1
|
Zeng L, Yang K, Wu Y, Yu G, Yan Y, Hao M, Song T, Li Y, Chen J, Sun L. Telitacicept: A novel horizon in targeting autoimmunity and rheumatic diseases. J Autoimmun 2024; 148:103291. [PMID: 39146891 DOI: 10.1016/j.jaut.2024.103291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BLyS and APRIL have the capability to bind to B cells within the body, allowing these cells to evade elimination when they should naturally be removed. While BLyS primarily plays a role in B cell development and maturation, APRIL is linked to B cell activation and the secretion of antibodies. Thus, in theory, inhibiting BLyS or APRIL could diminish the population of aberrant B cells that contribute to SLE and reduce disease activity in patients. Telitacicept functions by binding to and neutralizing the activities of both BLyS and APRIL, thus hindering the maturation and survival of plasma cells and fully developed B cells. The design of telitacicept is distinctive; it is not a monoclonal antibody but a TACI-Fc fusion protein generated through recombinant DNA technology. This fusion involves merging gene segments of the TACI protein, which can target BLyS/APRIL simultaneously, with the Fc gene segment of the human IgG protein. The TACI-Fc fusion protein exhibits the combined characteristics of both proteins. Currently utilized for autoimmune disease treatment, telitacicept is undergoing clinical investigations globally to assess its efficacy in managing various autoimmune conditions. This review consolidates information on the mechanistic actions, dosing regimens, pharmacokinetics, efficacy, and safety profile of telitacicept-a dual-targeted biological agent. It integrates findings from prior experiments and pharmacokinetic analyses in the treatment of RA and SLE, striving to offer a comprehensive overview of telitacicept's research advancements.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Yang Wu
- Department of Rheumatology, National Clinical Research Center for Dermatologic and Immunologic Diseases, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Yexing Yan
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Moujia Hao
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China
| | - Tian Song
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Li
- School of Mathematics and Computational Science, Hunan University of Science and Technology, Hunan, China
| | - Junpeng Chen
- Department of Physiology, School of Medicine, University of Louisville, Kentucky, USA; Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China; Tong Jiecheng Studio, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
2
|
Wemlinger SM, Cambier JC. Therapeutic tactics for targeting B lymphocytes in autoimmunity and cancer. Eur J Immunol 2024; 54:e2249947. [PMID: 37816494 DOI: 10.1002/eji.202249947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023]
Abstract
B lymphocytes have become a very popular therapeutic target in a number of autoimmune indications due to their newly appreciated roles, and approachability, in these diseases. Many of the therapies now applied in autoimmunity were initially developed to deplete malignant B cells. These strategies have also been found to benefit patients suffering from such autoimmune diseases as multiple sclerosis, type I diabetes, systemic lupus erythematosus, and rheumatoid arthritis, to name a few. These observations have supported the expansion of research addressing the mechanistic contributions of B cells in these diseases, as well as blossoming of therapeutics that target them. This review seeks to summarize cutting-edge modalities for targeting B cells, including monoclonal antibodies, bispecific antibodies, antibody-drug conjugates, chimeric antigen receptor-T cells, and small molecule inhibitors. Efforts to refine B-cell targeted therapy to eliminate only pathogenic autoreactive cells will be addressed as well as the potential for future B-cell-based cellular therapeutics. Finally, we also address approaches that seek to silence B-cell function without depletion.
Collapse
Affiliation(s)
- Scott M Wemlinger
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John C Cambier
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Maeda S, Hashimoto H, Maeda T, Tamechika SY, Isogai S, Naniwa T, Niimi A. High-dimensional analysis of T-cell profiling variations following belimumab treatment in systemic lupus erythematosus. Lupus Sci Med 2023; 10:e000976. [PMID: 37802602 PMCID: PMC10565340 DOI: 10.1136/lupus-2023-000976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVE This study sought to elucidate the molecular impacts of belimumab (BEL) treatment on T-cell immune profiling in SLE. METHODS We used mass cytometry with 25 marker panels for T-cell immune profiling in peripheral blood T cells (CD3+) from 22 patients with BEL-treated SLE and 20 controls with non-BEL-treated SLE. An unsupervised machine-learning clustering, FlowSOM, was used to identify 39 T-cell clusters (TCLs; TCL01-TCL39). TCLs (% of CD3+) showing significant (p<0.05) associations with BEL treatment (BEL-TCL) were selected by a linear mixed-effects model for comparing groups of time-series data. Furthermore, we analysed the association between BEL treatment and variations in regulatory T-cell (Treg) phenotypes, and the ratio of other T-cell subsets to Treg as secondary analysis. RESULTS Clinical outcomes: BEL treatment was associated with a decrease in daily prednisolone use (coef=-0.1769, p=0.00074), and an increase in serum CH50 (coef=0.4653, p=0.003), C3 (coef=1.1047, p=0.00001) and C4 (coef=0.2990, p=0.00157) levels. Molecular effects: five distinct BEL-TCLs (TCL 04, 07, 11, 12 and 27) were identified. Among these, BEL-treated patients exhibited increased proportions in the Treg-like cluster TCL11 (coef=0.404, p=0.037) and two naïve TCLs (TCL04 and TCL07). TCL27 showed increased levels (coef=0.222, p=0.037) inversely correlating with baseline C3 levels. Secondary analyses revealed associations between BEL treatment and an increase in Tregs (coef=1.749, p=0.0044), elevated proportions of the fraction of Tregs with inhibitory function (fTregs, coef=0.7294, p=0.0178) and changes in peripheral helper T cells/fTreg (coef=-4.475, p=0.0319) and T helper 17/fTreg ratios (coef=-6.7868, p=0.0327). Additionally, BEL was linked to variations in T-cell immunoglobulin and mucin domain-containing protein-3 expression (coef=0.2422, p=0.039). CONCLUSIONS The study suggests an association between BEL treatment and variations in T cells, particularly Tregs, in SLE pathologies involving various immune cells.
