, Farooqui A, Ahmed A. In vitro and in vivo antimicrobial potential of lithium complex against multi-drug resistant Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0193023. [PMID: 37861330 PMCID: PMC10715101 DOI: 10.1128/spectrum.01930-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
IMPORTANCE Multi-drug resistance (MDR) by virtue of evolving resistance and virulence mechanisms among A. baumannii is a global concern which is responsible for lethal hospital-acquired infections. Therefore, it is crucial to develop new therapeutics against it. Metal complexes are compact structures with diverse mechanisms that the pathogens cannot evade easily which make them a strong drug candidate. In this study, we assessed the in vitro and in vivo efficacy of lithium complex {[Li(phen)2 sal]} against biofilm-forming MDR A. baumannii. The lithium complex displayed strong antimicrobial activity and reduced the pre-formed mature biofilm which is key barrier for antimicrobial action. Moreover, it employs oxidative stress as one of its mode of actions and causes cellular rupturing. Lithium complex was non-toxic and was significantly effective to overcome pneumonia in mice model. These results highlight the untapped potential of metal complexes that can be explored and utilized for combating notorious A. baumannii infections.
Collapse
Affiliation(s)
- Moatter Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Yamina Usmani
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Jazib Shafiq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ajmal Khan
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Syed Raza Shah
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Birkat Almouz, Oman
| | - Syed Mehmood Hasan
- Department of Pathology, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Amber Farooqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Translational Medicine Program, The Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
34
|
Chen C, Li J, Dan H, He J, Wang D, Oelschlaeger P, Wang N, Zhang Y, Pei Y, Yang KW. A self-reported inhibitor of metallo-carbapenemases for reversing carbapenem resistance. Int J Biol Macromol 2023; 252:126441. [PMID: 37607651 DOI: 10.1016/j.ijbiomac.2023.126441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Metallo-carbapenemases-mediated carbapenem-resistant Enterobacterales (CREs) has been acknowledged as "urgent threat" by the World Health Organization. The discovery of new strategies that block metallo-carbapenemases activity to reverse carbapenem resistance is an urgent need. In this study, a coumarin copper complex containing a PEG linker and glucose ligand, GluC-Cu, was used to reverse carbapenem resistance. Interestingly, it could effectively inhibit metallo-carbapenemases (NDM-1, IMP-1 and ImiS) with an IC50 value in the range of 0.23-1.21 μM, and simultaneously release the green fluorescence signal (GluC), therefore exhibiting self-reported inhibition performance. The inhibition mechanism of oxidizing Zn(II) thiolate site of NDM-1 from Cu2+ to Cu+ was verified by fluorescence assay, HR-MS, and XPS. Moreover, GluC-Cu in combination with meropenem showed excellent synergistic antibacterial effect to effectively combat E. coli expressing metallo-carbapenemases in vitro and in a mice infection model. This bifunctional metallo-carbapenemases inhibitor provides a novel chemical tool to overcome carbapenem resistance.
Collapse
Affiliation(s)
- Cheng Chen
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China; Key laboratory synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China
| | - Jiahui Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China
| | - Heng Dan
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Jingyi He
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | - Dongmei Wang
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China.
| | - Peter Oelschlaeger
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, 91766, CA, United States
| | - Nana Wang
- Shaanxi Key Laboratory of Economic Plant Resources Development and Utilization, College of Forestry, Northwest A&F University, Yangling 712100, PR China
| | | | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, PR China.
| | - Ke-Wu Yang
- Key laboratory synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Chemical Biology Innovation Laboratory, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, PR China.
