1
|
Yi W, Huang H, Lai C, He T, Wang Z, Dai X, Shi Y, Cheng X. Optical Forces on Chiral Particles: Science and Applications. MICROMACHINES 2024; 15:1267. [PMID: 39459141 PMCID: PMC11509618 DOI: 10.3390/mi15101267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Chiral particles have attracted considerable attention due to their distinctive interactions with light, which enable a variety of cutting-edge applications. This review presents a comprehensive analysis of the optical forces acting on chiral particles, categorizing them into gradient force, radiation pressure, optical lateral force, pulling force, and optical force on coupled chiral particles. We thoroughly overview the fundamental physical mechanisms underlying these forces, supported by theoretical models and experimental evidence. Additionally, we discuss the practical implications of these optical forces, highlighting their potential applications in optical manipulation, particle sorting, chiral sensing, and detection. This review aims to offer a thorough understanding of the intricate interplay between chiral particles and optical forces, laying the groundwork for future advancements in nanotechnology and photonics.
Collapse
Affiliation(s)
- Weicheng Yi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Haiyang Huang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Chengxing Lai
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China; (W.Y.); (H.H.); (C.L.); (T.H.); (Z.W.); (X.C.)
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| |
Collapse
|
2
|
Zhang Y, Zhang T, Zhang X, Cheng J, Zhang S. Label-Free Continuous Cell Sorting Using Optofluidic Chip. MICROMACHINES 2024; 15:818. [PMID: 39064329 PMCID: PMC11278515 DOI: 10.3390/mi15070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
In the field of biomedicine, efficiently and non-invasively isolating target cells has always been one of the core challenges. Optical fiber tweezers offer precise and non-invasive manipulation of cells within a medium and can be easily integrated with microfluidic systems. Therefore, this paper investigated the mechanism of cell manipulation using scattering force with optical fiber tweezers. We employed flat-ended single-mode fiber to drive and sort cells and derived the corresponding scattering force formula based on the T-matrix model. A single-mode optical tweezers system for cell sorting was developed, and an optofluidic experimental platform was constructed that effectively integrates the optical system with microfluidic chips. The chip, featuring an expanded cross-channel design, successfully achieved continuous separation of yeast cells (8~10 µm in diameter) and polystyrene microspheres (15~20 µm in diameter), with a sorting efficiency of up to 86% and maintaining viability in approximately 90% of the yeast cells. Compared to other sorting systems, this system does not require labeling and can achieve continuous sorting with cell viability at a lower cost of instrumentation.
Collapse
Affiliation(s)
- Yingjie Zhang
- Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China;
| | - Tao Zhang
- Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China;
| | - Xinchun Zhang
- Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, China;
| | - Jingmeng Cheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300000, China; (J.C.); (S.Z.)
| | - Sixiang Zhang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin 300000, China; (J.C.); (S.Z.)
| |
Collapse
|
3
|
Hu X, Zheng J, Zhu Q, Wu Q, Li SS, Yang Y, Chen LJ. Acoustic Assembly and Scanning of Superlens Arrays for High-Resolution and Large Field-of-View Bioimaging. ACS NANO 2024; 18:15218-15228. [PMID: 38819133 DOI: 10.1021/acsnano.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
High-resolution and dynamic bioimaging is essential in life sciences and biomedical applications. In recent years, microspheres combined with optical microscopes have offered a low cost but promising solution for super-resolution imaging, by breaking the diffraction barrier. However, challenges still exist in precisely and parallelly superlens controlling using a noncontact manner, to meet the demands of large-area scanning imaging for desired targets. This study proposes an acoustic wavefield-based strategy for assembling and manipulating micrometer-scale superlens arrays, in addition to achieving on-demand scanning imaging through phase modulation. In experiments, acoustic pressure nodes are designed to be comparable in size to microspheres, allowing spatially dispersed microspheres to be arranged into arrays with one unit per node. Droplet microlenses with various diameters can be adapted in the array, allowing for a wide range of spacing periods by applying different frequencies. In addition, through the continuous phase shifting in the x and y directions, this acoustic superlens array achieves on-demand moving for the parallel high-resolution virtual image capturing and scanning of nanostructures and biological cell samples. As a comparison, this noncontact and cost-effective acoustic manner can obtain more than ∼100 times the acquisition efficiency of a single lens, holding promise in advancing super-resolution microscopy and subcellular-level bioimaging.
Collapse
Affiliation(s)
- Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Jingjing Zheng
- New Engineering Industry College, Putian University, Putian 351100, P. R. China
| | - Qingqi Zhu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Qian Wu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Sen-Sen Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Yi Yang
- School of Physics & Technology, Wuhan University, Wuhan 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
4
|
Kovács KD, Szittner Z, Magyaródi B, Péter B, Szabó B, Vörös A, Kanyó N, Székács I, Horvath R. Optical sensor reveals the hidden influence of cell dissociation on adhesion measurements. Sci Rep 2024; 14:11719. [PMID: 38778185 PMCID: PMC11111754 DOI: 10.1038/s41598-024-61485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Cell adhesion experiments are important in tissue engineering and for testing new biologically active surfaces, prostheses, and medical devices. Additionally, the initial state of adhesion (referred to as nascent adhesion) plays a key role and is currently being intensively researched. A critical step in handling all adherent cell types is their dissociation from their substrates for further processing. Various cell dissociation methods and reagents are used in most tissue culture laboratories (here, cell dissociation from the culture surface, cell harvesting, and cell detachment are used interchangeably). Typically, the dissociated cells are re-adhered for specific measurements or applications. However, the impact of the choice of dissociation method on cell adhesion in subsequent measurements, especially when comparing the adhesivity of various surfaces, is not well clarified. In this study, we demonstrate that the application of a label-free optical sensor can precisely quantify the effect of cell dissociation methods on cell adhesivity, both at the single-cell and population levels. The optical measurements allow for high-resolution monitoring of cellular adhesion without interfering with the physiological state of the cells. We found that the choice of reagent significantly alters cell adhesion on various surfaces. Our results clearly demonstrate that biological conclusions about cellular adhesion when comparing various surfaces are highly dependent on the employed dissociation method. Neglecting the choice of cellular dissociation can lead to misleading conclusions when evaluating cell adhesion data from various sources and comparing the adhesivity of two different surfaces (i.e., determining which surface is more or less adhesive).
Collapse
Affiliation(s)
- Kinga Dóra Kovács
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
- Department of Biological Physics, ELTE Eötvös University, Budapest, Hungary
| | - Zoltán Szittner
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Beatrix Magyaródi
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
- Chemical Engineering and Material Sciences Doctoral School, University of Pannonia, Veszprém, Hungary
| | - Beatrix Péter
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Bálint Szabó
- Department of Biological Physics, ELTE Eötvös University, Budapest, Hungary
- Cellsorter Kft., Budapest, Hungary
| | - Alexa Vörös
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Nicolett Kanyó
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, MFA, Centre for Energy Research, HUN-REN, Budapest, Hungary.
| |
Collapse
|
5
|
Hong X, Xu B, Li G, Nan F, Wang X, Liang Q, Dong W, Dong W, Sun H, Zhang Y, Li C, Fu R, Wang Z, Shen G, Wang Y, Yao Y, Zhang S, Li J. Optoelectronically navigated nano-kirigami microrotors. SCIENCE ADVANCES 2024; 10:eadn7582. [PMID: 38657056 PMCID: PMC11042735 DOI: 10.1126/sciadv.adn7582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.
Collapse
Affiliation(s)
- Xiaorong Hong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Bingrui Xu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gong Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chongrui Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Lu C, Wang B, Fang X, Tsai DP, Zhu W, Song Q, Deng X, He T, Gong X, Luo H, Wang Z, Dai X, Shi Y, Cheng X. Nanoparticle Deep-Subwavelength Dynamics Empowered by Optical Meron-Antimeron Topology. NANO LETTERS 2024; 24:104-113. [PMID: 37943097 DOI: 10.1021/acs.nanolett.3c03351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Optical meron is a type of nonplanar topological texture mainly observed in surface plasmon polaritons and highly symmetric points of photonic crystals in the reciprocal space. Here, we report Poynting-vector merons formed at the real space of a photonic crystal for a Γ-point illumination. Optical merons can be utilized for subwavelength-resolution manipulation of nanoparticles, resembling a topological Hall effect on electrons via magnetic merons. In particular, staggered merons and antimerons impose strong radiation pressure on large gold nanoparticles (AuNPs), while focused hot spots in antimerons generate dominant optical gradient forces on small AuNPs. Synergistically, differently sized AuNPs in a still environment can be trapped or orbit in opposite directions, mimicking a coupled galaxy system. They can also be separated with a 10 nm precision when applying a flow velocity of >1 mm/s. Our study unravels a novel way to exploit topological textures for optical manipulation with deep-subwavelength precision and switchable topology in a lossless environment.
Collapse
Affiliation(s)
- Chengfeng Lu
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Bo Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiang Fang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiao Deng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Hong Luo
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinhua Dai
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| |
Collapse
|
7
|
Richfield O, Piotrowski-Daspit AS, Shin K, Saltzman WM. Rational nanoparticle design: Optimization using insights from experiments and mathematical models. J Control Release 2023; 360:772-783. [PMID: 37442201 PMCID: PMC10529591 DOI: 10.1016/j.jconrel.2023.07.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
Polymeric nanoparticles are highly tunable drug delivery systems that show promise in targeting therapeutics to specific sites within the body. Rational nanoparticle design can make use of mathematical models to organize and extend experimental data, allowing for optimization of nanoparticles for particular drug delivery applications. While rational nanoparticle design is attractive from the standpoint of improving therapy and reducing unnecessary experiments, it has yet to be fully realized. The difficulty lies in the complexity of nanoparticle structure and behavior, which is added to the complexity of the physiological mechanisms involved in nanoparticle distribution throughout the body. In this review, we discuss the most important aspects of rational design of polymeric nanoparticles. Ultimately, we conclude that many experimental datasets are required to fully model polymeric nanoparticle behavior at multiple scales. Further, we suggest ways to consider the limitations and uncertainty of experimental data in creating nanoparticle design optimization schema, which we call quantitative nanoparticle design frameworks.
