1
|
Tuschhoff BM, Kennedy DA. Detecting and quantifying heterogeneity in susceptibility using contact tracing data. PLoS Comput Biol 2024; 20:e1012310. [PMID: 39074159 PMCID: PMC11309420 DOI: 10.1371/journal.pcbi.1012310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 08/08/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
The presence of heterogeneity in susceptibility, differences between hosts in their likelihood of becoming infected, can fundamentally alter disease dynamics and public health responses, for example, by changing the final epidemic size, the duration of an epidemic, and even the vaccination threshold required to achieve herd immunity. Yet, heterogeneity in susceptibility is notoriously difficult to detect and measure, especially early in an epidemic. Here we develop a method that can be used to detect and estimate heterogeneity in susceptibility given contact by using contact tracing data, which are typically collected early in the course of an outbreak. This approach provides the capability, given sufficient data, to estimate and account for the effects of this heterogeneity before they become apparent during an epidemic. It additionally provides the capability to analyze the wealth of contact tracing data available for previous epidemics and estimate heterogeneity in susceptibility for disease systems in which it has never been estimated previously. The premise of our approach is that highly susceptible individuals become infected more often than less susceptible individuals, and so individuals not infected after appearing in contact networks should be less susceptible than average. This change in susceptibility can be detected and quantified when individuals show up in a second contact network after not being infected in the first. To develop our method, we simulated contact tracing data from artificial populations with known levels of heterogeneity in susceptibility according to underlying discrete or continuous distributions of susceptibilities. We analyzed these data to determine the parameter space under which we are able to detect heterogeneity and the accuracy with which we are able to estimate it. We found that our power to detect heterogeneity increases with larger sample sizes, greater heterogeneity, and intermediate fractions of contacts becoming infected in the discrete case or greater fractions of contacts becoming infected in the continuous case. We also found that we are able to reliably estimate heterogeneity and disease dynamics. Ultimately, this means that contact tracing data alone are sufficient to detect and quantify heterogeneity in susceptibility.
Collapse
Affiliation(s)
- Beth M. Tuschhoff
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David A. Kennedy
- Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
2
|
Maciel-de-Freitas R, Sauer FG, Kliemke K, Garcia GA, Pavan MG, David MR, Schmidt-Chanasit J, Hoffmann A, Lühken R. Wolbachia strains wMel and wAlbB differentially affect Aedes aegypti traits related to fecundity. Microbiol Spectr 2024; 12:e0012824. [PMID: 38483475 PMCID: PMC10986601 DOI: 10.1128/spectrum.00128-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Two Wolbachia strains, wMel and wAlbB, have been transinfected into Aedes aegypti mosquitoes for population replacement with the aim of reducing dengue transmission. Epidemiological data from various endemic sites suggest a pronounced decrease in dengue transmission after implementing this strategy. In this study, we investigated the impact of the Wolbachia strains wMel and wAlbB on Ae. aegypti fitness in a common genetic background. We found that Ae. aegypti females infected with the wMel strain exhibited several significant differences compared with those infected with the wAlbB strain. Specifically, wMel-infected females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on Ae. aegypti fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations in endemic settings. Further research is needed to better understand the underlying mechanisms responsible for these differences in fitness effects and their potential impact on the long-term efficacy of Wolbachia-based dengue control programs.IMPORTANCEThe transmission of arboviruses such as dengue, Zika, and chikungunya is on the rise globally. Among the most promising strategies to reduce arbovirus burden is the release of one out of two strains of Wolbachia-infected Aedes aegypti: wMel and wAlbB. One critical aspect of whether this approach will succeed involves the fitness cost of either Wolbachia strains on mosquito life history traits. For instance, we found that wMel-infected Ae. aegypti females laid significantly fewer eggs, ingested a lower amount of blood, had a reduced egg production rate, and exhibited a decreased Wolbachia density at a later age compared with mosquitoes infected with the wAlbB strain. Conversely, the wAlbB strain showed only mild negative effects when compared with Wolbachia-uninfected specimens. These differential effects on mosquito fitness following infection with either wMel or wAlbB may have important implications for the success of population replacement strategies in invading native Ae. aegypti populations.
Collapse
Affiliation(s)
- Rafael Maciel-de-Freitas
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felix G. Sauer
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Gabriela A. Garcia
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Márcio G. Pavan
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Mariana R. David
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Jonas Schmidt-Chanasit
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, University of Hamburg, Hamburg, Germany
| | - Ary Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Renke Lühken
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
3
|
Butterworth NJ, Heffernan L, Hall MD. Is there a sicker sex? Dose relationships modify male-female differences in infection prevalence. Proc Biol Sci 2024; 291:20232575. [PMID: 38196362 PMCID: PMC10777155 DOI: 10.1098/rspb.2023.2575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
Throughout the animal kingdom, there are striking differences in the propensity of one sex or the other to become infected. However, precisely when we should expect males or females to be the sicker sex remains unclear. A major barrier to answering this question is that very few studies have considered how the susceptibility of males and females changes across the full range of pathogen doses encountered in nature. Without quantifying this 'dose-susceptibility' relationship, we have likely underestimated the scope for sex differences to arise. Here, we use the Daphnia magnia-Pasteuria ramosa system to reveal that sex differences in susceptibility are entirely dose-dependent, with pathogens having a higher probability of successfully establishing an infection in mature males at low doses, but mature females at high doses. The scope for male-female differences to emerge is therefore much greater than previously appreciated-extending to sex differences in the upper limits to infection success, per-propagule infectivity risks and density-dependent pathogen behaviour. Applying this expanded scope across the animal kingdom will help us understand when and why a sicker sex emerges, and the implications for diseases in nature-where sex ratios, age structure and pathogen densities vary drastically.
Collapse
Affiliation(s)
- Nathan J. Butterworth
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Lindsey Heffernan
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Matthew D. Hall
- School of Biological Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
4
|
Miura F, Klinkenberg D, Wallinga J. Quantifying the Individual Variation in Susceptibility to Endemic Coronavirus and SARS-CoV-2 with Human Challenge Trials. Epidemiology 2024; 35:113-117. [PMID: 38032803 PMCID: PMC10683973 DOI: 10.1097/ede.0000000000001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
Human challenge trials reveal how the infection risk depends on a given infectious dose. We propose a mathematical framework to analyze and interpret the outcomes of human challenge trials by incorporating the variability between individuals in susceptibility to infection. We illustrate the framework for two distinctive diseases; endemic diseases where a fraction of the study population has been exposed to the target pathogen previously and is thus immune, and novel diseases where the study population is fully susceptible. Based on available data from published trials, we estimate the immune proportion and the variation in susceptibility to endemic HCoV-229E and present plausible infection risks with SARS-CoV-2 over multiple orders of magnitude of the infectious dose. The results show that the proposed method captures heterogeneous background susceptibility in the study population, and we suggest ways to improve the design of future trials and to translate their outcomes to the general population.
