1
|
Bose S, Xia Y, Zare RN. Understanding the formation of nitrate from nitrogen at the interface of gas-water microbubbles. Chem Sci 2024; 15:19764-19769. [PMID: 39568950 PMCID: PMC11575618 DOI: 10.1039/d4sc06989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Water microbubbles containing Fe2+ ions have been found to efficiently transform nitrogen (N2) to nitrate (NO3 -) by initiating Fenton's reaction at the gas-water interface. Herein, we elucidate the mechanism of the formation of nitrate (NO3 -) from nitrogen (N2) at the microbubble interface. Several experimental studies were conducted to identify the intermediates formed during the conversion. Our investigation shows the formation of H2N2O2, NO, NO2, and NO2 - intermediates before yielding NO3 - as the final product. Density functional theory (DFT) calculations provide additional support to our observation by providing insights into the energy profiles of the reaction intermediates. We believe that this work not only provides valuable insight into the abiotic nitrogen fixation in microbubbles but also helps in suggesting the modification of parameters to create a more reactive interface that leads to the enhanced production of nitric acid (HNO3).
Collapse
Affiliation(s)
- Sandeep Bose
- Department of Chemistry, Stanford University CA 94305 USA
| | - Yu Xia
- Department of Chemistry, Stanford University CA 94305 USA
| | - Richard N Zare
- Department of Chemistry, Stanford University CA 94305 USA
| |
Collapse
|
2
|
Martins-Costa MTC, Ruiz-López MF. The Effect of Electric Fields on Oxidization Processes at the Air-Water Interface. Angew Chem Int Ed Engl 2024:e202418593. [PMID: 39601791 DOI: 10.1002/anie.202418593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
At the air-water interface, many reactions are accelerated, sometimes by several orders of magnitude. This phenomenon has proved to be particularly important in water microdroplets, where the spontaneous oxidation of many species stable in bulk has been experimentally demonstrated. Different theories have been proposed to explain this finding, but it is currently believed that the role of interfacial electric fields is key. In this work, we have carried out a quantum chemistry study aimed at shedding some light on this question. We have studied two prototypical processes in which a hydroxide anion transfers its excess electron to either the water environment or a dioxygen molecule. To model the interface, we use a cluster of 21 water molecules immersed in an electric field, and we examine the energetics of the studied reactions as a function of field magnitude. Our results reveal that electric fields close to those estimated for the neat air-water interface (∼0.15 V ⋅ Å-1) have a moderate effect on the reaction energetics and that much stronger fields (>1 V ⋅ Å-1) are required to get spontaneous electron transfer. Therefore, the study suggests that additional factors such as an excess charge in microdroplets need to be considered for explaining the experimental observations.
Collapse
Affiliation(s)
- Marilia T C Martins-Costa
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-les-Nancy, France
| | - Manuel F Ruiz-López
- Laboratoire de Physique et Chimie Théoriques, UMR CNRS 7019, University of Lorraine, CNRS, BP 70239, 54506, Vandoeuvre-les-Nancy, France
| |
Collapse
|
3
|
Guo F, Ji X, Xiong C, Sun H, Liang Z, Yan-Do R, Gai B, Gao F, Huang L, Li Z, Kuang BY, Shi P. Single-cell encoded gene silencing for high-throughput combinatorial siRNA screening. Nat Commun 2024; 15:9985. [PMID: 39562763 DOI: 10.1038/s41467-024-53419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
The use of combinatorial siRNAs shows great promise for drug discovery, but the identification of safe and effective siRNA combinations remains challenging. Here, we develop a massively multiplexed technology for systematic screening of siRNA-based cocktail therapeutics. We employ composite micro-carriers that are responsive to near infrared light and magnetic field to achieve photoporation-facilitated siRNA transfection to individual cells. Thus, randomized gene silencing by different siRNA formulations can be performed with high-throughput single-cell-based analyses. For screening anti-cancer siRNA cocktails, we test more than 1300 siRNA combinations for knocking down multiple genes related to tumor growth, discovering effective 3-siRNA formulations with an emphasis on the critical role of inhibiting Cyclin D1 and survivin, along with their complementary targets for synergic efficacy. This approach enables orders of magnitude reduction in time and cost associated with largescale siRNA screening, and resolves key insights to siRNA pharmacology that are not permissive to existing methods.
Collapse
Affiliation(s)
- Feng Guo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, 999077, China
| | - Xianglin Ji
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Chuxiao Xiong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Hailiang Sun
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China
| | - Richard Yan-Do
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, 999077, China
| | - Baowen Gai
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Feng Gao
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Linfeng Huang
- Wang-Cai Biochemistry Lab, Division of Natural and Applied Sciences & Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Zhongping Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Becki Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, 999077, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518000, China.
| |
Collapse
|
4
|
Rana A, Clarke TB, Nguyen JH, Dick JE. Adsorbed microdroplets are mobile at the nanoscale. Proc Natl Acad Sci U S A 2024; 121:e2412148121. [PMID: 39531504 PMCID: PMC11588086 DOI: 10.1073/pnas.2412148121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024] Open
Abstract
The extraordinary chemistry of microdroplets has reshaped how we as a community think about reactivity near multiphase boundaries. Even though interesting physico-chemical properties of microdroplets have been reported, "sessile" droplets' inherent mobility, which has been implicated as a driving force for curious chemistry, has not been well established. This paper seeks to answer the question: Can adsorbed microdroplets be mobile at the nanoscale? This is a tantalizing question, as almost no measurement technique has the spatiotemporal resolution to answer it. Here, we demonstrate a highly sensitive technique to detect nanometric motions of insulating bodies adsorbed to electrified microinterfaces. We place an organic droplet atop a microelectrode and track its dissolution by driving a heterogeneous reaction in the aqueous continuous phase. As the droplet's contact radius approaches the size of the microelectrode, the current versus time curve remarkably displays abrupt changes in current. We used finite element modeling to demonstrate these abrupt steps are due to nanometric movements of the three-phase boundary, where the nonaqueous droplet meets the aqueous phase and the electrode. Furthermore, the velocity with which the liquid interface moves can be estimated to tens-to-hundreds of nanometers per second. Our results indicate that processes that are driven by contact electrification and the frictional movement of bodies on a surface may be at play even when a droplet seems quiescent.