Collapse
Affiliation(s)
- Owen Richfield
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Kwangsoo Shin
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
| | - W Mark Saltzman
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA; Department of Cellular & Molecular Physiology, Yale University, New Haven, CT 06511, USA; Department of Chemical & Environmental Engineering, Yale University, New Haven, CT 06511, USA; Department of Dermatology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Yang S, Rufo J, Zhong R, Rich J, Wang Z, Lee LP, Huang TJ. Acoustic tweezers for high-throughput single-cell analysis. Nat Protoc 2023; 18:2441-2458. [PMID: 37468650 PMCID: PMC11052649 DOI: 10.1038/s41596-023-00844-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 04/18/2023] [Indexed: 07/21/2023]
Abstract
Acoustic tweezers provide an effective means for manipulating single cells and particles in a high-throughput, precise, selective and contact-free manner. The adoption of acoustic tweezers in next-generation cellular assays may advance our understanding of biological systems. Here we present a comprehensive set of instructions that guide users through device fabrication, instrumentation setup and data acquisition to study single cells with an experimental throughput that surpasses traditional methods, such as atomic force microscopy and micropipette aspiration, by several orders of magnitude. With acoustic tweezers, users can conduct versatile experiments that require the trapping, patterning, pairing and separation of single cells in a myriad of applications ranging across the biological and biomedical sciences. This procedure is widely generalizable and adaptable for investigations in materials and physical sciences, such as the spinning motion of colloids or the development of acoustic-based quantum simulations. Overall, the device fabrication requires ~12 h, the experimental setup of the acoustic tweezers requires 1-2 h and the cell manipulation experiment requires ~30 min to complete. Our protocol is suitable for use by interdisciplinary researchers in biology, medicine, engineering and physics.
Collapse
Affiliation(s)
- Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rufo
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zeyu Wang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA.
- Institute of Quantum Biophysics, Department of Biophysics, Sungkyunkwan University, Suwon, South Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
| |
Collapse
|
9
|
Yang S, Ndukaife JC. Optofluidic transport and assembly of nanoparticles using an all-dielectric quasi-BIC metasurface. LIGHT, SCIENCE & APPLICATIONS 2023; 12:188. [PMID: 37507389 PMCID: PMC10382587 DOI: 10.1038/s41377-023-01212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023]
Abstract
Manipulating fluids by light at the micro/nanoscale has been a long-sought-after goal for lab-on-a-chip applications. Plasmonic heating has been demonstrated to control microfluidic dynamics due to the enhanced and confined light absorption from the intrinsic losses of metals. Dielectrics, the counterpart of metals, has been used to avoid undesired thermal effects due to its negligible light absorption. Here, we report an innovative optofluidic system that leverages a quasi-BIC-driven all-dielectric metasurface to achieve subwavelength scale control of temperature and fluid motion. Our experiments show that suspended particles down to 200 nanometers can be rapidly aggregated to the center of the illuminated metasurface with a velocity of tens of micrometers per second, and up to millimeter-scale particle transport is demonstrated. The strong electromagnetic field enhancement of the quasi-BIC resonance increases the flow velocity up to three times compared with the off-resonant situation by tuning the wavelength within several nanometers range. We also experimentally investigate the dynamics of particle aggregation with respect to laser wavelength and power. A physical model is presented and simulated to elucidate the phenomena and surfactants are added to the nanoparticle colloid to validate the model. Our study demonstrates the application of the recently emerged all-dielectric thermonanophotonics in dealing with functional liquids and opens new frontiers in harnessing non-plasmonic nanophotonics to manipulate microfluidic dynamics. Moreover, the synergistic effects of optofluidics and high-Q all-dielectric nanostructures hold enormous potential in high-sensitivity biosensing applications.
Collapse
Affiliation(s)
- Sen Yang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, USA
| | - Justus C Ndukaife
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA.
- Interdisciplinary Materials Science, Vanderbilt University, Nashville, TN, USA.
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Zhu Y, You M, Shi Y, Huang H, Wei Z, He T, Xiong S, Wang Z, Cheng X. Optofluidic Tweezers: Efficient and Versatile Micro/Nano-Manipulation Tools. MICROMACHINES 2023; 14:1326. [PMID: 37512637 PMCID: PMC10384111 DOI: 10.3390/mi14071326] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Optical tweezers (OTs) can transfer light momentum to particles, achieving the precise manipulation of particles through optical forces. Due to the properties of non-contact and precise control, OTs have provided a gateway for exploring the mysteries behind nonlinear optics, soft-condensed-matter physics, molecular biology, and analytical chemistry. In recent years, OTs have been combined with microfluidic chips to overcome their limitations in, for instance, speed and efficiency, creating a technology known as "optofluidic tweezers." This paper describes static OTs briefly first. Next, we overview recent developments in optofluidic tweezers, summarizing advancements in capture, manipulation, sorting, and measurement based on different technologies. The focus is on various kinds of optofluidic tweezers, such as holographic optical tweezers, photonic-crystal optical tweezers, and waveguide optical tweezers. Moreover, there is a continuing trend of combining optofluidic tweezers with other techniques to achieve greater functionality, such as antigen-antibody interactions and Raman tweezers. We conclude by summarizing the main challenges and future directions in this research field.
Collapse
Affiliation(s)
- Yuchen Zhu
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Minmin You
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Haiyang Huang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Zeyong Wei
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tao He
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Sha Xiong
- School of Automation, Central South University, Changsha 410083, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| |
Collapse
|
11
|
Hu Q, Hu X, Shi Y, Liang L, Zhu J, Zhao S, Wang Y, Wu Z, Wang F, Zhou F, Yang Y. Heterogeneous tissue construction by on-demand bubble-assisted acoustic patterning. LAB ON A CHIP 2023; 23:2206-2216. [PMID: 37006165 DOI: 10.1039/d3lc00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Highly heterogeneous structures are closely related to the realization of the tissue functions of living organisms. However, precisely controlling the assembly of heterogeneous structures is still a crucial challenge. This work presents an on-demand bubble-assisted acoustic method for active cell patterning to achieve high-precision heterogeneous structures. Active cell patterning is achieved by the combined effect of acoustic radiation forces and microstreaming around oscillating bubble arrays. On-demand bubble arrays allow flexible construction of cell patterns with a precision of up to 45 μm. As a typical example, the in vitro model of hepatic lobules, composed of patterned endothelial cells and hepatic parenchymal cells, was constructed and cultured for 5 days. The good performance of urea and albumin secretion, enzymatic activity and good proliferation of both cells prove the feasibility of this technique. Overall, this bubble-assisted acoustic approach provides a simple and efficient strategy for on-demand large-area tissue construction, with considerable potential for different tissue model fabrication.
Collapse
Affiliation(s)
- Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yang Shi
- Institute of Nanophotonics, Jinan University, Guangzhou 510632, China
| | - Li Liang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Jiaomeng Zhu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Yifan Wang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Zezheng Wu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
12
|
Cao J, Chen X, Huo X. Numerical simulation and optimized design of rhombic micromixers. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2023. [DOI: 10.1007/s43153-022-00275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
13
|
Shi Y, Zhu T, Liu J, Tsai DP, Zhang H, Wang S, Chan CT, Wu PC, Zayats AV, Nori F, Liu AQ. Stable optical lateral forces from inhomogeneities of the spin angular momentum. SCIENCE ADVANCES 2022; 8:eabn2291. [PMID: 36449614 PMCID: PMC9710880 DOI: 10.1126/sciadv.abn2291] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 10/17/2022] [Indexed: 05/29/2023]
Abstract
Transverse spin momentum related to the spin angular momentum (SAM) of light has been theoretically studied recently and predicted to generate an intriguing optical lateral force (OLF). Despite extensive studies, there is no direct experimental evidence of a stable OLF resulting from the dominant SAM rather than the ubiquitous spin-orbit interaction in a single light beam. Here, we theoretically unveil the nontrivial physics of SAM-correlated OLF, showing that the SAM is a dominant factor for the OLF on a nonabsorbing particle, while an additional force from the canonical (orbital) momentum is exhibited on an absorbing particle due to the spin-orbit interaction. Experimental results demonstrate the bidirectional movement of 5-μm-diameter particles on both sides of the beam with opposite spin momenta. The amplitude and sign of this force strongly depend on the polarization. Our optofluidic platform advances the exploitation of exotic forces in systems with a dominant SAM, facilitating the exploration of fascinating light-matter interactions.