Collapse
Affiliation(s)
- Fuminari Miura
- From the Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Don Klinkenberg
- From the Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jacco Wallinga
- From the Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Guo Y, Shao J, Wu Y, Li Y. Using Wolbachia to control rice planthopper populations: progress and challenges. Front Microbiol 2023; 14:1244239. [PMID: 37779725 PMCID: PMC10537216 DOI: 10.3389/fmicb.2023.1244239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Wolbachia have been developed as a tool for protecting humans from mosquito populations and mosquito-borne diseases. The success of using Wolbachia relies on the facts that Wolbachia are maternally transmitted and that Wolbachia-induced cytoplasmic incompatibility provides a selective advantage to infected over uninfected females, ensuring that Wolbachia rapidly spread through the target pest population. Most transinfected Wolbachia exhibit a strong antiviral response in novel hosts, thus making it an extremely efficient technique. Although Wolbachia has only been used to control mosquitoes so far, great progress has been made in developing Wolbachia-based approaches to protect plants from rice pests and their associated diseases. Here, we synthesize the current knowledge about the important phenotypic effects of Wolbachia used to control mosquito populations and the literature on the interactions between Wolbachia and rice pest planthoppers. Our aim is to link findings from Wolbachia-mediated mosquito control programs to possible applications in planthoppers.
Collapse
Affiliation(s)
| | | | | | - Yifeng Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
6
|
Ant TH, Mancini MV, McNamara CJ, Rainey SM, Sinkins SP. Wolbachia-Virus interactions and arbovirus control through population replacement in mosquitoes. Pathog Glob Health 2023; 117:245-258. [PMID: 36205550 PMCID: PMC10081064 DOI: 10.1080/20477724.2022.2117939] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022] Open
Abstract
Following transfer into the primary arbovirus vector Aedes aegypti, several strains of the intracellular bacterium Wolbachia have been shown to inhibit the transmission of dengue, Zika, and chikungunya viruses, important human pathogens that cause significant morbidity and mortality worldwide. In addition to pathogen inhibition, many Wolbachia strains manipulate host reproduction, resulting in an invasive capacity of the bacterium in insect populations. This has led to the deployment of Wolbachia as a dengue control tool, and trials have reported significant reductions in transmission in release areas. Here, we discuss the possible mechanisms of Wolbachia-virus inhibition and the implications for long-term success of dengue control. We also consider the evidence presented in several reports that Wolbachia may cause an enhancement of replication of certain viruses under particular conditions, and conclude that these should not cause any concerns with respect to the application of Wolbachia to arbovirus control.
Collapse
Affiliation(s)
- Thomas H Ant
- Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Maria Vittoria Mancini
- Centre for Virus Research, University of Glasgow, Glasgow, UK
- Polo d’Innovazione di Genomica, Genetica e Biologia, Terni, Italy
| | | | | | | |
Collapse
|
7
|
Zhao D, Ni X, Zhang Z, Niu H, Qiu R, Guo H. Bt protein hasten entomopathogenic fungi-induced death of nontarget pest whitefly by suppressing protective symbionts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158588. [PMID: 36087663 DOI: 10.1016/j.scitotenv.2022.158588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/29/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
The risk assessment of Bacillus thuringiensis (Bt) crops on nontarget pests has received much attention. Despite the knowledge of various beneficial bacterial symbionts in pests, whether Bt proteins affect these symbionts and subsequently alter the pest's ecology remains largely unknown. The whitefly Bemisia tabaci is one of the most serious nontarget pests in Bt cotton. Here, we explored the Bt Cry1Ac protein-induced changes in whitefly symbiont abundance and the subsequent effects on whitefly response against a naturally prevalent entomopathogenic fungus Cordyceps javanica. The obligate symbiont 'Candidatus Portiera aleyrodidarum' (hereafter P. aleyrodidarum) as well as facultative symbionts 'Candidatus Hamiltonella defensa' (hereafter H. defensa), 'Candidatus Cardinium hertigii' (hereafter C. hertigii) and 'Candidatus Rickettsia bellii' (hereafter R. bellii) dominate the microbial community of whiteflies. The Bt exposure had no effects on H. defensa infected (H) and H. defensa-C. hertigii doubly infected (HC) whiteflies, but decreased the total copy number of symbionts as well as the R. bellii proportion in H. defensa-C. hertigii- R. bellii triply infected whiteflies (HCR). C. javanica caused whitefly adults 100 % mortality within 8 days. Without Bt protein exposure, HCR whiteflies survived significantly longer than H and HC whiteflies sprayed by C. javanica, suggesting that R. bellii confers protection. However, in Bt-exposed groups, C. javanica generated synchronous death of H, HC and HCR whiteflies. Specifically, in H and HC whiteflies, Bt protein-exposure showed no significant difference in progress of death caused by C. javanica. But in HCR whiteflies, Bt exposure hastened death induced by C. javanica, suppressing the R. bellii-conferred protection. This is the first report revealing that Bt protein altered symbiont community conferred adverse effects on nontarget pests, providing a new perspective for Bt risk assessment and biocontrol strategies of nontarget pests.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaolu Ni
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Ruiting Qiu
- College of Arts and Sciences, The Ohio State University, Columbus 43201, United States of America
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
8
|
Time-Scale Analysis and Parameter Fitting for Vector-Borne Diseases with Spatial Dynamics. Bull Math Biol 2022; 84:124. [PMID: 36121515 DOI: 10.1007/s11538-022-01083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Vector-borne diseases are progressively spreading in a growing number of countries, and it has the potential to invade new areas and habitats. From the dynamical perspective, the spatial-temporal interaction of models that try to adjust to such events is rich and challenging. The first challenge is to address the dynamics of vectors (very fast and local) and the dynamics of humans (very heterogeneous and non-local). The objective of this work is to use the well-known Ross-Macdonald models, identifying different time scales, incorporating human spatial movements and estimate in a suitable way the parameters. We will concentrate on a practical example, a simplified space model, and apply it to dengue spread in the state of Rio de Janeiro, Brazil.
Collapse
|
9
|
Ramos LFC, Martins M, Murillo JR, Domont GB, de Oliveira DMP, Nogueira FCS, Maciel-de-Freitas R, Junqueira M. Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia. Front Cell Infect Microbiol 2022; 12:900608. [PMID: 35873163 PMCID: PMC9302590 DOI: 10.3389/fcimb.2022.900608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Zika is a vector-borne disease caused by an arbovirus (ZIKV) and overwhelmingly transmitted by Ae. aegypti. This disease is linked to adverse fetal outcomes, mostly microcephaly in newborns, and other clinical aspects such as acute febrile illness and neurologic complications, for example, Guillain-Barré syndrome. One of the most promising strategies to mitigate arbovirus transmission involves releasing Ae. aegypti mosquitoes carrying the maternally inherited endosymbiont bacteria Wolbachia pipientis. The presence of Wolbachia is associated with a reduced susceptibility to arboviruses and a fitness cost in mosquito life-history traits such as fecundity and fertility. However, the mechanisms by which Wolbachia influences metabolic pathways leading to differences in egg production remains poorly known. To investigate the impact of coinfections on the reproductive tract of the mosquito, we applied an isobaric labeling-based quantitative proteomic strategy to investigate the influence of Wolbachia wMel and ZIKV infection in Ae. aegypti ovaries. To the best of our knowledge, this is the most complete proteome of Ae. aegypti ovaries reported so far, with a total of 3913 proteins identified, were also able to quantify 1044 Wolbachia proteins in complex sample tissue of Ae. aegypti ovary. Furthermore, from a total of 480 mosquito proteins modulated in our study, we discuss proteins and pathways altered in Ae. aegypti during ZIKV infections, Wolbachia infections, coinfection Wolbachia/ZIKV, and compared with no infection, focusing on immune and reproductive aspects of Ae. aegypti. The modified aspects mainly were related to the immune priming enhancement by Wolbachia presence and the modulation of the Juvenile Hormone pathway caused by both microorganism’s infection.
