1
|
Wang S, Qi X, Liu D, Xie D, Jiang B, Wang J, Wang X, Wu G. The implications for urological malignancies of non-coding RNAs in the the tumor microenvironment. Comput Struct Biotechnol J 2024; 23:491-505. [PMID: 38249783 PMCID: PMC10796827 DOI: 10.1016/j.csbj.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 01/23/2024] Open
Abstract
Urological malignancies are a major global health issue because of their complexity and the wide range of ways they affect patients. There's a growing need for in-depth research into these cancers, especially at the molecular level. Recent studies have highlighted the importance of non-coding RNAs (ncRNAs) – these don't code for proteins but are crucial in controlling genes – and the tumor microenvironment (TME), which is no longer seen as just a background factor but as an active player in cancer progression. Understanding how ncRNAs and the TME interact is key for finding new ways to diagnose and predict outcomes in urological cancers, and for developing new treatments. This article reviews the basic features of ncRNAs and goes into detail about their various roles in the TME, focusing specifically on how different ncRNAs function and act in urological malignancies.
Collapse
Affiliation(s)
- Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| |
Collapse
|
2
|
Wang S, Yu H, Liu S, Liu Y, Gu X. Regulation of idiopathic pulmonary fibrosis: a cross-talk between TGF- β signaling and MicroRNAs. Front Med (Lausanne) 2024; 11:1415278. [PMID: 39386739 PMCID: PMC11461268 DOI: 10.3389/fmed.2024.1415278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Pulmonary fibrosis (PF) is a highly complex and challenging disease affecting the respiratory system. Patients with PF usually have an abbreviated survival period and a consequential high mortality rate after the diagnosis is confirmed, posing serious threats to human health. In clinical practice, PF is typically treated by antifibrotic agents, such as Pirfenidone and Nintedanib. However, these agents have been reported to correlate with substantial adverse effects, escalating costs, and insufficient efficacy. Moreover, it remains unclarified about the multifactorial pathology of PF. Therefore, there is an urgent demand for elucidating these underlying mechanisms and identifying safe, efficient, and targeted therapeutic strategies for PF treatment. The crucial role of the transforming growth factor-β (TGF-β) signaling pathway in PF development has been explored in many studies. MicroRNAs (miRNAs), which function as post-transcriptional regulators of gene expression, can significantly affect the development of PF by modulating TGF-β signaling. In turn, TGF-β signaling can regulate the expression and biogenesis of miRNAs, thereby substantially affecting the progression of PF. Hence, the therapeutic strategies that focus on the drug-targeted regulation of miRNAs, either by augmenting down-regulated miRNAs or inhibiting overexpressed miRNAs, may hinder the pathways related to TGF-β signaling. These strategies may contribute to the prevention and suppression of PF progression and may provide novel insights into the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Xiu Gu
- Department of Pulmonary and Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Sabile JMG, Swords R, Tyner JW. Evaluating targeted therapies in older patients with TP53-mutated AML. Leuk Lymphoma 2024; 65:1201-1218. [PMID: 38646877 DOI: 10.1080/10428194.2024.2344057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
Mutation of thetumor suppressor gene, TP53 (tumor protein 53), occurs in up to 15% of all patients with acute myeloid leukemia (AML) and is enriched within specific clinical subsets, most notably in older adults, and including secondary AML cases arising from preceding myeloproliferative neoplasm (MPN), myelodysplastic syndrome (MDS), patients exposed to prior DNA-damaging, cytotoxic therapies. In all cases, these tumors have remained difficult to effectively treat with conventional therapeutic regimens. Newer approaches fortreatmentofTP53-mutated AML have shifted to interventions that maymodulateTP53 function, target downstream molecular vulnerabilities, target non-p53 dependent molecular pathways, and/or elicit immunogenic responses. This review will describe the basic biology of TP53, the clinical and biological patterns of TP53 within myeloid neoplasms with a focus on elderly AML patients and will summarize newer therapeutic strategies and current clinical trials.
Collapse
Affiliation(s)
- Jean M G Sabile
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ronan Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
5
|
Li B, Hu P, Liu K, Xu W, Wang J, Li Q, Chen B, Deng Y, Han C, Sun T, Liu X, Li M, Wang T, Liu J, Lin H, Rao K. MiRNA-100 ameliorates diabetes mellitus-induced erectile dysfunction by modulating autophagy, anti-inflammatory, and antifibrotic effects. Andrology 2024; 12:1280-1293. [PMID: 38227138 DOI: 10.1111/andr.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Diabetes mellitus-induced erectile dysfunction (DMED) has become a common disease in adult men that can seriously reduce the quality of life of patients, and new therapies are urgently needed. miRNA-100 has many targets and can induce autophagy and reduce fibrosis by inhibiting the mTOR pathway and the TGF-β pathway. However, no research has been conducted with miR-100 in the field of DMED, and the specific mechanism of action is still unclear. OBJECTIVES To ascertain the effects of miR-100 on corpus cavernosum tissue of DMED rats and vascular endothelial cells in a high glucose environment and to elucidate the relevant mechanisms in autophagy, fibrosis and inflammation to find a new approach for the DMED therapy. METHODS Thirty rats were divided into three groups: the control group, the DMED group, and the DMED + miR-100 group. Using intraperitoneal injections of streptozotocin, all rats except the control group were modeled with diabetes mellitus, which was verified using the apomorphine (APO) test. For rats in the DMED + miR-100 group, rno-miR-100-5p agomir (50 nmol/kg, every 2 days, 6 times in total) was injected via the tail vein. After 13 weeks, the erectile function of each rat was assessed using cavernous manometry, and the corpus cavernosum tissue was harvested for subsequent experiments. For cellular experiments, human coronary microartery endothelial cells (HCMEC) were divided into four groups: the control group, the high-glucose (HG, 40 mM) group, the HG + mimic group, and the HG + inhibitor group. The cells were cultured for 6 days and collected for subsequent experiments 2 days after transfection. RESULTS Diabetic modeling impaired the erectile function in rats, and miR-100 reversed this effect. By measuring autophagy-related proteins such as mTOR/Raptor/Beclin1/p62/LC3B, we found that miR-100 could suppress the expression of mTOR and induce autophagy. The analysis of the eNOS/NO/cGMP axis function indicated that impaired endothelial function was improved by miR-100. By evaluating the TGF-β1/CTGF/Smad2/3 and NF-κB/TNF-α pathways, we found that miR-100 could lower the level of inflammation and fibrosis, which contributed to the improvement of the erectile function. Cellular experiments can be used as supporting evidence for these findings. CONCLUSION MiR-100 can improve the erectile function by inhibiting mTOR and thus inducing autophagy, improving the endothelial function through the eNOS/NO/cGMP axis, and exerting antifibrotic and anti-inflammatory effects, which may provide new ideas and directions for the treatment of DMED.
Collapse
Affiliation(s)
- Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenchao Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaxin Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxuan Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglin Han
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Taotao Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinqi Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huang Lin
- Department of Urology, Fujian Provincial Hospital, Fuzhou, China
- Department of Urology, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Ke Rao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. FASEB J 2024; 38:e23885. [PMID: 39139039 PMCID: PMC11378476 DOI: 10.1096/fj.202401078r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell-selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors (TFs) important for β-cell identity, such as FOXA, MAFA or RFX6, and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
Affiliation(s)
- Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, London, UK
| | - Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Nevena Cvetesic
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Dorka Nagy
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Lorea Blazquez
- Department of Neurosciences, Biogipuzkoa Health Research Institute, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
- Research Centre of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Faculté de Médecine, Université de Montréal, Montréal, Quebec, Canada
- Lee Kong Chian Medical School, Nanyang Technological University, Singapore, Singapore
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
7
|
Quenneville J, Feghaly A, Tual M, Thomas K, Major F, Gagnon E. Long-term severe hypoxia adaptation induces non-canonical EMT and a novel Wilms Tumor 1 (WT1) isoform. Cancer Gene Ther 2024; 31:1237-1250. [PMID: 38977895 PMCID: PMC11327107 DOI: 10.1038/s41417-024-00795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 05/03/2024] [Accepted: 05/30/2024] [Indexed: 07/10/2024]
Abstract
The majority of cancer deaths are caused by solid tumors, where the four most prevalent cancers (breast, lung, colorectal and prostate) account for more than 60% of all cases (1). Tumor cell heterogeneity driven by variable cancer microenvironments, such as hypoxia, is a key determinant of therapeutic outcome. We developed a novel culture protocol, termed the Long-Term Hypoxia (LTHY) time course, to recapitulate the gradual development of severe hypoxia seen in vivo to mimic conditions observed in primary tumors. Cells subjected to LTHY underwent a non-canonical epithelial to mesenchymal transition (EMT) based on miRNA and mRNA signatures as well as displayed EMT-like morphological changes. Concomitant to this, we report production of a novel truncated isoform of WT1 transcription factor (tWt1), a non-canonical EMT driver, with expression driven by a yet undescribed intronic promoter through hypoxia-responsive elements (HREs). We further demonstrated that tWt1 initiates translation from an intron-derived start codon, retains proper subcellular localization and DNA binding. A similar tWt1 is also expressed in LTHY-cultured human cancer cell lines as well as primary cancers and predicts long-term patient survival. Our study not only demonstrates the importance of culture conditions that better mimic those observed in primary cancers, especially with regards to hypoxia, but also identifies a novel isoform of WT1 which correlates with poor long-term survival in ovarian cancer.
Collapse
Affiliation(s)
- Jordan Quenneville
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Department of Molecular Biology, Université de Montréal, Montréal, QC, Canada.
| | - Albert Feghaly
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Margaux Tual
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Kiersten Thomas
- Department of Integrative Oncology, BC Cancer Research Center, Vancouver, BC, Canada
| | - François Major
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Computer Science and Operations Research, Faculty of Arts and Sciences, Université de Montréal, Montréal, QC, Canada
| | - Etienne Gagnon
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada.
- Department of Microbiology, Infectiology, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
8
|
Tamimi A, Javid M, Sedighi-Pirsaraei N, Mirdamadi A. Exosome prospects in the diagnosis and treatment of non-alcoholic fatty liver disease. Front Med (Lausanne) 2024; 11:1420281. [PMID: 39144666 PMCID: PMC11322140 DOI: 10.3389/fmed.2024.1420281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
The growing prevalence of NAFLD and its global health burden have provoked considerable research on possible diagnostic and therapeutic options for NAFLD. Although various pathophysiological mechanisms and genetic factors have been identified to be associated with NAFLD, its treatment remains challenging. In recent years, exosomes have attracted widespread attention for their role in metabolic dysfunctions and their efficacy as pathological biomarkers. Exosomes have also shown tremendous potential in treating a variety of disorders. With increasing evidence supporting the significant role of exosomes in NAFLD pathogenesis, their theragnostic potential has become a point of interest in NAFLD. Expectedly, exosome-based treatment strategies have shown promise in the prevention and amelioration of NAFLD in preclinical studies. However, there are still serious challenges in preparing, standardizing, and applying exosome-based therapies as a routine clinical option that should be overcome. Due to the great potential of this novel theragnostic agent in NAFLD, further investigations on their safety, clinical efficacy, and application standardization are highly recommended.