Collapse
Affiliation(s)
- Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tongtong Zhu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Hui Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shubo Wang
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Che Ting Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Anatoly V. Zayats
- Department of Physics and London Centre for Nanotechnology, King’s College London, London, UK
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wakoshi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
14
|
MacHugh E, Antony G, Mallik AK, Kaworek A, McCormack D, Duffy B, Oubaha M. Development and Characterisation of a Whole Hybrid Sol-Gel Optofluidic Platform for Biosensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4192. [PMID: 36500816 PMCID: PMC9740286 DOI: 10.3390/nano12234192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
This work outlines, for the first time, the fabrication of a whole hybrid sol-gel optofluidic platform by integrating a microfluidic biosensor platform with optical waveguides employing a standard photolithography process. To demonstrate the suitability of this new hybrid sol-gel optofluidic platform, optical and bio-sensing proof-of-concepts are proposed. A photoreactive hybrid sol-gel material composed of a photopolymerisable organically modified silicon alkoxide and a transition metal complex was prepared and used as the fabrication material for the entire optofluidic platform, including the optical waveguides, the sensing areas, and the microfluidic device. The most suitable sol-gel materials chosen for the fabrication of the cladding and core of the waveguides showed a RIC of 3.5 × 10-3 and gave thicknesses between 5.5 and 7 μm. The material was optimised to simultaneously meet the photoreactive properties required for the photolithography fabrication process and the optical properties needed for the effective optical operability of the microstructured waveguides at 532 and 633 nm with an integrated microfluidic device. The optical proof-of-concept was performed using a fluorescent dye (Atto 633) and recording its optical responses while irradiated with a suitable optical excitation. The biosensing capability of the platform was assessed using a polyclonal primary IgG mouse antibody and a fluorescent labelled secondary IgG anti-mouse antibody. A limit of detection (LOD) of 50 ug/mL was achieved. A correlation between the concentration of the dye and the emission fluorescence was evidenced, thus clearly demonstrating the feasibility of the proposed hybrid sol-gel optofluidic platform concept. The successful integration and operability of optical and microfluidic components in the same optofluidic platform is a novel concept, particularly where the sol-gel fabrication material is concerned.
Collapse
Affiliation(s)
- Emma MacHugh
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus Grangegorman, D07 H6K8 Dublin, Ireland
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| | - Graceson Antony
- School of Physics and Clinical and Optometric Sciences, Technological University Dublin, City Campus Grangegorman, D07 H6K8 Dublin, Ireland
- Centre for Industrial and Engineering Optics (IEO), FOCAS Institute, Technological University Dublin, Camden Row, D07 H6K8 Dublin, Ireland
| | - Arun Kumar Mallik
- Photonics Research Centre, Technological University Dublin, City Campus Grangegorman, D07 H6K8 Dublin, Ireland
| | - Alicja Kaworek
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| | - Declan McCormack
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, City Campus Grangegorman, D07 H6K8 Dublin, Ireland
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| | - Brendan Duffy
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| | - Mohamed Oubaha
- Centre for Research in Engineering Surface Technology (CREST), FOCAS Institute, Technological University Dublin, 13 Camden Row, D02 HW71 Dublin, Ireland
| |
Collapse
|
15
|
Iida T, Hamatani S, Takagi Y, Fujiwara K, Tamura M, Tokonami S. Attogram-level light-induced antigen-antibody binding confined in microflow. Commun Biol 2022; 5:1053. [PMID: 36203087 PMCID: PMC9537419 DOI: 10.1038/s42003-022-03946-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
The analysis of trace amounts of proteins based on immunoassays and other methods is essential for the early diagnosis of various diseases such as cancer, dementia, and microbial infections. Here, we propose a light-induced acceleration of antigen-antibody reaction of attogram-level proteins at the solid-liquid interface by tuning the laser irradiation area comparable to the microscale confinement geometry for enhancing the collisional probability of target molecules and probe particles with optical force and fluidic pressure. This principle was applied to achieve a 102-fold higher sensitivity and ultrafast specific detection in comparison with conventional protein detection methods (a few hours) by omitting any pretreatment procedures; 47-750 ag of target proteins were detected in 300 nL of sample after 3 minutes of laser irradiation. Our findings can promote the development of proteomics and innovative platforms for high-throughput bio-analyses under the control of a variety of biochemical reactions.
Collapse
Affiliation(s)
- Takuya Iida
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan.
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan.
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan.
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan.
| | - Shota Hamatani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
| | - Yumiko Takagi
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
| | - Kana Fujiwara
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
| | - Mamoru Tamura
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan
| | - Shiho Tokonami
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan.
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan.
- Research Institute for Light-induced Acceleration System (RILACS), Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan.
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-2 Gakuencho, Nakaku, Sakai, Osaka, 599-8570, Japan.
| |
Collapse
|
16
|
Chen L, Yu L, Liu Y, Xu H, Ma L, Tian P, Zhu J, Wang F, Yi K, Xiao H, Zhou F, Yang Y, Cheng Y, Bai L, Wang F, Zhu Y. Space-time-regulated imaging analyzer for smart coagulation diagnosis. Cell Rep Med 2022; 3:100765. [PMID: 36206751 PMCID: PMC9589004 DOI: 10.1016/j.xcrm.2022.100765] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/26/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The development of intelligent blood coagulation diagnoses is awaited to meet the current need for large clinical time-sensitive caseloads due to its efficient and automated diagnoses. Herein, a method is reported and validated to realize it through artificial intelligence (AI)-assisted optical clotting biophysics (OCB) properties identification. The image differential calculation is used for precise acquisition of OCB properties with elimination of initial differences, and the strategy of space-time regulation allows on-demand space time OCB properties identification and enables diverse blood function diagnoses. The integrated applications of smartphones and cloud computing offer a user-friendly automated analysis for accurate and convenient diagnoses. The prospective assays of clinical cases (n = 41) show that the system realizes 97.6%, 95.1%, and 100% accuracy for coagulation factors, fibrinogen function, and comprehensive blood coagulation diagnoses, respectively. This method should enable more low-cost and convenient diagnoses and provide a path for potential diagnostic-markers finding. An ultraportable optofluidic analyzer empowers convenient coagulation diagnoses The system enables optical clotting biophysics (OCB) properties acquisition and process Coagulation function diagnoses uses intelligent OCB properties identification Space-time regulation of OCB properties endow it capability to diverse diagnoses
Collapse
Affiliation(s)
- Longfei Chen
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Le Yu
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Hongshan Xu
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Linlu Ma
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Pengfu Tian
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Jiaomeng Zhu
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Fang Wang
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China
| | - Kezhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Hui Xiao
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China; Renmin Hospital, Wuhan University, Wuhan 430060, China; Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China.
| | | | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
17
|
Zhou LM, Shi Y, Zhu X, Hu G, Cao G, Hu J, Qiu CW. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS NANO 2022; 16:13264-13278. [PMID: 36053722 DOI: 10.1021/acsnano.2c05634] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
| | - Xiaoyu Zhu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangtao Cao
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
| | - Jigang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
18
|
Qin J, Jiang S, Wang Z, Cheng X, Li B, Shi Y, Tsai DP, Liu AQ, Huang W, Zhu W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS NANO 2022; 16:11598-11618. [PMID: 35960685 DOI: 10.1021/acsnano.2c03310] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metasurfaces are 2D artificial materials consisting of arrays of metamolecules, which are exquisitely designed to manipulate light in terms of amplitude, phase, and polarization state with spatial resolutions at the subwavelength scale. Traditional micro/nano-optical sensors (MNOSs) pursue high sensitivity through strongly localized optical fields based on diffractive and refractive optics, microcavities, and interferometers. Although detections of ultra-low concentrations of analytes have already been demonstrated, the label-free sensing and recognition of complex and unknown samples remain challenging, requiring multiple readouts from sensors, e.g., refractive index, absorption/emission spectrum, chirality, etc. Additionally, the reliability of detecting large, inhomogeneous biosamples may be compromised by the limited near-field sensing area from the localization of light. Here, we review recent advances in metasurface-based MNOSs and compare them with counterparts using micro-optics from aspects of physics, working principles, and applications. By virtue of underlying the physics and design flexibilities of metasurfaces, MNOSs have now been endowed with superb performances and advanced functionalities, leading toward highly integrated smart sensing platforms.
Collapse
Affiliation(s)
- Jin Qin
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shibin Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Zhanshan Wang
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Huang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences(CAS), Suzhou 215123, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
19
|
Shi Y, Zhu T, Liu AQ, Zhou LM, Nieto-Vesperinas M, Hassanfiroozi A, Liu J, Tsai DP, Li Z, Ding W, Wang F, Li H, Song Q, Xu X, Li B, Cheng X, Wu PC, Chan CT, Qiu CW. Inverse Optical Torques on Dielectric Nanoparticles in Elliptically Polarized Light Waves. PHYSICAL REVIEW LETTERS 2022; 129:053902. [PMID: 35960581 DOI: 10.1103/physrevlett.129.053902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Elliptically polarized light waves carry the spin angular momentum (SAM), so they can exert optical torques on nanoparticles. Usually, the rotation follows the same direction as the SAM due to momentum conservation. It is counterintuitive to observe the reversal of optical torque acting on an ordinary dielectric nanoparticle illuminated by an elliptically or circularly polarized light wave. Here, we demonstrate that negative optical torques, which are opposite to the direction of SAM, can ubiquitously emerge when elliptically polarized light waves are impinged on dielectric nanoparticles obliquely. Intriguingly, the rotation can be switched between clockwise and counterclockwise directions by controlling the incident angle of light. Our study suggests a new playground to harness polarization-dependent optical force and torque for advancing optical manipulations.