Collapse
Affiliation(s)
- Ashutosh Rana
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Thomas B. Clarke
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - James H. Nguyen
- Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Jeffrey E. Dick
- Department of Chemistry, Purdue University, West Lafayette, IN47907
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN47907
| |
Collapse
|
5
|
Grooms AJ, Huttner RT, Stockwell M, Tadese L, Marcelo IM, Kass A, Badu-Tawiah AK. Programmable C-N Bond Formation through Radical-Mediated Chemistry in Plasma-Microdroplet Fusion. Angew Chem Int Ed Engl 2024:e202413122. [PMID: 39453314 DOI: 10.1002/anie.202413122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/02/2024] [Accepted: 10/23/2024] [Indexed: 10/26/2024]
Abstract
Non-thermal plasma discharge produced in the wake of charged microdroplets is found to facilitate catalyst-free radical mediated hydrazine cross-coupling reactions without the use of external light source, heat, precious metal complex, or trapping agents. A plasma-microdroplet fusion platform is utilized for introduction of hydrazine reagent that undergoes homolytic cleavage forming radical intermediate species. The non-thermal plasma discharge that causes the cleavage originates from a chemically etched silica capillary. The coupling of the radical intermediates gives various products. Plasma-microdroplet fusion occurs online in a programmable reaction platform allowing direct process optimization and product validation via mass spectrometry. The platform is applied herein with a variety of hydrazine substrates, enabling i) self-coupling to form secondary amines with identical N-substitutions, ii) cross-coupling to afford secondary amine with different N-substituents, iii) cross-coupling followed by in situ dehydrogenation to give the corresponding aryl-aldimines with two unique N-substitutions, and iv) cascade heterocyclic carbazole derivatives formation. These unique reactions were made possible in the charged microdroplet environment through our ability to program conditions such as reagent concentration (i. e., flow rate), microdroplet reactivity (i. e., presence or absence of plasma), and reaction timescale (i. e., operational mode of the source). The selected program is implemented in a co-axial spray format, which is found to be advantageous over the conventional one-pot single emitter electrospray-based microdroplet reactions.
Collapse
Affiliation(s)
- Alexander J Grooms
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Robert T Huttner
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Mackenzie Stockwell
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Leah Tadese
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Isabella M Marcelo
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Anthony Kass
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Abraham K Badu-Tawiah
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
6
|
Dai C, Huang C, Ye M, Liu J, Cheng H. Mild Catalyst- and Additive-Free Three-Component Synthesis of 3-Thioisoindolinones and Tricyclic γ-Lactams Accelerated by Microdroplet Chemistry. J Org Chem 2024; 89:14818-14830. [PMID: 39361508 DOI: 10.1021/acs.joc.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Isoindolinones, bearing both γ-lactam and aromatic rings, draw extensive interest in organic, pharmaceutical, and medicinal communities as they are important structural motifs in many natural products, bioactive compounds, and pharmaceuticals. As the main contributor to isoindolinone synthesis, metal catalysis is associated with many drawbacks including essential use of toxic/precious metals and excessive additives, high reaction temperatures, specially predesigned starting materials, and long reaction times (typically 8-30 h). In this study, we developed a catalyst- and additive-free, minute-scale, and high-yield microdroplet method for tricomponent isoindolinone synthesis at mild temperatures. By taking advantage of the astonishing reaction acceleration (1.9 × 102-9.4 × 103 acceleration factor range with a typical rate acceleration factor of 1.51 × 103 for the prototype reaction as the ratio of rate constants by microdroplet and bulk phase), 12 3-thioisoindolinones and two tricyclic γ-lactams were synthesized using various 2-acylbenzaldehydes, amines, and thiols with satisfactory yields ranging from 85% to 97% as well as a scale-up rate of 3.49 g h-1. Because of the advantages (no use of any catalysts or additives, mild temperature, rapid and satisfactory conversion, broad substrate scope, and gram scalability), the microdroplet method represents an attractive alternative to metal catalysis for laboratory synthesis of isoindolinones and their derivatives.
Collapse
Affiliation(s)
- Chengbiao Dai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Chengkai Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Meiying Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
7
|
Bose S, Mofidfar M, Zare RN. Direct Conversion of N 2 and Air to Nitric Acid in Gas-Water Microbubbles. J Am Chem Soc 2024; 146:27964-27971. [PMID: 39315452 DOI: 10.1021/jacs.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
We report a simple, direct, and green conversion of air/N2 to nitric acid by bubbling the gas through an aqueous solution containing 50 μM Fe2+ ions. Air stone, along with ultrasonication, was employed to generate gas microbubbles. H2O2 produced at the water-gas interface undergoes Fenton's reaction with Fe2+ ions to produce OH• that efficiently activates N2, yielding nitric acid as the final product. Nitrate (NO3-) formation occurs without the use of any external electric potential or radiation. The concentration of NO3- increased linearly with time over a period of 132 h. The average NO3- production rate is found to be 12.9 ± 0.05 μM h-1. We envision that this nitrogen fixation strategy that produces nitric acid in an eco-friendly way might open the possibility for the energy-efficient and green production of nitric acid.
Collapse
Affiliation(s)
- Sandeep Bose
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
8
|
Mehrgardi MA, Mofidfar M, Li J, Chamberlayne CF, Lynch SR, Zare RN. Catalyst-Free Transformation of Carbon Dioxide to Small Organic Compounds in Water Microdroplets Nebulized by Different Gases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406785. [PMID: 39129358 PMCID: PMC11481208 DOI: 10.1002/advs.202406785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 08/13/2024]
Abstract
A straightforward nebulized spray system is designed to explore the hydrogenation of carbon dioxide (CO2) within water microdroplets surrounded by different gases such as carbon dioxide, nitrogen, oxygen, and compressed air. The collected droplets are analyzed using water-suppressed nuclear magnetic resonance (NMR). Formate anion (HCOO-), acetate anion (CH3COO-), ethylene glycol (HOCH2CH2OH), and methane (CH4) are detected when water is nebulized. This pattern persisted when the water is saturated with CO2, indicating that CO2 in the nebulizing gas triggers the formation of these small organics. In a pure CO2 atmosphere, the formate anion concentration is determined to be ≈70 µm, referenced to dimethyl sulfoxide, which has been introduced as an internal standard in the collected water droplets. This study highlights the power of water microdroplets to initiate unexpected chemistry for the transformation of CO2 to small organic compounds.
Collapse
Affiliation(s)
- Masoud A. Mehrgardi
- Department of ChemistryStanford UniversityStanfordCalifornia94305USA
- Department of ChemistryUniversity of IsfahanIsfahan81746Iran
| | - Mohammad Mofidfar
- Department of ChemistryStanford UniversityStanfordCalifornia94305USA
| | - Jia Li
- College of Chemical EngineeringShijiazhuang UniversityShijiazhuang050037China
| | | | - Stephen R. Lynch
- Department of ChemistryStanford UniversityStanfordCalifornia94305USA
| | - Richard N. Zare
- Department of ChemistryStanford UniversityStanfordCalifornia94305USA
| |
Collapse
|
9
|
Zhang J, Tian S, Zhu C, Han L, Zhang X. The synthesis of polydopamine nano- and microspheres in microdroplets. Chem Commun (Camb) 2024; 60:11068-11071. [PMID: 39206971 DOI: 10.1039/d4cc03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here we developed a microdroplet-based strategy for the rapid synthesis of uniform polydopamine nano- and microspheres. Polydopamine spheres with controllable sizes were generated within hundreds of microseconds by simply spraying water solutions of dopamine into microdroplets. Mass spectrometry revealed that dopamine was primarily oxidized into aminochrome, acting as the major building block for polydopamine. We anticipate that microdroplet chemistry will be rich in opportunities for the synthesis of functional nano- and micromaterials.