Collapse
Affiliation(s)
- Luís Felipe Costa Ramos
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Michele Martins
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jimmy Rodriguez Murillo
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Gilberto Barbosa Domont
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Fábio César Sousa Nogueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Department of Arbovirology, Bernhard-Nocht-Institute for Tropical Medicine, Hamburg, Germany
- *Correspondence: Magno Junqueira, ; Rafael Maciel-de-Freitas,
| | - Magno Junqueira
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- *Correspondence: Magno Junqueira, ; Rafael Maciel-de-Freitas,
| |
Collapse
|
10
|
Rose C, Medford AJ, Goldsmith CF, Vegge T, Weitz JS, Peterson AA. Heterogeneity in susceptibility dictates the order of epidemic models. J Theor Biol 2021; 528:110839. [PMID: 34314731 DOI: 10.1016/j.jtbi.2021.110839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/21/2022]
Abstract
The fundamental models of epidemiology describe the progression of an infectious disease through a population using compartmentalized differential equations, but typically do not incorporate population-level heterogeneity in infection susceptibility. Here we combine a generalized analytical framework of contagion with computational models of epidemic dynamics to show that variation strongly influences the rate of infection, while the infection process simultaneously sculpts the susceptibility distribution. These joint dynamics influence the force of infection and are, in turn, influenced by the shape of the initial variability. We find that certain susceptibility distributions (the exponential and the gamma) are unchanged through the course of the outbreak, and lead naturally to power-law behavior in the force of infection; other distributions are often sculpted towards these "eigen-distributions" through the process of contagion. The power-law behavior fundamentally alters predictions of the long-term infection rate, and suggests that first-order epidemic models that are parameterized in the exponential-like phase may systematically and significantly over-estimate the final severity of the outbreak. In summary, our study suggests the need to examine the shape of susceptibility in natural populations as part of efforts to improve prediction models and to prioritize interventions that leverage heterogeneity to mitigate against spread.
Collapse
Affiliation(s)
- Christopher Rose
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Andrew J Medford
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby 2800 Kgs., Denmark
| | - Joshua S Weitz
- School of Biological Sciences and School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Andrew A Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA; Department of Energy Conversion and Storage, Technical University of Denmark, Lyngby 2800 Kgs., Denmark.
| |
Collapse
|
11
|
Wang GH, Gamez S, Raban RR, Marshall JM, Alphey L, Li M, Rasgon JL, Akbari OS. Combating mosquito-borne diseases using genetic control technologies. Nat Commun 2021; 12:4388. [PMID: 34282149 PMCID: PMC8290041 DOI: 10.1038/s41467-021-24654-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/30/2021] [Indexed: 01/03/2023] Open
Abstract
Mosquito-borne diseases, such as dengue and malaria, pose significant global health burdens. Unfortunately, current control methods based on insecticides and environmental maintenance have fallen short of eliminating the disease burden. Scalable, deployable, genetic-based solutions are sought to reduce the transmission risk of these diseases. Pathogen-blocking Wolbachia bacteria, or genome engineering-based mosquito control strategies including gene drives have been developed to address these problems, both requiring the release of modified mosquitoes into the environment. Here, we review the latest developments, notable similarities, and critical distinctions between these promising technologies and discuss their future applications for mosquito-borne disease control.
Collapse
Affiliation(s)
- Guan-Hong Wang
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Stephanie Gamez
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Robyn R Raban
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, CA, USA
- Innovative Genomics Institute, Berkeley, CA, USA
| | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright, UK
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA
| | - Jason L Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Omar S Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, CA, USA.
| |
Collapse
|
12
|
Souto-Maior C, King JG, Sartori LM, Maciel-de-Freitas R, Gomes MGM. Reply to: "Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported". Nat Commun 2020; 11:6113. [PMID: 33257667 PMCID: PMC7705658 DOI: 10.1038/s41467-020-19831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 10/29/2020] [Indexed: 11/09/2022] Open
Affiliation(s)
- Caetano Souto-Maior
- Laboratory of Systems Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica G King
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, UK
| | - Larissa M Sartori
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Maciel-de-Freitas
- Laboratório de Transmissores de Hematozoários, IOC, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - M Gabriela M Gomes
- Department of Mathematics and Statistics, University of Strathclyde, Glasgow, UK.
- Centro de Matemática da Universidade do Porto, Porto, Portugal.
| |
Collapse
|
13
|
Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supported. Nat Commun 2020; 11:6111. [PMID: 33257651 PMCID: PMC7705685 DOI: 10.1038/s41467-020-19830-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
|
14
|
Dacey DP, Chain FJJ. The Challenges of Microbial Control of Mosquito-Borne Diseases Due to the Gut Microbiome. Front Genet 2020; 11:504354. [PMID: 33133140 PMCID: PMC7575760 DOI: 10.3389/fgene.2020.504354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 09/18/2020] [Indexed: 01/09/2023] Open
Abstract
Mosquitoes are one of the deadliest animals on earth because of their ability to transmit a wide range of human pathogens. Traditional mosquito control methods use chemical insecticides, but with dwindling long-term effectiveness and negative effects on the environment, microbial forms of control have become common alternatives. The insecticide Bacillus thuringiensis subspecies israelensis (Bti) is the most popular of these alternatives, although it can also have direct effects on lowering environmental biodiversity and indirect effects on food-web relationships in the ecosystems where it is deployed. In addition, microbial control agents that impede pathogen development or transmission from mosquito to human are under investigation, including Wolbachia and Asaia, but unexpected interactions with mosquito gut bacteria can hinder their effectiveness. Improved characterization of mosquito gut bacterial communities is needed to determine the taxa that interfere with microbial controls and their effectiveness in wild populations. This mini-review briefly discusses relationships between mosquito gut bacteria and microbial forms of control, and the challenges in ensuring their success.