| |
Collapse
|
35
|
Wang Y, Yang X, Zhang S, Ai J, Wang J, Chen J, Zhao L, Wang W, You H. Comparative proteomics unveils the bacteriostatic mechanisms of Ga(III) on the regulation of metabolic pathways in Pseudomonas aeruginosa. J Proteomics 2023; 289:105011. [PMID: 37776994 DOI: 10.1016/j.jprot.2023.105011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023]
Abstract
Gallium has a long history as a chemotherapeutic agent. The mechanisms of action of Ga(III)-based anti-infectives are different from conventional antibiotics, which primarily result from the chemical similarities of Ga(III) with Fe(III) and substitution of gallium into iron-dependent biological pathways. However, more aspects of the molecular mechanisms of Ga(III) against human pathogens, especially the effects on bacterial metabolic processes, remain to be understood. Herein, by using conventional quantitative proteomics, we identified the protein changes of Pseudomonas aeruginosa (P. aeruginosa) in response to Ga(NO3)3 treatment. We show that Ga(III) exhibits bacteriostatic mode of action against P. aeruginosa through affecting the expressions of a number of key enzymes in the main metabolic pathways, including glycolysis, TCA cycle, amino acid metabolism, and protein and nucleic acid biosynthesis. In addition, decreased expressions of proteins associated with pathogenesis and virulence of P. aeruginosa were also identified. Moreover, the correlations between protein expressions and metabolome changes in P. aeruginosa upon Ga(III) treatment were identified and discussed. Our findings thus expand the understanding on the antimicrobial mechanisms of Ga(III) that shed light on enhanced therapeutic strategies. BIOLOGICAL SIGNIFICANCE: Mounting evidence suggest that the efficacy and resistance of clinical antibiotics are closely related to the metabolic homeostasis in bacterial pathogens. Ga(III)-based compounds have been repurposed as antibacterial therapeutic candidates against antibiotics resistant pathogens, and represent a safe and promising treatment for clinical human infections, while more thorough understandings of how bacteria respond to Ga(III) treatment are needed. In the present study, we provide evidences at the proteome level that indicate Ga(III)-induced metabolic perturbations in P. aeruginosa. We identified and discussed the interference of Ga(III) on the expressions and activities of enzymes in the main metabolic pathways in P. aeruginosa. In view of our previous report that the antimicrobial efficacy of Ga(III) could be modulated according to Ga(III)-induced metabolome changes in P. aeruginosa, our current analyses may provide theoretical basis at the proteome level for the development of efficient gallium-based therapies by exploiting bacterial metabolic mechanisms.
Collapse
Affiliation(s)
- Yuchuan Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China.
| | - Xue Yang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Shuo Zhang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Jiayi Ai
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Junteng Wang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Junxin Chen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Lin Zhao
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Wanying Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| | - Haoxin You
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, China
| |
Collapse
|
36
|
Kosaristanova L, Rihacek M, Sucha F, Milosavljevic V, Svec P, Dorazilova J, Vojtova L, Antal P, Kopel P, Patocka Z, Adam V, Zurek L, Dolezelikova K. Synergistic antibacterial action of the iron complex and ampicillin against Staphylococcus aureus. BMC Microbiol 2023; 23:288. [PMID: 37803300 PMCID: PMC10559456 DOI: 10.1186/s12866-023-03034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVES Resistance to antibiotics among bacteria of clinical importance, including Staphylococcus aureus, is a serious problem worldwide and the search for alternatives is needed. Some metal complexes have antibacterial properties and when combined with antibiotics, they may increase bacterial sensitivity to antimicrobials. In this study, we synthesized the iron complex and tested it in combination with ampicillin (Fe16 + AMP) against S. aureus. METHODS An iron complex (Fe16) was synthesized and characterized using spectroscopy methods. Confirmation of the synergistic effect between the iron complex (Fe16) and ampicillin (AMP) was performed using ζ-potential, infrared spectra and FICI index calculated from the minimum inhibitory concentration (MIC) from the checkerboard assay. Cytotoxic properties of combination Fe16 + AMP was evaluated on eukaryotic cell line. Impact of combination Fe16 + AMP on chosen genes of S. aureus were performed by Quantitative Real-Time PCR. RESULTS The MIC of Fe16 + AMP was significantly lower than that of AMP and Fe16 alone. Furthermore, the infrared spectroscopy revealed the change in the ζ-potential of Fe16 + AMP. We demonstrated the ability of Fe16 + AMP to disrupt the bacterial membrane of S. aureus and that likely allowed for better absorption of AMP. In addition, the change in gene expression of bacterial efflux pumps at the sub-inhibitory concentration of AMP suggests an insufficient import of iron into the bacterial cell. At the same time, Fe16 + AMP did not have any cytotoxic effects on keratinocytes. CONCLUSIONS Combined Fe16 + AMP therapy demonstrated significant synergistic and antimicrobial effects against S. aureus. This study supports the potential of combination therapy and further research.