Collapse
|
9
|
Nelson HM, Qu S, Huang L, Shameer M, Corn KC, Chapman SN, Luthcke NL, Schuster SA, Stamaris TD, Turnbull LA, Guy LL, Liu X, Michell DL, Semler EM, Vickers KC, Liu Q, Franklin JL, Weaver AM, Rafat M, Coffey RJ, Patton JG. Transfer of miR-100 and miR-125b increases 3D growth and invasiveness in recipient cancer cells. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:397-416. [PMID: 39697634 PMCID: PMC11648436 DOI: 10.20517/evcna.2024.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 12/20/2024]
Abstract
Aim Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of miR-100 and miR-125b that can alter gene expression in donor and recipient cells. In this study, we sought to identify targets of miR-100 and miR-125b and conclusively demonstrate that microRNAs (miRNAs) can be functionally transferred from donor to recipient cells. Methods To identify targets of miR-100 and miR-125b, we used bioinformatic approaches comparing multiple colorectal cancer (CRC) cell lines, including knockout lines lacking one or both of these miRNAs. We also used spheroid and 3D growth conditions in collagen to test colony growth and invasiveness. We also used Transwell co-culture systems to demonstrate functional miRNA transfer. Results From an initial list of 96 potential mRNA targets, we identified and tested 15 targets, with 8 showing significant downregulation in the presence of miR-100 and miR-125b. Among these, cingulin (CGN) and protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of miR-100 and miR-125b. We also show that increased cellular levels of miR-100 and miR-125b enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of miR-100 and miR-125b can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen. Conclusion miR-100 and miR-125b target multiple mRNAs that can regulate 3D cell-autonomous growth and invasiveness. By extracellular transfer, miR-100 and miR-125b can also increase colony growth and invasiveness in recipient cells through non-cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Hannah M. Nelson
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Shimian Qu
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Liyu Huang
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Muhammad Shameer
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kevin C. Corn
- Laboratory of Marjan Rafat, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sydney N. Chapman
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Nicole L. Luthcke
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Sara A. Schuster
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Tellie D. Stamaris
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lauren A. Turnbull
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Lucas L. Guy
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiao Liu
- Laboratory of Qi Liu, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Danielle L. Michell
- Laboratory of Kasey C. Vickers, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Elizabeth M. Semler
- Laboratory of Kasey C. Vickers, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kasey C. Vickers
- Laboratory of Kasey C. Vickers, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Laboratory of Qi Liu, Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey L. Franklin
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alissa M. Weaver
- Laboratory of Alissa M. Weaver, Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Marjan Rafat
- Laboratory of Marjan Rafat, Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert J. Coffey
- Laboratory of Robert J. Coffey, Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James G. Patton
- Laboratory of James G. Patton, Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
10
|
Zhu YH, Jia QY, Yao HF, Duan ZH, Ma XSY, Zheng JH, Yin YF, Liu W, Zhang JF, Hua R, Ma D, Sun YW, Yang JY, Liu DJ, Huo YM. The lncRNA LINC01605 promotes the progression of pancreatic ductal adenocarcinoma by activating the mTOR signaling pathway. Cancer Cell Int 2024; 24:262. [PMID: 39048994 PMCID: PMC11271012 DOI: 10.1186/s12935-024-03440-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND This study investigated the molecular mechanism of long intergenic non-protein coding RNA 1605 (LINC01605) in the process of tumor growth and liver metastasis of pancreatic ductal adenocarcinoma (PDAC). METHODS LINC01605 was filtered out with specificity through TCGA datasets (related to DFS) and our RNA-sequencing data of PDAC tissue samples from Renji Hospital. The expression level and clinical relevance of LINC01605 were then verified in clinical cohorts and samples by immunohistochemical staining assay and survival analysis. Loss- and gain-of-function experiments were performed to estimate the regulatory effects of LINC01605 in vitro. RNA-seq of LINC01605-knockdown PDAC cells and subsequent inhibitor-based cellular function, western blotting, immunofluorescence and rescue experiments were conducted to explore the mechanisms by which LINC01605 regulates the behaviors of PDAC tumor cells. Subcutaneous xenograft models and intrasplenic liver metastasis models were employed to study its role in PDAC tumor growth and liver metastasis in vivo. RESULTS LINC01605 expression is upregulated in both PDAC primary tumor and liver metastasis tissues and correlates with poor clinical prognosis. Loss and gain of function experiments in cells demonstrated that LINC01605 promotes the proliferation and migration of PDAC cells in vitro. In subsequent verification experiments, we found that LINC01605 contributes to PDAC progression through cholesterol metabolism regulation in a LIN28B-interacting manner by activating the mTOR signaling pathway. Furthermore, the animal models showed that LINC01605 facilitates the proliferation and metastatic invasion of PDAC cells in vivo. CONCLUSIONS Our results indicate that the upregulated lncRNA LINC01605 promotes PDAC tumor cell proliferation and migration by regulating cholesterol metabolism via activation of the mTOR signaling pathway in a LIN28B-interacting manner. These findings provide new insight into the role of LINC01605 in PDAC tumor growth and liver metastasis as well as its value for clinical approaches as a metabolic therapeutic target in PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hong-Fei Yao
- Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, 200040, China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xue-Shi-Yu Ma
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jia-Hao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi-Fan Yin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun-Feng Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Rong Hua
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ding Ma
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jian-Yu Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
11
|
Bracken CP, Goodall GJ, Gregory PA. RNA regulatory mechanisms controlling TGF-β signaling and EMT in cancer. Semin Cancer Biol 2024; 102-103:4-16. [PMID: 38917876 DOI: 10.1016/j.semcancer.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a major contributor to metastatic progression and is prominently regulated by TGF-β signalling. Both EMT and TGF-β pathway components are tightly controlled by non-coding RNAs - including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) - that collectively have major impacts on gene expression and resulting cellular states. While miRNAs are the best characterised regulators of EMT and TGF-β signaling and the miR-200-ZEB1/2 feedback loop plays a central role, important functions for lncRNAs and circRNAs are also now emerging. This review will summarise our current understanding of the roles of non-coding RNAs in EMT and TGF-β signaling with a focus on their functions in cancer progression.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA 5000, Australia.
| | - Philip A Gregory
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia.
| |
Collapse
|
12
|
Giarratana AO, Prendergast CM, Salvatore MM, Capaccione KM. TGF-β signaling: critical nexus of fibrogenesis and cancer. J Transl Med 2024; 22:594. [PMID: 38926762 PMCID: PMC11201862 DOI: 10.1186/s12967-024-05411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway is a vital regulator of cell proliferation, differentiation, apoptosis, and extracellular matrix production. It functions through canonical SMAD-mediated processes and noncanonical pathways involving MAPK cascades, PI3K/AKT, Rho-like GTPases, and NF-κB signaling. This intricate signaling system is finely tuned by interactions between canonical and noncanonical pathways and plays key roles in both physiologic and pathologic conditions including tissue homeostasis, fibrosis, and cancer progression. TGF-β signaling is known to have paradoxical actions. Under normal physiologic conditions, TGF-β signaling promotes cell quiescence and apoptosis, acting as a tumor suppressor. In contrast, in pathological states such as inflammation and cancer, it triggers processes that facilitate cancer progression and tissue remodeling, thus promoting tumor development and fibrosis. Here, we detail the role that TGF-β plays in cancer and fibrosis and highlight the potential for future theranostics targeting this pathway.
Collapse
Affiliation(s)
- Anna O Giarratana
- Northwell Health - Peconic Bay Medical Center, 1 Heroes Way, Riverhead, NY, 11901, USA.
| | | | - Mary M Salvatore
- Department of Radiology, Columbia University, New York, NY, 11032, USA
| | | |
Collapse
|
13
|
Mi C, Chen W, Zhang Y, Yang Y, Zhao J, Xu Z, Sun Y, Fan Q, Huang W, Guo G, Zhang H. BaP/BPDE suppresses human trophoblast cell migration/invasion and induces unexplained miscarriage by up-regulating a novel lnc-HZ11 in extracellular vesicles: An intercellular study. ENVIRONMENT INTERNATIONAL 2024; 188:108750. [PMID: 38788414 DOI: 10.1016/j.envint.2024.108750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/20/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Extracellular vesicles (EVs) mediate the intercellular crosstalk by transferring functional cargoes. Recently, we have discovered that BaP/BPDE exposure suppresses trophoblast cell migration/invasion and induces miscarriage, which are also regulate by lncRNAs at intracelluar levels. However, the EVs-mediated intercellular regulatory mechanisms are completely unexplored. Specifically, whether EVs might transfer BPDE-induced toxic lncRNA to fresh recipient trophoblast cells and suppress their migration/invasion to further induce miscarriage is completely unknown. In this study, we find that BPDE exposure up-regulates a novel lnc-HZ11, which suppresses EGR1/NF-κB/CXCL12 pathway and migration/invasion of trophoblast cells. Intercellular studies show that EV-HZ11 (lnc-HZ11 in EVs), which is highly expressed in BPDE-exposed donor cells, suppresses EGR1/NF-κB/CXCL12 pathway and migration/invasion in recipient cells by transferring lnc-HZ11 through EVs. Analysis of villous tissues collected from UM (unexplained miscarriage) patients and HC (healthy control) group shows that the levels of BPDE-DNA adducts, lnc-HZ11 or EV-lnc-HZ11, and EGR1/NF-κB/CXCL12 pathway are all associated with miscarriage. Mouse assays show that BaP exposure up-regulates the levels of lnc-Hz11 or EV-Hz11, suppresses Egr1/Nf-κb/Cxcl12 pathway, and eventually induces miscarriage. Knockdown of lnc-Hz11 by injecting EV-AS-Hz11 could effectively alleviate miscarriage in BaP-exposed mice. Furthermore, EV-HZ11 in serum samples could well predict the risk of miscarriage. Collectively, this study not only discovers EVs-HZ11-mediated intercellular mechanisms that BaP/BPDE suppresses trophoblast cell migration/invasion and induces miscarriage but also provides new approach for treatment against unexplained miscarriage through EV-HZ11.