Collapse
Affiliation(s)
- Daniel P Dacey
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - Frédéric J J Chain
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| |
Collapse
|
15
|
Seabourn P, Spafford H, Yoneishi N, Medeiros M. The Aedes albopictus (Diptera: Culicidae) microbiome varies spatially and with Ascogregarine infection. PLoS Negl Trop Dis 2020; 14:e0008615. [PMID: 32813707 PMCID: PMC7437863 DOI: 10.1371/journal.pntd.0008615] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/20/2020] [Indexed: 12/30/2022] Open
Abstract
The mosquito microbiome alters the physiological traits of medically important mosquitoes, which can scale to impact how mosquito populations sustain disease transmission. The mosquito microbiome varies significantly within individual mosquitoes and among populations, however the ecological and environmental factors that contribute to this variation are poorly understood. To further understand the factors that influence variation and diversity of the mosquito microbiome, we conducted a survey of the bacterial microbiome in the medically important mosquito, Aedes albopictus, on the high Pacific island of Maui, Hawai'i. We detected three bacterial Phyla and twelve bacterial families: Proteobacteria, Acitinobacteria, and Firmicutes; and Anaplasmataceae, Acetobacteraceae, Enterobacteriaceae, Burkholderiaceae, Xanthobacteraceae, Pseudomonadaceae, Streptomycetaceae, Staphylococcaceae, Xanthomonadaceae, Beijerinckiaceae, Rhizobiaceae, and Sphingomonadaceae. The Ae. albopictus bacterial microbiota varied among geographic locations, but temperature and rainfall were uncorrelated with this spatial variation. Infection status with an ampicomplexan pathosymbiont Ascogregarina taiwanensis was significantly associated with the composition of the Ae. albopictus bacteriome. The bacteriomes of mosquitoes with an A. taiwanensis infection were more likely to include several bacterial symbionts, including the most abundant lineage of Wolbachia sp. Other symbionts like Asaia sp. and several Enterobacteriaceae lineages were less prevalent in A. taiwanensis-infected mosquitoes. This highlights the possibility that inter- and intra-domain interactions may structure the Ae. albopictus microbiome.
Collapse
Affiliation(s)
- Priscilla Seabourn
- Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, Hawai’i, United States of America
- Pacific Biosciences Research Center, University of Hawai’i at Mānoa, Honolulu, Hawai’i, United States of America
| | - Helen Spafford
- Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, Hawai’i, United States of America
| | - Nicole Yoneishi
- Pacific Biosciences Research Center, University of Hawai’i at Mānoa, Honolulu, Hawai’i, United States of America
| | - Matthew Medeiros
- Pacific Biosciences Research Center, University of Hawai’i at Mānoa, Honolulu, Hawai’i, United States of America
| |
Collapse
|
16
|
Corder RM, Ferreira MU, Gomes MGM. Modelling the epidemiology of residual Plasmodium vivax malaria in a heterogeneous host population: A case study in the Amazon Basin. PLoS Comput Biol 2020; 16:e1007377. [PMID: 32168349 PMCID: PMC7108741 DOI: 10.1371/journal.pcbi.1007377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 03/31/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
The overall malaria burden in the Americas has decreased dramatically over the past two decades, but residual transmission pockets persist across the Amazon Basin, where Plasmodium vivax is the predominant infecting species. Current elimination efforts require a better quantitative understanding of malaria transmission dynamics for planning, monitoring, and evaluating interventions at the community level. This can be achieved with mathematical models that properly account for risk heterogeneity in communities approaching elimination, where few individuals disproportionately contribute to overall malaria prevalence, morbidity, and onwards transmission. Here we analyse demographic information combined with routinely collected malaria morbidity data from the town of Mâncio Lima, the main urban transmission hotspot of Brazil. We estimate the proportion of high-risk subjects in the host population by fitting compartmental susceptible-infected-susceptible (SIS) transmission models simultaneously to age-stratified vivax malaria incidence densities and the frequency distribution of P. vivax malaria attacks experienced by each individual over 12 months. Simulations with the best-fitting SIS model indicate that 20% of the hosts contribute 86% of the overall vivax malaria burden. Despite the low overall force of infection typically found in the Amazon, about one order of magnitude lower than that in rural Africa, high-risk individuals gradually develop clinical immunity following repeated infections and eventually constitute a substantial infectious reservoir comprised of asymptomatic parasite carriers that is overlooked by routine surveillance but likely fuels onwards malaria transmission. High-risk individuals therefore represent a priority target for more intensive and effective interventions that may not be readily delivered to the entire community.
Collapse
Affiliation(s)
- Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail: (RMC); (MGMG)
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - M. Gabriela M. Gomes
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, and CMUP, Centro de Matemática da Universidade do Porto, Porto, Portugal
- * E-mail: (RMC); (MGMG)
| |
Collapse
|
17
|
Huang W, Wang S, Jacobs-Lorena M. Use of Microbiota to Fight Mosquito-Borne Disease. Front Genet 2020; 11:196. [PMID: 32211030 PMCID: PMC7076131 DOI: 10.3389/fgene.2020.00196] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
Mosquito-borne diseases cause more than 700 million people infected and one million people die (Caraballo and King, 2014). With the limitations of progress toward elimination imposed by insecticide- and drug-resistance, combined with the lack of vaccines, innovative strategies to fight mosquito-borne disease are urgently needed. In recent years, the use of mosquito microbiota has shown great potential for cutting down transmission of mosquito-borne pathogens. Here we review what is known about the mosquito microbiota and how this knowledge is being used to develop new ways to control mosquito-borne disease. We also discuss the challenges for the eventual release of genetically modified (GM) symbionts in the field.
Collapse
Affiliation(s)
- Wei Huang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
18
|
Gao H, Cui C, Wang L, Jacobs-Lorena M, Wang S. Mosquito Microbiota and Implications for Disease Control. Trends Parasitol 2020; 36:98-111. [PMID: 31866183 PMCID: PMC9827750 DOI: 10.1016/j.pt.2019.12.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023]
Abstract
Mosquito-transmitted diseases account for about 500 000 deaths every year. Blocking these pathogens in the mosquito vector before they are transmitted to humans is an effective strategy to prevent mosquito-borne diseases. Like most higher organisms, mosquitoes harbor a highly diverse and dynamic microbial flora that can be explored for prevention of pathogen transmission. Here we review the structure and function of the mosquito microbiota, including bacteria, fungi, and viruses, and discuss the potential of using components of the microbiota to thwart pathogen transmission.