Collapse
Affiliation(s)
- Shinji Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Hiroya Hashimoto
- Clinical Research Management Center, Nagoya City University Hospital, Nagoya, Japan
| | - Tomoyo Maeda
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shin-Ya Tamechika
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Shuntaro Isogai
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Taio Naniwa
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Akio Niimi
- Department of Respiratory Medicine, Allergy and Clinical Immunology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| |
Collapse
|
4
|
Li L, Xu Y, Yang W, Zhang K, Zhang Z, Zhou J, Gong Y, Gong K. Construction of a two-gene prognostic model related to ferroptosis in renal cell carcinoma. Transl Androl Urol 2023; 12:1167-1183. [PMID: 37554538 PMCID: PMC10406542 DOI: 10.21037/tau-23-346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is a common and aggressive tumor. A newly discovered form of programmed cell death, ferroptosis, plays an important role in tumor development and progression. However, a clear prognostic correlation between Ferroptosis-related genes (FRGs) and RCC has not yet been established. In this study, prognostic markers associated with FRGs were investigated to improve the therapeutic, diagnostic, and preventive strategies available to patients with renal cancer. METHODS The present study analyzed the predictive value of 23 FRGs in RCC through bioinformatics techniques, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) tools, Kaplan-Meier survival analysis, Cox regression modeling, tumor mutational burden (TMB), CIBERSORT, and half maximal inhibitory concentration (IC50) difference analysis. RESULTS We screened FRGs by differentially expressed genes (DEGs) and overall survival (OS). Four candidate genes were obtained by hybridization. Then, we constructed a two-gene prognostic signature (NCOA4 and CDKN1A) via univariate Cox regression and multivariate stepwise Cox regression, which classified RCC patients into high- and low-risk groups, and patients in the high-risk group were found to have worse OS and progression-free survival (PFS). We also found that patients with higher TNM stage, T stage, and M stage had higher risk scores than those with lower TNM stage, T stage, and M stage (P<0.05). Males had higher risk scores than females. This signature was identified as an independent prognostic indicator for RCC. These results were validated in both the test cohort and the entire cohort. In addition, we also constructed a nomogram that predicted the OS in RCC patients, the consistency index (C-index) of the nomogram was 0.731 [95% confidence interval (CI): 0.672-0.790], the areas under the receiver operating characteristic (ROC) curves (AUCs) were 0.728, 0.704, and 0.898 at 1-, 3-, and 5-year, respectively, which shows that nomogram has good prediction ability. and we also analyzed the immune status and drug sensitivity between the high- and low-risk groups. CONCLUSIONS We constructed a prognostic model associated with ferroptosis, which may provide clinicians with a reliable predictive assessment tool and offer new perspectives for the future clinical management of RCC.
Collapse
Affiliation(s)
- Lei Li
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yawei Xu
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kenan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Zedan Zhang
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| | - Kan Gong
- Department of Urology, Peking University First Hospital, Beijing, China
- Institution of Urology, Peking University, Beijing, China
- Beijing Key Laboratory of Urogenital Diseases (Male) Molecular Diagnosis and Treatment Center, Beijing, China
- National Urological Cancer Center, Beijing, China
| |
Collapse
|
5
|
Giordano D, Kuley R, Draves KE, Elkon KB, Giltiay NV, Clark EA. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Front Immunol 2023; 14:1050528. [PMID: 36923413 PMCID: PMC10009188 DOI: 10.3389/fimmu.2023.1050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose and methods B cell-activating factor (BAFF) contributes to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Although several anti-BAFF Abs and derivatives have been developed for the treatment of SLE, the specific sources of BAFF that sustain autoantibody (auto-Ab) producing cells have not been definitively identified. Using BAFF-RFP reporter mice, we identified major changes in BAFF-producing cells in two mouse spontaneous lupus models (Tlr7 Tg mice and Sle1), and in a pristane-induced lupus (PIL) model. Results First, we confirmed that similar to their wildtype Tlr7 Tg and Sle1 mice counterparts, BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice had increased BAFF serum levels, which correlated with increases in plasma cells and auto-Ab production. Next, using the RFP reporter, we defined which cells had dysregulated BAFF production. BAFF-producing neutrophils (Nphs), monocytes (MOs), cDCs, T cells and B cells were all expanded in the spleens of BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice compared to controls. Furthermore, Ly6Chi inflammatory MOs and T cells had significantly increased BAFF expression per cell in both spontaneous lupus models, while CD8- DCs up-regulated BAFF expression only in the Tlr7 Tg mice. Similarly, pristane injection of BAFF-RFP mice induced increases in serum BAFF levels, auto-Abs, and the expansion of BAFF-producing Nphs, MOs, and DCs in both the spleen and peritoneal cavity. BAFF expression in MOs and DCs, in contrast to BAFF from Nphs, was required to maintain homeostatic and pristane-induced systemic BAFF levels and to sustain mature B cell pools in spleens and BMs. Although acting through different mechanisms, Nph, MO and DC sources of BAFF were each required for the development of auto-Abs in PIL mice. Conclusions Our findings underscore the importance of considering the relative roles of specific myeloid BAFF sources and B cell niches when developing treatments for SLE and other BAFF-associated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- *Correspondence: Daniela Giordano,
| | - Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Keith B. Elkon
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
6
|
D Lempicki M, Paul S, Serbulea V, Upchurch CM, Sahu S, Gray JA, Ailawadi G, Garcia BL, McNamara CA, Leitinger N, Meher AK. BAFF antagonism via the BAFF receptor 3 binding site attenuates BAFF 60-mer-induced classical NF-κB signaling and metabolic reprogramming of B cells. Cell Immunol 2022; 381:104603. [PMID: 36182705 PMCID: PMC10691782 DOI: 10.1016/j.cellimm.2022.104603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/03/2022]
Abstract
Human recombinant B cell activating factor (BAFF) is secreted as 3-mers, which can associate to form 60-mers in culture supernatants. However, the presence of BAFF multimers in humans is still debated and it is incompletely understood how BAFF multimers activate the B cells. Here, we demonstrate that BAFF can exist as 60-mers or higher order multimers in human plasma. In vitro, BAFF 60-mer strongly induced the transcriptome of B cells which was partly attenuated by antagonism using a soluble fragment of BAFF receptor 3. Furthermore, compared to BAFF 3-mer, BAFF 60-mer strongly induced a transient classical and prolonged alternate NF-κB signaling, glucose oxidation by both aerobic glycolysis and oxidative phosphorylation, and succinate utilization by mitochondria. BAFF antagonism selectively attenuated classical NF-κB signaling and glucose oxidation. Altogether, our results suggest critical roles of BAFF 60-mer and its BAFF receptor 3 binding site in hyperactivation of B cells.