Collapse
Affiliation(s)
- Chenyang Mi
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, 571199, China
| | - Weina Chen
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Ying Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yang Yang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Jingsong Zhao
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Zhongyan Xu
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Yi Sun
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Qigang Fan
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Wenxin Huang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China.
| | - Huidong Zhang
- Key Laboratory of Environment and Female Reproductive Health, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China.
| |
Collapse
|
14
|
Nelson HM, Qu S, Huang L, Shameer M, Corn KC, Chapman SN, Luthcke NL, Schuster SA, Turnbull LA, Guy LL, Liu X, Vickers KC, Liu Q, Franklin JL, Weaver AM, Rafat M, Coffey RJ, Patton JG. miR-100 and miR-125b Contribute to Enhanced 3D Growth and Invasiveness and can be Functionally Transferred to Silence Target Genes in Recipient Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575716. [PMID: 38826470 PMCID: PMC11142119 DOI: 10.1101/2024.01.16.575716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Extracellular communication via the transfer of vesicles and nanoparticles is now recognized to play an important role in tumor microenvironment interactions. Cancer cells upregulate and secrete abundant levels of miR-100 and miR-125b that can alter gene expression by both cell- and non-cell-autonomous mechanisms. We previously showed that these miRNAs activate Wnt signaling in colorectal cancer (CRC) through noncanonical pairing with 5 negative regulators of Wnt signaling. To identify additional targets of miR-100 and miR-125b , we used bioinformatic approaches comparing multiple CRC cell lines, including knockout lines lacking one or both of these miRNAs. From an initial list of 96 potential mRNA targets, we tested 15 targets with 8 showing significant downregulation in the presence of miR-100 and miR-125b . Among these, Cingulin (CGN) and Protein tyrosine phosphatase receptor type-R (PTPRR) are downregulated in multiple cancers, consistent with regulation by increased levels of miR-100 and miR-125b. We also show that increased cellular levels of miR-100 and miR-125b enhance 3D growth and invasiveness in CRC and glioblastoma cell lines. Lastly, we demonstrate that extracellular transfer of miR-100 and miR-125b can silence both reporter and endogenous mRNA targets in recipient cells and also increase the invasiveness of recipient spheroid colonies when grown under 3D conditions in type I collagen.
Collapse
|
15
|
Haberman N, Cheung R, Pizza G, Cvetesic N, Nagy D, Maude H, Blazquez L, Lenhard B, Cebola I, Rutter GA, Martinez-Sanchez A. Liver kinase B1 (LKB1) regulates the epigenetic landscape of mouse pancreatic beta cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593867. [PMID: 38798508 PMCID: PMC11118353 DOI: 10.1101/2024.05.13.593867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Liver kinase B1 (LKB1/STK11) is an important regulator of pancreatic β-cell identity and function. Elimination of Lkb1 from the β-cell results in improved glucose-stimulated insulin secretion and is accompanied by profound changes in gene expression, including the upregulation of several neuronal genes. The mechanisms through which LKB1 controls gene expression are, at present, poorly understood. Here, we explore the impact of β cell- selective deletion of Lkb1 on chromatin accessibility in mouse pancreatic islets. To characterize the role of LKB1 in the regulation of gene expression at the transcriptional level, we combine these data with a map of islet active transcription start sites and histone marks. We demonstrate that LKB1 elimination from β-cells results in widespread changes in chromatin accessibility, correlating with changes in transcript levels. Changes occurred in hundreds of promoter and enhancer regions, many of which were close to neuronal genes. We reveal that dysregulated enhancers are enriched in binding motifs for transcription factors important for β-cell identity, such as FOXA, MAFA or RFX6 and we identify microRNAs (miRNAs) that are regulated by LKB1 at the transcriptional level. Overall, our study provides important new insights into the epigenetic mechanisms by which LKB1 regulates β-cell identity and function.
Collapse
|
16
|
Peng H, Ye T, Deng L, Yang X, Li Q, Tong J, Guo J. Activin and Hepatocyte Growth Factor Promotes Colorectal Cancer Stemness and Metastasis through FOXM1/SOX2/CXCR4 Signaling. Gut Liver 2024; 18:476-488. [PMID: 37458065 PMCID: PMC11096902 DOI: 10.5009/gnl220531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 07/18/2023] Open
Abstract
Background/Aims Cancer stem cells (CSCs) are believed to drive tumor development and metastasis. Activin and hepatocyte growth factor (HGF) are important cytokines with the ability to induce cancer stemness. However, the effect of activin and HGF combination treatment on CSCs is still unclear. Methods In this study, we sequentially treated colorectal cancer cells with activin and HGF and examined CSC marker expression, self-renewal, tumorigenesis, and metastasis. The roles of forkhead box M1 (FOXM1) and sex-determining region Y-box 2 (SOX2), two stemness-related transcription factors, in activin/HGF-induced aggressive phenotype were explored. Results Activin and HGF treatment increased the expression of CSC markers and enhanced sphere formation in colorectal cancer cells. The tumorigenic and metastatic capacities of colorectal cancer cells were enhanced upon activin and HGF treatment. Activin and HGF treatment preferentially promoted stemness and metastasis of CD133+ subpopulations sorted from colorectal cancer cells. FOXM1 was upregulated by activin and HGF treatment, and the knockdown of FOXM1 blocked activin/HGF-induced stemness, tumorigenesis, and metastasis of colorectal cancer cells. Similarly, SOX2 was silencing impaired sphere formation of activin/HGF-treated colorectal cancers. Overexpression of SOX2 rescued the stem cell-like phenotype in FOXM1-depleted colorectal cancer cells with activin and HGF treatment. Additionally, the inhibition of FOXM1 via thiostrepton suppressed activin/HGF-induced stemness, tumorigenesis and metastasis. Conclusions Sequential treatment with activin and HGF promotes colorectal cancer stemness and metastasis through activation of the FOXM1/SOX2 signaling. FOXM1 could be a potential target for the treatment of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Hong Peng
- Department of Gastroenterology and Hepatology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Ye
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Lei Deng
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Xiaofang Yang
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Qingling Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Jin Tong
- Department of Gastroenterology and Hepatology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University School of Medicine, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology and Hepatology, Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Tong S, Zhu Y, Leng Y, Wu Y, Xiao X, Zhao W, Tan S. Restoration of miR-299-3p promotes macrophage phagocytosis and suppresses malignant phenotypes in breast cancer carcinogenesis via dual-targeting CD47 and ABCE1. Int Immunopharmacol 2024; 130:111708. [PMID: 38394889 DOI: 10.1016/j.intimp.2024.111708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
Immunoevasion has been a severe obstacle for the clinical treatment of breast cancer (BC). CD47, known as an anti-phagocytic molecule, plays a key role in governing the evasion of tumor cells from immune surveillance by interacting with signal-regulated protein α (SIRPα) on macrophages. Here, we report for the first time that miR-299-3p is a direct regulator of CD47 with tumor suppressive effects both in vitro and in vivo. miRNA expression profiles and overall survival of BC cohorts from the Cancer Genome Atlas, METABRIC, or GSE19783 datasets showed that miR-299-3p is downregulated in BC tissues and that BC patients with low levels of miR-299-3p have poorer prognoses. Using dual-luciferase reporter, qRT-PCR, Western blot, and phagocytosis assays, we proved that restoration of miR-299-3p can suppress CD47 expression by directly targeting the predicted seed sequence "CCCACAU" in its 3'-UTR, leading to phagocytosis of BC cells by macrophages, whereas miR-299-3p inhibition or deletion reversed this effect. Additionally, Gene Ontology (GO) analysis and a variety of confirmatory experiments revealed that miR-299-3p was inversely correlated with cell proliferation, migration, and the cell cycle process. Mechanistically, miR-299-3p can also directly target ABCE1, an essential ribosome recycling factor, alleviating these malignant phenotypes of BC cells. In vivo BC xenografts based on nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice further proved that restoration of miR-299-3p resulted in a significant suppression of tumorigenesis and a promotion of macrophage activation and infiltration. Overall, our study suggested that miR-299-3p is a potent inhibitor of CD47 and ABCE1 to exhibit bifunctional BC-suppressing effects through immune activation conjugated with malignant behavior inhibition in breast carcinogenesis and thus can potentially serve as a novel therapeutic target for BC.
Collapse
Affiliation(s)
- Shoufang Tong
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yingli Zhu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yeqing Leng
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Yunling Wu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xingxing Xiao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druhavggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
18
|
Zhao Q, Ye Y, Zhang Q, Wu Y, Wang G, Gui Z, Zhang M. PANoptosis-related long non-coding RNA signature to predict the prognosis and immune landscapes of pancreatic adenocarcinoma. Biochem Biophys Rep 2024; 37:101600. [PMID: 38371527 PMCID: PMC10873882 DOI: 10.1016/j.bbrep.2023.101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/25/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024] Open
Abstract
Background Cancer growth is significantly influenced by processes such as pyroptosis, apoptosis, and necroptosis that underlie PANoptosis, a proinflammatory programmed cell death. Several studies have examined the long non-coding RNAs (lncRNAs) associated with pancreatic adenocarcinoma (PAAD). However, the predictive value of lncRNAs related to PANoptosis for PAAD has not been established. Methods The Clinical Genome Atlas database was used to obtain the transcriptome 、clinical data and the corresponding mutation data of the patients with PAAD in this study. The least absolute shrinkage and selection operator regression analysis was employed to obtain prognosis-related lncRNAs for constructing a risk signature. According to the median risk score of the signature, patients with PAAD were grouped into low- and high-risk groups to further compare the survival prognosis of different risk groups. Time-dependent receiver operating characteristic curves, c-index analysis, nomograms, principal component analysis and univariate Cox and multivariate Cox regression were performed for the internal validation of the signature. In addition, enrichment analysis of different genes was performed using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Lastly, differences in tumor mutation burden (TMB), immune function, tumor immune dysfunction and rejection (TIDE), and drug response were determined for the two risk groups. Results The signature was constructed with six PANoptosis-related lncRNAs (AC067817.2、LINC02004、AC243829.1、AC092171.5、AP005233.2、AC004687.1) that predicted the prognosis of the patients with PAAD. Survival curves showed that patients in the two risk groups had statistically significant differences in prognosis (P < 0.05), and multi-cox regression analysis identified risk score as an independent risk factor for PAAD prognosis, and internal validation of nomograms showed high confidence in the signature. GO and KEGG enrichment analysis showed functional and pathway differences between the high- and low-risk groups. TMB evaluation demonstrated that patients in the high-risk group had a higher frequency of mutations. The TIDE score indicated that the high-risk group had a lower risk of immunotherapy escape and better immunotherapy outcomes. Additionally, the two risk groups revealed significantly different responses to 11 anticancer drugs. Conclusion We identified a novel risk signature for PANoptosis-related lncRNAs, which is a standalone prognostic indicator for PAAD. The PANoptosis-related lncRNA risk signature may be relevant for immunotherapy and a therapeutic target for PAAD.