Collapse
Affiliation(s)
- Jianze Zhang
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| | - Shufang Tian
- School of Energy Science and Technology, Henan University, Zhengzhou, 450046, China.
| | - Chenghui Zhu
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xinxing Zhang
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
10
|
Majumder T, Eremin DB, Delibas B, Sarkar A, Fokin V, Dawlaty JM. Calibrating the Oxidative Capacity of Microdroplets. Angew Chem Int Ed Engl 2024:e202414746. [PMID: 39218788 DOI: 10.1002/anie.202414746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
Recently, redox chemical transformations have been reported to occur spontaneously in microdroplets. The origins of such novel reactivity are still debated, and any systematic correlation of the oxidative/reductive yield with the reactivity of the reactant is yet to be established. Towards this end, we report the simple, outer-sphere, one-electron oxidation of a series of ferrocene derivatives spanning a range of oxidation potentials from -0.1 V to +0.8 V vs. Ag/AgCl in acetonitrile microdroplets generated via nebulization and measured by mass spectrometry of the corresponding ferrocenium ions. The reaction environments and dynamics in the droplets are complex, and it is still unclear whether such reactivity correlates with any bulk thermodynamic values. Our key finding is that the ion yields decrease monotonically with the oxidation potential of the ferrocenes, which is a thermodynamic quantity. The ion yields emphatically do not obey the Nernstian ratio, revealing the redox processes in the droplets do not follow the assumptions of bulk steady-state electrochemistry. Furthermore, oxidative competition in the mixture of several ferrocenes suggest a finite oxidative capacity or oxidant concentration. These results demonstrate that even though ion generation could be an out-of-equilibrium and kinetically limited process, the oxidative yield in microdroplets does correlate with thermodynamics, suggesting a possible free energy relationship between the kinetics and thermodynamics of the process.
Collapse
Affiliation(s)
- Tirthick Majumder
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Dmitry B Eremin
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Berk Delibas
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Archishman Sarkar
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - ValeryV Fokin
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| | - Jahan M Dawlaty
- Department of Chemistry, The University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
11
|
Sano M, Kamei K, Yatsuhashi T, Sakota K. Localization and Orientation of Dye Molecules at the Surface of a Levitated Microdroplet in Air Revealed by Whispering Gallery Mode Resonances. J Phys Chem Lett 2024; 15:8133-8141. [PMID: 39087939 DOI: 10.1021/acs.jpclett.4c01819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Microdroplets offer unique environments that accelerate chemical reactions; however, the mechanisms behind these processes remain debated. The localization and orientation of solute molecules near the droplet surface have been proposed as factors for this acceleration. Since significant reaction acceleration has been observed for electrospray- and sonic-spray-generated aerosol droplets, the analysis of microdroplets in air has become essential. Here, we utilized whispering gallery mode (WGM) resonances to investigate the localization and orientation of dissolved rhodamine B (RhB) in a levitated microdroplet (∼3 μm in diameter) in air. Fluorescence enhancement upon resonance with the WGMs revealed the localization and orientation of RhB near the droplet surface. Numerical modeling using Mie theory quantified the RhB orientation at 68° to the surface normal, with a small fraction randomly oriented inside the droplet. Additionally, low RhB concentrations increased surface localization. These results support the significance of surface reactions in the acceleration of microdroplet reactions.
Collapse
Affiliation(s)
- Motoya Sano
- Division of Molecular Material Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kota Kamei
- Division of Molecular Material Science, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Tomoyuki Yatsuhashi
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Kenji Sakota
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, 3-3-138, Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
12
|
Nam JH, Nayak G, Exarhos S, Mueller CM, Xu D, Schatz GC, Bruggeman PJ. Mechanisms of controlled stabilizer-free synthesis of gold nanoparticles in liquid aerosol containing plasma. Chem Sci 2024; 15:11643-11656. [PMID: 39055030 PMCID: PMC11268499 DOI: 10.1039/d4sc01192a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/09/2024] [Indexed: 07/27/2024] Open
Abstract
The interaction between low-temperature plasma and liquid enables highly reactive solution phase chemistry and fast reaction kinetics. In this work, we demonstrate the rapid synthesis of stabilizer-free, spherical and crystalline gold nanoparticles (AuNP). More than 70% of gold ion complex (AuCl- 4) conversion is achieved within a droplet residence time in the plasma of ∼10 ms. The average size of the AuNPs increases with an increase in the droplet residence time and the particle synthesis showed a power threshold effect suggesting the applicability of the classical nucleation theory. Leveraging UV-vis absorption and emission spectroscopy, and nanoparticle size distributions obtained from TEM measurements, we showed that the AuCl- 4 conversion exceeded by 250 times the maximum faradaic efficiency. We identified important roles of both short-lived reducing species including solvated electrons and possibly vacuum ultraviolet (VUV) photons, and long-lived species, H2O2, in the reduction of AuCl- 4. A quantitative investigation was performed by a 1-D reaction-diffusion model which includes transport, plasma-enabled interfacial reduction of AuCl- 4, classical nucleation, monomer absorption and autocatalytic surface growth enabled by H2O2. The model shows good agreement with the experimental results. The timescale analysis of the simulation revealed that nucleation is enabled by fast reduction of gold ions, and autocatalytic growth mainly determines the particle size and is responsible for the majority of the ion precursor conversion while also explaining the excessively large faradaic efficiency found experimentally.
Collapse
Affiliation(s)
- Jae Hyun Nam
- Department of Mechanical Engineering, University of Minnesota Minneapolis MN-55455 USA
| | - Gaurav Nayak
- Department of Mechanical Engineering, University of Minnesota Minneapolis MN-55455 USA
| | - Stephen Exarhos
- Department of Mechanical Engineering, University of Minnesota Minneapolis MN-55455 USA
| | - Chelsea M Mueller
- Department of Chemistry, Northwestern University Evanston IL-60208 USA
| | - Dongxuan Xu
- Department of Mechanical Engineering, University of Minnesota Minneapolis MN-55455 USA
| | - George C Schatz
- Department of Chemistry, Northwestern University Evanston IL-60208 USA
| | - Peter J Bruggeman
- Department of Mechanical Engineering, University of Minnesota Minneapolis MN-55455 USA
| |
Collapse
|
13
|
Padhy P, Zaman MA, Jensen MA, Cheng YT, Huang Y, Wu M, Galambos L, Davis RW, Hesselink L. Dielectrophoretic bead-droplet reactor for solid-phase synthesis. Nat Commun 2024; 15:6159. [PMID: 39039069 PMCID: PMC11263596 DOI: 10.1038/s41467-024-49284-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/29/2024] [Indexed: 07/24/2024] Open
Abstract
Solid-phase synthesis underpins many advances in synthetic and combinatorial chemistry, biology, and material science. The immobilization of a reacting species on the solid support makes interfacing of reagents an important challenge in this approach. In traditional synthesis columns, this leads to reaction errors that limit the product yield and necessitates excess consumption of the mobile reagent phase. Although droplet microfluidics can mitigate these problems, its adoption is fundamentally limited by the inability to controllably interface microbeads and reagent droplets. Here, we introduce Dielectrophoretic Bead-Droplet Reactor as a physical method to implement solid-phase synthesis on individual functionalized microbeads by encapsulating and ejecting them from microdroplets by tuning the supply voltage. Proof-of-concept demonstration of the enzymatic coupling of fluorescently labeled nucleotides onto the bead using this reactor yielded a 3.2-fold higher fidelity over columns through precise interfacing of individual microreactors and beads. Our work combines microparticle manipulation and droplet microfluidics to address a long-standing problem in solid-phase synthesis with potentially wide-ranging implications.