Collapse
Affiliation(s)
- Han Gao
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Chunlai Cui
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Lili Wang
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,These authors contributed equally to this work
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA,Correspondence: ,
| | - Sibao Wang
- CAS key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China,Correspondence: ,
| |
Collapse
|
19
|
Ross PA, Axford JK, Yang Q, Staunton KM, Ritchie SA, Richardson KM, Hoffmann AA. Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0007958. [PMID: 31971938 PMCID: PMC6977724 DOI: 10.1371/journal.pntd.0007958] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/27/2019] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being released into natural mosquito populations in the tropics as a way of reducing dengue transmission. High temperatures adversely affect wMel, reducing Wolbachia density and cytoplasmic incompatibility in some larval habitats that experience large temperature fluctuations. We monitored the impact of a 43.6°C heatwave on the wMel infection in a natural population in Cairns, Australia, where wMel was first released in 2011 and has persisted at a high frequency. Wolbachia infection frequencies in the month following the heatwave were reduced to 83% in larvae sampled directly from field habitats and 88% in eggs collected from ovitraps, but recovered to be near 100% four months later. Effects of the heatwave on wMel appeared to be stage-specific and delayed, with reduced frequencies and densities in field-collected larvae and adults reared from ovitraps but higher frequencies in field-collected adults. Laboratory experiments showed that the effects of heatwaves on cytoplasmic incompatibility and density are life stage-specific, with first instar larvae being the most vulnerable to temperature effects. Our results indicate that heatwaves in wMel-infected populations will have only temporary effects on Wolbachia frequencies and density once the infection has established in the population. Our results are relevant to ongoing releases of wMel-infected Ae. aegypti in several tropical countries. Mosquitoes infected with Wolbachia bacteria are being released in the tropics to replace natural mosquito populations and suppress dengue transmission. Aedes aegypti mosquitoes with the wMel strain of Wolbachia were first released in Cairns, Australia in 2011 and releases were then expanded to the entire city and surrounding suburbs. Today, wMel is at a high frequency within the Ae. aegypti population and local dengue transmission in Cairns has declined to nearly zero. Wolbachia infections are vulnerable to high temperatures and the ability of wMel to persist in populations and block dengue may be constrained by climate. Cairns experienced a record heatwave of 43.6°C in November 2018 and we wanted to see whether this affected the wMel-infected Ae. aegypti population. Our results show that the frequency and density of wMel declined after the heatwave, with effects depending on the mosquito life stage tested. When we monitored the population again in April 2019, wMel had returned to a high frequency. We suggest that heatwaves of the magnitude experienced in Cairns will not have long-term impacts on the wMel infection but may affect invasion during releases or interfere with dengue blockage. Heatwaves may affect interventions with wMel-infected Ae. aegypti that are being deployed in several countries. Effects may depend on the proportion of larval habitats that are protected from extreme temperature fluctuations.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Jason K. Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Kyran M. Staunton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Scott A. Ritchie
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Smithfield, Queensland, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland, Australia
| | - Kelly M. Richardson
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
20
|
Li M, Yang T, Kandul NP, Bui M, Gamez S, Raban R, Bennett J, Sánchez C HM, Lanzaro GC, Schmidt H, Lee Y, Marshall JM, Akbari OS. Development of a confinable gene drive system in the human disease vector Aedes aegypti. eLife 2020; 9:e51701. [PMID: 31960794 PMCID: PMC6974361 DOI: 10.7554/elife.51701] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/03/2020] [Indexed: 12/23/2022] Open
Abstract
Aedes aegypti is the principal mosquito vector for many arboviruses that increasingly infect millions of people every year. With an escalating burden of infections and the relative failure of traditional control methods, the development of innovative control measures has become of paramount importance. The use of gene drives has sparked significant enthusiasm for genetic control of mosquitoes; however, no such system has been developed in Ae. aegypti. To fill this void, here we develop several CRISPR-based split gene drives for use in this vector. With cleavage rates up to 100% and transmission rates as high as 94%, mathematical models predict that these systems could spread anti-pathogen effector genes into wild populations in a safe, confinable and reversible manner appropriate for field trials and effective for controlling disease. These findings could expedite the development of effector-linked gene drives that could safely control wild populations of Ae. aegypti to combat local pathogen transmission.
Collapse
Affiliation(s)
- Ming Li
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Ting Yang
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Nikolay P Kandul
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Michelle Bui
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Stephanie Gamez
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Robyn Raban
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
| | - Jared Bennett
- Department of BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Héctor M Sánchez C
- Division of Epidemiology and Biostatistics, School of Public HealthUniversity of California, BerkeleyBerkeleyUnited States
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - Hanno Schmidt
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - Yoosook Lee
- Vector Genetics Laboratory, Department of Pathology, Microbiology, and Immunology, School of Veterinary MedicineUniversity of California, DavisDavisUnited States
| | - John M Marshall
- Division of Epidemiology and Biostatistics, School of Public HealthUniversity of California, BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Omar S Akbari
- Section of Cell and Developmental BiologyUniversity of California, San DiegoSan DiegoUnited States
- Tata Institute for Genetics and SocietyUniversity of California, San DiegoLa JollaUnited States
| |
Collapse
|
21
|
Abstract
Wolbachia is an endosymbiotic Alphaproteobacteria that can suppress insect-borne diseases through decreasing host virus transmission (population replacement) or through decreasing host population density (population suppression). We contrast natural Wolbachia infections in insect populations with Wolbachia transinfections in mosquitoes to gain insights into factors potentially affecting the long-term success of Wolbachia releases. Natural Wolbachia infections can spread rapidly, whereas the slow spread of transinfections is governed by deleterious effects on host fitness and demographic factors. Cytoplasmic incompatibility (CI) generated by Wolbachia is central to both population replacement and suppression programs, but CI in nature can be variable and evolve, as can Wolbachia fitness effects and virus blocking. Wolbachia spread is also influenced by environmental factors that decrease Wolbachia titer and reduce maternal Wolbachia transmission frequency. More information is needed on the interactions between Wolbachia and host nuclear/mitochondrial genomes, the interaction between invasion success and local ecological factors, and the long-term stability of Wolbachia-mediated virus blocking.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia
| | - Michael Turelli
- Department of Evolution and Ecology, University of California, Davis, California 95616, USA;
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia
| |
Collapse
|
22
|
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, Behrenfeld MJ, Boetius A, Boyd PW, Classen AT, Crowther TW, Danovaro R, Foreman CM, Huisman J, Hutchins DA, Jansson JK, Karl DM, Koskella B, Mark Welch DB, Martiny JBH, Moran MA, Orphan VJ, Reay DS, Remais JV, Rich VI, Singh BK, Stein LY, Stewart FJ, Sullivan MB, van Oppen MJH, Weaver SC, Webb EA, Webster NS. Scientists' warning to humanity: microorganisms and climate change. Nat Rev Microbiol 2019; 17:569-586. [PMID: 31213707 PMCID: PMC7136171 DOI: 10.1038/s41579-019-0222-5] [Citation(s) in RCA: 673] [Impact Index Per Article: 134.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 11/27/2022]
Abstract
In the Anthropocene, in which we now live, climate change is impacting most life on Earth. Microorganisms support the existence of all higher trophic life forms. To understand how humans and other life forms on Earth (including those we are yet to discover) can withstand anthropogenic climate change, it is vital to incorporate knowledge of the microbial 'unseen majority'. We must learn not just how microorganisms affect climate change (including production and consumption of greenhouse gases) but also how they will be affected by climate change and other human activities. This Consensus Statement documents the central role and global importance of microorganisms in climate change biology. It also puts humanity on notice that the impact of climate change will depend heavily on responses of microorganisms, which are essential for achieving an environmentally sustainable future.