Collapse
Affiliation(s)
- Qinying Zhao
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yingquan Ye
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Quan Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Yue Wu
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Gaoxiang Wang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Zhongxuan Gui
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
| | - Mei Zhang
- Oncology Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, Hefei, China
- Graduate School of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
19
|
Nelson H, Qu S, Franklin JL, Liu Q, Pua HH, Vickers KC, Weaver AM, Coffey RJ, Patton JG. Extracellular RNA in oncogenesis, metastasis and drug resistance. RNA Biol 2024; 21:17-31. [PMID: 39107918 PMCID: PMC11639457 DOI: 10.1080/15476286.2024.2385607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/18/2024] Open
Abstract
Extracellular vesicles and nanoparticles (EVPs) are now recognized as a novel form of cell-cell communication. All cells release a wide array of heterogeneous EVPs with distinct protein, lipid, and RNA content, dependent on the pathophysiological state of the donor cell. The overall cargo content in EVPs is not equivalent to cellular levels, implying a regulated pathway for selection and export. In cancer, release and uptake of EVPs within the tumour microenvironment can influence growth, proliferation, invasiveness, and immune evasion. Secreted EVPs can also have distant, systemic effects that can promote metastasis. Here, we review current knowledge of EVP biogenesis and cargo selection with a focus on the role that extracellular RNA plays in oncogenesis and metastasis. Almost all subtypes of RNA have been identified in EVPs, with miRNAs being the best characterized. We review the roles of specific miRNAs that have been detected in EVPs and that play a role in oncogenesis and metastasis.
Collapse
Affiliation(s)
- Hannah Nelson
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sherman Qu
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jeffrey L. Franklin
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qi Liu
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Heather H. Pua
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kasey C. Vickers
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alissa M. Weaver
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Robert J. Coffey
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Medicine, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
| | - James G. Patton
- Department of Biological Sciences, Vanderbilt University and Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
20
|
Wijayanti D, Bai Y, Zhu H, Qu L, Guo Z, Lan X. The 12-bp indel in the SMAD family member 2 gene is associated with goat growth traits. Anim Biotechnol 2023; 34:4271-4280. [PMID: 36373735 DOI: 10.1080/10495398.2022.2144342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SMAD family member 2 (SMAD2) is a member of the TGFβ signaling pathway and functions as an essential regulator in the processes of development, cell proliferation, and bone formation. A previous observation reported that a 12-bp deletion of this gene affected the litter size in goats. However, according to our knowledge, no study has reported an association between this polymorphism and goat body measurement traits. The purpose of this study was to investigate the association of the insertion/deletion (indel) within the SMAD2 gene with the growth traits of goats. The indel polymorphism was found to be significantly associated with chest width and bust (p < 0.05), while cannon circumference was significantly the strongest compared to other traits (p < 0.01) and individuals with the DD genotypes were more dominant genotypes than other genotypes. In summary, we found evidence that the 12-bp indel within the SMAD2 gene could improve goat body measurement traits, paving the way for marker-assisted selection in the field of goat genetics and breeding.
Collapse
Affiliation(s)
- Dwi Wijayanti
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, Indonesia
| | - Yangyang Bai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, PR China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, PR China
| | - Zhengang Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Institute of Animal Husbandry and Veterinary Science of Bijie City, Guizhou, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
21
|
Hirota K, Yamashita A, Abe E, Yamaji T, Azushima K, Tanaka S, Taguchi S, Tsukamoto S, Wakui H, Tamura K. miR-125a-5p/miR-125b-5p contributes to pathological activation of angiotensin II-AT1R in mouse distal convoluted tubule cells by the suppression of Atrap. J Biol Chem 2023; 299:105478. [PMID: 37981211 PMCID: PMC10755798 DOI: 10.1016/j.jbc.2023.105478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
The renin-angiotensin system plays a crucial role in the regulation of blood pressure. Activation of the angiotensin II (Ang II)-Ang II type 1 receptor (AT1R) signaling pathway contributes to the pathogenesis of hypertension and subsequent organ damage. AT1R-associated protein (ATRAP) has been identified as an endogenous inhibitory protein of the AT1R pathological activation. We have shown that mouse Atrap (Atrap) represses various Ang II-AT1R-mediated pathologies, including hypertension in mice. The expression of human ATRAP (ATRAP)/Atrap can be altered in various pathological states in humans and mice, such as Ang II stimulation and serum starvation. However, the regulatory mechanisms of ATRAP/Atrap are not yet fully elucidated. miRNAs are 21 to 23 nucleotides of small RNAs that post-transcriptionally repress gene expression. Single miRNA can act on hundreds of target mRNAs, and numerous miRNAs have been identified as the Ang II-AT1R signaling-associated disease phenotype modulator, but nothing is known about the regulation of ATRAP/Atrap. In the present study, we identified miR-125a-5p/miR-125b-5p as the evolutionarily conserved miRNAs that potentially act on ATRAP/Atrap mRNA. Further analysis revealed that miR-125a-5p/miR-125b-5p can directly repress both ATRAP and Atrap. In addition, the inhibition of miR-125a-5p/miR-125b-5p resulted in the suppression of the Ang II-AT1R signaling in mouse distal convoluted tubule cells. Taken together, miR-125a-5p/miR-125b-5p activates Ang II-AT1R signaling by the suppression of ATRAP/Atrap. Our results provide new insights into the potential approaches for achieving the organ-protective effects by the repression of the miR-125 family associated with the enhancement of ATRAP/Atrap expression.
Collapse
Affiliation(s)
- Keigo Hirota
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
| | - Eriko Abe
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takahiro Yamaji
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kengo Azushima
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shohei Tanaka
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shinya Taguchi
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunichiro Tsukamoto
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiromichi Wakui
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kouichi Tamura
- Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
22
|
Abulsoud AI, Elshaer SS, Abdelmaksoud NM, Zaki MB, El-Mahdy HA, Ismail A, Al-Noshokaty TM, Fathi D, Abdel-Reheim MA, Mohammed OA, Doghish AS. Investigating the regulatory role of miRNAs as silent conductors in the management of pathogenesis and therapeutic resistance of pancreatic cancer. Pathol Res Pract 2023; 251:154855. [PMID: 37806169 DOI: 10.1016/j.prp.2023.154855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 09/16/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.
Collapse
Affiliation(s)
- Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Tohada M Al-Noshokaty
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Doaa Fathi
- Department of Biochemistry and Biotechnology, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Osama A Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
23
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
24
|
Gong T, Wu D, Pan H, Sun Z, Yao X, Wang D, Huang Y, Li X, Guo Y, Lu Y. Biomimetic Microenvironmental Stiffness Boosts Stemness of Pancreatic Ductal Adenocarcinoma via Augmented Autophagy. ACS Biomater Sci Eng 2023; 9:5347-5360. [PMID: 37561610 DOI: 10.1021/acsbiomaterials.3c00487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) features high recurrence rates and intensified lethality, accompanied by stiffening of the extracellular matrix (ECM) microenvironment, which is mainly due to the deposition, remodeling, and cross-linking of collagen. Boosted stemness plays an essential role during occurrence and progression, which indicates a poor prognosis. Therefore, it is of great importance to understand the effect of the underlying interaction of matrix stiffness and stemness on PDAC. For this purpose, a methacrylated gelatin (GelMA) hydrogel with tunable stiffness was applied for incubating MIA PaCa-2 and PANC-1 cells. The results demonstrated that compared to the soft group (5% GelMA, w/v), the expression of stemness-related genes (SOX2, OCT4, and NANOG) in the stiff group (10% GelMA, w/v) displayed pronounced elevation as well as sphere formation. Intriguingly, we also observed that matrix stiffness regulated autophagy of PDAC, which played a momentous role in stemness promotion. In order to clarify the underlying relationship between matrix stiffness-mediated cell autophagy and stemness, rescue experiments with rapamycin and chloroquine were conducted with transmission electron microscopy, immunofluorescence staining, sphere formation, and qRT-PCR assays to evaluate the level of stemness and autophagy. For exploring the molecular mechanism in depth, RNA-seq and differential expression of miRNAs were carried out, which may sensor and respond to matrix stiffness during the regulation of stemness and autophagy. In conclusion, we validated that blocking autophagy repressed the stemness induced by matrix stiffness in PDAC and provided a potential therapeutic strategy for this aggressive cancer.
Collapse
Affiliation(s)
- Tiancheng Gong
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Haopeng Pan
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Zhongxiang Sun
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xihao Yao
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Dongzhi Wang
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yan Huang
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaohong Li
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
25
|
Hara Y, Mizukami H, Yamazaki K, Yamada T, Igawa A, Takeuchi Y, Sasaki T, Kushibiki H, Murakami K, Kudoh K, Ishido K, Hakamada K. Dual epigenetic changes in diabetes mellitus-associated pancreatic ductal adenocarcinoma correlate with downregulation of E-cadherin and worsened prognosis. J Pathol Clin Res 2023; 9:354-366. [PMID: 37246239 PMCID: PMC10397378 DOI: 10.1002/cjp2.326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/02/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023]
Abstract
Diabetes mellitus (DM) is a risk factor for pancreatic ductal adenocarcinoma (PDAC) that promotes the promoter methylation of CDH1. It is still unclear whether DM can exert other epigenetic effects, such as altering microRNA (miR) expression, in PDAC. The expression of miR-100-5p is known to be changed in DM patients and can suppress the expression of E-cadherin. In this study, the correlation between DM status and dual epigenetic changes was evaluated in PDAC specimens from patients who underwent radical surgical resection. A total of 132 consecutive patients with PDAC were clinicopathologically evaluated. E-cadherin and nuclear β-catenin expression was measured using immunohistochemistry. DNA and miRs were extracted from the main tumor site on formalin-fixed paraffin-embedded tissue sections. TaqMan miR assays were applied to assess miR-100-5p expression. Bisulfite modification was conducted on the extracted DNA, which was then subjected to methylation-specific polymerase chain reaction. Immunohistochemistry revealed that decreased E-cadherin expression and increased nuclear β-catenin expression were significantly associated with DM and poor tumor cell differentiation. The presence of long-duration DM (≥3 years) was a significant factor contributing to CDH1 promoter methylation (p < 0.01), while miR-100-5p expression was proportionally correlated with the preoperative HbA1c level (R = 0.34, p < 0.01), but not the duration of DM. The subjects with high miR-100-5p expression and CDH1 promoter methylation showed the highest level of vessel invasion and prevalence of tumor size ≥30 mm. PDAC subjects with dual epigenetic changes showed poorer overall survival (OS) than those with a single epigenetic change. miR-100-5p expression ≥4.13 and CDH1 promoter methylation independently predicted poor OS and disease-free survival (DFS) in the multivariate analysis. OS and DFS worsened in DM subjects with both HbA1c ≥ 6.5% and DM duration ≥3 years. Thus, DM is associated with two modes of epigenetic change by independent mechanisms and worsens prognosis.