Collapse
Affiliation(s)
- Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Tongtong Zhu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Amir Hassanfiroozi
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Fan Wang
- School of Physics, Beihang University, Beijing 100191, China
| | - Hang Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiaohao Xu
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
- Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, China
- Shanghai Frontiers Science Center of Digital Optics, Shanghai 200092, China
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Che Ting Chan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
20
|
Nanogap Electrode-Enabled Versatile Electrokinetic Manipulation of Nanometric Species in Fluids. BIOSENSORS 2022; 12:bios12070451. [PMID: 35884255 PMCID: PMC9313323 DOI: 10.3390/bios12070451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Noninvasive manipulation of nanoscopic species in liquids has attracted considerable attention due to its potential applications in diverse fields. Many sophisticated methodologies have been developed to control and study nanoscopic entities, but the low-power, cost-effective, and versatile manipulation of nanometer-sized objects in liquids remains challenging. Here, we present a dielectrophoretic (DEP) manipulation technique based on nanogap electrodes, with which the on-demand capturing, enriching, and sorting of nano-objects in microfluidic systems can be achieved. The dielectrophoretic control unit consists of a pair of swelling-induced nanogap electrodes crossing a microchannel, generating a steep electric field gradient and thus strong DEP force for the effective manipulation of nano-objects microfluidics. The trapping, enriching, and sorting of nanoparticles and DNAs were performed with this device to demonstrate its potential applications in micro/nanofluidics, which opens an alternative avenue for the non-invasive manipulation and characterization of nanoparticles such as DNA, proteins, and viruses.
Collapse
|
21
|
Lv N, Zhang L, Yang Z, Wang H, Yang N, Li H. Label-free biological sample detection and non-contact separation system based on microfluidic chip. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:063104. [PMID: 35778042 DOI: 10.1063/5.0086109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The detection and separation of biological samples are of great significance for achieving accurate diagnoses and state assessments. Currently, the detection and separation of cells mostly adopt labeling methods, which will undoubtedly affect the original physiological state and functions of cells. Therefore, in this study, a label-free cell detection method based on microfluidic chips is proposed. By measuring the scattering of cells to identify cells and then using optical tweezers to separate the target cells, the whole process without any labeling and physical contact could realize automatic cell identification and separation. Different concentrations of 15 µm polystyrene microspheres and yeast mixed solution are used as samples for detection and separation. The detection accuracy is over 90%, and the separation accuracy is over 73%.
Collapse
Affiliation(s)
- Ning Lv
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Lu Zhang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Zewen Yang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Huijun Wang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Nan Yang
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| | - Hao Li
- School of Mechanical Engineering, Xian Jiaotong University, Xian, Shannxi 710049, China
| |
Collapse
|
22
|
Wu H, Tang Z, You R, Pan S, Liu W, Zhang H, Li T, Yang Y, Sun C, Pang W, Duan X. Manipulations of micro/nanoparticles using gigahertz acoustic streaming tweezers. NANOTECHNOLOGY AND PRECISION ENGINEERING 2022. [DOI: 10.1063/10.0009954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Contactless acoustic manipulation of micro/nanoscale particles has attracted considerable attention owing to its near independence of the physical and chemical properties of the targets, making it universally applicable to almost all biological systems. Thin-film bulk acoustic wave (BAW) resonators operating at gigahertz (GHz) frequencies have been demonstrated to generate localized high-speed microvortices through acoustic streaming effects. Benefitting from the strong drag forces of the high-speed vortices, BAW-enabled GHz acoustic streaming tweezers (AST) have been applied to the trapping and enrichment of particles ranging in size from micrometers to less than 100 nm. However, the behavior of particles in such 3D microvortex systems is still largely unknown. In this work, the particle behavior (trapping, enrichment, and separation) in GHz AST is studied by theoretical analyses, 3D simulations, and microparticle tracking experiments. It is found that the particle motion in the vortices is determined mainly by the balance between the acoustic streaming drag force and the acoustic radiation force. This work can provide basic design principles for AST-based lab-on-a-chip systems for a variety of applications.
Collapse
Affiliation(s)
- Hang Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Zifan Tang
- Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Rui You
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Shuting Pan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wenpeng Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Hongxiang Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yang Yang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Chongling Sun
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| |
Collapse
|
23
|
Chen B, Zheng J, Gao K, Hu X, Guo SS, Zhao XZ, Liao F, Yang Y, Liu W. Noninvasive Optical Isolation and Identification of Circulating Tumor Cells Engineered by Fluorescent Microspheres. ACS APPLIED BIO MATERIALS 2022; 5:2768-2776. [PMID: 35537085 DOI: 10.1021/acsabm.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Circulating tumor cells (CTCs) are rare, meaning that current isolation strategies can hardly satisfy efficiency and cell biocompatibility requirements, which hinders clinical applications. In addition, the selected cells require immunofluorescence identification, which is a time-consuming and expensive process. Here, we developed a method to simultaneously separate and identify CTCs by the integration of optical force and fluorescent microspheres. Our method achieved high-purity separation of CTCs without damage through light manipulation and avoided additional immunofluorescence staining procedures, thus achieving rapid identification of sorted cells. White blood cells (WBCs) and CTCs are similar in size and density, which creates difficulties in distinguishing them optically. Therefore, fluorescent PS microspheres with high refractive index (RI) are designed here to capture the CTCs (PS-CTCs) and increase the average index of refraction of PS-CTCs. In optofluidic chips, PS-CTCs were propelled to the collection channel from the sample mixture, under the radiation of light force. Cells from the collection outlet were easily identified under a fluorescence microscope due to the fluorescence signals of PS microspheres. This method provides an approach for the sorting and identification of CTCs, which holds great potential for clinical applications in early diagnosis of disease.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Jingjing Zheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Kefan Gao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xuejia Hu
- Department of Electronic Engineering School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.,Wuhan Institute of Quantum Technology, Wuhan 430206, China.,Hubei Luojia Laboratory, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
24
|
Wada T, Ishihara H. Optical force spectroscopy for measurement of nonlinear optical coefficient of single nanoparticles through optical manipulation. OPTICS EXPRESS 2022; 30:17490-17516. [PMID: 36221571 DOI: 10.1364/oe.456122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/11/2022] [Indexed: 06/16/2023]
Abstract
Compared with manipulation of microparticles with optical tweezers and control of atomic motion with atom cooling, the manipulation of nanoscale objects is challenging because light exerts a significantly weaker force on nanoparticles than on microparticles. The complex interaction of nanoparticles with the environmental solvent media adds to this challenge. In recent years, optical manipulation using electronic resonance effects has garnered interest because it has enabled researchers to enhance the force as well as sort nanoparticles by their quantum mechanical properties. Especially, a precise observation of the motion of nanoparticles irradiated by resonant light enables the precise measurement of the material parameters of single nanoparticles. Conventional spectroscopic methods of measurement are based on indirect processes involving energy dissipation, such as thermal dissipation and light scattering. This study proposes a theoretical method to measure the nonlinear optical constant based on the optical force. The nonlinear susceptibility of single nanoparticles can be directly measured by evaluating the transportation distance of particles through pure momentum exchange. We extrapolate an experimentally verified method of measuring the linear absorption coefficient of single nanoparticles by the optical force to determine the nonlinear absorption coefficient. To this end, we simulate the third-order nonlinear susceptibility of the target particles with the kinetic analysis of nanoparticles at the solid-liquid interface incorporating the Brownian motion. The results show that optical manipulation can be used as nonlinear optical spectroscopy utilizing direct exchange of momentum. To the best of our knowledge, this is currently the only way to measure the nonlinear coefficient of individual single nanoparticles.
Collapse
|
25
|
Taha BA, Al-Jubouri Q, Al Mashhadany Y, Zan MSDB, Bakar AAA, Fadhel MM, Arsad N. Photonics enabled intelligence system to identify SARS-CoV 2 mutations. Appl Microbiol Biotechnol 2022; 106:3321-3336. [PMID: 35484414 PMCID: PMC9050350 DOI: 10.1007/s00253-022-11930-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022]
Abstract
Abstract The COVID-19, MERS-CoV, and SARS-CoV are hazardous epidemics that have resulted in many deaths which caused a worldwide debate. Despite control efforts, SARS-CoV-2 continues to spread, and the fast spread of this highly infectious illness has posed a grave threat to global health. The effect of the SARS-CoV-2 mutation, on the other hand, has been characterized by worrying variations that modify viral characteristics in response to the changing resistance profile of the human population. The repeated transmission of virus mutation indicates that epidemics are likely to occur. Therefore, an early identification system of ongoing mutations of SARS-CoV-2 will provide essential insights for planning and avoiding future outbreaks. This article discussed the following highlights: First, comparing the omicron mutation with other variants; second, analysis and evaluation of the spread rate of the SARS-CoV 2 variations in the countries; third, identification of mutation areas in spike protein; and fourth, it discussed the photonics approaches enabled with artificial intelligence. Therefore, our goal is to identify the SARS-CoV 2 virus directly without the need for sample preparation or molecular amplification procedures. Furthermore, by connecting through the optical network, the COVID-19 test becomes a component of the Internet of healthcare things to improve precision, service efficiency, and flexibility and provide greater availability for the evaluation of the general population. Key points • A proposed framework of photonics based on AI for identifying and sorting SARS-CoV 2 mutations. • Comparative scatter rates Omicron variant and other SARS-CoV 2 variations per country. • Evaluating mutation areas in spike protein and AI enabled by photonic technologies for SARS-CoV 2 virus detection.