Collapse
Affiliation(s)
- Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - William J Ripple
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, USA
| | - Kenneth N Timmis
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lars R Bakken
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew Baylis
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Michael J Behrenfeld
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Antje Boetius
- Alfred Wegener Institute, Helmholtz Center for Marine and Polar Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Philip W Boyd
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Aimée T Classen
- Rubenstein School of Environment and Natural Resources, and The Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | | | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Christine M Foreman
- Center for Biofilm Engineering, and Chemical and Biological Engineering Department, Montana State University, Bozeman, MT, USA
| | - Jef Huisman
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - David A Hutchins
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Janet K Jansson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - David M Karl
- Daniel K. Inouye Center for Microbial Oceanography: Research and Education, School of Ocean and Earth Science & Technology, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Jennifer B H Martiny
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - David S Reay
- School of Geosciences, University of Edinburgh, Edinburgh, UK
| | - Justin V Remais
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Virginia I Rich
- Microbiology Department, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, and Global Centre for Land-Based Innovation, Western Sydney University, Penrith, NSW, Australia
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Frank J Stewart
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Matthew B Sullivan
- Department of Microbiology, and Department of Civil, Environmental and Geodetic Engineering, and the Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH, USA
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Scott C Weaver
- Department of Microbiology and Immunology, and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric A Webb
- Department of Biological Sciences, Marine and Environmental Biology Section, University of Southern California, Los Angeles, CA, USA
| | - Nicole S Webster
- Australian Institute of Marine Science, Townsville, QLD, Australia
- Australian Centre for Ecogenomics, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Gomes MGM, King JG, Nunes A, Colegrave N, Hoffmann AA. The effects of individual nonheritable variation on fitness estimation and coexistence. Ecol Evol 2019; 9:8995-9004. [PMID: 31462998 PMCID: PMC6706197 DOI: 10.1002/ece3.5437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
Demographic theory and data have emphasized that nonheritable variation in individual frailty enables selection within cohorts, affecting the dynamics of a population while being invisible to its evolution. Here, we include the component of individual variation in longevity or viability which is nonheritable in simple bacterial growth models and explore its ecological and evolutionary impacts. First, we find that this variation produces consistent trends in longevity differences between bacterial genotypes when measured across stress gradients. Given that direct measurements of longevity are inevitably biased due to the presence of this variation and ongoing selection, we propose the use of the trend itself for obtaining more exact inferences of genotypic fitness. Second, we show how species or strain coexistence can be enabled by nonheritable variation in longevity or viability. These general conclusions are likely to extend beyond bacterial systems.
Collapse
Affiliation(s)
- M. Gabriela M. Gomes
- Liverpool School of Tropical MedicineLiverpoolUK
- CIBIO‐InBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosCMUP, Centro de Matemática da Universidade do PortoPortoPortugal
| | - Jessica G. King
- School of Biological Sciences, Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Ana Nunes
- Departamento de Física, Faculdade de CiênciasBioISI – Biosystems and Integrative Sciences Institute, Universidade de LisboaLisboaPortugal
| | - Nick Colegrave
- School of Biological Sciences, Institute of Evolutionary BiologyUniversity of EdinburghEdinburghUK
| | - Ary A. Hoffmann
- School of BioSciencesBio21 Institute, University of MelbourneMelbourneVic.Australia
| |
Collapse
|
24
|
Lewnard JA, Lopman BA, Parashar UD, Bennett A, Bar-Zeev N, Cunliffe NA, Samuel P, Guerrero ML, Ruiz-Palacios G, Kang G, Pitzer VE. Heterogeneous susceptibility to rotavirus infection and gastroenteritis in two birth cohort studies: Parameter estimation and epidemiological implications. PLoS Comput Biol 2019; 15:e1007014. [PMID: 31348775 PMCID: PMC6690553 DOI: 10.1371/journal.pcbi.1007014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/12/2019] [Accepted: 04/09/2019] [Indexed: 11/19/2022] Open
Abstract
Cohort studies, randomized trials, and post-licensure studies have reported reduced natural and vaccine-derived protection against rotavirus gastroenteritis (RVGE) in low- and middle-income countries. While susceptibility of children to rotavirus is known to vary within and between settings, implications for estimation of immune protection are not well understood. We sought to re-estimate naturally-acquired protection against rotavirus infection and RVGE, and to understand how differences in susceptibility among children impacted estimates. We re-analyzed data from studies conducted in Mexico City, Mexico and Vellore, India. Cumulatively, 573 rotavirus-unvaccinated children experienced 1418 rotavirus infections and 371 episodes of RVGE over 17,636 child-months. We developed a model that characterized susceptibility to rotavirus infection and RVGE among children, accounting for aspects of the natural history of rotavirus and differences in transmission rates between settings. We tested whether model-generated susceptibility measurements were associated with demographic and anthropometric factors, and with the severity of RVGE symptoms. We identified greater variation in susceptibility to rotavirus infection and RVGE in Vellore than in Mexico City. In both cohorts, susceptibility to rotavirus infection and RVGE were associated with male sex, lower birth weight, lower maternal education, and having fewer siblings; within Vellore, susceptibility was also associated with lower socioeconomic status. Children who were more susceptible to rotavirus also experienced higher rates of rotavirus-negative diarrhea, and higher risk of moderate-to-severe symptoms when experiencing RVGE. Simulations suggested that discrepant estimates of naturally-acquired immunity against RVGE can be attributed, in part, to between-setting differences in susceptibility of children, but result primarily from the interaction of transmission rates with age-dependent risk for infections to cause RVGE. We found that more children in Vellore than in Mexico City belong to a high-risk group for rotavirus infection and RVGE, and demonstrate that unmeasured individual- and age-dependent susceptibility may influence estimates of naturally-acquired immune protection against RVGE. Differences in susceptibility can help explain why some individuals, and not others, acquire infection and exhibit symptoms when exposed to infectious disease agents. However, it is difficult to distinguish between differences in susceptibility versus exposure in epidemiological studies. We developed a modeling approach to distinguish transmission intensity and susceptibility in data from cohort studies of rotavirus infection among children in Mexico City, Mexico, and Vellore, India, and evaluated how these factors may have contributed to differences in estimates of naturally-acquired immune protection between the studies. Given the same exposure, more children were at high risk of acquiring rotavirus infection, and of experiencing gastroenteritis when infected, in Vellore than in Mexico City. The probability of belonging to this high-risk stratum was associated with well-known individual factors such as lower socioeconomic status, lower birth weight, and incidence of diarrhea due to other causes. We also found the risk for rotavirus infections to cause symptoms declined with age, independent of acquired immunity. These findings can, in part, account for estimates of lower protective efficacy of acquired immunity against rotavirus gastroenteritis in high-incidence settings, mirroring estimates of reduced effectiveness of live oral rotavirus vaccines in low- and middle-income countries.