Collapse
Affiliation(s)
- Melissa D Lempicki
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Saikat Paul
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Vlad Serbulea
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Srabani Sahu
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Jake A Gray
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Gorav Ailawadi
- Department of Surgery, University of Virginia, VA 22908, United States
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center, University of Virginia, VA 22908, United States
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, VA 22908, United States
| | - Akshaya K Meher
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27858, United States; Department of Pharmacology, University of Virginia, VA 22908, United States.
| |
Collapse
|
7
|
Zhang W, Shao T, Leung PSC, Tsuneyama K, Heuer L, Young HA, Ridgway WM, Gershwin ME. Dual B-cell targeting therapy ameliorates autoimmune cholangitis. J Autoimmun 2022; 132:102897. [PMID: 36029718 PMCID: PMC10311358 DOI: 10.1016/j.jaut.2022.102897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The ability to regulate B cell development has long been recognized to have therapeutic potential in a variety of autoimmune diseases. However, despite the presence of a classic autoantibody in primary biliary cholangitis (PBC), B cell depleting therapy and indeed therapy with other biologic agents has been disappointing. Unsuccessful treatment using Rituximab is associated with elevation of B-cell activating factor (BAFF) level. Indeed, therapies for PBC remain directed at modulating bile salt biology, rather than targeting effector pathways. With these data in mind, we proposed that targeting two major stages of B cell development, namely long-lived memory B cells and short-lived peripheral autoreactive plasma cells would have therapeutic potential. METHODS To address this thesis, we administrated anti-BAFF and anti-CD20 monoclonal antibody to ARE-Del mice, a well-characterized murine model of human PBC. We evaluated and compared the therapeutic efficacy of the two agents individually and the combination of anti-BAFF and anti-CD20 in female mice with well-established disease. RESULTS Our data demonstrate that there was an increased level of B cell depletion that resulted in a significantly more effective clinical and serologic response using the combination of agents as compared with the use of the individual agents. The combination of anti-BAFF and anti-CD20 treatment was more effective in reducing serum levels of antimitochondrial antibody (AMA), total IgM and IgG compared to mice treated with the 2 individual agents. Combination treatment efficiently depleted B cells in the peripheral blood, peritoneal cavity and spleen. Importantly, we identified a unique IgM+ FCRL5+ B cell subset which was sensitive to dual B-cell targeting therapy and depletion of this unique population was associated with reduced portal infiltration and bile duct damage. Taken together, our data indicate that dual B cell targeting therapy with anti-BAFF and anti-CD20 not only led to the efficient depletion of B cells both in the peripheral blood and tissues, but also led to significant clinical improvement. These findings highlight the potential application of combination of anti-BAFF and anti-CD20 in treating patients with PBC. However, additional studies in other animal models of PBC should be undertaken before considering human trials in those PBC patients who have incomplete responses to conventional therapy.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Tihong Shao
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA; Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University; Hefei, China.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School; Tokushima, Japan.
| | - Luke Heuer
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - Howard A Young
- Center for Cancer Research, National Cancer Institute-Frederick; Frederick, MD, USA.
| | - William M Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA.
| |
Collapse
|
8
|
Miao YR, Thakkar K, Cenik C, Jiang D, Mizuno K, Jia C, Li CG, Zhao H, Diep A, Xu Y, Zhang XE, Yang TTC, Liedtke M, Abidi P, Leung WS, Koong AC, Giaccia AJ. Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. J Exp Med 2022; 219:213366. [PMID: 35881112 PMCID: PMC9428257 DOI: 10.1084/jem.20220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Kaushik Thakkar
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Dadi Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Kazue Mizuno
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | | | - Caiyun Grace Li
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA
| | - Anh Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Yu Xu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Xin Eric Zhang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Michaela Liedtke
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Parveen Abidi
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Wing-Sze Leung
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Albert C Koong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA.,Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Distinct binding mode of BAFF antagonist antibodies belimumab and tabalumab, analyzed by computer simulation. J Mol Model 2022; 28:292. [PMID: 36063219 DOI: 10.1007/s00894-022-05142-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/24/2022] [Indexed: 10/14/2022]
Abstract
B cell-activating factor (BAFF) can bind with specific receptors to activate signalling pathways associated with the B cell activation. Belimumab and tabalumab are anti-BAFF (B cell depleting) monoclonal antibodies, with therapeutic efficacy demonstrated for the treatment of autoimmune disorders, while belimumab was approved by FDA in 2011 as a targeted therapy for systemic lupus erythematosus (SLE) and exhibited better clinical outcome than tabalumab. In this investigation, the combination modes of BAFF-belimumab and BAFF-tabalumab complexes were simulated in silico to better understand the reason for the comparative inhibitory difference between belimumab and tabalumab. The structures of belimumab and tabalumab were constructed through homology modelling. The combination mode of BAFF-belimumab complex was analyzed by molecular dynamics simulation, while that of BAFF-tabalumab complex was analyzed by protein-protein docking following the molecular dynamics simulation. Both belimumab and tabalumab were bound with BAFF at the same hydrophobic center to which the natural receptors of BAFF bind as well. Belimumab heavy chain components I51, F54, K58, D100, D101, L102, L103, and P105 and R27, Y30, K49, and S65 of belimumab light chain contribute to the BAFF-belimumab interaction mainly via hydrogen bonds, salt bridges, and hydrophobic interactions. More importantly, belimumab could bind to L83 of BAFF and produce steric hindrance with the adjacent BAFF trimers, while tabalumab could not. Therefore, our results indicated that belimumab has a better clinical outcome compared with tabalumab mainly because belimumab could bind to L83 of BAFF and interfere the formation of a BAFF 60-mer, besides mediating inhibition of the interaction of BAFF with its receptors.