Collapse
Affiliation(s)
- Bakr Ahmed Taha
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Malaysia
| | - Qussay Al-Jubouri
- Department of Communication Engineering, University of Technology, Baghdad, 00964, Iraq
| | - Yousif Al Mashhadany
- Department of Electrical Engineering, College of Engineering, University of Anbar, Anbar, 00964, Iraq
| | - Mohd Saiful Dzulkefly Bin Zan
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Malaysia
| | - Ahmad Ashrif A Bakar
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Malaysia
| | - Mahmoud Muhanad Fadhel
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Malaysia
| | - Norhana Arsad
- UKM-Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Malaysia.
| |
Collapse
|
26
|
Wu X, Cao H, Meng Z, Sun Z. Ultra-broadband Pancharatnam-Berry phase metasurface for arbitrary rotation of linear polarization and beam splitter. OPTICS EXPRESS 2022; 30:15158-15171. [PMID: 35473244 DOI: 10.1364/oe.456393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
A systematic study of a robust angular tolerance ultra-broadband metasurface for arbitrary rotation of linear polarization is demonstrated. The proposed method combines the spin-dependent Pancharatnam-Berry phase and the generalized Snell's law to achieve an arbitrary angle linear polarization rotator and beam splitter. Numerical results of one terahertz example show that a 90° polarization rotator has a polarization conversion ratio of more than 90% from 1.3 to 2.3 THz in the ultra-broadband range. This method represents a significant advance in versatile, flexible design and performance compared to previously reported birefringent material wave plates, grating structures, and multi-resonance-based polarization rotators.
Collapse
|
27
|
Chen L, Zheng Y, Liu Y, Tian P, Yu L, Bai L, Zhou F, Yang Y, Cheng Y, Wang F, Zheng L, Jiang F, Zhu Y. Microfluidic-based in vitro thrombosis model for studying microplastics toxicity. LAB ON A CHIP 2022; 22:1344-1353. [PMID: 35179168 DOI: 10.1039/d1lc00989c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potential impact of microplastics (MPs) on health has caused great concern, and a toxicology platform that realistically reproduces the system behaviour is urgently needed to further explore and validate MP-related health issues. Herein, we introduce an optically assisted thrombus platform to reveal the interaction of MPs with the vascular system. The risk of accumulation has also been evaluated using a mouse model, and the effect of MPs on the properties of the thrombus are validated via in vitro experiments. The microfluidic system is endothelialized, and the regional tissue injury-induced thrombosis is then realized through optical irradiation. Whole blood is perfused with MPs, and the invasion process visualized and recorded. The mouse model shows a cumulative risk in the blood with continuous exposure to MPs (P-value < 0.0001). The on-chip results show that MP invasion leads to decreased binding of fibrin to platelets (P-value < 0.0001), which is consistent with the results of the in vitro experiments, and shows a high risk of thrombus shedding in real blood flow compared with normal thrombus. This work provides a new method to further reveal MP-related health risks.
Collapse
Affiliation(s)
- Longfei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yantong Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Pengfu Tian
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
| | - Le Yu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
| | - Long Bai
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Fubing Wang
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430071, China
| | - Li Zheng
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Fenghua Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266061, China
| | - Yimin Zhu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310002, China
| |
Collapse
|
28
|
Shi Y, Zhou LM, Liu AQ, Nieto-Vesperinas M, Zhu T, Hassanfiroozi A, Liu J, Zhang H, Tsai DP, Li H, Ding W, Zhu W, Yu YF, Mazzulla A, Cipparrone G, Wu PC, Chan CT, Qiu CW. Superhybrid Mode-Enhanced Optical Torques on Mie-Resonant Particles. NANO LETTERS 2022; 22:1769-1777. [PMID: 35156826 DOI: 10.1021/acs.nanolett.2c00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circularly polarized light carries spin angular momentum, so it can exert an optical torque on the polarization-anisotropic particle by the spin momentum transfer. Here, we show that giant positive and negative optical torques on Mie-resonant (gain) particles arise from the emergence of superhybrid modes with magnetic multipoles and electric toroidal moments, excited by linearly polarized beams. Anomalous positive and negative torques on particles (doped with judicious amount of dye molecules) are over 800 and 200 times larger than the ordinary lossy counterparts, respectively. Meanwhile, a rotational motor can be configured by switching the s- and p-polarized beams, exhibiting opposite optical torques. These giant and reversed optical torques are unveiled for the first time in the scattering spectrum, paving another avenue toward exploring unprecedented physics of hybrid and superhybrid multipoles in metaoptics and optical manipulations.
Collapse
Affiliation(s)
- Yuzhi Shi
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Manuel Nieto-Vesperinas
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Campus de Cantoblanco, Madrid 28049, Spain
| | - Tongtong Zhu
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, China
| | - Amir Hassanfiroozi
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - Din Ping Tsai
- Department of Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Hang Li
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Weiqiang Ding
- School of Physics, Harbin Institute of Technology, Harbin 150001, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ye Feng Yu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Jiangsu 210094, China
| | - Alfredo Mazzulla
- CNR Nanotec─Institute of Nanotechnology, S.S. Cosenza, Rende, CS 87036, Italy
| | - Gabriella Cipparrone
- Department of Physics, University of Calabria, Ponte P. Bucci 31C, Rende, CS 87036, Italy
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan 70101, Taiwan
| | - C T Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
| |
Collapse
|
29
|
Hu X, Zhu J, Hu Q, Zheng J, Yang D, Zhou F, Cheng Y, Yang Y. Digital optofluidic compound eyes with natural structures and zooming capability for large-area fluorescence sensing. Biosens Bioelectron 2022; 195:113670. [PMID: 34592498 DOI: 10.1016/j.bios.2021.113670] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022]
Abstract
Compound eyes are ubiquitous natural biosensors that possess high temporal resolution and large fields of view (FOVs). While for solid materials based artificial imaging systems, flexible zooming ability while keeping the constant FOV is still challenging, as well as the low-cost fabrication. Herein, liquid compound eyes with natural structures are presented that synthesize optofluidics and bionics in a non-trivial manner, which enables the deformation-free zooming and flexible cell fluorescence sensing. Experimental results indicate that the innovatively manufactured bionic template possesses low roughness and uniform lens configuration with more than two thousands units, which endows the eyes with high-quality and low aberration imaging ability. Besides, digital controlled miscible liquids switching enables the focus of ommatidia simultaneously be adjusted from 150 μm to 5 mm with 100° view angle, and without bending the microlens curvature, to avoid FOV changing and image aberration. Due to large FOV and tunable ability, large-area cell fluorescence signal arrays and dynamic cell motion are imaged using this liquid compound eyes. This work presents novel strategy for compound lens manufacture at low-cost, and proposes deformation-free and continuous focus-tuning strategy, offering potentials for numerous applications, including biomedical sensing and adaptive imaging with large FOV.
Collapse
Affiliation(s)
- Xuejia Hu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Jiaomeng Zhu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Qinghao Hu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Jingjing Zheng
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Fuling Zhou
- Department of Neurosurg, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China.
| |
Collapse
|
30
|
Zhang X, Gu B, Qiu CW. Force measurement goes to femto-Newton sensitivity of single microscopic particle. LIGHT, SCIENCE & APPLICATIONS 2021; 10:243. [PMID: 34876551 PMCID: PMC8651730 DOI: 10.1038/s41377-021-00684-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Highly sensitive force measurements of a single microscopic particle with femto-Newton sensitivity have remained elusive owing to the existence of fundamental thermal noise. Now, researchers have proposed an optically controlled hydrodynamic manipulation method, which can measure the weak force of a single microscopic particle with femto-Newton sensitivity.
Collapse
Affiliation(s)
- Xiaohe Zhang
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Bing Gu
- Advanced Photonics Center, Southeast University, Nanjing, 210096, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore.
| |
Collapse
|
31
|
Lou Y, Ning X, Wu B, Pang Y. Optical trapping using transverse electromagnetic (TEM)-like mode in a coaxial nanowaveguide. FRONTIERS OF OPTOELECTRONICS 2021; 14:399-406. [PMID: 36637761 PMCID: PMC9743861 DOI: 10.1007/s12200-021-1134-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 06/13/2023]
Abstract
Optical traps have emerged as powerful tools for immobilizing and manipulating small particles in three dimensions. Fiber-based optical traps (FOTs) significantly simplify optical setup by creating trapping centers with single or multiple pieces of optical fibers. In addition, they inherit the flexibility and robustness of fiber-optic systems. However, trapping 10-nm-diameter nanoparticles (NPs) using FOTs remains challenging. In this study, we model a coaxial waveguide that works in the optical regime and supports a transverse electromagnetic (TEM)-like mode for NP trapping. Single NPs at waveguide front-end break the symmetry of TEM-like guided mode and lead to high transmission efficiency at far-field, thereby strongly altering light momentum and inducing a large-scale back-action on the particle. We demonstrate, via finite-difference time-domain (FDTD) simulations, that this FOT allows for trapping single 10-nm-diameter NPs at low power.
Collapse
Affiliation(s)
- Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiongjie Ning
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bei Wu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
32
|
Hou C, Li L, Lv R, Tian Z, Chen X. Mixing Performance of Micromixers with Fractal Obstacles Based on Murray's Law. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chunming Hou
- Shenyang Institute of Technology School of Mechanical Engineering and Automation 113122 Fushun, Liaoning China
| | - Lunxing Li
- National Engineering Research Center for High-End CNC Shenyang Zhongke NC Intelligence Tech Co.,Ltd 110168 Shenyang Liaoning China
| | - Ruihong Lv
- Shenyang University of Technology School of Information Science and Engineering 110870 Shenyang Liaoning China
| | - Zhuang Tian
- Shenyang Institute of Technology School of Mechanical Engineering and Automation 113122 Fushun, Liaoning China
| | - Xueye Chen
- Ludong University College of Transportation 264025 Yantai Shandong China
| |
Collapse
|
33
|
Yu R, Wang C, Jiang W, Shen Z, Yan Z, Hao Y, Shi Y, Yu F, Hua P, Schötz G, Liu AQ, Xiao L. High-efficient subwavelength-scale optofluidic waveguides with tapered microstructured optical fibers. OPTICS EXPRESS 2021; 29:38068-38081. [PMID: 34808866 DOI: 10.1364/oe.443846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Microstructured optical fibers (MOFs) have attracted intensive research interest in fiber-based optofluidics owing to their ability to have high-efficient light-microfluid interactions over a long distance. However, there lacks an exquisite design guidance for the utilization of MOFs in subwavelength-scale optofluidics. Here we propose a tapered hollow-core MOF structure with both light and fluid confined inside the central hole and investigate its optofluidic guiding properties by varying the diameter using the full vector finite element method. The basic optical modal properties, the effective sensitivity, and the nonlinearity characteristics are studied. Our miniature optofluidic waveguide achieves a maximum fraction of power inside the core at 99.7%, an ultra-small effective mode area of 0.38 µm2, an ultra-low confinement loss, and a controllable group velocity dispersion. It can serve as a promising platform in the subwavelength-scale optical devices for optical sensing and nonlinear optics.