Collapse
Affiliation(s)
- Joseph A. Lewnard
- Division of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Benjamin A. Lopman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Umesh D. Parashar
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aisleen Bennett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, University of Liverpool, Liverpool, United Kingdom
| | - Naor Bar-Zeev
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, University of Liverpool, Liverpool, United Kingdom
- International Vaccine Access Center, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nigel A. Cunliffe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre, Malawi
- Center for Global Vaccine Research, Institute of Infection and Global Health, University of Liverpool, University of Liverpool, Liverpool, United Kingdom
| | - Prasanna Samuel
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - M. Lourdes Guerrero
- Instituto Nacional de Ciences Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | - Gagandeep Kang
- Department of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Virginia E. Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
25
|
Gomes MGM, Oliveira JF, Bertolde A, Ayabina D, Nguyen TA, Maciel EL, Duarte R, Nguyen BH, Shete PB, Lienhardt C. Introducing risk inequality metrics in tuberculosis policy development. Nat Commun 2019; 10:2480. [PMID: 31171791 PMCID: PMC6554307 DOI: 10.1038/s41467-019-10447-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/03/2019] [Indexed: 11/10/2022] Open
Abstract
Global stakeholders including the World Health Organization rely on predictive models for developing strategies and setting targets for tuberculosis care and control programs. Failure to account for variation in individual risk leads to substantial biases that impair data interpretation and policy decisions. Anticipated impediments to estimating heterogeneity for each parameter are discouraging despite considerable technical progress in recent years. Here we identify acquisition of infection as the single process where heterogeneity most fundamentally impacts model outputs, due to selection imposed by dynamic forces of infection. We introduce concrete metrics of risk inequality, demonstrate their utility in mathematical models, and pack the information into a risk inequality coefficient (RIC) which can be calculated and reported by national tuberculosis programs for use in policy development and modeling. Failure to account for heterogeneity in TB risk can mislead model-based evaluation of proposed interventions. Here, the authors introduce a metric to estimate the distribution of risk in populations from routinely collected data and find that variation in infection acquisition is the most impactful.
Collapse
Affiliation(s)
- M Gabriela M Gomes
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom. .,CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, 4485-661, Portugal.
| | - Juliane F Oliveira
- CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, 4485-661, Portugal
| | - Adelmo Bertolde
- Departamento de Estatística, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29075-910, Brazil
| | - Diepreye Ayabina
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, United Kingdom
| | | | - Ethel L Maciel
- Laboratório de Epidemiologia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, 29047-105, Brazil
| | - Raquel Duarte
- Faculdade de Medicina, and EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, 4050-091, Portugal
| | | | - Priya B Shete
- Division of Pulmonary and Critical Care Medicine, University of California San Francisco, San Francisco, CA, 94110, USA
| | - Christian Lienhardt
- Global TB Programme, World Health Organization, 1211 Geneva 27, Geneva, Switzerland.,Unité Mixte Internationale TransVIHMI (UMI 233 IRD - U1175 INSERM - Université de Montpellier), Institut de Recherche pour le Développement (IRD), Montpellier, 34394, France
| |
Collapse
|
26
|
Guarner J, Hale GL. Four human diseases with significant public health impact caused by mosquito-borne flaviviruses: West Nile, Zika, dengue and yellow fever. Semin Diagn Pathol 2019; 36:170-176. [PMID: 31006554 DOI: 10.1053/j.semdp.2019.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review we will discuss the epidemiology, clinical characteristics, diagnostic tests, pathologic features, treatment and disease prevention strategies for four mosquito-borne flaviviruses. West Nile and Zika viruses, once thought to be restricted geographically, emerged on the American continent in the first part of the 21st century. They have been constantly in the lay press and have caused a heightened awareness of emerging infections by the public, particularly given the manifestation of microcephaly in congenital Zika syndrome. Yellow fever and dengue viruses, with mosquito vectors similar to West Nile and Zika viruses, are endemic in many tropical areas of the world and produce frequent outbreaks. The global distribution of yellow fever and dengue viruses could also change and has great potential to do so. Factors that could contribute to reemergence of the diseases in areas of the world where they are currently only seen in travelers, include the presence of yellow fever and dengue virus vectors in temperate climates and growing urbanization. These two factors increase potential contact between vectors and naïve human hosts, thus could result in reemergence of yellow fever or dengue virus infections.
Collapse
Affiliation(s)
- Jeannette Guarner
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, United States.
| | - Gillian L Hale
- Anatomic Pathology and Molecular Oncology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
27
|
Brinker P, Fontaine MC, Beukeboom LW, Falcao Salles J. Host, Symbionts, and the Microbiome: The Missing Tripartite Interaction. Trends Microbiol 2019; 27:480-488. [PMID: 30857919 DOI: 10.1016/j.tim.2019.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 01/30/2023]
Abstract
Symbiosis between microbial associates and a host is a ubiquitous feature of life on earth, modulating host phenotypes. In addition to endosymbionts, organisms harbour a collection of host-associated microbes, the microbiome that can impact important host traits. In this opinion article we argue that the mutual influences of the microbiome and endosymbionts, as well as their combined influence on the host, are still understudied. Focusing on the endosymbiont Wolbachia, we present growing evidence indicating that host phenotypic effects are exerted in interaction with the remainder microbiome and the host. We thus advocate that only through an integrated approach that considers multiple interacting partners and environmental influences will we be able to gain a better understanding of host-microbe associations.
Collapse
Affiliation(s)
- Pina Brinker
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands.
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands; MIVEGEC, UMR IRD, CNRS, University of Montpellier, Montpellier, France
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands
| | - Joana Falcao Salles
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, The Netherlands.
| |
Collapse
|
28
|
Engineered resistance to Zika virus in transgenic Aedes aegypti expressing a polycistronic cluster of synthetic small RNAs. Proc Natl Acad Sci U S A 2019; 116:3656-3661. [PMID: 30723148 PMCID: PMC6397566 DOI: 10.1073/pnas.1810771116] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Here, we describe the generation of Aedes aegypti mosquitoes that are engineered to be resistant to Zika virus (ZIKV) transmission. Our results demonstrate that engineered mosquitoes express a polycistronic cluster of synthetic small RNAs designed to target the ZIKV genome. As a result, homozygous mosquitoes were refractory to ZIKV infection, and therefore could not transmit the virus. Additionally, mosquitoes heterozygous for the transgene showed significantly lower levels of viral infection, dissemination, and transmission compared with wild-type mosquitoes; importantly, these levels were low enough to make such mosquitoes unlikely to transmit ZIKV to a susceptible host. Finally, we discuss how such an engineering approach can be used to combat the major health burden of ZIKV, and potentially other arboviruses, in the future. Recent Zika virus (ZIKV) outbreaks have highlighted the necessity for development of novel vector control strategies to combat arboviral transmission, including genetic versions of the sterile insect technique, artificial infection with Wolbachia to reduce population size and/or vectoring competency, and gene drive-based methods. Here, we describe the development of mosquitoes synthetically engineered to impede vector competence to ZIKV. We demonstrate that a polycistronic cluster of engineered synthetic small RNAs targeting ZIKV is expressed and fully processed in Aedes aegypti, ensuring the formation of mature synthetic small RNAs in the midgut where ZIKV resides in the early stages of infection. Critically, we demonstrate that engineered Ae. aegypti mosquitoes harboring the anti-ZIKV transgene have significantly reduced viral infection, dissemination, and transmission rates of ZIKV. Taken together, these compelling results provide a promising path forward for development of effective genetic-based ZIKV control strategies, which could potentially be extended to curtail other arboviruses.