Collapse
Affiliation(s)
- Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Rihacek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Frantiska Sucha
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jana Dorazilova
- Central European Institute of Technology, University of Technology, Brno, Czech Republic
| | - Lucy Vojtova
- Central European Institute of Technology, University of Technology, Brno, Czech Republic
| | - Peter Antal
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdenek Patocka
- Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| |
Collapse
|
37
|
Jia Y, Schroeder B, Pfeifer Y, Fröhlich C, Deng L, Arkona C, Kuropka B, Sticht J, Ataka K, Bergemann S, Wolber G, Nitsche C, Mielke M, Leiros HKS, Werner G, Rademann J. Kinetics, Thermodynamics, and Structural Effects of Quinoline-2-Carboxylates, Zinc-Binding Inhibitors of New Delhi Metallo-β-lactamase-1 Re-sensitizing Multidrug-Resistant Bacteria for Carbapenems. J Med Chem 2023; 66:11761-11791. [PMID: 37585683 DOI: 10.1021/acs.jmedchem.3c00171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Carbapenem resistance mediated by metallo-β-lactamases (MBL) such as New Delhi metallo-β-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential β-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry. Modification of the NDM-1 structure with remarkable entropic gain was shown by isothermal titration calorimetry and NMR spectroscopy of isotopically labeled protein. The best compounds were potent inhibitors of NDM-1 and other representative MBL with no or little inhibition of human zinc-binding enzymes. These inhibitors significantly reduced the minimum inhibitory concentrations (MIC) of meropenem for multidrug-resistant bacteria recombinantly expressing blaNDM-1 as well as for several multidrug-resistant clinical strains at concentrations non-toxic to human cells.
Collapse
Affiliation(s)
- Yuwen Jia
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Barbara Schroeder
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Yvonne Pfeifer
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, Wernigerode 38855, Germany
| | - Christopher Fröhlich
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Lihua Deng
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Christoph Arkona
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Benno Kuropka
- Core Facility BioSupraMol, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Jana Sticht
- Core Facility BioSupraMol, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, Berlin 14195, Germany
| | - Kenichi Ataka
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin 14195, Germany
| | - Silke Bergemann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Martin Mielke
- Department of Infectious Diseases, Robert Koch Institute, Nordufer 20, Berlin 13353, Germany
| | - Hanna-Kirsti S Leiros
- Department of Chemistry, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Guido Werner
- FG13 Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Burgstraße 37, Wernigerode 38855, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, Berlin 14195, Germany
| |
Collapse
|
38
|
Borutzki Y, Skos L, Gerner C, Meier‐Menches SM. Exploring the Potential of Metal-Based Candidate Drugs as Modulators of the Cytoskeleton. Chembiochem 2023; 24:e202300178. [PMID: 37345897 PMCID: PMC10946712 DOI: 10.1002/cbic.202300178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/23/2023]
Abstract
During recent years, accumulating evidence suggested that metal-based candidate drugs are promising modulators of cytoskeletal and cytoskeleton-associated proteins. This was substantiated by the identification and validation of actin, vimentin and plectin as targets of distinct ruthenium(II)- and platinum(II)-based modulators. Despite this, structural information about molecular interaction is scarcely available. Here, we compile the scattered reports about metal-based candidate molecules that influence the cytoskeleton, its associated proteins and explore their potential to interfere in cancer-related processes, including proliferation, invasion and the epithelial-to-mesenchymal transition. Advances in this field depend crucially on determining binding sites and on gaining comprehensive insight into molecular drug-target interactions. These are key steps towards establishing yet elusive structure-activity relationships.