Collapse
|
34
|
Chen L, Liu L, Xu L. Wide and continuous dynamic tuning of period, modulation depth and duty cycle of a laminar-flow-based microfluidic grating. LAB ON A CHIP 2021; 21:4118-4127. [PMID: 34498019 DOI: 10.1039/d1lc00474c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible diffraction gratings that can be dynamically tuned in terms of both diffraction efficiency and diffraction angles are very important components for various applications, and fundamentally can be tuned through varying the modulation depth, duty cycle and grating period. However, dynamic and continuous tuning of a grating in all three aspects is difficult and has never been demonstrated hitherto. We propose and successfully fabricate a laminar-flow-based microfluidic grating in which all the three parameters can be dynamically tuned by simply varying flow rates into several liquid inlets. A 32-period liquid grating is generated by using ethanol and benzyl alcohol as alternate liquid lamellae. The total diffraction efficiency is tuned between 0 and 99%, and the maximum diffraction efficiency of the first order is ∼27%. The duty cycle of the grating is dynamically tuned from 7.6% to 91.5%. The grating period is compressed from more than 22 μm to less than 4 μm, leading to tuning of the first order diffraction angle from 1.7° to 9.2°.
Collapse
Affiliation(s)
- Lin Chen
- Key Lab for Micro and Nanophotonic Structures (Ministry of Education, China), Department of Optical Science and Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Liying Liu
- Key Lab for Micro and Nanophotonic Structures (Ministry of Education, China), Department of Optical Science and Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Lei Xu
- Key Lab for Micro and Nanophotonic Structures (Ministry of Education, China), Department of Optical Science and Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433, China.
- Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
35
|
Shi Y, Nguyen KT, Chin LK, Li Z, Xiao L, Cai H, Yu R, Huang W, Feng S, Yap PH, Liu J, Zhang Y, Liu AQ. Trapping and Detection of Single Viruses in an Optofluidic Chip. ACS Sens 2021; 6:3445-3450. [PMID: 34505501 DOI: 10.1021/acssensors.1c01350] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accurate single virus detection is critical for disease diagnosis and early prevention, especially in view of current pandemics. Numerous detection methods have been proposed with the single virus sensitivity, including the optical approaches and immunoassays. However, few of them hitherto have the capability of both trapping and detection of single viruses in the microchannel. Here, we report an optofluidic potential well array to trap nanoparticles stably in the flow stream. The nanoparticle is bound with single viruses and fluorescence quantum dots through an immunolabeling protocol. Single viruses can be swiftly captured in the microchannel by optical forces and imaged by a camera. The number of viruses in solution and on each particle can be quantified via image processing. Our method can trap and detect single viruses in the 1 mL serum or water in 2 h, paving an avenue for the advanced, fast, and accurate clinical diagnosis, as well as the study of virus infectivity, mutation, drug inhibition, etc.
Collapse
Affiliation(s)
- Yuzhi Shi
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Kim Truc Nguyen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Lip Ket Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Zhenyu Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Limin Xiao
- Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China
| | - Hong Cai
- Institute of Microelectronics, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-02 Innovis
Tower, 138634 Singapore
| | - Ruozhen Yu
- Chinese Research Academy of Environmental Science, 8, Anwai Dayanfang, Beijing 100012, China
| | - Wei Huang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou 215123, China
| | - Shilun Feng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232 Singapore
| | - Jingquan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798 Singapore
| | - Ai Qun Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
36
|
Zhang Y, Chen X. Particle separation in microfluidics using different modal ultrasonic standing waves. ULTRASONICS SONOCHEMISTRY 2021; 75:105603. [PMID: 34044322 PMCID: PMC8233384 DOI: 10.1016/j.ultsonch.2021.105603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 05/14/2023]
Abstract
Microfluidic technology has great advantages in the precise manipulation of micro and nano particles, and the separation of micro and nano particles based on ultrasonic standing waves has attracted much attention for its high efficiency and simplicity of structure. This paper proposes a device that uses three modes of ultrasonic standing waves to continuously separate particles with positive acoustic contrast factor in microfluidics. Three modes of acoustic standing waves are used simultaneously in different parts of the microchannel. According to the different acoustic radiation force received by the particles, the particles are finally separated to the pressure node lines on both sides and the center of the microchannel. In this separation method, initial hydrodynamic focusing and satisfying various equilibrium constraints during the separation process are the key. Through numerical simulation, the resonance frequency of the interdigital transducer, the distribution of sound pressure in the liquid, and the relationship between the interdigital electrode voltage and the output sound pressure are obtained. Finally, the entire separation process in the microchannel was simulated, and the separation of the two particles was successfully achieved. This work has laid a certain theoretical foundation for the rapid diagnosis of diseases in practical applications.
Collapse
Affiliation(s)
- Yaolong Zhang
- College of Transportation, Ludong University, Yantai, Shandong 264025, China; Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning 121001, China
| | - Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong 264025, China.
| |
Collapse
|
37
|
Optical manipulation of a dielectric particle along polygonal closed-loop geometries within a single water droplet. Sci Rep 2021; 11:12690. [PMID: 34135451 PMCID: PMC8209137 DOI: 10.1038/s41598-021-92209-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
We report a new method to optically manipulate a single dielectric particle along closed-loop polygonal trajectories by crossing a suite of all-fiber Bessel-like beams within a single water droplet. Exploiting optical radiation pressure, this method demonstrates the circulation of a single polystyrene bead in both a triangular and a rectangle geometry enabling the trapped particle to undergo multiple circulations successfully. The crossing of the Bessel-like beams creates polygonal corners where the trapped particles successfully make abrupt turns with acute angles, which is a novel capability in microfluidics. This offers an optofluidic paradigm for particle transport overcoming turbulences in conventional microfluidic chips.
Collapse
|
38
|
Yu E, Lee S, Lee G, Park Q, Chung AJ, Seo M, Ryu Y. Nanoscale Terahertz Monitoring on Multiphase Dynamic Assembly of Nanoparticles under Aqueous Environment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004826. [PMID: 34105290 PMCID: PMC8188200 DOI: 10.1002/advs.202004826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Probing the kinetic evolution of nanoparticle (NP) growth in liquids is essential for understanding complex nano-phases and their corresponding functions. Terahertz (THz) sensing, an emerging technology for next-generation laser photonics, has been developed with unique photonic features, including label-free, non-destructive, and molecular-specific spectral characteristics. Recently, metasurface-based sensing platforms have helped trace biomolecules by overcoming low THz absorption cross-sectional limits. However, the direct probing of THz signals in aqueous environments remains difficult. Here, the authors report that vertically aligned nanogap-hybridized metasurfaces can efficiently trap traveling NPs in the sensing region, thus enabling us to monitor the real-time kinetic evolution of NP assemblies in liquids. The THz photonics approach, together with an electric tweezing technique via spatially matching optical hotspots to particle trapping sites with a nanoscale spatial resolution, is highly promising for underwater THz analysis, forging a route toward unraveling the physicochemical events of nature within an ultra-broadband wavelength regime.
Collapse
Affiliation(s)
- Eui‐Sang Yu
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Sang‐Hun Lee
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
- Department of Optical EngineeringKumoh National Institute of TechnologyGumi39253Republic of Korea
| | - Geon Lee
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
| | - Q‐Han Park
- Department of PhysicsKorea UniversitySeoul02841Republic of Korea
| | - Aram J. Chung
- School of Biomedical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Minah Seo
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02481Republic of Korea
| | - Yong‐Sang Ryu
- Sensor System Research CentreKorea Institute of Science and TechnologySeoul02792Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02481Republic of Korea
| |
Collapse
|
39
|
Chen X, Zhang Y, Wang J. Simulation analysis of mixing in passive microchannel with fractal obstacles based on Murray's law. Comput Methods Biomech Biomed Engin 2021; 24:1670-1678. [PMID: 33998932 DOI: 10.1080/10255842.2021.1906867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In this paper, we designed fractal obstacles according to Murray's law and set them in a microchannel. We study the influence of the numbers of fractal obstacles, channel widths, branch widths, and the distance between fractal obstacles on mixing efficiency. The optimized micromixer has a high mixing efficiency of more than 90% at all velocities. This paper focuses on the analysis of the variation of mixing efficiency and pressure drop in the range of Reynolds number (Re) 0.1-150. The simulation results show that when the fluid velocity is low, the mixing efficiency of the fluids is mainly improved by molecular diffusion, when the fluid velocity is high, the microchannel with fractal obstacles can promote chaotic convection of the fluids and improve the mixing efficiency. The fractal structure based on Murray's law can be widely used in the design of passive micromixer.