Collapse
|
10
|
Protein and functional isoform levels and genetic variants of the BAFF and APRIL pathway components in systemic lupus erythematosus. Sci Rep 2022; 12:11219. [PMID: 35780200 PMCID: PMC9250527 DOI: 10.1038/s41598-022-15549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/24/2022] [Indexed: 11/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is the prototype of an autoimmune disease. Belimumab, a monoclonal antibody targets BAFF, is the only biologic approved for SLE and active lupus nephritis. BAFF is a cytokine with a key-regulatory role in the B cell homeostasis, which acts by binding to three receptors: BAFF-R, TACI and BCMA. TACI and BCMA also bind APRIL. Many studies reported elevated soluble BAFF and APRIL levels in the sera of SLE patients, but other questions about the role of this system in the disease remain open. The study aimed to investigate the utility of the cytokine levels in serum and urine as biomarkers, the role of non-functional isoforms, and the association of gene variants with the disease. This case–control study includes a cohort (women, 18–60 years old) of 100 patients (48% with nephritis) and 100 healthy controls. We used ELISA assays to measure the cytokine concentrations in serum (sBAFF and sAPRIL) and urine (uBAFF and uAPRIL); TaqMan Gene Expression Assays to quantify the relative mRNA expression of ΔBAFF, βAPRIL, and εAPRIL, and next-generation sequencing to genotype the cytokine (TNFSF13 and TNFSF13B) and receptor (TNFRSF13B, TNFRSF17 and TNFRSF13C) genes. The statistical tests used were: Kruskal–Wallis (qualitative variables), the Spearman Rho coefficient (correlations), the Chi-square and SKAT (association of common and rare genetic variants, respectively). As expected, sBAFF and sAPRIL levels were higher in patients than in controls (p ≤ 0.001) but found differences between patient subgroups. sBAFF and sAPRIL significantly correlated only in patients with nephritis (rs = 0.67, p ≤ 0.001) and βAPRIL levels were lower in patients with nephritis (p = 0.04), and ΔBAFF levels were lower in patients with dsDNA antibodies (p = 0.04). Rare variants of TNFSF13 and TNFRSF13B and TNFSF13 p.Gly67Arg and TNFRSF13B p.Val220Ala were associated with SLE. Our study supports differences among SLE patient subgroups with diverse clinical features in the BAFF/APRIL pathway. In addition, it suggests the involvement of genetic variants in the susceptibility to the disease.
Collapse
|
11
|
Chen SY, Xu XX, Li X, Yi NB, Li SZ, Xiang XC, Cheng DB, Sun T. Recent advances in the intracellular delivery of macromolecule therapeutics. Biomater Sci 2022; 10:6642-6655. [DOI: 10.1039/d2bm01348g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the uptake pathway of intracellular delivery vehicles for macromolecule therapeutics, and provides in-depth discussions and prospects about intracellular delivery of macromolecule therapeutics.
Collapse
Affiliation(s)
- Si-Yi Chen
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xiao-Xue Xu
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xin Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Ning-Bo Yi
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Shi-Zhuo Li
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Xing-Cheng Xiang
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Dong-Bing Cheng
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| | - Taolei Sun
- School of Chemistry, Chemical Engineering & Life Science, Wuhan University of Technology, No. 122 Luoshi Road, Wuhan, 430070, PR China
| |
Collapse
|
12
|
Immunosuppression in Rheumatologic and Auto-immune Disease. Handb Exp Pharmacol 2021; 272:181-208. [PMID: 34734308 DOI: 10.1007/164_2021_551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Many rheumatologic diseases are thought to originate in dysregulation of the immune system; lupus nephritis, for example, involves humoral immunity, while autoinflammatory diseases such as familial Mediterranean fever are caused by defects in innate immunity. Of note, this dysregulation may involve both upregulation of immune system components and aspects of immunodeficiency. Treatment of rheumatologic diseases thus requires a familiarity with a variety of immunosuppressive medications and their effects on immune system function.In many rheumatologic conditions, due to an incompletely elucidated mechanism of disease, immunosuppression is relatively broad in contrast to agents used, for example, in treatment of transplant rejection. Multiple immunosuppressive drugs may also be used in succession or in combination. As such, an understanding of the mechanisms and targets of immunosuppressive drugs is essential to appreciating their utility and potential adverse effects. Because of the overlap between therapies used in rheumatologic as well as other inflammatory disorders, some of these medications are discussed in other disease processes (e.g., Immunosuppression for inflammatory bowel disease) or in greater detail in other chapters of this textbook (corticosteroids, mTOR inhibitors, antiproliferative agents).
Collapse
|
13
|
Jamaly S, Rakaee M, Abdi R, Tsokos GC, Fenton KA. Interplay of immune and kidney resident cells in the formation of tertiary lymphoid structures in lupus nephritis. Autoimmun Rev 2021; 20:102980. [PMID: 34718163 DOI: 10.1016/j.autrev.2021.102980] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/31/2021] [Indexed: 02/07/2023]
Abstract
Kidney involvement confers significant morbidity and mortality in patients with systemic lupus erythematosus (SLE). The pathogenesis of lupus nephritis (LN) involves diverse mechanisms instigated by elements of the autoimmune response which alter the biology of kidney resident cells. Processes in the glomeruli and in the interstitium may proceed independently albeit crosstalk between the two is inevitable. Podocytes, mesangial cells, tubular epithelial cells, kidney resident macrophages and stromal cells with input from cytokines and autoantibodies present in the circulation alter the expression of enzymes, produce cytokines and chemokines which lead to their injury and damage of the kidney. Several of these molecules can be targeted independently to prevent and reverse kidney failure. Tertiary lymphoid structures with true germinal centers are present in the kidneys of patients with lupus nephritis and have been increasingly recognized to associate with poorer renal outcomes. Stromal cells, tubular epithelial cells, high endothelial vessel and lymphatic venule cells produce chemokines which enable the formation of structures composed of a T-cell-rich zone with mature dendritic cells next to a B-cell follicle with the characteristics of a germinal center surrounded by plasma cells. Following an overview on the interaction of the immune cells with kidney resident cells, we discuss the cellular and molecular events which lead to the formation of tertiary lymphoid structures in the interstitium of the kidneys of mice and patients with lupus nephritis. In parallel, molecules and processes that can be targeted therapeutically are presented.