Collapse
Affiliation(s)
- Yasmin Borutzki
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Lukas Skos
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Doctoral School of ChemistryUniversity of Vienna1090ViennaAustria
| | - Christopher Gerner
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| | - Samuel M. Meier‐Menches
- Institute of Inorganic ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Vienna1090ViennaAustria
- Joint Metabolome FacilityUniversity of Vienna and Medical University Vienna1090ViennaAustria
| |
Collapse
|
39
|
Wang C, Xia Y, Wang R, Li J, Chan CL, Kao RYT, Toy PH, Ho PL, Li H, Sun H. Metallo-sideromycin as a dual functional complex for combating antimicrobial resistance. Nat Commun 2023; 14:5311. [PMID: 37658047 PMCID: PMC10474269 DOI: 10.1038/s41467-023-40828-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
The rapid emergence of antimicrobial resistance (AMR) pathogens highlights the urgent need to approach this global burden with alternative strategies. Cefiderocol (Fetroja®) is a clinically-used sideromycin, that is utilized for the treatment of severe drug-resistant infections, caused by Gram-negative bacteria; there is evidence of cefiderocol-resistance occurring in bacterial strains however. To increase the efficacy and extend the life-span of sideromycins, we demonstrate strong synergisms between cefiderocol and metallodrugs (e.g., colloidal bismuth citrate (CBS)), against Pseudomonas aeruginosa and Burkholderia cepacia. Moreover, CBS enhances cefiderocol efficacy against biofilm formation, suppresses the resistance development in P. aeruginosa and resensitizes clinically isolated resistant P. aeruginosa to cefiderocol. Notably, the co-therapy of CBS and cefiderocol significantly increases the survival rate of mice and decreases bacterial loads in the lung in a murine acute pneumonia model. The observed phenomena are partially attributable to the competitive binding of Bi3+ to cefiderocol with Fe3+, leading to enhanced uptake of Bi3+ and reduced levels of Fe3+ in cells. Our studies provide insight into the antimicrobial potential of metallo-sideromycins.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Yushan Xia
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Runming Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Jingru Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, PR China
| | - Chun-Lung Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Pak-Leung Ho
- Department of Microbiology, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
- Carol Yu Centre for Infection, The University of Hong Kong, Sassoon Road, Hong Kong SAR, PR China
| | - Hongyan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
- State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
| | - Hongzhe Sun
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
- State Key Laboratory of Synthetic Chemistry and CAS-HKU Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China.