Collapse
|
29
|
Conditions facilitating infection of mosquito cell lines with Wolbachia, an obligate intracellular bacterium. In Vitro Cell Dev Biol Anim 2019; 55:120-129. [PMID: 30673989 DOI: 10.1007/s11626-019-00319-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Factors that influence establishment of Wolbachia, an obligate intracellular bacterium, in novel insect hosts or uninfected insect cell lines are poorly understood. Infectivity of Wolbachia strain wStr was correlated with flow cytometric profiles to define optimal conditions for harvesting an infectious inoculum. Wolbachia recovered from the cell culture supernatant after gentle pipetting of infected cells represented about 1% of the total bacterial population and were more infectious than Wolbachia that remained associated with intact cells and/or membranes after low-speed centrifugation. Optimal establishment of a robust infection in naïve cells required 6 d, at a ratio of 80 to 160 bacteria per cell. Among Aedes albopictus mosquito cell lines, an aneuploid line with a 4n + 1 karyotype was more susceptible to infection than diploid lines. These findings contribute to the in vitro manipulation of Wolbachia, illustrate some of the many factors that influence infectivity, and identify areas for future investigation.
Collapse
|
30
|
Moretti R, Marzo GA, Lampazzi E, Calvitti M. Cytoplasmic incompatibility management to support Incompatible Insect Technique against Aedes albopictus. Parasit Vectors 2018; 11:649. [PMID: 30583743 PMCID: PMC6304776 DOI: 10.1186/s13071-018-3208-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background The transinfection of the endosymbiotic bacterium Wolbachia provides a method to produce functionally sterile males to be used to suppress mosquito vectors. ARwP is a wPip Wolbachia infected Aedes albopictus which exhibits a bidirectional incompatibility pattern with wild-types. We coupled a modelistic approach with laboratory experiments to test ARwP as a control tool and evaluate the possible occurrence of population replacement following the release of ARwP females in a wild-type (SANG) population. Repeated male-only releases were simulated and tested in the laboratory in comparison with releases contaminated with 1% ARwP females. Model simulations also investigated how migration affects the outcome of contaminated releases. Finally, the mean level of egg fertility and the long-term evolution of populations constituted by two Wolbachia infection types were studied by testing SANG and ARwP Ae. albopictus and performing more general model simulations. Results The model was parametrized with laboratory data and simulations were compared with results of biological trials. Small populations of ARwP males and females were theoretically and experimentally demonstrated to rapidly become extinct when released in larger SANG populations. Male-only releases at a 5:1 ratio with respect to the wild-type males led to a complete suppression of the SANG population in a few generations. Contaminated releases were efficient as well but led to population replacement in the long term, when the wild-type population approached eradication. Migration significantly contrasted this trend as a 5% population turnover was sufficient to avoid any risk of population replacement. At equal frequencies between ARwP and SANG individuals, the mean egg fertility of the overall population was more than halved and suppression was self-sustaining until one of the two infection types extinguished. Conclusions In the case of bidirectional incompatibility patterns, the repeated release of incompatible males with small percentages of contaminant females could lead to population replacement in confined environments while it could be managed to target high efficiency and sustainability in wild-type suppression when systems are open to migration. This possibility is discussed based on various contexts and taking into consideration the possibility of integration with other control methods such as SIT and the use of larvicides. Electronic supplementary material The online version of this article (10.1186/s13071-018-3208-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Riccardo Moretti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy.
| | - Giuseppe Augusto Marzo
- Technologies and Facilities for Nuclear Fission and Nuclear Material Management, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Elena Lampazzi
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| | - Maurizio Calvitti
- Biotechnology and Agroindustry Division, ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development), Casaccia Research Center, Rome, Italy
| |
Collapse
|
31
|
Leftwich PT, Edgington MP, Harvey-Samuel T, Carabajal Paladino LZ, Norman VC, Alphey L. Recent advances in threshold-dependent gene drives for mosquitoes. Biochem Soc Trans 2018; 46:1203-1212. [PMID: 30190331 PMCID: PMC6195636 DOI: 10.1042/bst20180076] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023]
Abstract
Mosquito-borne diseases, such as malaria, dengue and chikungunya, cause morbidity and mortality around the world. Recent advances in gene drives have produced control methods that could theoretically modify all populations of a disease vector, from a single release, making whole species less able to transmit pathogens. This ability has caused both excitement, at the prospect of global eradication of mosquito-borne diseases, and concern around safeguards. Drive mechanisms that require individuals to be released at high frequency before genes will spread can therefore be desirable as they are potentially localised and reversible. These include underdominance-based strategies and use of the reproductive parasite Wolbachia Here, we review recent advances in practical applications and mathematical analyses of these threshold-dependent gene drives with a focus on implementation in Aedes aegypti, highlighting their mechanisms and the role of fitness costs on introduction frequencies. Drawing on the parallels between these systems offers useful insights into practical, controlled application of localised drives, and allows us to assess the requirements needed for gene drive reversal.
Collapse
Affiliation(s)
| | | | | | | | | | - Luke Alphey
- The Pirbright Institute, Pirbright, Woking, Surrey, U.K.
- Department of Zoology, University of Oxford, Oxford, U.K
| |
Collapse
|
32
|
Ross PA, Hoffmann AA. Continued Susceptibility of the wMel Wolbachia Infection in Aedes aegypti to Heat Stress Following Field Deployment and Selection. INSECTS 2018; 9:E78. [PMID: 29966368 PMCID: PMC6165456 DOI: 10.3390/insects9030078] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Aedes aegypti mosquitoes infected with the wMel strain of Wolbachia are being deployed to control the spread of arboviruses around the world through blockage of viral transmission. Blockage by Wolbachia in some scenarios may be affected by the susceptibility of wMel to cyclical heat stress during mosquito larval development. We therefore evaluated the potential to generate a heat-resistant strain of wMel in Ae. aegypti through artificial laboratory selection and through exposure to field temperatures across multiple generations. To generate an artificially selected strain, wMel-infected females reared under cyclical heat stress were crossed to wMel-infected males reared at 26 °C. The low proportion of larvae that hatched founded the next generation, and this process was repeated for eight generations. The wMel heat-selected strain (wMel-HS) was similar to wMel (unselected) in its ability to induce cytoplasmic incompatibility and restore compatibility when larvae were reared under cyclical heat stress, but wMel-HS adults exhibited reduced Wolbachia densities at 26 °C. To investigate the effects of field exposure, we compared the response of wMel-infected Ae. aegypti collected from Cairns, Australia where the infection has been established for seven years, to a wMel-infected population maintained in the laboratory for approximately 60 generations. Field and laboratory strains of wMel did not differ in their response to cyclical heat stress or in their phenotypic effects at 26 °C. The capacity for the wMel infection in Ae. aegypti to adapt to high temperatures therefore appears limited, and alternative strains may need to be considered for deployment in environments where high temperatures are regularly experienced in mosquito breeding sites.
Collapse
Affiliation(s)
- Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|