Collapse
Affiliation(s)
- Xueye Chen
- College of Transportation, Ludong University, Yantai, Shandong, China
| | - Yaolong Zhang
- Faculty of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou, Liaoning, China
| | - Jinyuan Wang
- Department of Information Engineering, Chaoyang Teachers College, Chaoyang, Liaoning, China
| |
Collapse
|
40
|
Shan X, Wang F, Wang D, Wen S, Chen C, Di X, Nie P, Liao J, Liu Y, Ding L, Reece PJ, Jin D. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles. NATURE NANOTECHNOLOGY 2021; 16:531-537. [PMID: 33603239 DOI: 10.1038/s41565-021-00852-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 01/14/2021] [Indexed: 05/28/2023]
Abstract
Optical tweezers are widely used in materials assembly1, characterization2, biomechanical force sensing3,4 and the in vivo manipulation of cells5 and organs6. The trapping force has primarily been generated through the refractive index mismatch between a trapped object and its surrounding medium. This poses a fundamental challenge for the optical trapping of low-refractive-index nanoscale objects, including nanoparticles and intracellular organelles. Here, we report a technology that employs a resonance effect to enhance the permittivity and polarizability of nanocrystals, leading to enhanced optical trapping forces by orders of magnitude. This effectively bypasses the requirement of refractive index mismatch at the nanoscale. We show that under resonance conditions, highly doping lanthanide ions in NaYF4 nanocrystals makes the real part of the Clausius-Mossotti factor approach its asymptotic limit, thereby achieving a maximum optical trap stiffness of 0.086 pN μm-1 mW-1 for 23.3-nm-radius low-refractive-index (1.46) nanoparticles, that is, more than 30 times stronger than the reported value for gold nanoparticles of the same size. Our results suggest a new potential of lanthanide doping for the optical control of the refractive index of nanomaterials, developing the optical force tag for the intracellular manipulation of organelles and integrating optical tweezers with temperature sensing and laser cooling7 capabilities.
Collapse
Affiliation(s)
- Xuchen Shan
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Fan Wang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.
- School of Electrical and Data Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, New South Wales, Australia.
| | - Dejiang Wang
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Shihui Wen
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Chaohao Chen
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Xiangjun Di
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Peng Nie
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiayan Liao
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yongtao Liu
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Lei Ding
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Peter J Reece
- School of Physics, The University of New South Wales, Sydney, New South Wales, Australia.
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia.
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
41
|
Shi Y, Li Z, Liu PY, Nguyen BTT, Wu W, Zhao Q, Chin LK, Wei M, Yap PH, Zhou X, Zhao H, Yu D, Tsai DP, Liu AQ. On-Chip Optical Detection of Viruses: A Review. ADVANCED PHOTONICS RESEARCH 2021; 2:2000150. [PMID: 33786535 PMCID: PMC7994989 DOI: 10.1002/adpr.202000150] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/31/2020] [Indexed: 05/17/2023]
Abstract
The current outbreak of the coronavirus disease-19 (COVID-19) pandemic worldwide has caused millions of fatalities and imposed a severe impact on our daily lives. Thus, the global healthcare system urgently calls for rapid, affordable, and reliable detection toolkits. Although the gold-standard nucleic acid amplification tests have been widely accepted and utilized, they are time-consuming and labor-intensive, which exceedingly hinder the mass detection in low-income populations, especially in developing countries. Recently, due to the blooming development of photonics, various optical chips have been developed to detect single viruses with the advantages of fast, label-free, affordable, and point of care deployment. Herein, optical approaches especially in three perspectives, e.g., flow-free optical methods, optofluidics, and surface-modification-assisted approaches, are summarized. The future development of on-chip optical-detection methods in the wave of emerging new ideas in nanophotonics is also briefly discussed.
Collapse
Affiliation(s)
- Yuzhi Shi
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Zhenyu Li
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
- National Key Laboratory of Science and Technology on Micro/Nano FabricationInstitute of MicroelectronicsPeking UniversityBeijing100871China
| | - Patricia Yang Liu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Binh Thi Thanh Nguyen
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Wenshuai Wu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Qianbin Zhao
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Lip Ket Chin
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
- Center for Systems BiologyMassachusetts General HospitalBostonMA02141USA
| | - Minggui Wei
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Peng Huat Yap
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore308232Singapore
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPCSchool of EnvironmentTsinghua UniversityBeijing100084China
| | - Hongwei Zhao
- State Key Laboratory of Marine Resource Utilization of South China SeaHainan UniversityHaikou570228China
| | - Dan Yu
- Beijing Pediatric Research InstituteBeijing Children's HospitalCapital Medical UniversityNational Center for Children's HealthBeijing100045China
| | - Din Ping Tsai
- Department of Electronic and Information EngineeringThe Hong Kong Polytechnic UniversityHung HomKowloonHong KongChina
| | - Ai Qun Liu
- School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| |
Collapse
|
42
|
Chen X, Huang P, Wang N, Zhu Y, Zhang J. Dual Tunable MZIs Stationary-Wave Integrated Fourier Transform Spectrum Detection. SENSORS 2021; 21:s21072352. [PMID: 33800576 PMCID: PMC8036941 DOI: 10.3390/s21072352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/20/2022]
Abstract
In order to resolve spectral alias due to under sampling in traditional stationary-wave integrated Fourier transform (SWIFT) spectrometers, an all-on-chip waveguide based on dual tunable Mach-Zehnder interferometer (MZI) stationary-wave integrated Fourier transform technology (DTM-SWIFT) is proposed. Several gold nanowires are asymmetrically positioned at two sides of zero optical path difference and scatter the interference fringes information, which can avoid aliasing of spectral signals and help to gain high spectral resolution. A systematic theoretical analysis is carried on in detail, including the optical distribution characteristics based on multi-beam interference, stationary-wave theorem and signal reconstruction method based on the FT technology. The results show that the method can complete a resolution of 6 nm for Gauss spectrum reconstruction using only 6 gold nanowires, and a resolution of 5 cm-1 for Raman spectrum reconstruction using 25 gold nanowires.
Collapse
Affiliation(s)
| | | | | | | | - Jie Zhang
- Correspondence: ; Tel.: +86-135-9413-5451
| |
Collapse
|
43
|
Fan YJ, Hsieh HY, Tsai SF, Wu CH, Lee CM, Liu YT, Lu CH, Chang SW, Chen BC. Microfluidic channel integrated with a lattice lightsheet microscopic system for continuous cell imaging. LAB ON A CHIP 2021; 21:344-354. [PMID: 33295931 DOI: 10.1039/d0lc01009j] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a continuous cell-imaging system with subcellular resolution was developed by integrating a microfluidic platform with lattice lightsheet microscopy (LLSM). To reduce aberrations of the lightsheet propagating into the device, a microfluidic channel sealed with a water refractive index-matched thin film was fabricated. When the lightsheet emerged from the water-immersed objectives and penetrated through the water refractive-matched thin film into the microfluidic channel at an incident angle, less light scattering and fewer aberrations were found. Suspended cells flowed across the lattice lightsheet, and an imaging system with the image plane perpendicular to the lightsheet was used to sequentially acquire cell images. By applying a thinner lattice lightsheet, higher-resolution, higher-contrast images were obtained. Furthermore, three-dimensional cell images could be achieved by reconstructing sequential two-dimensional cell images.
Collapse
Affiliation(s)
- Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Song Q, Khadir S, Vézian S, Damilano B, Mierry PD, Chenot S, Brandli V, Genevet P. Bandwidth-unlimited polarization-maintaining metasurfaces. SCIENCE ADVANCES 2021; 7:7/5/eabe1112. [PMID: 33514552 PMCID: PMC7846164 DOI: 10.1126/sciadv.abe1112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/11/2020] [Indexed: 05/14/2023]
Abstract
Any arbitrary state of polarization of light beam can be decomposed into a linear superposition of two orthogonal oscillations, each of which has a specific amplitude of the electric field. The dispersive nature of diffractive and refractive optical components generally affects these amplitude responses over a small wavelength range, tumbling the light polarization properties. Although recent works suggest the realization of broadband nanophotonic interfaces that can mitigate frequency dispersion, their usage for arbitrary polarization control remains elusively chromatic. Here, we present a general method to address broadband full-polarization properties of diffracted fields using an original superposition of circular polarization beams transmitted through metasurfaces. The polarization-maintaining metasurfaces are applied for complex broadband wavefront shaping, including beam deflectors and white-light holograms. Eliminating chromatic dispersion and dispersive polarization response of conventional diffractive elements lead to broadband polarization-maintaining devices of interest for applications in polarization imaging, broadband-polarimetry, augmented/virtual reality imaging, full color display, etc.
Collapse
Affiliation(s)
- Q Song
- Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne, France
| | - S Khadir
- Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne, France
| | - S Vézian
- Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne, France
| | - B Damilano
- Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne, France
| | - P D Mierry
- Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne, France
| | - S Chenot
- Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne, France
| | - V Brandli
- Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne, France
| | - P Genevet
- Université Cote d'Azur, CNRS, CRHEA, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne, France.
| |
Collapse
|
45
|
Abstract
The parallel development of the theories of electrodynamical and gravitational dispersion forces reveals important differences. The former arose earlier than the formulation of quantum electrodynamics so that expressions for the unretarded, van der Waals forces were obtained by treating the field as classical. Even after the derivation of quantum electrodynamics, semiclassical considerations continued to play a critical role in the interpretation of the full results, including in the retarded regime. On the other hand, recent predictions about the existence of gravitational dispersion forces were obtained without any consideration that the gravitational field might be fundamentally classical. This is an interesting contrast, as several semiclassical theories of electrodynamical dispersion forces exist although the electromagnetic field is well known to be quantized, whereas no semiclassical theory of gravitational dispersion forces was ever developed although a full quantum theory of gravity is lacking. In the first part of this paper, we explore this evolutionary process from a historical point of view, stressing that the existence of a Casimir effect is insufficient to demonstrate that a field is quantized. In the second part of the paper, we show that the recently published results about gravitational dispersion forces can be obtained without quantizing the gravitational field. This is done first in the unretarded regime by means of Margenau’s treatment of multipole dispersion forces, also obtaining mixed potentials. These results are extended to the retarded regime by generalizing to the gravitational field the approach originally proposed by McLachlan. The paper closes with a discussion of experimental challenges and philosophical implications connected to gravitational dispersion forces.