| |
Collapse
|
40
|
In-cell protein stability promotes antimicrobial resistance of metallo-β-lactamases. Nat Chem Biol 2023; 19:1050-1051. [PMID: 37188958 DOI: 10.1038/s41589-023-01322-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
41
|
Wang X, Li Q, Miao Y, Chen X, Zhang X, Shi J, Liu F, Wang X, Li Z, Yang Y, Zhang X, Wang J, Duan J. A 0D-2D Heterojunction Bismuth Molybdate-Anchored Multifunctional Hydrogel for Highly Efficient Eradication of Drug-Resistant Bacteria. ACS NANO 2023; 17:15568-15589. [PMID: 37531599 DOI: 10.1021/acsnano.3c02304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Due to the increasing antibiotic resistance and the lack of broad-spectrum antibiotics, there is an urgent requirement to develop fresh strategies to combat multidrug-resistant pathogens. Herein, defect-rich bismuth molybdate heterojunctions [zero-dimensional (0D) Bi4MoO9/two-dimensional (2D) Bi2MoO6, MBO] were designed for rapid capture of bacteria and synergistic photocatalytic sterilization. The as-prepared MBO was experimentally and theoretically demonstrated to possess defects, heterojunctions, and irradiation triple-enhanced photocatalytic activity for efficient generation of reactive oxygen species (ROS) due to the exposure of more active sites and separation of effective electron-hole pairs. Meanwhile, dopamine-modified MBO (pMBO) achieved a positively charged and rough surface, which conferred strong bacterial adhesion and physical penetration to the nanosheets, effectively trapping bacteria within the damage range and enhancing ROS damage. Based on this potent antibacterial ability of pMBO, a multifunctional hydrogel consisting of poly(vinyl alcohol) cross-linked tannic acid-coated cellulose nanocrystals (CPTB) and pMBO, namely CPTB@pMBO, is developed and convincingly effective against methicillin-resistant Staphylococcus aureus in a mouse skin infection model. In addition, the strategy of combining a failed beta-lactam antibiotic with CPTB@pMBO to photoinactivation with no resistance observed was developed, which presented an idea to address the issue of antibiotic resistance in bacteria and to explore facile anti-infection methods. In addition, CPTB@pMBO can reduce excessive proteolysis of tissue and inflammatory response by regulating the expression of genes and pro-inflammatory factors in vivo, holding great potential for the effective treatment of wound infections caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Xinling Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiulei Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yu Miao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xueqing Chen
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinyu Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fang Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xueqing Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zehao Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiuyun Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinyou Duan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
42
|
Rosário JDS, Moreira FH, Rosa LHF, Guerra W, Silva-Caldeira PP. Biological Activities of Bismuth Compounds: An Overview of the New Findings and the Old Challenges Not Yet Overcome. Molecules 2023; 28:5921. [PMID: 37570891 PMCID: PMC10421188 DOI: 10.3390/molecules28155921] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
Bismuth-based drugs have been used primarily to treat ulcers caused by Helicobacter pylori and other gastrointestinal ailments. Combined with antibiotics, these drugs also possess synergistic activity, making them ideal for multiple therapy regimens and overcoming bacterial resistance. Compounds based on bismuth have a low cost, are safe for human use, and some of them are also effective against tumoral cells, leishmaniasis, fungi, and viruses. However, these compounds have limited bioavailability in physiological environments. As a result, there is a growing interest in developing new bismuth compounds and approaches to overcome this challenge. Considering the beneficial properties of bismuth and the importance of discovering new drugs, this review focused on the last decade's updates involving bismuth compounds, especially those with potent activity and low toxicity, desirable characteristics for developing new drugs. In addition, bismuth-based compounds with dual activity were also highlighted, as well as their modes of action and structure-activity relationship, among other relevant discoveries. In this way, we hope this review provides a fertile ground for rationalizing new bismuth-based drugs.
Collapse
Affiliation(s)
- Jânia dos Santos Rosário
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Fábio Henrique Moreira
- Department of Chemistry, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte 30421-169, MG, Brazil
| | - Lara Hewilin Fernandes Rosa
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | - Wendell Guerra
- Institute of Chemistry, Universidade Federal de Uberlândia, Campus Santa Mônica, Uberlândia 38400-142, MG, Brazil
| | | |
Collapse
|
43
|
Li W, Huang Y, Liu Y, Wang Z, Li S, Chen Y, Ye Y, Yin S, Lei J. Antibacterial performance of heterocyclic organobismuth (III) complexes based on bidentate C,O‐coordinating ligands: Synergism of ligand identity and coordination number. Appl Organomet Chem 2023; 37. [DOI: 10.1002/aoc.7141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/11/2023] [Indexed: 01/04/2025]
Abstract
A series of heterocyclic organobismuth (III) complexes based on bidentate C,O‐coordinating ligands were designed and synthesized as antimicrobials. Antibacterial assays showed that complexes of this type are more effective for Gram‐positive bacteria (Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecalis) than Gram‐negative ones (Escherichia coli and Pseudomonas aeruginosa). Their activities are especially relevant to the synergism of lipophilicity, geometry, and stability, which depends on both the identity of coordinating ligands and the coordination number at the bismuth center. By comparison, the hypervalent 14‐Bi‐6 species diarylbismuth nitrate (8) was found to exhibit the most potent inhibitory effect, together with a high degree of selectivity, which gives an IC50(LO2)/MIC(Staphylococcus aureus) ratio of up to 23.08. Time–kill analysis demonstrated that complex 8 is bacteriostatic at low concentrations while displaying significant bactericidal activity at high doses. The results of drug resistance experiments suggested that complex 8 can inhibit the formation of bacterial biofilm and consequently delay or prevent the development of drug resistance. Furthermore, complex 8 also showed high inhibition efficiency against several drug‐resistant Staphylococcus aureus, and the MIC values are within the range of 0.39–1.56 μM, thus indicating the lack of cross‐resistance between this organometallic compound and commonly used antibiotics.