Collapse
Affiliation(s)
- Simin Jamaly
- Department of Medical Biology, Faculty of Health Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Mehrdad Rakaee
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Reza Abdi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kristin Andreassen Fenton
- Department of Medical Biology, Faculty of Health Science, UiT The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
14
|
Zhou X, Lee TI, Zhu M, Ma P. Prediction of Belimumab Pharmacokinetics in Chinese Pediatric Patients with Systemic Lupus Erythematosus. Drugs R D 2021; 21:407-417. [PMID: 34628605 PMCID: PMC8602678 DOI: 10.1007/s40268-021-00363-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/06/2022] Open
Abstract
Background and Objective Intravenous (IV) belimumab is the first treatment approved for children ≥5 years of age with active autoantibody-positive systemic lupus erythematosus (SLE) in the USA, Europe, and Japan. Pharmacokinetic data for belimumab were collected from several clinical trials in Chinese and non-Chinese adults and non-Chinese pediatric patients with SLE. This study aimed to predict the belimumab dose-exposure relationship to Chinese pediatric patients with SLE, as part of the belimumab registration process for this population in China, using a population PK modeling approach. Methods An initial linear two-compartment population pharmacokinetic model was built using data from adults only, and considering and adjusting for the covariates age, body weight, body mass index, fat-free mass, race, baseline albumin and immunoglobulin G levels. The model was used to study possible ethnic differences between Chinese and non-Chinese adults and to predict pediatric pharmacokinetic data in a study of non-Chinese pediatric patients (PLUTO study; NCT01649765). The predicted data were compared with the observed data from PLUTO. The model was then updated with pediatric data from PLUTO to predict steady-state belimumab exposure in Chinese pediatric patients with SLE receiving belimumab 10 mg/kg IV every 4 weeks. Results The dataset comprised 9650 sampled concentration values from 1783 patients. The pharmacokinetics of belimumab were adequately described by the final model using all adult and pediatric data with the estimated typical clearance of 238 ml/day in adult and pediatric patients and steady-state volume of distribution of 4915 ml in adults. Between-patient variability was modest (coefficients of variation: 26.1% for clearance; 8.9% and 28.5%, respectively, for volumes of distribution of the central and peripheral compartments). Six covariates were identified that influenced pharmacokinetics: age, fat-free mass, an indicator of North East Asian race, baseline albumin, immunoglobulin G, and an early study indicator (two early phase I and phase II belimumab studies: LBSL01 and LBSL02). The analysis showed no apparent difference in steady-state exposure between Chinese and non-Chinese populations and between pediatric and adult populations receiving belimumab 10 mg/kg IV. Conclusions In Chinese pediatric patients with SLE, belimumab 10 mg/kg IV every 4 weeks is expected to have exposure similar to that in Chinese adults and non-Chinese pediatric patients with SLE, supporting the use of this regimen in Chinese pediatric patients with SLE. Clinical Trial Registration Numbers NCT01649765, NCT00657007, NCT00071487, NCT01345253, NCT01516450, NCT00410384, NCT00424476, NCT02880852, NCT01583530. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-021-00363-2.
Collapse
Affiliation(s)
- Xuan Zhou
- Clinical Pharmacology Modeling and Simulation, GSK, GlaxoSmithKline, 999 Huanke Road, Pudong, Shanghai, 201203, China
| | - Tsung-I Lee
- Clinical Pharmacology Modeling and Simulation, GSK, GlaxoSmithKline, 999 Huanke Road, Pudong, Shanghai, 201203, China
| | - Min Zhu
- Clinical Pharmacology Modeling and Simulation, GSK, GlaxoSmithKline, 999 Huanke Road, Pudong, Shanghai, 201203, China.,Department of Pharmacy, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Peiming Ma
- Clinical Pharmacology Modeling and Simulation, GSK, GlaxoSmithKline, 999 Huanke Road, Pudong, Shanghai, 201203, China.
| |
Collapse
|
15
|
Eslami M, Schneider P. Function, occurrence and inhibition of different forms of BAFF. Curr Opin Immunol 2021; 71:75-80. [PMID: 34182216 DOI: 10.1016/j.coi.2021.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 01/27/2023]
Abstract
B cell activating factor (BAFF or BLyS), an important cytokine for B cell survival and humoral immune responses, is targeted in the clinic for the treatment of systemic lupus erythematosus. This review focuses on the structure, function and inhibition profiles of membrane-bound BAFF, soluble BAFF 3-mer and soluble BAFF 60-mer, all of which have distinct properties. BAFF contains a loop region not required for receptor binding but essential for receptor activation via promotion of BAFF-to-BAFF contacts. This loop region additionally allows formation of BAFF 60-mer, in which epitopes of the BAFF inhibitor belimumab are inaccessible. If 60-mer forms in humans, it is predicted to be short-lived and to act locally because adult serum contains a BAFF 60-mer dissociating activity. Cord blood contains elevated levels of BAFF, part of which displays attributes of 60-mer, suggesting a role for this form of BAFF in the development of foetal or neonate B cells.
Collapse
Affiliation(s)
- Mahya Eslami
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
16
|
Guiteras J, Ripoll É, Bolaños N, De Ramon L, Fontova P, Lloberas N, Cruzado JM, Aràn JM, Aviñó A, Eritja R, Gomà M, Taco R, Grinyó JM, Torras J. The gene silencing of IRF5 and BLYSS effectively modulates the outcome of experimental lupus nephritis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:807-821. [PMID: 33996261 PMCID: PMC8105598 DOI: 10.1016/j.omtn.2021.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/30/2021] [Indexed: 11/19/2022]
Abstract
Systemic lupus erythematosus is a highly complex and heterogeneous autoimmune disease mostly mediated by B cells. It is characterized by circulating self-reactive antibodies that deposit and form immune complexes in kidney, leading to irreparable tissue damage and resulting in lupus nephritis. In a New Zealand Black X New Zealand White F1 mouse model, we tested two different small interfering RNA (siRNA) silencing treatments against interferon regulatory factor 5 (IRF5) and B cell-activating factor (BLYSS) expression and their combination in a second set of animals. The administration of these two siRNAs separately prevented the progression of proteinuria and albuminuria at similar levels to that in cyclophosphamide animals. These treatments effectively resulted in a reduction of serum anti-double-stranded DNA (dsDNA) antibodies and histopathological renal score compared with non-treated group. Treated groups showed macrophage, T cell, and B cell infiltrate reduction in renal tissue. Moreover, kidney gene expression analysis revealed that siRNA treatments modulated very few pathways in contrast to cyclophosphamide, despite showing similar therapeutic effects. Additionally, the combined therapy tested in a second set of animals, in which the disease appeared more virulent, exhibited better results than monotherapies in the disease progression, delaying the disease onset and ameliorating the disease outcome. Herein, we provide the potential therapeutic effect of both selective IRF5 and BLYSS silencing as an effective and potential treatment, particularly in early phases of the disease.