Collapse
Affiliation(s)
- Yutaro Hara
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keisuke Yamazaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takahiro Yamada
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Akiko Igawa
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Yuki Takeuchi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Hanae Kushibiki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kotaro Murakami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosakiJapan
| | - Keinosuke Ishido
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| | - Kenichi Hakamada
- Department of Gastroenterological SurgeryHirosaki University Graduate School of MedicineHirosakiJapan
| |
Collapse
|
26
|
Ghafouri‐Fard S, Harsij A, Farahzadi H, Hussen BM, Taheri M, Mokhtari M. A concise review on the role of MIR100HG in human disorders. J Cell Mol Med 2023; 27:2278-2289. [PMID: 37487022 PMCID: PMC10424294 DOI: 10.1111/jcmm.17875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
MIR100HG is a long non-coding RNA (lncRNA) encoded by a locus on chr11:122,028,203-122,556,721. This gene can regulate cell proliferation, apoptosis, cell cycle transition and cell differentiation. MIR100HG was firstly identified through a transcriptome analysis and found to regulate differentiation of human neural stem cells. It is functionally related with a number of signalling pathways such as TGF-β, Wnt, Hippo and ERK/MAPK signalling pathways. Dysregulation of MIR100HG has been detected in a diversity of cancers in association with clinical outcomes. Moreover, it has a role in the pathophysiology of dilated cardiomyopathy, intervertebral disk degeneration and pulmonary fibrosis. The current study summarizes the role of these lncRNAs in human disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri‐Fard
- Department of Medical Genetics, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Atefeh Harsij
- Phytochemistry Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | - Hossein Farahzadi
- Phytochemistry Research CentreShahid Beheshti University of Medical SciencesTehranIran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of PharmacyHawler Medical UniversityErbilIraq
| | - Mohammad Taheri
- Urology and Nephrology Research CentreShahid Beheshti University of Medical SciencesTehranIran
- Institute of Human GeneticsJena University HospitalJenaGermany
| | - Majid Mokhtari
- Skull Base Research Centre, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
27
|
GEWALT TABEA, NOH KAWON, MEDER LYDIA. The role of LIN28B in tumor progression and metastasis in solid tumor entities. Oncol Res 2023; 31:101-115. [PMID: 37304235 PMCID: PMC10208000 DOI: 10.32604/or.2023.028105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/16/2023] [Indexed: 06/13/2023] Open
Abstract
LIN28B is an RNA-binding protein that targets a broad range of microRNAs and modulates their maturation and activity. Under normal conditions, LIN28B is exclusively expressed in embryogenic stem cells, blocking differentiation and promoting proliferation. In addition, it can play a role in epithelial-to-mesenchymal transition by repressing the biogenesis of let-7 microRNAs. In malignancies, LIN28B is frequently overexpressed, which is associated with increased tumor aggressiveness and metastatic properties. In this review, we discuss the molecular mechanisms of LIN28B in promoting tumor progression and metastasis in solid tumor entities and its potential use as a clinical therapeutic target and biomarker.
Collapse
Affiliation(s)
- TABEA GEWALT
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - KA-WON NOH
- Institute for Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - LYDIA MEDER
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Mildred Scheel School of Oncology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Al-Noshokaty TM, Mansour A, Abdelhamid R, Abdellatif N, Alaaeldien A, Reda T, Abdelmaksoud NM, Doghish AS, Abulsoud AI, Elshaer SS. Role of long non-coding RNAs in pancreatic cancer pathogenesis and treatment resistance- A review. Pathol Res Pract 2023; 245:154438. [PMID: 37043965 DOI: 10.1016/j.prp.2023.154438] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023]
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers associated with poor prognosis. The lack of reliable means of early cancer detection contributes to this disease's dismal prognosis. Long non-coding RNAs (LncRNAs) are protein-free RNAs produced by genome transcription; they play critical roles in gene expression regulation, epigenetic modification, cell proliferation, differentiation, and reproduction. Recent research has shown that lncRNAs play important regulatory roles in PC behaviors, in addition to their recently found functions. Several in-depth investigations have shown that lncRNAs are strongly linked to PC development and progression. Here, we discuss how lncRNAs, which are often overlooked, play many roles as regulators in the molecular mechanism underlying PC. This review also discusses the involved LncRNAs in PC pathogenesis and treatment resistance.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr, Cairo 11231, Egypt.
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr, Cairo, Egypt
| |
Collapse
|
29
|
Han X, Li B, Zhang S. MIR503HG: A potential diagnostic and therapeutic target in human diseases. Biomed Pharmacother 2023; 160:114314. [PMID: 36736276 DOI: 10.1016/j.biopha.2023.114314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
LncRNAs are involved in many physiological and pathological processes, including chromatin remodeling, transcription, posttranscriptional gene expression, mRNA stability, translation, and posttranslational modification, and their functions depend on subcellular localization. MIR503HG is a lncRNA as well as a host gene for the miRNAs miR-503 and miR-424. MIR503HG functions independently or synergistically with miR-503. MIR503HG affects cell proliferation, invasion, metastasis, apoptosis, angiogenesis, and other biological behaviors. The mechanism of MIR503HG in disease includes interaction with protein, sponging miRNA to regulate downstream target gene, and participation in NF-κB, TGF-β, ERK/MAPK, and PI3K/AKT signaling pathways. In this review, we summarize the molecular mechanisms of MIR503HG in disease and its potential applications in diagnosis, prognosis, and treatment. We also raise some unanswered questions in this area, providing insights for future research.
Collapse
Affiliation(s)
- Xue Han
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| | - Bo Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China. libo--
| | - Shitai Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No.36 Sanhao Street, Shenyang, Liaoning Province, China.
| |
Collapse
|
30
|
HAN ZY, HUANG SJ, WANG R, GUAN HQ. Screening of differential circRNAs in the placenta of patients with preeclampsia and their regulatory mechanism. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.22.02913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
31
|
Correia JS, Mirón-Barroso S, Hutchings C, Ottaviani S, Somuncuoğlu B, Castellano L, Porter AE, Krell J, Georgiou TK. How does the polymer architecture and position of cationic charges affect cell viability? Polym Chem 2023; 14:303-317. [PMID: 36760606 PMCID: PMC9846193 DOI: 10.1039/d2py01012g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Polymer chemistry, composition and molar mass are factors that are known to affect cytotoxicity, however the influence of polymer architecture has not been investigated systematically. In this study the influence of the position of the cationic charges along the polymer chain on cytotoxicity was investigated while keeping constant the other polymer characteristics. Specifically, copolymers of various architectures, based on a cationic pH responsive monomer, 2-(dimethylamino)ethyl methacrylate (DMAEMA) and a non-ionic hydrophilic monomer, oligo(ethylene glycol)methyl ether methacrylate (OEGMA) were engineered and their toxicity towards a panel of cell lines investigated. Of the seven different polymer architectures examined, the block-like structures were less cytotoxic than statistical or gradient/tapered architectures. These findings will assist in developing future vectors for nucleic acid delivery.
Collapse
Affiliation(s)
| | | | | | - Silvia Ottaviani
- The John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent UniversityNottingham NG11 8NSUK,Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK
| | | | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM)London W12 0NNUK,School of Life Sciences, John Maynard Smith Building, University of SussexBrightonUK
| | | | - Jonathan Krell
- Department of Surgery & Cancer, Imperial College LondonUK
| | | |
Collapse
|
32
|
Liu S, Liu T, Jiang J, Guo H, Yang R. p53 mutation and deletion contribute to tumor immune evasion. Front Genet 2023; 14:1088455. [PMID: 36891151 PMCID: PMC9986462 DOI: 10.3389/fgene.2023.1088455] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/11/2023] [Indexed: 02/22/2023] Open
Abstract
TP53 (or p53) is widely accepted to be a tumor suppressor. Upon various cellular stresses, p53 mediates cell cycle arrest and apoptosis to maintain genomic stability. p53 is also discovered to suppress tumor growth through regulating metabolism and ferroptosis. However, p53 is always lost or mutated in human and the loss or mutation of p53 is related to a high risk of tumors. Although the link between p53 and cancer has been well established, how the different p53 status of tumor cells help themselves evade immune response remains largely elusive. Understanding the molecular mechanisms of different status of p53 and tumor immune evasion can help optimize the currently used therapies. In this context, we discussed the how the antigen presentation and tumor antigen expression mode altered and described how the tumor cells shape a suppressive tumor immune microenvironment to facilitate its proliferation and metastasis.
Collapse
Affiliation(s)
- Siyang Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tianyao Liu
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiaxuan Jiang
- Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Rong Yang
- Department of Urology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
33
|
Wu Y, Wang Z, Yu S, Liu D, Sun L. LncmiRHG-MIR100HG: A new budding star in cancer. Front Oncol 2022; 12:997532. [PMID: 36212400 PMCID: PMC9544809 DOI: 10.3389/fonc.2022.997532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
MIR100HG, also known as lncRNA mir-100-let-7a-2-mir-125b-1 cluster host gene, is a new and critical regulator in cancers in recent years. MIR100HG is dysregulated in various cancers and plays an oncogenic or tumor-suppressive role, which participates in many tumor cell biology processes and cancer-related pathways. The errant expression of MIR100HG has inspired people to investigate the function of MIR100HG and its diagnostic and therapeutic potential in cancers. Many studies have indicated that dysregulated expression of MIR100HG is markedly correlated with poor prognosis and clinicopathological features. In this review, we will highlight the characteristics and introduce the role of MIR100HG in different cancers, and summarize the molecular mechanism, pathways, chemoresistance, and current research progress of MIR100HG in cancers. Furthermore, some open questions in this rapidly advancing field are proposed. These updates clarify our understanding of MIR100HG in cancers, which may pave the way for the application of MIR100HG-targeting approaches in future cancer diagnosis, prognosis, and therapy.
Collapse
Affiliation(s)
- Yingnan Wu
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhenzhen Wang
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shan Yu
- Department of Pathology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dongzhe Liu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Litao Sun, ; Dongzhe Liu,
| | - Litao Sun
- Cancer Center, Department of Ultrasound Medicine, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital of Hangzhou Medical College, Hangzhou, China
- *Correspondence: Litao Sun, ; Dongzhe Liu,
| |
Collapse
|
34
|
Yang H, Zhang W, Ding J, Hu J, Sun Y, Peng W, Chu Y, Xie L, Mei Z, Shao Z, Xiao Y. A novel genomic instability-derived lncRNA signature to predict prognosis and immune characteristics of pancreatic ductal adenocarcinoma. Front Immunol 2022; 13:970588. [PMID: 36148233 PMCID: PMC9486402 DOI: 10.3389/fimmu.2022.970588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignant tumor of the digestive system. Its grim prognosis is mainly attributed to the lack of means for early diagnosis and poor response to treatments. Genomic instability is shown to be an important cancer feature and prognostic factor, and its pattern and extent may be associated with poor treatment outcomes in PDAC. Recently, it has been reported that long non-coding RNAs (lncRNAs) play a key role in maintaining genomic instability. However, the identification and clinical significance of genomic instability-related lncRNAs in PDAC have not been fully elucidated. Methods Genomic instability-derived lncRNA signature (GILncSig) was constructed based on the results of multiple regression analysis combined with genomic instability-associated lncRNAs and its predictive power was verified by the Kaplan-Meier method. And real-time quantitative polymerase chain reaction (qRT-PCR) was used for simple validation in human cancers and their adjacent non-cancerous tissues. In addition, the correlation between GILncSig and tumor microenvironment (TME) and epithelial-mesenchymal transition (EMT) was investigated by Pearson correlation analysis. Results The computational framework identified 206 lncRNAs associated with genomic instability in PDAC and was subsequently used to construct a genome instability-derived five lncRNA-based gene signature. Afterwards, we successfully validated its prognostic capacity in The Cancer Genome Atlas (TCGA) cohort. In addition, via careful examination of the transcriptome expression profile of PDAC patients, we discovered that GILncSig is associated with EMT and an adaptive immunity deficient immune profile within TME. Conclusions Our study established a genomic instability-associated lncRNAs-derived model (GILncSig) for prognosis prediction in patients with PDAC, and revealed the potential functional regulatory role of GILncSig.