Collapse
|
46
|
Xie Y, Rufo J, Zhong R, Rich J, Li P, Leong KW, Huang TJ. Microfluidic Isolation and Enrichment of Nanoparticles. ACS NANO 2020; 14:16220-16240. [PMID: 33252215 PMCID: PMC8164652 DOI: 10.1021/acsnano.0c06336] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Over the past decades, nanoparticles have increased in implementation to a variety of applications ranging from high-efficiency electronics to targeted drug delivery. Recently, microfluidic techniques have become an important tool to isolate and enrich populations of nanoparticles with uniform properties (e.g., size, shape, charge) due to their precision, versatility, and scalability. However, due to the large number of microfluidic techniques available, it can be challenging to identify the most suitable approach for isolating or enriching a nanoparticle of interest. In this review article, we survey microfluidic methods for nanoparticle isolation and enrichment based on their underlying mechanisms, including acoustofluidics, dielectrophoresis, filtration, deterministic lateral displacement, inertial microfluidics, optofluidics, electrophoresis, and affinity-based methods. We discuss the principles, applications, advantages, and limitations of each method. We also provide comparisons with bulk methods, perspectives for future developments and commercialization, and next-generation applications in chemistry, biology, and medicine.
Collapse
Affiliation(s)
- Yuliang Xie
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10032, United States
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
47
|
Luo S, Zhang Y, Nguyen KT, Feng S, Shi Y, Liu Y, Hutchinson P, Chierchia G, Talbot H, Bourouina T, Jiang X, Liu AQ. Machine Learning-Based Pipeline for High Accuracy Bioparticle Sizing. MICROMACHINES 2020; 11:mi11121084. [PMID: 33297515 PMCID: PMC7762436 DOI: 10.3390/mi11121084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022]
Abstract
High accuracy measurement of size is essential in physical and biomedical sciences. Various sizing techniques have been widely used in sorting colloidal materials, analyzing bioparticles and monitoring the qualities of food and atmosphere. Most imaging-free methods such as light scattering measure the averaged size of particles and have difficulties in determining non-spherical particles. Imaging acquisition using camera is capable of observing individual nanoparticles in real time, but the accuracy is compromised by the image defocusing and instrumental calibration. In this work, a machine learning-based pipeline is developed to facilitate a high accuracy imaging-based particle sizing. The pipeline consists of an image segmentation module for cell identification and a machine learning model for accurate pixel-to-size conversion. The results manifest a significantly improved accuracy, showing great potential for a wide range of applications in environmental sensing, biomedical diagnostical, and material characterization.
Collapse
Affiliation(s)
- Shaobo Luo
- ESIEE, Universite Paris-Est, CEDEX 93162 Noisy-le-Grand, France; (S.L.); (G.C.)
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
| | - Yi Zhang
- School of Mechanical & Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: (Y.Z.); (T.B.); (X.J.); (A.Q.L.)
| | - Kim Truc Nguyen
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.F.); (Y.S.); (Y.L.)
| | - Shilun Feng
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.F.); (Y.S.); (Y.L.)
- Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Beijing 200050, China
| | - Yuzhi Shi
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.F.); (Y.S.); (Y.L.)
| | - Yang Liu
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.F.); (Y.S.); (Y.L.)
| | - Paul Hutchinson
- Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore;
| | - Giovanni Chierchia
- ESIEE, Universite Paris-Est, CEDEX 93162 Noisy-le-Grand, France; (S.L.); (G.C.)
| | - Hugues Talbot
- CentraleSupelec, Universite Paris-Saclay, 91190 Saint-Aubin, France;
| | - Tarik Bourouina
- ESIEE, Universite Paris-Est, CEDEX 93162 Noisy-le-Grand, France; (S.L.); (G.C.)
- Correspondence: (Y.Z.); (T.B.); (X.J.); (A.Q.L.)
| | - Xudong Jiang
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.F.); (Y.S.); (Y.L.)
- Correspondence: (Y.Z.); (T.B.); (X.J.); (A.Q.L.)
| | - Ai Qun Liu
- Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore;
- School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore; (S.F.); (Y.S.); (Y.L.)
- Correspondence: (Y.Z.); (T.B.); (X.J.); (A.Q.L.)
| |
Collapse
|
48
|
Zhan W, Wu R, Gao K, Zheng J, Song W. An optofluidic conveyor for particle transportation based on a fiber array and photothermal convection. LAB ON A CHIP 2020; 20:4063-4070. [PMID: 33021302 DOI: 10.1039/d0lc00787k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this paper, a thermal convection-based optofluidic conveyor has been introduced, which can flexibly capture and manipulate multiple 20-120 μm silica particles with utmost accuracy. Near the end face, a fiber-based light source can confine 100 μm silica particles within 100 microns. By switching the light source of the fiber array, centimeter-range transportation of 100 μm SiO2 particles has been successfully achieved, which was not possible in optical trapping devices as we know. Through the comparative experiment with silica, polystyrene, and zirconium dioxide particles, the presented conveyor system is proved to be independent of the particles' dielectric properties. Moreover, sorting of silica and polystyrene particles based on the difference of mass densities has also been achieved. Additionally, the components of this conveyor (fiber array) and chip parts (microfluidic chamber) are freely detachable. Here, instead of expensive laser systems, a non-coherent light source has been utilized, which eventually eliminates the use of optical lens assemblies. All these features lead to making the equipment extremely simple in structure and low in cost. Besides, this optofluidic conveyor can be applied to transmit and sort various objects such as blood/cancer cells and microorganisms.
Collapse
Affiliation(s)
- Wei Zhan
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Rongyao Wu
- Materials Science and Engineering School, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kui Gao
- Materials Science and Engineering School, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Junjie Zheng
- Materials Science and Engineering School, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Wuzhou Song
- Materials Science and Engineering School, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
49
|
Chen L, Zhao C, Liu L, Xu L. Single mode operation and ultrawide tuning of on-chip optofluidic dye lasers. LAB ON A CHIP 2020; 20:3757-3762. [PMID: 32901652 DOI: 10.1039/d0lc00742k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single transverse mode lasers that can be continuously tuned over ultrawide wavelength ranges with a narrow linewidth are very important components for lab-on-a-chip systems. Such lasers that can be tuned over the whole visible spectrum or even beyond have not been demonstrated hitherto regardless of many years of research in this area. This article presents an on-chip optofluidic distributed Bragg reflector (DBR) dye laser constituted by a combination of a T-shaped optofluidic waveguide (T waveguide) and two ridge-waveguide-based fluidic DBR gratings, in which the T waveguide provides gain for lasing and the DBR gratings select the lasing wavelength. This configuration guarantees that the fundamental mode has a much lower loss (consequently much lower lasing threshold) than all the higher order modes. By fabricating PDMS devices of such structure and changing the fluid in DBR gratings as well as the gain fluid in the T waveguide, we demonstrate a single mode optofluidic dye laser that can be continuously tuned over a wavelength range of more than 450 nm with a linewidth less than 0.1 nm. Mode patterns obtained when using different laser dyes in the T waveguide verify fundamental mode operation over the wide wavelength range.
Collapse
Affiliation(s)
- Lin Chen
- Key Lab for Micro and Nanophotonic Structures (Ministry of Education, China), Department of Optical Science and Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Chenming Zhao
- Key Lab for Micro and Nanophotonic Structures (Ministry of Education, China), Department of Optical Science and Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Liying Liu
- Key Lab for Micro and Nanophotonic Structures (Ministry of Education, China), Department of Optical Science and Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Lei Xu
- Key Lab for Micro and Nanophotonic Structures (Ministry of Education, China), Department of Optical Science and Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200433, China. and Department of Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
50
|
Xin H, Li Y, Liu YC, Zhang Y, Xiao YF, Li B. Optical Forces: From Fundamental to Biological Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001994. [PMID: 32715536 DOI: 10.1002/adma.202001994] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/22/2020] [Indexed: 05/06/2023]
Abstract
Optical forces, generally arising from changes of field gradients or linear momentum carried by photons, form the basis for optical trapping and manipulation. Advances in optical forces help to reveal the nature of light-matter interactions, giving answers to a wide range of questions and solving problems across various disciplines, and are still yielding new insights in many exciting sciences, particularly in the fields of biological technology, material applications, and quantum sciences. This review focuses on recent advances in optical forces, ranging from fundamentals to applications for biological exploration. First, the basics of different types of optical forces with new light-matter interaction mechanisms and near-field techniques for optical force generation beyond the diffraction limit with nanometer accuracy are described. Optical forces for biological applications from in vitro to in vivo are then reviewed. Applications from individual manipulation to multiple assembly into functional biophotonic probes and soft-matter superstructures are discussed. At the end future directions for application of optical forces for biological exploration are provided.
Collapse
Affiliation(s)
- Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuchao Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yong-Chun Liu
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Yao Zhang
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|