Collapse
Affiliation(s)
- Jordi Guiteras
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Élia Ripoll
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Bolaños
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Laura De Ramon
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Pere Fontova
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Núria Lloberas
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Cruzado
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Aràn
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Aviñó
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, 08034 Barcelona, Spain
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), CIBER-BBN, 08034 Barcelona, Spain
| | - Montse Gomà
- Pathology Department, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Rosario Taco
- Pathology Department, Bellvitge University Hospital, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Josep Maria Grinyó
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juan Torras
- Nephrology Department, Bellvitge University Hospital, Experimental Nephrology Laboratory, University of Barcelona and Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, 08907 Barcelona, Spain
- Faculty of Medicine, Bellvitge Campus, University of Barcelona, L’Hospitalet de Llobregat, 08907 Barcelona, Spain
| |
Collapse
|
17
|
Li G, Zhang Q, Liu Z, Shen H, Zhu Y, Zhou Z, Ding W, Han S, Zhou J, Ou R, Luo M, Liu S. TriBAFF-CAR-T cells eliminate B-cell malignancies with BAFFR-expression and CD19 antigen loss. Cancer Cell Int 2021; 21:223. [PMID: 33865370 PMCID: PMC8052726 DOI: 10.1186/s12935-021-01923-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/07/2021] [Indexed: 02/08/2023] Open
Abstract
Background To investigate the effect of TriBAFF-CAR-T cells on hematological tumor cells. Methods TriBAFF-CAR-T and CD19-CAR-T cells were co-cultured with BAFFR-bearing B-cell malignancies at different effector/target ratios to evaluate the anti-tumor effects. In vivo, TriBAFF-CAR-T and CD19-CAR-T cells were intravenously injected into Raji-luciferase xenograft mice. CD19 antigens losing lymphoblasts was simulated by Raji knocking out CD19 (CD19KO) to investigate the effect of TriBAFF-CAR-T cells on CD19KO Raji. Results Both TriBAFF-CAR-T and CD19-CAR-T cells significantly induced the lysis of Raji, BALL-1, and Jeko-1. Moreover, when CD19-CAR-T cells specifically caused the lysis of K562 with overexpressed CD19, the lethal effect of TriBAFF-CAR-T cells was also specific for BAFFR-bearing K562 with increasing levels of interleukin-2 and INF-γ. The TriBAFF-CAR-T have the same effect with CD19-CAR-T cells in treating Raji xenofraft mice. TriBAFF-CAR-T cells also have great effect in CD19KO Raji cells. Conclusions In this study, we successfully constructed novel TriBAFF-CAR-T cells to eliminate BAFFR-bearing and CD19 antigen loss in hematological tumor cells.
Collapse
Affiliation(s)
- Guangchao Li
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China.,Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, Guangdong Province, 510530, China
| | - Qing Zhang
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China
| | - Zhi Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China
| | - Huijuan Shen
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China
| | - Yangmin Zhu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China
| | - Zhao Zhou
- Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, Guangdong Province, 510530, China
| | - Wen Ding
- Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, Guangdong Province, 510530, China
| | - Siqi Han
- Department of Medical Oncology, Jinling Hospital, Nanjing Clinical School of Southern Medical University, Nanjing, Jiangsu Province, 210002, China
| | - Jie Zhou
- Department of Hematology, People's Hospital of Deyang City, Deyang, Sichuan Province, 618000, China
| | - Ruiming Ou
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China. .,Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, Guangdong Province, 510317, China.
| | - Min Luo
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China. .,Guangzhou Bio-gene Technology Co., Ltd, Guangzhou, Guangdong Province, 510530, China. .,Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, Guangdong Province, 510317, China.
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong Province, 510317, China. .,Department of Hematology, Guangdong Second Provincial General Hospital, Xin Gang Zhong Road 466#, Haizhu Distict, Guangzhou, Guangdong Province, 510317, China.
| |
Collapse
|
18
|
Castro-Dopico T, Colombel JF, Mehandru S. Targeting B cells for inflammatory bowel disease treatment: back to the future. Curr Opin Pharmacol 2020; 55:90-98. [PMID: 33166872 PMCID: PMC7894973 DOI: 10.1016/j.coph.2020.10.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 02/08/2023]
Abstract
B cells are critical to immune homeostasis at mucosal surfaces including those of the gastrointestinal tract. B cell-related abnormalities, comprising of a lympho-plasmacytic infiltrate, as well as anti-microbial antibodies, are well reported in patients with inflammatory bowel disease (IBD). However, B cell-targeting is not part of the therapeutic armamentarium in IBD. Recently, driven by the identification of genetic associations between IgG Fc receptors and IBD susceptibility, there has been renewed interest in defining the immunobiology of B cells during mucosal inflammation. Functional studies have demonstrated mechanisms of IgG-mediated disease pathogenesis and deep mucosal immunophenotyping using single cell RNA sequencing has elaborated a significant remodelling of the B cell compartment in IBD. In light of these novel data, here we discuss potential strategies to target B cell immunity in IBD. Finally, we discuss potential risks and pitfalls of these approaches and emphasize on distinguishing between homeostatic and pathological B cell signatures, allowing for a data-based, prudent therapeutic approach.
Collapse
Affiliation(s)
- Tomas Castro-Dopico
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Institute of Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
19
|
Eslami M, Meinl E, Eibel H, Willen L, Donzé O, Distl O, Schneider H, Speiser DE, Tsiantoulas D, Yalkinoglu Ö, Samy E, Schneider P. BAFF 60-mer, and Differential BAFF 60-mer Dissociating Activities in Human Serum, Cord Blood and Cerebrospinal Fluid. Front Cell Dev Biol 2020; 8:577662. [PMID: 33240880 PMCID: PMC7677505 DOI: 10.3389/fcell.2020.577662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
B cell activation factor of the TNF family (BAFF/BLyS), an essential B cell survival factor of which circulating levels are elevated in several autoimmune disorders, is targeted in the clinic for the treatment of systemic lupus erythematosus (SLE). The soluble form of BAFF can exist as 3-mer, or as 60-mer that results from the ordered assembly of twenty 3-mers and that can be obtained from naturally cleaved membrane-bound BAFF or made as a recombinant protein. However, which forms of soluble BAFF exist and act in humans is unclear. In this study, BAFF 3-mer and 60-mer in biological fluids were characterized for size, activity and response to specific stimulators or inhibitors of BAFF. Human cerebrospinal fluids (CSF) from patients with multiple sclerosis and adult human sera contained exclusively BAFF 3-mer in these assays, also when BAFF concentrations were moderately SLE or highly (BAFFR-deficient individual) increased. Human sera, but not CSF, contained a high molecular weight, saturable activity that dissociated preformed recombinant BAFF 60-mer into 3-mer. This activity was lower in cord blood. Cord blood displayed BAFF levels 10-fold higher than in adults and consistently contained a fair proportion of active high molecular weight BAFF able to dissociate into 3-mer but not endowed with all properties of recombinant BAFF 60-mer. If BAFF 60-mer is produced in humans, it is dissociated, or at least attenuated in the circulation.