Collapse
Affiliation(s)
- Huijie Yang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weiwen Zhang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jin Ding
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingyi Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Sun
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lingxiang Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zubing Mei
- Department of Anorectal Surgery, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Anorectal Disease Institute of Shuguang Hospital, Shanghai, China
| | - Zhuo Shao
- Department of General Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Yang Xiao, ; Zhuo Shao,
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Yang Xiao, ; Zhuo Shao,
| |
Collapse
|
35
|
Zhu X, Liang R, Lan T, Ding D, Huang S, Shao J, Zheng Z, Chen T, Huang Y, Liu J, Pathak JL, Wei H, Wei B. Tumor-associated macrophage-specific CD155 contributes to M2-phenotype transition, immunosuppression, and tumor progression in colorectal cancer. J Immunother Cancer 2022; 10:jitc-2021-004219. [PMID: 36104099 PMCID: PMC9476138 DOI: 10.1136/jitc-2021-004219] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 12/26/2022] Open
Abstract
Background Onco-immunogenic molecule CD155 is overexpressed in various tumor microenvironments (TME) including in colorectal cancer (CRC). Tumor-associated macrophages (TAMs) are the most abundant immune cells in CRC TME and play a vital role in CRC progression and metastasis. Most studies have focused on investigating the role of CRC cell-specific CD155 on CRC progression, while the contribution of TAMs-specific CD155 is still unknown. Here, we sought to investigate the expression pattern of CD155 in CRC TAMs and its role in tumor immunity and progression. Methods CD155 expression patterns in CRC TAMs and macrophages in paratumor or adjacent normal tissue were analyzed in 50 patients with CRC using flow cytometry and in 141 patients with CRC using immunohistochemistry. The correlation of CD155 expression level in TAMs with M1 and M2 phenotypic transition was analyzed. The role of macrophage-specific CD155 in CRC progression and tumor immune response was investigated in vitro and in vivo. We further analyzed the effect of CRC cells on the regulation of CD155 expression in macrophages. Results CRC TAMs from clinical samples showed robustly higher expression of CD155 than macrophages from paratumor and adjacent normal tissues. The CD155 expression level was higher in TAMs of CRC at III/IV stages compared with the I/II stages and was negatively associated with the survival of patients with CRC. CD155+ TAMs showed an M2 phenotype and higher expression of interleukin (IL)-10 and transforming growth factor (TGF)-β. CD155+ macrophages promoted CRC cell migration, invasion, and tumor growth supporting the findings from the clinical tissue analysis. This effect was mainly regulated by TGF-β-induced STAT3 activation-mediated release of matrix metalloproteinases (MMP)2 and MMP9 in CRC cells. CD155–⁄– bone marrow transplantation in wild-type mice, as well as CD155– macrophages treatment, promoted the antitumor immune response in the mice ectopic CRC model. Additionally, CRC cells released IL-4 to trigger CD155 expression in macrophages indicating the regulatory role of CRC cells in the development of CD155+ TAMs. Conclusions These findings indicated that CD155+ TAMs are responsible for the M2-phenotype transition, immunosuppression, and tumor progression in CRC. The specific localization of CD155+ TAMs in CRC tissue could turn into a potential therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rongpu Liang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianyun Lan
- Central Laboratory, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dongbing Ding
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shengxin Huang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Shao
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zongheng Zheng
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tufeng Chen
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yong Huang
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jianpei Liu
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Hongbo Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bo Wei
- Department of Gastrointestinal Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Mirón-Barroso S, Correia JS, Frampton AE, Lythgoe MP, Clark J, Tookman L, Ottaviani S, Castellano L, Porter AE, Georgiou TK, Krell J. Polymeric Carriers for Delivery of RNA Cancer Therapeutics. Noncoding RNA 2022; 8:ncrna8040058. [PMID: 36005826 PMCID: PMC9412371 DOI: 10.3390/ncrna8040058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
As research uncovers the underpinnings of cancer biology, new targeted therapies have been developed. Many of these therapies are small molecules, such as kinase inhibitors, that target specific proteins; however, only 1% of the genome encodes for proteins and only a subset of these proteins has ‘druggable’ active binding sites. In recent decades, RNA therapeutics have gained popularity due to their ability to affect targets that small molecules cannot. Additionally, they can be manufactured more rapidly and cost-effectively than small molecules or recombinant proteins. RNA therapeutics can be synthesised chemically and altered quickly, which can enable a more personalised approach to cancer treatment. Even though a wide range of RNA therapeutics are being developed for various indications in the oncology setting, none has reached the clinic to date. One of the main reasons for this is attributed to the lack of safe and effective delivery systems for this type of therapeutic. This review focuses on current strategies to overcome these challenges and enable the clinical utility of these novel therapeutic agents in the cancer clinic.
Collapse
Affiliation(s)
- Sofía Mirón-Barroso
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Correspondence:
| | - Joana S. Correia
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Adam E. Frampton
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Mark P. Lythgoe
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - James Clark
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Laura Tookman
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| | - Silvia Ottaviani
- Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK;
| | | | - Alexandra E. Porter
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Theoni K. Georgiou
- Department of Materials, Imperial College London, London SW7 2AZ, UK; (J.S.C.); (A.E.P.); (T.K.G.)
| | - Jonathan Krell
- Department of Surgery and Cancer, Imperial College, London W12 0HS, UK; (A.E.F.); (M.P.L.); (J.C.); (L.T.); (J.K.)
| |
Collapse
|
37
|
Cheung R, Pizza G, Chabosseau P, Rolando D, Tomas A, Burgoyne T, Wu Z, Salowka A, Thapa A, Macklin A, Cao Y, Nguyen-Tu MS, Dickerson MT, Jacobson DA, Marchetti P, Shapiro J, Piemonti L, de Koning E, Leclerc I, Bouzakri K, Sakamoto K, Smith DM, Rutter GA, Martinez-Sanchez A. Glucose-Dependent miR-125b Is a Negative Regulator of β-Cell Function. Diabetes 2022; 71:1525-1545. [PMID: 35476777 PMCID: PMC9998846 DOI: 10.2337/db21-0803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022]
Abstract
Impaired pancreatic β-cell function and insulin secretion are hallmarks of type 2 diabetes. miRNAs are short, noncoding RNAs that silence gene expression vital for the development and function of β cells. We have previously shown that β cell-specific deletion of the important energy sensor AMP-activated protein kinase (AMPK) results in increased miR-125b-5p levels. Nevertheless, the function of this miRNA in β cells is unclear. We hypothesized that miR-125b-5p expression is regulated by glucose and that this miRNA mediates some of the deleterious effects of hyperglycemia in β cells. Here, we show that islet miR-125b-5p expression is upregulated by glucose in an AMPK-dependent manner and that short-term miR-125b-5p overexpression impairs glucose-stimulated insulin secretion (GSIS) in the mouse insulinoma MIN6 cells and in human islets. An unbiased, high-throughput screen in MIN6 cells identified multiple miR-125b-5p targets, including the transporter of lysosomal hydrolases M6pr and the mitochondrial fission regulator Mtfp1. Inactivation of miR-125b-5p in the human β-cell line EndoCβ-H1 shortened mitochondria and enhanced GSIS, whereas mice overexpressing miR-125b-5p selectively in β cells (MIR125B-Tg) were hyperglycemic and glucose intolerant. MIR125B-Tg β cells contained enlarged lysosomal structures and had reduced insulin content and secretion. Collectively, we identify miR-125b as a glucose-controlled regulator of organelle dynamics that modulates insulin secretion.
Collapse
Affiliation(s)
- Rebecca Cheung
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Grazia Pizza
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Delphine Rolando
- Beta Cell Genome Regulation Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Alejandra Tomas
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Thomas Burgoyne
- UCL Institute of Ophthalmology, University College London, London, U.K
| | - Zhiyi Wu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Anna Salowka
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Anusha Thapa
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Annabel Macklin
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Yufei Cao
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
| | - Matthew T. Dickerson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - David A. Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - James Shapiro
- Clinical Islet Laboratory and Clinical Islet Transplant Program, University of Alberta, Edmonton, Canada
| | | | - Eelco de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Karim Bouzakri
- UMR DIATHEC, EA 7294, Centre Européen d'Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Kei Sakamoto
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - David M. Smith
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, U.K
| | - Guy A. Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- CR-CHUM, University of Montreal, Montreal, Quebec, Canada
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, U.K
- Corresponding author: Aida Martinez-Sanchez,
| |
Collapse
|
38
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
39
|
Zhao J, Hu L, Gui W, Xiao L, Wang W, Xia J, Fan H, Li Z, Zhu Q, Hou X, Chu H, Seki E, Yang L. Hepatocyte TGF-β Signaling Inhibiting WAT Browning to Promote NAFLD and Obesity Is Associated With Let-7b-5p. Hepatol Commun 2022; 6:1301-1321. [PMID: 35018737 PMCID: PMC9134819 DOI: 10.1002/hep4.1892] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 01/18/2023] Open
Abstract
Transforming growth factor beta (TGF-β) signaling in hepatocytes promotes steatosis and body weight gain. However, processes that TGF-β signaling in hepatocytes promote pathological body weight gain in nonalcoholic fatty liver disease (NAFLD) are incompletely understood. Obesity and NAFLD were induced by 16 weeks of feeding a high-fat diet (HFD) in hepatocyte-specific TGF-β receptor II-deficient (Tgfbr2ΔHEP ) and Tgfbr2flox/flox mice. In addition, browning of white adipose tissue (WAT) was induced by administration of CL-316,243 (a β3-adrenergic agonist) or cold exposure for 7 days. Compared with Tgfbr2 flox/flox mice, Tgfbr2ΔHEP mice were resistant to steatosis and obesity. The metabolic changes in Tgfbr2ΔHEP mice were due to the increase of mitochondrial oxidative phosphorylation in the liver and white-to-beige fat conversion. A further mechanistic study revealed that exosomal let-7b-5p derived from hepatocytes was robustly elevated after stimulation with palmitic acid and TGF-β. Indeed, let-7b-5p levels were low in the liver, serum exosomes, inguinal WAT, and epididymal WAT in HFD-fed Tgfbr2ΔHEP mice. Moreover, 3T3-L1 cells internalized hepatocyte-derived exosomes. An in vitro experiment demonstrated that let-7b-5p overexpression increased hepatocyte fatty acid transport and inhibited adipocyte-like cell thermogenesis, whereas let-7b-5p inhibitor exerted the opposite effects. Conclusion: Hepatocyte TGF-β-let-7b-5p signaling promotes HFD-induced steatosis and obesity by reducing mitochondrial oxidative phosphorylation and suppressing white-to-beige fat conversion. This effect of hepatocyte TGF-β signaling in metabolism is partially associated with exosomal let-7b-5p.