Collapse
Affiliation(s)
- Punnag Padhy
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Mohammad Asif Zaman
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Michael Anthony Jensen
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA.
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA.
| | - Yao-Te Cheng
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yogi Huang
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Mo Wu
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ludwig Galambos
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ronald Wayne Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, 94304, USA
- Department of Biochemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Lambertus Hesselink
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Xia Y, Xu J, Li J, Chen B, Dai Y, Zare RN. Visualization of the Charging of Water Droplets Sprayed into Air. J Phys Chem A 2024; 128:5684-5690. [PMID: 38968601 DOI: 10.1021/acs.jpca.4c02981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Water droplets are spraying into air using air as a nebulizing gas, and the droplets pass between two parallel metal plates with opposite charges. A high-speed camera records droplet trajectories in the uniform electric field, providing visual evidence for the Lenard effect, that is, smaller droplets are negatively charged whereas larger droplets are positively charged. By analyzing the velocities of the droplets between the metal plates, the charges on the droplets can be estimated. Some key observations include: (1) localized electric fields with intensities on the order of 109 V/m are generated, and charges are expected to jump (micro-lightening) between a positively charged larger droplet and the negatively charged smaller droplet as they separate; (2) the strength of the electric field is sufficiently powerful to ionize gases surrounding the droplets; and (3) observations in an open-air mass spectrometer reveal the presence of ions such as N2+, O2+, NO+, and NO2+. These findings provide new insight into the origins of some atmospheric ions and have implications for understanding ionization processes in the atmosphere and chemical transformations in water droplets, advancing knowledge in the field of aerosol science and water microdroplet chemistry.
Collapse
Affiliation(s)
- Yu Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Jinheng Xu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Juan Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Bolei Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, P. R. China
| | - Yifan Dai
- Department of Biomedical Engineering, Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, Missouri 63130, United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
15
|
Nandy A, Mondal S, Koner D, Banerjee S. Heavy Water Microdroplet Surface Enriches the Lighter Isotopologue Impurities. J Am Chem Soc 2024; 146:19050-19058. [PMID: 38958201 DOI: 10.1021/jacs.4c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Water microdroplets promote unusual chemical reactions at the air-water interface. However, the interfacial structure of water microdroplets and its potential influence on chemical processes are still enigmatic. Here, we present evidence of in-droplet fractionation of water isotopologues. Employing a sonic spray, we atomized the heavy water (D2O, 99.9 atom % D) solution of three classes of organic compounds (basic, acidic, and neutral). The analytes were predominantly desorbed from the resulting droplet surface in protonated form rather than deuterated form, as detected by mass spectrometry. This result remained unaltered upon adding formic acid-d2 (DCOOD) to the droplet. Monitoring Dakin oxidation of benzaldehyde at the surface of binary microdroplets composed of 1:1 (v/v) D2O/H218O revealed the preferred formation of phenolate-16O over phenolate-18O. Atmospheric pressure chemical ionization mass spectrometric analysis of the vapor composition in the sprayed aerosol revealed the preferential evaporation of lighter water isotopologue impurities from the surface of heavy water microdroplets. These results indicate the enrichment of lighter water isotopologue impurities (HOD/H2O) on the surface of heavy water microdroplets, implying possible future developments for water isotopologue fractionation using microdroplets.
Collapse
Affiliation(s)
- Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Debasish Koner
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502284, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
16
|
Kumar A, Avadhani VS, Nandy A, Mondal S, Pathak B, Pavuluri VKN, Avulapati MM, Banerjee S. Water Microdroplets in Air: A Hitherto Unnoticed Natural Source of Nitrogen Oxides. Anal Chem 2024; 96:10515-10523. [PMID: 38829716 DOI: 10.1021/acs.analchem.4c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Water microdroplets are widespread in the atmosphere. We report a striking observation that micron-sized water droplets obtained from zero-volt spray sources (sonic spray, humidifier, spray bottle, steamer, etc.) spontaneously generate nitrogen oxides. The mechanistic investigation through the development of custom-designed sampling sources combined with mass spectrometry and isotope labeling experiments confirmed that air nitrogen reacts with the water at the air-water interface, fixing molecular nitrogen to its oxides (NO, NO2, and N2O) and acids (HNO2 and HNO3) at trace levels without any catalyst. These reactions are attributed to the consequence of an experimentally detected feeble corona discharge (breakdown of air) at the air-water interface, likely driven by the high intrinsic electric field at the surface of water microdroplets. The extent of this corona discharge effect varies depending on the pH, salinity/impurity, size, speed, and lifetime of microdroplets in the air. Thus, this study discloses that the air-water interface of microdroplets breaks the strong chemical bond of nitrogen (N2), producing nitrogen oxides in the environment, while lightning strikes and microbial processes in soil are considered their dominant natural sources. As nitrogen oxides are toxic air pollutants, their spontaneous formation at the air-water interface should have important implications in atmospheric reactions, requiring further investigations.
Collapse
Affiliation(s)
- Anubhav Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Veena Shankar Avadhani
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Abhijit Nandy
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Supratim Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | - Barsha Pathak
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| | | | - Madan Mohan Avulapati
- Department of Mechanical Engineering, Indian Institute of Technology Tirupati, Tirupati 517619, India
| | - Shibdas Banerjee
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Tirupati 517507, India
| |
Collapse
|
17
|
Basuri P, Mukhopadhyay S, Reddy KSSVP, Unni K, Spoorthi BK, Shantha Kumar J, Yamijala SSRKC, Pradeep T. Spontaneous α-C-H Carboxylation of Ketones by Gaseous CO 2 at the Air-water Interface of Aqueous Microdroplets. Angew Chem Int Ed Engl 2024; 63:e202403229. [PMID: 38577991 DOI: 10.1002/anie.202403229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
We present a catalyst-free route for the reduction of carbon dioxide integrated with the formation of a carbon-carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the α-carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an α-ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products.
Collapse
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Sinchan Mukhopadhyay
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - K S S V Prasad Reddy
- Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Keerthana Unni
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - B K Spoorthi
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Jenifer Shantha Kumar
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Sharma S R K C Yamijala
- Centre for Atomistic Modelling and Materials Design, Centre for Molecular Materials and Functions, Centre for Quantum Information, Communication, and Computing, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, 600036, Chennai, Tamil Nadu, India
| |
Collapse
|
18
|
Fan J, Liang L, Zhou X, Ouyang Z. Accelerating protein aggregation and amyloid fibrillation for rapid inhibitor screening. Chem Sci 2024; 15:6853-6859. [PMID: 38725489 PMCID: PMC11077537 DOI: 10.1039/d4sc00437j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/04/2024] [Indexed: 05/12/2024] Open
Abstract
The accumulation and deposition of amyloid fibrils, also known as amyloidosis, in tissues and organs of patients has been found to be linked to numerous devastating neurodegenerative diseases. The aggregation of proteins to form amyloid fibrils, however, is a slow pathogenic process, and is a major issue for the evaluation of the effectiveness of inhibitors in new drug discovery and screening. Here, we used microdroplet reaction technology to accelerate the amyloid fibrillation process, monitored the process to shed light on the fundamental mechanism of amyloid self-assembly, and demonstrated the value of the technology in the rapid screening of potential inhibitor drugs. Proteins in microdroplets accelerated to form fibrils in milliseconds, enabling an entire cycle of inhibitor screening for Aβ40 within 3 minutes. The technology would be of broad interest to drug discovery and therapeutic design to develop treatments for diseases associated with protein aggregation and fibrillation.