Collapse
Affiliation(s)
- Mahya Eslami
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital of the Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann Eibel
- Faculty of Medicine, Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Freiburg, Germany
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Holm Schneider
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | | | - Özkan Yalkinoglu
- Clinical Pharmacology, Quantitative Pharmacology, Translational Medicine, Merck KGaA, Darmstadt, Germany
| | - Eileen Samy
- Business of Merck KGaA, EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
20
|
Cai XY, Zhu Y, Wang C, Tang XY, Han L, Shu JL, Zhang XZ, Liang FQ, Ge JR, Xu L, Mei D, Zhang LL, Wei W. Etanercept Inhibits B Cell Differentiation by Regulating TNFRII/TRAF2/NF- κB Signaling Pathway in Rheumatoid Arthritis. Front Pharmacol 2020; 11:676. [PMID: 32477138 PMCID: PMC7235293 DOI: 10.3389/fphar.2020.00676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Objective To explore the role of B cells in rheumatoid arthritis (RA) and the potential effects and mechanisms of etanercept on B cells. Methods In RA patients, the levels of tumor necrosis factor-α (TNF-α) and B cell activating factor (BAFF) were detected by ELISA. The percentage of B cell subsets was measured by flow cytometry. Laboratory indicators (rheumatoid factor, C-reactive protein, erythrocyte sedimentation rate) and clinical indicators (disease activity score in 28 joints, health assessment questionnaire score, swollen joint counts, tender joint counts) were measured. The correlation between B cell subsets and laboratory indicators or clinical indicators was analyzed. In mice, B cells proliferation was detected by CCK-8 kit. The expression of TNFRII and the percentage of B cell subsets in spleen were detected by flow cytometry. The expressions of TRAF2, p38, P-p38, p65, P-p65 in B cells were detected by WB. Results The percentage of CD19−CD27+CD138+ plasma B cells was positively correlated with ESR or RF. Etanercept could decrease the percentage of CD19+ total B cells, CD19+CD27+ memory B cells and CD19−CD27+CD138+ plasma B cells, reduce the levels of TNF-α, BAFF, relieve clinical and laboratory indicators in RA patients. In addition, etanercept could inhibit the proliferation of B cells, bate the differentiation of transitional B cells to mature B cells, down-regulate the expression of TNFRII, TRAF2, P-p38, P-p65 in B cells. Conclusion B cells act a key role in the pathogenesis of RA. Etanercept inhibits B cells differentiation by down-regulating TNFRII/TRAF2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiao-Yu Cai
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yue Zhu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chen Wang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xiao-Yu Tang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Le Han
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jin-Ling Shu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Xian-Zheng Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Fa-Qin Liang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jing-Ru Ge
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Li Xu
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Dan Mei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Ling-Ling Zhang
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Chen Y, Yang M, Long D, Li Q, Zhao M, Wu H, Lu Q. Abnormal expression of BAFF and its receptors in peripheral blood and skin lesions from systemic lupus erythematosus patients. Autoimmunity 2020; 53:192-200. [PMID: 32157911 DOI: 10.1080/08916934.2020.1736049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by abnormal T and B cells. B-cell activating factor (BAFF) has been suggested to play a crucial role in lupus by promoting the proliferation, differentiation, and survival of B cells. Increased serum levels of BAFF have been found in patients with lupus. However, the expression of BAFF and its receptors on immune cells and in skin has not been systematically reported before. Here, we report that SLE patients showed increased levels of BAFF on circulating CD3+ T cells and B-cell maturation antigen (BCMA) on CD14+ monocytes and dramatically increased expression of BAFF in lupus skin lesions compared with those of healthy controls. TACI was undetectable on circulating immune cells. An increased serum level of BAFF was also confirmed in lupus patients in this study. Our findings may provide a better understanding of the pathogenesis and predictors of BAFF antibody treatment response, as well as potential targets for skin therapies.
Collapse
Affiliation(s)
- Yongjian Chen
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Yang
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Di Long
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianwen Li
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
22
|
Feng Y, Yang M, Wu H, Lu Q. The pathological role of B cells in systemic lupus erythematosus: From basic research to clinical. Autoimmunity 2019; 53:56-64. [PMID: 31876195 DOI: 10.1080/08916934.2019.1700232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that often occurs in females of child-bearing age. It involves multiple systems and severely threatens human life. One of the typical characteristics of SLE is the formation of immune complexes with autoantibodies produced by B cells that target various autoantigens, thus indicating the pivotal role of B cells in the pathogenesis of SLE. Increasing evidence has shown abnormal expression of B cells in the peripheral blood of SLE patients. Moreover, numerous studies have shown that B cells in SLE patients are abnormally activated, as well as aberrantly differentiated, and are involved in the inflammatory cytokine milieu, abnormal transcription factor activity, and signalling pathways. Several biological therapies targeting B cells, such as anti-CD20 antibodies, have been intensively studied in preclinical and clinical trials. However, the results have not met expectations. Therefore, new therapies targeting B cells are in great need. This review will summarize the latest progress in basic research on B cells to better understand the pathogenesis of SLE and will discuss the outcomes of B-cell-targeting treatments that provide potential therapeutic targets and strategies for SLE. Studies have clarified high levels of IL-21 in serum from SLE patients and animal models. IL-21 promotes B cell differentiation, which results in antibodies accumulation leads to SLE. Therefore, further studies on IL-21 will give new perspectives on SLE treatments. In addition, the application of drugs targeting plasma cell depletion in SLE patients may also achieve satisfied results in treatment.