Collapse
Affiliation(s)
- Wei Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yongping Liu
- School of Medicine Hunan University of Chinese Medicine Changsha China
| | - Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Yi Chen
- School of Medicine Hunan University of Chinese Medicine Changsha China
| | - Yifei Ye
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| | - Shuang‐Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering Hunan University Changsha China
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, College of Pharmacy Gannan Medical University Ganzhou China
| |
Collapse
|
44
|
Yang Y, Yan YH, Schofield CJ, McNally A, Zong Z, Li GB. Metallo-β-lactamase-mediated antimicrobial resistance and progress in inhibitor discovery. Trends Microbiol 2023; 31:735-748. [PMID: 36858862 DOI: 10.1016/j.tim.2023.01.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 03/02/2023]
Abstract
Resistance to β-lactam antibiotics is rapidly growing, substantially due to the spread of serine-β-lactamases (SBLs) and metallo-β-lactamases (MBLs), which efficiently catalyse β-lactam hydrolysis. Combinations of a β-lactam antibiotic with an SBL inhibitor have been clinically successful; however, no MBL inhibitors have been developed for clinical use. MBLs are a worrying resistance vector because they catalyse hydrolysis of all β-lactam antibiotic classes, except the monobactams, and they are being disseminated across many bacterial species worldwide. Here we review the classification, structures, substrate profiles, and inhibition mechanisms of MBLs, highlighting current clinical problems due to MBL-mediated resistance and progress in understanding and combating MBL-mediated resistance.
Collapse
Affiliation(s)
- Yongqiang Yang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Hang Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, Oxford, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China; Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China; Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China.
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu, China.
| |
Collapse
|
45
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
46
|
Cai J, Deng T, Shi J, Chen C, Wang Z, Liu Y. Daunorubicin resensitizes Gram-negative superbugs to the last-line antibiotics and prevents the transmission of antibiotic resistance. iScience 2023; 26:106809. [PMID: 37235051 PMCID: PMC10206174 DOI: 10.1016/j.isci.2023.106809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/26/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Although meropenem, colistin, and tigecycline are recognized as the last-line antibiotics for multidrug-resistant Gram-negative bacteria (MDR-GN), the emergence of mobile resistance genes such as blaNDM, mcr, and tet(X) severely compromises their clinical effectiveness. Developing novel antibiotic adjuvants to restore the effectiveness of existing antibiotics provides a feasible approach to address this issue. Herein, we discover that a Food and Drug Administration (FDA)-approved drug daunorubicin (DNR) drastically potentiates the activity of last-resort antibiotics against MDR-GN pathogens and biofilm-producing bacteria. Furthermore, DNR effectively inhibits the evolution and spread of colistin and tigecycline resistance. Mechanistically, DNR and colistin combination exacerbates membrane disruption, induces DNA damage and the massive production of reactive oxygen species (ROS), ultimately leading to bacterial cell death. Importantly, DNR restores the effectiveness of colistin in Galleria mellonella and murine models of infection. Collectively, our findings provide a potential drug combination strategy for treating severe infections elicited by Gram-negative superbugs.