Collapse
Affiliation(s)
- Jingjin Fan
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Liwen Liang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Xiaoyu Zhou
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| | - Zheng Ouyang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University Beijing 100084 China
| |
Collapse
|
19
|
Qiu L, Cooks RG. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent. Angew Chem Int Ed Engl 2024; 63:e202400118. [PMID: 38302696 DOI: 10.1002/anie.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
Exploration of the unique chemical properties of interfaces can unlock new understanding. A striking example is the finding of accelerated reactions, particularly spontaneous oxidation reactions, that occur without assistance of catalysts or external oxidants at the air interface of both aqueous and organic solutions (provided they contain some water). This finding opened a new area of interfacial chemistry but also caused heated debate regarding the primary chemical species responsible for the observed oxidation. An overview of the literature covering oxidation in microdroplets with air interfaces is provided, together with a critical examination of previous findings and hypotheses. The water radical cation/radical anion pair, formed spontaneously and responsible for the electric field at or near the droplet/air interface, is suggested to constitute the primary redox species. Mechanisms of accelerated microdroplet reactions are critically discussed and it is shown that hydroxyl radical/hydrogen peroxide formation in microdroplets does not require that these species be the primary oxidant. Instead, we suggest that hydroxyl radical and hydrogen peroxide are the products of water radical cation decay in water. The importance of microdroplet chemistry in the prebiotic environment is sketched briefly and the role of partial solvation in reaction acceleration is noted.
Collapse
Affiliation(s)
- Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S
| | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S
| |
Collapse
|
20
|
Chen H, Wang R, Chiba T, Foreman K, Bowen K, Zhang X. Designer "Quasi-Benzyne": The Spontaneous Reduction of Ortho-Diiodotetrafluorobenzene on Water Microdroplets. J Am Chem Soc 2024; 146:10979-10983. [PMID: 38586980 DOI: 10.1021/jacs.4c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
It has been widely shown that water microdroplets have a plethora of unique properties that are highly distinct from those of bulk water, among which an especially intriguing one is the strong reducing power as a result of the electrons spontaneously generated at the air-water interface. In this study, we take advantage of the reducing power of water microdroplets to reduce ortho-diiodotetrafluorobenzene (o-C6F4I2) into a C6F4I2•- radical anion. Photoelectron spectroscopy and density functional theory computations reveal that the excess electron in C6F4I2•- occupies the I-C1-C2-I linkage, which elongates the C-I bonds but surprisingly shortens the C1-C2 bond, making the bond order higher than a double bond, similar to the benzyne molecule, so we named it "quasi-benzyne". The C6F4I2•- anion was further successfully utilized in a Diels-Alder reaction, a typical reaction for benzyne. This study provides a good example of strategically utilizing the spontaneous properties of water microdroplets and generating an especially exotic anion, and we anticipate that microdroplet chemistry can be an avenue rich in opportunities for new catalyst-free organic reactions.
Collapse
Affiliation(s)
- Huan Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
| | - Ruijing Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
| | - Tatsuya Chiba
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kathryn Foreman
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin300192, China
| |
Collapse
|
21
|
Rodriguez HM, Martyniuk M, Iyer KS, Ciampi S. Insulator-on-Conductor Fouling Amplifies Aqueous Electrolysis Rates. J Am Chem Soc 2024; 146:10299-10311. [PMID: 38591156 DOI: 10.1021/jacs.3c11238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The chemical industry is a major consumer of fossil fuels. Several chemical reactions of practical value proceed with the gain or loss of electrons, opening a path to integrate renewable electricity into chemical manufacturing. However, most organic molecules have low aqueous solubility, causing green and cheap electricity-driven reactions to suffer from intrinsically low reaction rates in industry's solvent of choice: water. Here, we show that a strategic, partial electrode fouling with hydrophobic insulators (oils and plastics) offsets kinetic limitations caused by poor reactant solubility, opening a new path for the direct integration of renewable electricity into the production of commodity chemicals. Through electrochemiluminescence microscopy, we reveal for the oxidation of organic reactants up to 6-fold reaction rate increase at the "fouled" oil-electrolyte-electrode interface relative to clean electrolyte-electrode areas. Analogously, electrodes partially masked (fouled) with plastic patterns, deposited either photolithographically (photoresists) or manually (inexpensive household glues and sealants), outperform clean electrodes. The effect is not limited to reactants of limited water solubility, and, for example, net gold electrodeposition rates are up to 22% larger at fouled than clean electrodes. In a system involving a surface-active reactant, rate augmentation is driven by the synergy between insulator-confined reactant enrichment and insulator-induced current crowding, whereas only the latter and possibly localized decrease in iR drop near the insulator are relevant in a system composed of non-surface-active species. Our counterintuitive electrode design enhances electrolysis rates despite the diminished area of intimate electrolyte-electrode contact and introduces a new path for upscaling aqueous electrochemical processes.
Collapse
Affiliation(s)
- Harry Morris Rodriguez
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Mariusz Martyniuk
- Department of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Killugudi Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| |
Collapse
|
22
|
Song X, Yan H, Zhang Y, Zhou W, Li S, Zhang J, Ciampi S, Zhang L. Hydroxylation of the indium tin oxide electrode promoted by surface bubbles. Chem Commun (Camb) 2024; 60:4186-4189. [PMID: 38530669 DOI: 10.1039/d4cc00307a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Adherent bubbles at electrodes are generally treated as reaction penalties. Herein, in situ hydroxylation of indium tin oxide surfaces can be easily achieved by applying a constant potential of +1.0 V in the presence of bubbles. Its successful hydroxylation is further demonstrated by preparing a ferrocene-terminated film, which is confirmed by cyclic voltammetry and X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Xiaoxue Song
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Hui Yan
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Yuqiao Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Weiqiang Zhou
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Shun Li
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Jianming Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| | - Simone Ciampi
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia.
| | - Long Zhang
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang City, 212013, Jiangsu Province, China.