Collapse
Affiliation(s)
- Yu Feng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| |
Collapse
|
23
|
Jackson SW, Davidson A. BAFF inhibition in SLE-Is tolerance restored? Immunol Rev 2019; 292:102-119. [PMID: 31562657 PMCID: PMC6935406 DOI: 10.1111/imr.12810] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
The B cell activating factor (BAFF) inhibitor, belimumab, is the first biologic drug approved for the treatment of SLE, and exhibits modest, but durable, efficacy in decreasing disease flares and organ damage. BAFF and its homolog APRIL are TNF-like cytokines that support the survival and differentiation of B cells at distinct developmental stages. BAFF is a crucial survival factor for transitional and mature B cells that acts as rheostat for the maturation of low-affinity autoreactive cells. In addition, BAFF augments innate B cell responses via complex interactions with the B cell receptor (BCR) and Toll like receptor (TLR) pathways. In this manner, BAFF impacts autoreactive B cell activation via extrafollicular pathways and fine tunes affinity selection within germinal centers (GC). Finally, BAFF and APRIL support plasma cell survival, with differential impacts on IgM- and IgG-producing populations. Therapeutically, BAFF and combined BAFF/APRIL inhibition delays disease onset in diverse murine lupus strains, although responsiveness to BAFF inhibition is model dependent, in keeping with heterogeneity in clinical responses to belimumab treatment in humans. In this review, we discuss the mechanisms whereby BAFF/APRIL signals promote autoreactive B cell activation, discuss whether altered selection accounts for therapeutic benefits of BAFF inhibition, and address whether new insights into BAFF/APRIL family complexity can be exploited to improve human lupus treatments.
Collapse
Affiliation(s)
- Shaun W Jackson
- Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Anne Davidson
- Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
24
|
Tong Y, Zhong S, Shan Z, Yao W, Tian H. A novel human anti-BAFF neutralizing monoclonal antibody derived from in vitro immunization. Biomed Pharmacother 2019; 119:109430. [PMID: 31518874 DOI: 10.1016/j.biopha.2019.109430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 01/21/2023] Open
Abstract
B-cell activating factor (BAFF) plays a key role in the normal regulation of B cell development and immune response. Its abnormal expression level is accompanied by the occurrence of various autoimmune diseases. Therefore, BAFF is an effective target for the treatment of such diseases. Here, we report a new anti-BAFF monoclonal antibody. Based on improved in vitro immunization method, we used a recombinant BAFF containing unnatural amino acid p-nitro-phenylalanine (pNO2Phe) as an antigen to trigger immune response in vitro. The plasma cells were sorted by flow cytometry (FACS), and the antibody library was constructed based on the sorted plasma cells. The high affinity antigen-binding fragments were panned by phage display technology, and finally the anti-BAFF human IgG was obtained. The antibody demonstrated its ability to neutralize BAFF effectively both in vitro and in vivo. We propose that this novel full-length human anti-BAFF monoclonal antibody is a promising therapeutic candidate for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Yue Tong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengwei Zhong
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenzhen Shan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Hong Tian
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
25
|
Kowalczyk-Quintas C, Chevalley D, Willen L, Jandus C, Vigolo M, Schneider P. Inhibition of Membrane-Bound BAFF by the Anti-BAFF Antibody Belimumab. Front Immunol 2018; 9:2698. [PMID: 30524439 PMCID: PMC6256835 DOI: 10.3389/fimmu.2018.02698] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/01/2018] [Indexed: 01/13/2023] Open
Abstract
B cell activating factor of the TNF family (BAFF, also known as BLyS), a cytokine that regulates homeostasis of peripheral B cells, is elevated in the circulation of patients with autoimmune diseases such as systemic lupus erythematosus (SLE). BAFF is synthetized as a membrane-bound protein that can be processed to a soluble form after cleavage at a furin consensus sequence, a site that in principle can be recognized by any of the several proteases of the pro-protein convertase family. Belimumab is a human antibody approved for the treatment of SLE, often cited as specific for the soluble form of BAFF. Here we show in different experimental systems, including in a monocytic cell line (U937) that naturally expresses BAFF, that belimumab binds to membrane-bound BAFF with similar EC50 as the positive control atacicept, which is a decoy receptor for both BAFF and the related cytokine APRIL (a proliferation inducing ligand). In U937 cells, binding of both reagents was only detectable in furin-deficient U937 cells, showing that furin is the main BAFF processing protease in these cells. In CHO cells expressing membrane-bound BAFF lacking the stalk region, belimumab inhibited the activity of membrane-bound BAFF less efficiently than atacicept, while in furin-deficient U937 cells, belimumab inhibited membrane-bound BAFF and residual soluble BAFF as efficiently as atacicept. These reagents did not activate complement or antibody-dependent cell cytotoxicity upon binding to membrane-bound BAFF in vitro. In conclusion, our data show that belimumab can inhibit membrane-bound BAFF, and that BAFF in U937 cells is processed by furin.
Collapse
Affiliation(s)
| | - Dehlia Chevalley
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Laure Willen
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, University of Lausanne, Lausanne, Switzerland
| | - Michele Vigolo
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Improvement of pharmacokinetic properties of therapeutic antibodies by antibody engineering. Drug Metab Pharmacokinet 2018; 34:25-41. [PMID: 30472066 DOI: 10.1016/j.dmpk.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Monoclonal antibodies (mAbs) have become an important therapeutic option for several diseases. Since several mAbs have shown promising efficacy in clinic, the competition to develop mAbs has become severe. In efforts to gain a competitive advantage over other mAbs and provide significant benefits to patients, innovations in antibody engineering have aimed at improving the pharmacokinetic properties of mAbs. Because engineering can provide therapeutics that are more convenient, safer, and more efficacious for patients in several disease areas, it is an attractive approach to provide significant benefits to patients. Further advances in engineering mAbs to modulate their pharmacokinetics were driven by the increase of total soluble target antigen concentration that is often observed after injecting a mAb, which then requires a high dosage to antagonize. To decrease the required dosage, several antibody engineering techniques have been invented that reduce the total concentration of soluble target antigen. Here, we review the various ways that antibody engineering can improve the pharmacokinetic properties of mAbs.
Collapse
|