Collapse
Affiliation(s)
- Jinfang Zhao
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Lilin Hu
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenfang Gui
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Li Xiao
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weijun Wang
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jing Xia
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huiqian Fan
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhonglin Li
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | | | - Xiaohua Hou
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huikuan Chu
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and HepatologyCedars-Sinai Medical CenterLos AngelesCAUSA
| | - Ling Yang
- Division of GastroenterologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
40
|
Tang PCT, Zhang YY, Li JSF, Chan MKK, Chen J, Tang Y, Zhou Y, Zhang D, Leung KT, To KF, Tang SCW, Lan HY, Tang PMK. LncRNA-Dependent Mechanisms of Transforming Growth Factor-β: From Tissue Fibrosis to Cancer Progression. Noncoding RNA 2022; 8:ncrna8030036. [PMID: 35736633 PMCID: PMC9227532 DOI: 10.3390/ncrna8030036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/19/2022] [Accepted: 05/21/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a crucial pathogenic mediator of inflammatory diseases. In tissue fibrosis, TGF-β regulates the pathogenic activity of infiltrated immunocytes and promotes extracellular matrix production via de novo myofibroblast generation and kidney cell activation. In cancer, TGF-β promotes cancer invasion and metastasis by enhancing the stemness and epithelial mesenchymal transition of cancer cells. However, TGF-β is highly pleiotropic in both tissue fibrosis and cancers, and thus, direct targeting of TGF-β may also block its protective anti-inflammatory and tumor-suppressive effects, resulting in undesirable outcomes. Increasing evidence suggests the involvement of long non-coding RNAs (lncRNAs) in TGF-β-driven tissue fibrosis and cancer progression with a high cell-type and disease specificity, serving as an ideal target for therapeutic development. In this review, the mechanism and translational potential of TGF-β-associated lncRNAs in tissue fibrosis and cancer will be discussed.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Ying-Ying Zhang
- Department of Nephrology, Tongji University School of Medicine, Shanghai 200065, China;
| | - Jane Siu-Fan Li
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Jiaoyi Chen
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China; (J.C.); (S.C.-W.T.)
| | - Ying Tang
- Department of Nephrology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510080, China;
| | - Yiming Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China;
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
| | - Sydney Chi-Wai Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Hong Kong 999077, China; (J.C.); (S.C.-W.T.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong 999077, China; (P.C.-T.T.); (J.S.-F.L.); (M.K.-K.C.); (K.-F.T.)
- Correspondence:
| |
Collapse
|
41
|
Overexpression of microRNA-345 Affects the Invasive Capacity of Pancreatic Ductal Adenocarcinoma Cell Lines by Suppressing MUC1 and TJP2 Expression. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12115351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The majority of pancreatic carcinomas are pancreatic ductal adenocarcinomas (PDAC), and the presence of non-invasive pancreatic intraepithelial neoplasia or intraductal papillary mucinous neoplasm, as an associated lesion, is considered important. These microscopic hyperplastic or grossly papillomatous lesions exhibit varying degrees of morphological atypia and may develop into invasive carcinomas. In this study, we investigated whether mucin-1 (MUC1) is involved in the progression of pancreatic carcinoma and examined the mechanisms by which microRNAs regulate MUC1 expression in vitro. In PDAC cell lines, suppression of MUC1 expression reduced cell proliferation and invasion; PDAC cell lines transfected with an miR-345 precursor suppressed the expression of MUC1, and reduced cell proliferation and invasion. Tight junction protein 2 (TJP2), a putative target of miR-345, is regulated by MUC1. The suppression of TJP2 expression reduced cell proliferation by inducing apoptosis. These results suggest that MUC1 and TJP2, the putative target molecules of miR-345, are critical in maintaining the invasive potential of pancreatic carcinoma cells, and regulating their expression may prevent the progression of non-invasive pancreatic intraductal lesions to invasive carcinomas. This study provides new insights for the development of novel molecular targeted therapies for pancreatic carcinomas.
Collapse
|
42
|
Puthdee N, Sriswasdi S, Pisitkun T, Ratanasirintrawoot S, Israsena N, Tangkijvanich P. The LIN28B/TGF-β/TGFBI feedback loop promotes cell migration and tumour initiation potential in cholangiocarcinoma. Cancer Gene Ther 2022; 29:445-455. [PMID: 34548635 PMCID: PMC9113936 DOI: 10.1038/s41417-021-00387-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/25/2021] [Accepted: 09/03/2021] [Indexed: 02/02/2023]
Abstract
Cholangiocarcinoma (CCA), a lethal malignancy of the biliary epithelium, is the second most common primary liver cancer. The poor prognosis of CCA is due to the high rate of tumour invasion and distant metastasis. We found that the RNA-binding protein LIN28B, a known regulator of microRNA biogenesis, stem cell maintenance, and oncogenesis, is expressed in a subpopulation of CCA patients. To further investigate the potential role of LIN28B in CCA pathogenesis, we studied the effect of LIN28B overexpression in the cholangiocyte cell line MMNK-1 and cholangiocarcinoma cell lines HuCCT-1 and KKU-214. Here, we show that enhanced LIN28B expression promoted cancer stem cell-like properties in CCA, including enhanced cell migration, epithelial-to-mesenchymal transition (EMT), increased cell proliferation and spheroid formation. Proteomic analysis revealed TGF-β-induced protein (TGFBI) as a novel LIN28B target gene, and further analysis showed upregulation of other components of the TGF-β signalling pathway, including TGF-β receptor type I (TGFBRI) expression and cytokine TGFB-I, II and III secretion. Importantly, the small molecule TGF-β inhibitor SB431542 negated the effects of LIN28B on both cell migration and clonogenic potential. Overexpression of TGFBI alone promoted cholangiocarcinoma cell migration and EMT changes, but not spheroid formation, suggesting that TGFBI partially contributes to LIN28B-mediated aggressive cell behaviour. These observations are consistent with a model in which TGF-β and LIN28B work together to form a positive feedback loop during cholangiocarcinoma metastasis and provide a therapeutic intervention opportunity.
Collapse
Affiliation(s)
- Nattapong Puthdee
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Department of Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Nipan Israsena
- Center of Excellence for Stem Cell and Cell Therapy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Pisit Tangkijvanich
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hepatitis and Liver Cancer, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
43
|
Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022; 13:850093. [PMID: 35493517 PMCID: PMC9046560 DOI: 10.3389/fimmu.2022.850093] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation involves interactions between various immune cells, inflammatory cells, chemokines and cytokines in pancreatic cancer. Cancer cells as well as surrounding stromal and inflammatory cells establish an inflammatory tumor microenvironment (TME). Inflammation is closely associated with immunity. Meanwhile, immune cells are involved in both inflammation and immune response. Tumor-promoting inflammation and tumor-suppressive immunity are two main characteristics of the tumor microenvironment in pancreatic cancer. Yet, the mechanism of inflammation and immune response in pancreatic cancer development is still unclear due to the dual role of some cytokines and the complicated crosstalk between tumor and stromal components in TME. In this review, we outline the principal cytokines and stromal cells in the pancreatic TME that are involved in the tumor-promoting and immunosuppressive effects of inflammation, and discuss the interaction between inflammation and stromal components in pancreatic cancer progression. Moreover, the clinical approaches based on targeting TME in pancreatic cancer are also summarized. Defining the mechanisms of interplay between inflammation and stromal components will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Truong TTT, Bortolasci CC, Spolding B, Panizzutti B, Liu ZSJ, Kidnapillai S, Richardson M, Gray L, Smith CM, Dean OM, Kim JH, Berk M, Walder K. Co-Expression Networks Unveiled Long Non-Coding RNAs as Molecular Targets of Drugs Used to Treat Bipolar Disorder. Front Pharmacol 2022; 13:873271. [PMID: 35462908 PMCID: PMC9024411 DOI: 10.3389/fphar.2022.873271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) may play a role in psychiatric diseases including bipolar disorder (BD). We investigated mRNA-lncRNA co-expression patterns in neuronal-like cells treated with widely prescribed BD medications. The aim was to unveil insights into the complex mechanisms of BD medications and highlight potential targets for new drug development. Human neuronal-like (NT2-N) cells were treated with either lamotrigine, lithium, quetiapine, valproate or vehicle for 24 h. Genome-wide mRNA expression was quantified for weighted gene co-expression network analysis (WGCNA) to correlate the expression levels of mRNAs with lncRNAs. Functional enrichment analysis and hub lncRNA identification was conducted on key co-expressed modules associated with the drug response. We constructed lncRNA-mRNA co-expression networks and identified key modules underlying these treatments, as well as their enriched biological functions. Processes enriched in key modules included synaptic vesicle cycle, endoplasmic reticulum-related functions and neurodevelopment. Several lncRNAs such as GAS6-AS1 and MIR100HG were highlighted as driver genes of key modules. Our study demonstrates the key role of lncRNAs in the mechanism(s) of action of BD drugs. Several lncRNAs have been suggested as major regulators of medication effects and are worthy of further investigation as novel drug targets to treat BD.