Collapse
Affiliation(s)
- Jinju Cai
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Tian Deng
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jingru Shi
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
47
|
Marwitz A, Dutta AK, McDonald MA, Knope KE. Efficient Europium Sensitization via Low-Level Doping in a 2-D Bismuth-Organic Coordination Polymer. CRYSTAL GROWTH & DESIGN 2023; 23:3330-3337. [PMID: 38510753 PMCID: PMC10950293 DOI: 10.1021/acs.cgd.2c01475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/24/2023] [Indexed: 03/22/2024]
Abstract
A new bismuth-organic compound containing 1,10-phenanthroline (phen) and 2,5-pyridinedicarboxylic acid (PDC) was synthesized and structurally characterized by single-crystal X-ray diffraction. The structure consists of 2-D {Bi(phen)(HPDC)(PDC)}n sheets wherein the PDC ligands bridge metal centers via three unique bonding modes. The 2-D sheets are further connected through strong hydrogen-bonding interactions to form a 3-D supramolecular network. The parent compound displayed yellow photoluminescence in the solid state at room temperature. Doping studies were undertaken to incorporate Eu3+ into the structure, statistically replacing Bi3+ in small quantities (1, 5, and 10 mol % Eu3+ relative to Bi3+). All three compounds displayed characteristic Eu3+ emission, with total quantum yields as high as 16.0% and sensitization efficiencies between 0.21 and 0.37 depending on the Eu3+ doping percentage.
Collapse
Affiliation(s)
- Alexander
C. Marwitz
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Anuj K. Dutta
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Morgan A. McDonald
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| | - Karah E. Knope
- Department of Chemistry, Georgetown University, Washington, District of Columbia 20057, United States
| |
Collapse
|
48
|
Cheng K, Wu Q, Yao C, Chai Z, Jiang L, Liu M, Li C. Distinct Inhibition Modes of New Delhi Metallo-β-lactamase-1 Revealed by NMR Spectroscopy. JACS AU 2023; 3:849-859. [PMID: 37006760 PMCID: PMC10052233 DOI: 10.1021/jacsau.2c00651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The wide spread of antibiotic-resistant "superbugs" containing New Delhi metallo-β-lactamase-1 (NDM-1) has become a threat to human health. However, clinically valid antibiotics to treat the superbugs' infection are not available now. Quick, simple, and reliable methods to assess the ligand-binding mode are key to developing and improving inhibitors against NDM-1. Herein, we report a straightforward NMR method to distinguish the NDM-1 ligand-binding mode using distinct NMR spectroscopy patterns of apo- and di-Zn-NDM-1 titrations with various inhibitors. Elucidating the inhibition mechanism will aid the development of efficient inhibitors for NDM-1.