| |
Collapse
|
23
|
Galembeck F, Santos LP, Burgo TAL, Galembeck A. The emerging chemistry of self-electrified water interfaces. Chem Soc Rev 2024; 53:2578-2602. [PMID: 38305696 DOI: 10.1039/d3cs00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Water is known for dissipating electrostatic charges, but it is also a universal agent of matter electrification, creating charged domains in any material contacting or containing it. This new role of water was discovered during the current century. It is proven in a fast-growing number of publications reporting direct experimental measurements of excess charge and electric potential. It is indirectly verified by its success in explaining surprising phenomena in chemical synthesis, electric power generation, metastability, and phase transition kinetics. Additionally, electrification by water is opening the way for developing green technologies that are fully compatible with the environment and have great potential to contribute to sustainability. Electrification by water shows that polyphasic matter is a charge mosaic, converging with the Maxwell-Wagner-Sillars effect, which was discovered one century ago but is still often ignored. Electrified sites in a real system are niches showing various local electrochemical potentials for the charged species. Thus, the electrified mosaics display variable chemical reactivity and mass transfer patterns. Water contributes to interfacial electrification from its singular structural, electric, mixing, adsorption, and absorption properties. A long list of previously unexpected consequences of interfacial electrification includes: "on-water" reactions of chemicals dispersed in water that defy current chemical wisdom; reactions in electrified water microdroplets that do not occur in bulk water, transforming the droplets in microreactors; and lowered surface tension of water, modifying wetting, spreading, adhesion, cohesion, and other properties of matter. Asymmetric capacitors charged by moisture and water are now promising alternative equipment for simultaneously producing electric power and green hydrogen, requiring only ambient thermal energy. Changing surface tension by interfacial electrification also modifies phase-change kinetics, eliminating metastability that is the root of catastrophic electric discharges and destructive explosions. It also changes crystal habits, producing needles and dendrites that shorten battery life. These recent findings derive from a single factor, water's ability to electrify matter, touching on the most relevant aspects of chemistry. They create tremendous scientific opportunities to understand the matter better, and a new chemistry based on electrified interfaces is now emerging.
Collapse
Affiliation(s)
- Fernando Galembeck
- Department of Physical Chemistry, University of Campinas, Institute of Chemistry, 13083-872, Campinas, Brazil.
- Galembetech Consultores e Tecnologia, 13080-661, Campinas, Brazil
| | - Leandra P Santos
- Galembetech Consultores e Tecnologia, 13080-661, Campinas, Brazil
| | - Thiago A L Burgo
- Department of Chemistry and Environmental Sciences, São Paulo State University (Unesp), 15054-000, São José do Rio Preto, Brazil
| | - Andre Galembeck
- Department of Fundamental Chemistry, Federal University of Pernambuco, 50740-560, Recife, Brazil
| |
Collapse
|
24
|
Abstract
Chemical reactions that occur in droplets proceed much differently compared to bulk phases. For instance, many groups have studied droplets during levitation by mass spectrometry and fluorescence to gain more detailed mechanistic insight. Such droplets maximize the probability of solution species interacting with the solution-air interface, an interface that is inherently difficult to probe electrochemically. In this Technical Note, we overcome this limitation by developing a laser-pulled dual-barrel electrode. Having two microwires sealed within the same glass capillary allows one to make two-electrode measurements. We show that the electrode can be positioned within a levitating water droplet and that the voltammetry of a redox indicator (hexacyanoferrate (II/III)) can be observed in real-time. Such foundational measurement tools are important to probe a variety of chemical reactions at complex interfaces.
Collapse
Affiliation(s)
- Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lingqi Qiu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
25
|
Dong J, Chen J, Wang W, Wei Z, Tian ZQ, Fan FR. Charged Microdroplets as Microelectrochemical Cells for CO 2 Reduction and C-C Coupling. J Am Chem Soc 2024; 146:2227-2236. [PMID: 38224553 DOI: 10.1021/jacs.3c12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Charged microdroplets offer novel electrochemical environments, distinct from traditional solid-liquid or solid-liquid-gas interfaces, due to the intense electric fields at liquid-gas interfaces. In this study, we propose that charged microdroplets serve as microelectrochemical cells (MECs), enabling unique electrochemical reactions at the gas-liquid interface. Using electrospray-generated microdroplets, we achieved multielectron CO2 reduction and C-C coupling to synthesize ethanol using molecular catalysts. These catalysts effectively harness and relay electrons, enhancing the longevity of solvated electrons and enabling multielectron reactions. Importantly, we revealed the intrinsic relationship between the size and charge density of a MEC and its reaction selectivity. Employing in situ mass spectrometry, we identified reaction intermediates (molecular catalyst adducts with HCOO) and oxidation products, elucidating the CO2 reduction mechanism and the comprehensive reaction procedure. Our research underscores the promising role of charged microdroplets in pioneering new electrochemical systems.
Collapse
Affiliation(s)
- Jianing Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jianxiong Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wenxin Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhenwei Wei
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Wang Y, Dong J, Song X, Luo K, Nan ZA, Fan FR, Tian ZQ. Utilization of charged microdroplets for the controlled rapid synthesis of hollow sodium chloride single crystals. Chem Commun (Camb) 2024; 60:980-983. [PMID: 38165770 DOI: 10.1039/d3cc05640f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Charged microdroplets are favored in microfluidic control, biomedicine, chemistry and materials processing due to their unique physicochemical environment, including interface double layers, high electric fields, surface concentration enrichment, and more. Herein, we investigated the crystallization of charged sodium chloride microdroplets and achieved the formation of hollow single crystals in a single-step process lasting only a few seconds, without the use of templates. Additionally, we discussed the plausible crystal growth mechanism, which appears to be an unconventional outward-inward growth process.
Collapse
Affiliation(s)
- Yanjie Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Jianing Dong
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Xianmeng Song
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Kai Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Zi-Ang Nan
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| | - Zhong-Qun Tian
- Department of Chemistry, College of Chemistry and Chemical Engineering, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
27
|
Layman BR, Dick JE. Through-Space Electrochemiluminescence Reveals Bubble Forces at Remote Phase Boundaries. J Am Chem Soc 2024; 146:707-713. [PMID: 38156610 DOI: 10.1021/jacs.3c10505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Several groups have reported on the curious chemistry and reaction acceleration in confined volumes. These complex multiphase systems most closely resemble natural processes, and new measurement tools are necessary to probe chemistry in such environments. Generally, electrochemiluminescence (ECL) reports on processes immediately near (within a few micrometers) the electrode surface. Here, we introduce through-space ECL, reporting on dynamics of processes far away (100s of μm) from the electrode surface. We achieved this by collecting reflected ECL light. During the heterogeneous oxidation of C2O42- in an aqueous phase adjacent to a 1,2-dichlorethane droplet, CO2 accumulates in the 1,2-dichloroethane droplet. Upon buildup, we demonstrate that a CO2 bubble forms in the nonaqueous phase and is surprisingly trapped at the water|1,2-dichloroethane interface and continues to grow. The co-oxidation of tris(bipyridine)ruthenium(II) in the aqueous phase lights up the electrode surface and reflects off the edges of the bubble, revealing the bubble growth over time even when the bubble is fractions of a millimeter from the surface. We extend our results to quantifying bubble forces at the water-oil interface at remote distances from the electrode surface.