Collapse
Affiliation(s)
- Trang TT. Truong
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Chiara C. Bortolasci
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Briana Spolding
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Bruna Panizzutti
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Zoe SJ. Liu
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Srisaiyini Kidnapillai
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Mark Richardson
- Genomics Centre, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| | - Laura Gray
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Craig M. Smith
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| | - Olivia M. Dean
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Jee Hyun Kim
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael Berk
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
| | - Ken Walder
- School of Medicine, IMPACT, Institute for Innovation in Physical and Mental health and Clinical Translation, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
45
|
Hanusek K, Rybicka B, Popławski P, Adamiok-Ostrowska A, Głuchowska K, Piekiełko-Witkowska A, Bogusławska J. TGF‑β1 affects the renal cancer miRNome and regulates tumor cells proliferation. Int J Mol Med 2022; 49:52. [PMID: 35179216 PMCID: PMC8904080 DOI: 10.3892/ijmm.2022.5108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
TGF-β1 is a pleiotropic cytokine that can either promote or inhibit cancer development and progression. It was previously found that TGF-β1 can regulate the expression of several microRNAs (miR or miRNA) involved in the progression of renal cell carcinoma (RCC). Therefore, the present study aimed to analyze the effects of TGF-β1 on the global RCC miRNome. It was found that TGF-β1 can regulate a complex network consisting of miRNAs and mRNAs involved in RCC transformation. In particular, TGF-β1 was revealed to regulate the proliferation of RCC cells while concomitantly modifying the expression of oncogenic regulators, including avian erythroblastosis virus E26 (V-Ets) oncogene homolog-1 (ETS1). In addition, TGF-β1 was demonstrated to regulate the expression of a number of miRNAs including miR-30c-5p, miR-155-5p, miR-181a-5p and miR-181b-5p. By contrast, TGF-β1 reciprocally modified the expression of genes encoding TGF-β1 receptors and SMADs, indicating a novel regulatory feedback mechanism mediated through the miRNAs. These data suggested that ETS1 served different roles in different subtypes of RCC tumors, specifically by functioning as an oncogene in clear cell RCC while as a tumor suppressor in papillary RCC.
Collapse
Affiliation(s)
- Karolina Hanusek
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Beata Rybicka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Piotr Popławski
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Anna Adamiok-Ostrowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | - Katarzyna Głuchowska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| | | | - Joanna Bogusławska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01‑813 Warsaw, Poland
| |
Collapse
|
46
|
Shen H, Ye F, Xu D, Fang L, Zhang X, Zhu J. The MYEOV-MYC association promotes oncogenic miR-17/93-5p expression in pancreatic ductal adenocarcinoma. Cell Death Dis 2021; 13:15. [PMID: 34930894 PMCID: PMC8688437 DOI: 10.1038/s41419-021-04387-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/18/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy worldwide. As metastasis and malignant progression are primarily responsible for the poor clinical outcomes of PDAC, identifying key genes involved in these processes and the underlying molecular mechanisms of PDAC is vital. In this study, by analyzing TCGA PDAC data and matched GTEx data, we found that MYEOV expression is associated with poor survival in PDAC patients and higher in carcinoma tissues than in healthy tissues. Elevated levels of MYEOV led to enhanced cell proliferation, invasion and migration in vitro and in vivo. Transcriptome analysis results revealed that MYEOV mediates global alterations in gene expression profiles in PDAC cells. MiRNA-seq analysis showed that MYEOV regulates the expression levels of miR-17-5p and miR-93-5p, and its depletion resulted in reduced cell proliferation, invasion and migration, as observed in MYEOV-knockdown PDAC cells. These effects are likely due to the ability of MYEOV to regulate enrichment of the transcription factor MYC at the gene promoter regions of the two miRNAs. Furthermore, we identified a complex containing MYEOV and MYC in the nucleus, providing additional evidence for the association of MYEOV with MYC. Taken together, our results suggest that MYEOV promotes oncogenic miR-17/93-5p expression by associating with MYC, contributing to PDAC progression.
Collapse
Affiliation(s)
- Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuqiang Ye
- Huadong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liangliang Fang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Juanjuan Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
47
|
Xu N, Zhao Y, Bu H, Tan S, Dong G, Liu J, Wang M, Jiang J, Yuan B, Li R. Cochlioquinone derivative CoB1 induces cytostatic autophagy in lung cancer through miRNA-125b and Foxp3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153742. [PMID: 34624808 DOI: 10.1016/j.phymed.2021.153742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/01/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death worldwide, yet no effective medication for this disease is available. Cochlioquinone B derivative (CoB1), purified from Salvia miltiorrhiza endophytic Bipolaris sorokiniana, affects the defense against pulmonary pathogens by regulating inflammatory responses. However, the effect of CoB1 on lung cancer and the underlying molecular mechanisms remain unknown. In the present study, we investigate the protective effects of CoB1 on lung cancer and explore its underlying mechanism. METHOD We examined the inhibitory effect of CoB1 on lung cancer cells (A549 cells) by MTT and colony formation assay. The effect of CoB1 on cytostatic autophagy in lung cancer cells was verified by Western blot, transmission electron microscopy, and confocal microscopy. The differentially expressed miRNAs were identified using quantitative RT-PCR. Luciferase assay and Northern blot were performed to verify the correlation between miRNA-125b and Foxp3. Protein expression in autophagy-related pathways was detected by Western blot. Xenograft tumor models were constructed to explore the inhibitory effect of CoB1 and the role of miRNA-125b as a suppressor in lung cancer in vivo. RESULT CoB1 inhibited lung cancer cell proliferation by inducing cytostatic autophagy both in vitro and in vivo. CoB1-induced autophagy was related to blocking of the PI3K/Akt1/mTOR signaling pathway. In addition, CoB1 induced miR-125b expression via activating the TAK1/MKK4/JNK/Smad axis, thereby reducing Foxp3 expression and further inducing autophagy. CONCLUSION This study is the first to report the specific inhibitory function of CoB1 purified from Salvia miltiorrhiza endophytic Bipolaris sorokiniana in lung cancer, which may be due to the induction of autophagy. This study provides evidence and novel insights into the anticancer efficacy of CoB1.
Collapse
Affiliation(s)
- Nana Xu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Laboratory of Morphology, Xuzhou Medical University, Xuzhou 221004, P. R. China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Yunyun Zhao
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Huimin Bu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Department of Physiology, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Shirui Tan
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Guokai Dong
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China; Jiangsu Medical Engineering Research Center of Gene Detection, Xuzhou Medical University, Xuzhou 221004, P. R. China
| | - Jinjuan Liu
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Meng Wang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Jihong Jiang
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Bo Yuan
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | - Rongpeng Li
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| |
Collapse
|
48
|
YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ 2021; 28:3105-3124. [PMID: 34021267 PMCID: PMC8563797 DOI: 10.1038/s41418-021-00804-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. It thrives in a malnourished environment; however, little is known about the mechanisms by which PDAC cells actively promote aerobic glycolysis to maintain their metabolic needs. Gene Expression Omnibus (GEO) was used to identify differentially expressed miRNAs. The expression pattern of miR-30d in normal and PDAC tissues was studied by in situ hybridization. The role of miR-30d/RUNX1 in vitro and in vivo was evaluated by CCK8 assay and clonogenic formation as well as transwell experiment, subcutaneous xenograft model and liver metastasis model, respectively. Glucose uptake, ATP and lactate production were tested to study the regulatory effect of miR-30d/RUNX1 on aerobic glycolysis in PDAC cells. Quantitative real-time PCR, western blot, Chip assay, promoter luciferase activity, RIP, MeRIP, and RNA stability assay were used to explore the molecular mechanism of YTHDC1/miR-30d/RUNX1 in PDAC. Here, we discover that miR-30d expression was remarkably decreased in PDAC tissues and associated with good prognosis, contributed to the suppression of tumor growth and metastasis, and attenuation of Warburg effect. Mechanistically, the m6A reader YTHDC1 facilitated the biogenesis of mature miR-30d via m6A-mediated regulation of mRNA stability. Then, miR-30d inhibited aerobic glycolysis through regulating SLC2A1 and HK1 expression by directly targeting the transcription factor RUNX1, which bound to the promoters of the SLC2A1 and HK1 genes. Moreover, miR-30d was clinically inversely correlated with RUNX1, SLC2A1 and HK1, which function as adverse prognosis factors for overall survival in PDAC tissues. Overall, we demonstrated that miR-30d is a functional and clinical tumor-suppressive gene in PDAC. Our findings further uncover that miR-30d is a novel target for YTHDC1 through m6A modification, and miR-30d represses pancreatic tumorigenesis via suppressing aerobic glycolysis.
Collapse
|
49
|
Principe DR, Timbers KE, Atia LG, Koch RM, Rana A. TGFβ Signaling in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2021; 13:5086. [PMID: 34680235 PMCID: PMC8533869 DOI: 10.3390/cancers13205086] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with poor clinical outcomes, largely attributed to incomplete responses to standard therapeutic approaches. Recently, selective inhibitors of the Transforming Growth Factor β (TGFβ) signaling pathway have shown early promise in the treatment of PDAC, particularly as a means of augmenting responses to chemo- and immunotherapies. However, TGFβ is a potent and pleiotropic cytokine with several seemingly paradoxical roles within the pancreatic tumor microenvironment (TME). Although TGFβ signaling can have potent tumor-suppressive effects in epithelial cells, TGFβ signaling also accelerates pancreatic tumorigenesis by enhancing epithelial-to-mesenchymal transition (EMT), fibrosis, and the evasion of the cytotoxic immune surveillance program. Here, we discuss the known roles of TGFβ signaling in pancreatic carcinogenesis, the biologic consequences of the genetic inactivation of select components of the TGFβ pathway, as well as past and present attempts to advance TGFβ inhibitors in the treatment of PDAC patients.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Kaytlin E. Timbers
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Luke G. Atia
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Regina M. Koch
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.E.T.); (L.G.A.); (R.M.K.)
| | - Ajay Rana
- Jesse Brown Veterans Affairs Hospital, Chicago, IL 60612, USA
| |
Collapse
|
50
|
Xu F, Hua Q, Zhang A, Di Z, Wang Y, Zhao L, Yang H, Liu J, Huang G. LncRNA AC020978 facilitates non-small cell lung cancer progression by interacting with malate dehydrogenase 2 and activating the AKT pathway. Cancer Sci 2021; 112:4501-4514. [PMID: 34424600 PMCID: PMC8586664 DOI: 10.1111/cas.15116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
Long non–coding RNA AC020978 (lncRNA AC020978) is an oncogenic regulator of non–small cell lung cancer (NSCLC). However, the function of AC020978 in regulating NSCLC metastasis and the potential molecular mechanism remains largely unknown. In this study, we evaluated the expression levels of AC020978 in a series of NSCLC tissues using FISH assays and found that higher AC020978 expression levels were closely associated with metastasis and unfavorable prognosis. Functional studies showed that AC020978 promoted NSCLC migration and invasion both in vitro and in vivo. Further investigation demonstrated that AC020978 interacted with malate dehydrogenase 2 (MDH2) and maintained MDH2 stability. Knockdown of MDH2 weakened the facilitating effect on cell metastasis and 2‐hydroxyglutarate (2‐HG) metabolism in AC020978‐overexpressed NSCLC cells. RNA sequencing, bioinformatic analysis, and western blotting revealed that AC020978 was associated with the AKT signaling pathway. Taken together, our findings revealed that AC020978 might serve as a prognostic biomarker and activate the AKT pathway by stabilizing MDH2, leading to metastasis and progression of NSCLC.
Collapse
Affiliation(s)
- Fei Xu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Hua
- Department of Nuclear Medicine, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Aimi Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zhang Di
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yining Wang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|