Collapse
Affiliation(s)
- Kai Cheng
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qiong Wu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Chendie Yao
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhaofei Chai
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ling Jiang
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Maili Liu
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Conggang Li
- Key
Laboratory of Magnetic Resonance in Biological Systems, State Key
Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
National Center for Magnetic Resonance in Wuhan, Wuhan Institute of
Physics and Mathematics, Innovation Academy of Precision Measurement, Chinese Academy of Sciences, Wuhan 430071, China
- Wuhan
National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
49
|
The activity and mechanism of vidofludimus as a potent enzyme inhibitor against NDM-1-positive E. coli. Eur J Med Chem 2023; 250:115225. [PMID: 36870273 DOI: 10.1016/j.ejmech.2023.115225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/03/2023]
Abstract
New Delhi metallo-β-lactamase-1 (NDM-1) is the most important and prevalent enzyme among all metallo-β-lactamases. NDM-1 can hydrolyze almost all-available β-lactam antibiotics including carbapenems, resulting in multidrug resistance, which poses an increasing clinical threat. However, there is no NDM-1 inhibitor approved for clinical treatment. Therefore, identifying a novel and potential enzyme inhibitor against NDM-1-mediated infections is an urgent need. In this study, vidofludimus was identified as a potential NDM-1 inhibitor by structure-based virtual screening and an enzyme activity inhibition assay. Vidofludimus significantly inhibited NDM-1 hydrolysis activity with a significant dose-dependent effect. When the vidofludimus concentration was 10 μg/ml, the inhibition rate and 50% inhibitory concentration were 93.3% and 13.8 ± 0.5 μM, respectively. In vitro, vidofludimus effectively restored the antibacterial activity of meropenem against NDM-1-positive Escherichia coli (E. coli), and the minimum inhibitory concentration of meropenem was decreased from 64 μg/ml to 4 μg/ml, a 16-fold reduction. The combination of vidofludimus and meropenem showed a significant synergistic effect with a fractional inhibitory concentration index of 0.125 and almost all the NDM-1-positive E. coli were killed within 12 h. Furthermore, the synergistic therapeutic effect of vidofludimus and meropenem in vivo was evaluated in mice infected with NDM-1 positive E. coli. Compared with the control treatment, vidofludimus combined with meropenem significantly improved the survival rate of mice infected with NDM-1-positive E. coli (P < 0.05), decreased the white blood cell count, the bacterial burden and inflammatory response induced by NDM-1-positive E. coli (P < 0.05), and alleviated histopathological damage in infected mice. It was demonstrated by molecular dynamic simulation, site-directed mutagenesis and biomolecular interaction that vidofludimus could interact directly with the key amino acids (Met67, His120, His122 and His250) and Zn2+ in the active site of NDM-1, thereby competitively inhibiting the hydrolysis activity of NDM-1 on meropenem. In summary, vidofludimus holds promise as anNDM-1 inhibitor, and the combination of vidofludimus and meropenem has potential as a therapeutic strategy for NDM-1-mediated infections.
Collapse
|
50
|
Gao S, Sun Y, Lu Z, Jiang N, Yao H. Synergistic antibacterial and biofilm eradication activity of quaternary-ammonium compound with copper ion. J Inorg Biochem 2023; 243:112190. [PMID: 36965431 DOI: 10.1016/j.jinorgbio.2023.112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Antibiotics overuse and misuse increase the emergence of multidrug-resistant bacterial strains, which often leads to the failure of conventional antibiotic therapies. Even worse, the tendency of bacteria to form biofilms further increases the therapeutic difficulty, because the extracellular matrix prevents the penetration of antibiotics and triggers bacterial tolerance. Therefore, developing novel antibacterial agents or therapeutic strategies with diverse antibacterial mechanisms and destruction of bacteria biofilm is a promising way to combat bacterial infections. In the present study, the combination of quaternary ammonium compound poly(diallyl dimethyl ammonium chloride) (PDDA) with Cu2+ was screened out to fight common pathogenic Staphylococcus aureus (S. aureus) through multi-mechanisms. This combination appeared strong synergistic antibacterial activity, and the fractional inhibitory concentration index was as low as 0.032. The synergistic antibacterial mechanism involved the destruction of the membrane function, generation of intracellular reactive oxygen, and promotion more Cu2+ into the cytoplasm. Further, the combination of PDDA and Cu2+ reduced the extracellular polysaccharide matrix, meanwhile killing the bacteria embedded in the biofilm. The biocompatibility study in vitro revealed this combination exhibited low cytotoxicity and hemolysis ratio even at 8 times of minimum bactericidal concentration. This work provides a novel antibacterial agents combination with higher efficiency to fight planktonic and biofilm conditions of S. aureus.
Collapse
Affiliation(s)
- Songtai Gao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yujun Sun
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhong Lu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Nan Jiang
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China.
| |
Collapse
|