Collapse
Affiliation(s)
- Brady R Layman
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
Li K, You W, Wang W, Gong K, Liu Y, Wang L, Ge Q, Ruan X, Ao J, Ji M, Zhang L. Significantly Accelerated Photochemical Perfluorooctanoic Acid Decomposition at the Air-Water Interface of Microdroplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21448-21458. [PMID: 38047763 DOI: 10.1021/acs.est.3c05470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The efficient elimination of per- and polyfluoroalkyl substances (PFASs) from the environment remains a huge challenge and requires advanced technologies. Herein, we demonstrate that perfluorooctanoic acid (PFOA) photochemical decomposition could be significantly accelerated by simply carrying out this process in microdroplets. The almost complete removal of 100 and 500 μg/L PFOA was observed after 20 min of irradiation in microdroplets, while this was achieved after about 2 h in the corresponding bulk phase counterpart. To better compare the defluorination ratio, 10 mg/L PFOA was used typically, and the defluorination rates in microdroplets were tens of times faster than that in the bulk phase reaction system. The high performances in actual water matrices, universality, and scale-up applicability were demonstrated as well. We revealed in-depth that the great acceleration is due to the abundance of the air-water interface in microdroplets, where the reactants concentration enrichment, ultrahigh interfacial electric field, and partial solvation effects synergistically promoted photoreactions responsible for PFOA decomposition, as evidenced by simulated Raman scattering microscopy imaging, vibrational Stark effect measurement, and DFT calculation. This study provides an effective approach and highlights the important roles of air-water interface of microdroplets in PFASs treatment.
Collapse
Affiliation(s)
- Kejian Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Wenbo You
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Wei Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Longqian Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Qiuyue Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Xuejun Ruan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| |
Collapse
|
29
|
Zheng B, Wu Y, Xue L, Sun J, Liu J, Cheng H. Is Reaction Acceleration of Microdroplet Chemistry Favorable to Controlling the Enantioselectivity? J Org Chem 2023; 88:16186-16195. [PMID: 37948325 DOI: 10.1021/acs.joc.3c01660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Microdroplet chemistry has been proven to amazingly accelerate many chemical and biological reactions in the past 2 decades. Current microdroplet accelerated reactions are predominantly symmetric synthetic but minorly asymmetric synthetic reactions, where stereoselectivity is scarcely concerned. This study selected unimolecular and bimolecular reactions, multicomponent Passerini reactions, and enzymatic ketone reduction as the model reactions to illustrate whether reaction acceleration of microdroplet chemistry is favorable to retaining a chiral center and controlling the enantioselectivity or not. The results illustrated that microdroplet chemistry did not disrupt pre-existing stereogenic centers in chiral starting materials during reactions but did harm to stereospecificity in asymmetric catalysis by chiral catalysts and chiral organic ligands with the exclusion of enzymatic reactions. Our preliminary study reminds us of more cautions to the product enantioselectivity when conducting asymmetric catalysis in microdroplets. We also hope this study may promote more valuable further research on the stereoselectivity of microdroplet chemistry.
Collapse
Affiliation(s)
- Boyu Zheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Yikang Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Luyun Xue
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Jiannan Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou 311121, China
| |
Collapse
|
30
|
Wang T, Li Z, Gao H, Hu J, Chen HY, Xu JJ. Ultrafast C-C and C-N bond formation reactions in water microdroplets facilitated by the spontaneous generation of carbocations. Chem Sci 2023; 14:11515-11520. [PMID: 37886101 PMCID: PMC10599473 DOI: 10.1039/d3sc03870j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Carbocations are important electrophilic intermediates in organic chemistry, but their formation typically requires harsh conditions such as extremely low pH, elevated temperature, strong oxidants and/or expensive noble-metal catalysts. Herein, we report the spontaneous generation of highly reactive carbocations in water microdroplets by simply spraying a diarylmethanol aqueous solution. The formation of transient carbocations as well as their ultrafast in-droplet transformations through carbocation-involved C-C and C-N bond formation reactions are directly characterized by mass spectrometry. The intriguing formation and stabilization of carbocations are attributed to the super acidity of the positively charged water microdroplets as well as the high electric fields at the water-air interfaces. Without the utilization of external acids as catalysts, we believe that these microdroplet reactions would pose a new and sustainable way for the construction of aryl-substituted compounds.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zheng Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Hang Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Jun Hu
- School of Life Sciences and Health Engineering, Jiangnan University Wuxi 214122 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
31
|
Ma H, Xing F, Zhou Y, Yu P, Luo R, Xu J, Xiang Z, Rommens PM, Duan X, Ritz U. Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. J Mater Chem B 2023; 11:7873-7912. [PMID: 37551112 DOI: 10.1039/d3tb01008b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.
Collapse
Affiliation(s)
- Hong Ma
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Ludwigstraße 23, 35392 Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
32
|
Jin S, Chen H, Yuan X, Xing D, Wang R, Zhao L, Zhang D, Gong C, Zhu C, Gao X, Chen Y, Zhang X. The Spontaneous Electron-Mediated Redox Processes on Sprayed Water Microdroplets. JACS AU 2023; 3:1563-1571. [PMID: 37388681 PMCID: PMC10301804 DOI: 10.1021/jacsau.3c00191] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/11/2023] [Accepted: 05/18/2023] [Indexed: 07/01/2023]
Abstract
Water is considered as an inert environment for the dispersion of many chemical systems. However, by simply spraying bulk water into microsized droplets, the water microdroplets have been shown to possess a large plethora of unique properties, including the ability to accelerate chemical reactions by several orders of magnitude compared to the same reactions in bulk water, and/or to trigger spontaneous reactions that cannot occur in bulk water. A high electric field (∼109 V/m) at the air-water interface of microdroplets has been postulated to be the probable cause of the unique chemistries. This high field can even oxidize electrons out of hydroxide ions or other closed-shell molecules dissolved in water, forming radicals and electrons. Subsequently, the electrons can trigger further reduction processes. In this Perspective, by showing a large number of such electron-mediated redox reactions, and by studying the kinetics of these reactions, we opine that the redox reactions on sprayed water microdroplets are essentially processes using electrons as the charge carriers. The potential impacts of the redox capability of microdroplets are also discussed in a larger context of synthetic chemistry and atmospheric chemistry.
Collapse
Affiliation(s)
- Shuihui Jin
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Huan Chen
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xu Yuan
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Dong Xing
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Ruijing Wang
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Lingling Zhao
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Dongmei Zhang
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Chu Gong
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Chenghui Zhu
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xufeng Gao
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Yeye Chen
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Xinxing Zhang
- College
of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry
(Ministry of Education), Renewable Energy Conversion and Storage Centre,
Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers
Science Centre for New Organic Matter, Nankai
University, Tianjin, 300071, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Beijing
National Laboratory for Molecular Sciences, Beijing, 100190, China
| |
Collapse
|
33
|
Lin Y, Yong S, Scholtz CR, Du C, Sun S, Steinkruger JD, Zhou X, Zhou C, Yang S. Exploration of surface chemistry effects on the biodistribution and pharmacokinetics of dual-ligand luminescent gold nanoparticles. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
34
|
Cheng CH, Liu YC, Yang YCS, Lin KJ, Wu D, Liu YR, Chang CC, Hong CT, Hu CJ. Plasmon-activated water as a therapeutic strategy in Alzheimer's disease by altering gut microbiota. Aging (Albany NY) 2023; 15:3715-3737. [PMID: 37166426 PMCID: PMC10449311 DOI: 10.18632/aging.204706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023]
Abstract
Gut microbiota (GM) are involved in the pathophysiology of Alzheimer's disease (AD) and might correlate to the machinery of the gut-brain axis. Alteration of the GM profiles becomes a potential therapy strategy in AD. Here, we found that plasmon-activated water (PAW) therapy altered GM profile and reduced AD symptoms in APPswe/PS1dE9 transgenic mice (AD mice). GM profile showed the difference between AD and WT mice. PAW therapy in AD mice altered GM profile and fecal microbiota transplantation (FMT) reproduced GM profile in AD mice. PAW therapy and FMT in AD mice reduced cognitive decline and amyloid accumulation by novel object recognition (NOR) test and amyloid PET imaging. Immunofluorescent staining and western blot analysis of β-amyloid (Aβ) and phosphorylated (p)-tau in the brain of AD mice were reduced in PAW therapy and FMT. The inflammatory markers, interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α and pro-inflammatory indicator of arginase-1/CD86 ratio were also reduced. Furthermore, immunohistochemistry (IHC) analysis of occludin and claudin-5 in the intestine and AXL in the brain were increased to correlate with the abundant GM in PAW therapy and FMT. Our results showed the machinery of gut-brain axis, and PAW might be a potential therapeutic strategy in AD.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chen S.H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Kun-Ju Lin
- Department of Nuclear Medicine and Molecular Imaging Center, Linkou Chang Gung Memorial Hospital, Taoyuan City 33302, Taiwan
- Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Dean Wu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Yun-Ru Liu
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Chao Chang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology and Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chaur-Jong Hu
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Neurology and Dementia Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
- PhD program of Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
35
|
Liang Q, Zhu C, Yang J. Water Charge Transfer Accelerates Criegee Intermediate Reaction with H 2O - Radical Anion at the Aqueous Interface. J Am Chem Soc 2023; 145:10159-10166. [PMID: 37011411 DOI: 10.1021/jacs.3c00734] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Criegee intermediates (CIs) are important carbonyl oxides that may react with atmospheric trace chemicals and impact the global climate. The CI reaction with water has been widely studied and is a main channel for trapping CIs in the troposphere. Previous experimental and computational reports have largely focused on reaction kinetic processes in various CI-water reactions. The molecular-level origin of CI's interfacial reactivity at the water microdroplet surface (e.g., as found in aerosols and clouds) is unclear. In this study, by employing the quantum mechanical/molecular mechanical (QM/MM) Born-Oppenheimer molecular dynamics with the local second-order Møller-Plesset perturbation theory, our computational results reveal a substantial water charge transfer up to ∼20% per water, which creates the surface H2O+/H2O- radical pairs to enhance the CH2OO and anti-CH3CHOO reactivity with water: the resulting strong CI-H2O- electrostatic attraction at the microdroplet surface facilitates the nucleophilic attack to the CI carbonyl by water, which may counteract the apolar hindrance of the substituent to accelerate the CI-water reaction. Our statistical analysis of the molecular dynamics trajectories further resolves a relatively long-lived bound CI(H2O-) intermediate state at the air/water interface, which has not been observed in gaseous CI reactions. This work provides insights into what may alter the oxidizing power of the troposphere by the next larger CIs than simple CH2OO and implicates a new perspective on the role of interfacial water charge transfer in accelerating molecular reactions at aqueous interfaces.
Collapse
Affiliation(s)
- Qiujiang Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Chongqin Zhu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100190, People's Republic of China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
36
|
Jin S, Wang R, Chen H, Yuan X, Zhang X. Spontaneous and Simultaneous Oxidation and Reduction of o-Quinones in Water Microdroplets. J Phys Chem A 2023; 127:2805-2809. [PMID: 36939334 DOI: 10.1021/acs.jpca.3c00865] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Microdroplet chemistry has been an emerging new field for its large plethora of unique properties, among which an especially intriguing one is the strong oxidizing and reducing powers. The hydroxide ion in water microdroplets is considered to split into a hydroxyl radical and an electron at the air-water interface, and the former is responsible for the oxidizing capability while the latter is responsible for the reducing power, making a unity of opposites. However, to date there are only two examples showing that oxidation and reduction occur simultaneously to the same substrates, which might be a result of the redox properties of the substrate per se. In this study, we carefully chose a group of ο-quinone compounds as the substrates in water microdroplets and discovered that they can be both oxidized by the hydroxyl radical and reduced by the electron. These results keep pushing the limit of the unique redox properties of microdroplet chemistry.
Collapse
Affiliation(s)
- Shuihui Jin
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Ruijing Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Huan Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
37
|
Mass spectrometry in materials synthesis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
38
|
Yu SH, Yang CP, Mai FD, Tsai HY, Liu YC. Preparation of pure active water for auto-catalytic reactions performed in it. NANOSCALE 2023; 15:3919-3930. [PMID: 36723258 DOI: 10.1039/d3nr00021d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In catalyzed electrochemical reactions, a general strategy is to modify electrode materials to increase the efficiency of the reaction. From the viewpoint of environmental protection, electrochemical reactions should be performed in an inert green water phase. In this study, we report active pure liquid water (named PV), which was collected from the condensed vapor of heated gold (Au)-containing plasmon-activated water (PAW) with a distinct structure of electron-doping and reduced hydrogen bonding (HB). The resulting PV also exhibited distinct properties of the formation of stronger intermolecular HB with alcohols, and notable activities in catalytic electrochemical reactions, compared to bulk deionized water (DIW). Moreover, the measured diffusion coefficients of water increased by ca. 30% in PV solutions. Two typical electrochemical reactions significantly increased peak currents observed in oxidation-reduction cycles (ORCs) with roughening of the Au substrate and in a model of reversible oxidation-reduction reactions on a platinum (Pt) substrate. Also, PV enhanced hydrogen evolution reactions (HERs) on catalytic Pt and inert stainless steel substrates in PV-based solutions at different pH values, compared to DIW. Moreover, these activities of PV were more marked, even better than those of PAW, when PV was collected under a higher heating rate used to heat PAW. Active pure PV has emerged as a promising green solvent applicable to various chemical reactions with more efficiency.
Collapse
Affiliation(s)
- Shih-Hao Yu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan.
| | - Chih-Ping Yang
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan.
| | - Fu-Der Mai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan.
| | - Hui-Yen Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan.
| | - Yu-Chuan Liu
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 11031, Taiwan.
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
39
|
Yuan X, Zhang D, Liang C, Zhang X. Spontaneous Reduction of Transition Metal Ions by One Electron in Water Microdroplets and the Atmospheric Implications. J Am Chem Soc 2023; 145:2800-2805. [PMID: 36705987 DOI: 10.1021/jacs.3c00037] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Freshman chemistry teaches that Fe3+ and Cu2+ ions are stable in water solutions, but their reduced forms, Fe2+ and Cu+, cannot exist in water as the major oxidation state due to the fast oxidation by O2 and/or disproportionation. Contrary to these well-known facts, significant fractions of dissolved Fe and Cu species exist in their reduced oxidation states in atmospheric water such as deliquesced aerosols, clouds, and fog droplets. Current knowledge attributes these phenomena to the stabilization of the lower oxidation states by the complexation of ligands and the various photochemical or thermal pathways that can reduce the higher oxidation states. In this study, by spraying the water solutions of transition metal ions into microdroplets, we show the results of the spontaneous reduction of ligated Fe(III) and Cu(II) species into Fe(II) and Cu(I) species, presenting a previously unknown source of reduced transition metal ions in atmospheric water. It is the spontaneously generated electrons in water microdroplets that are responsible for the reduction. Control experiments in the atmosphere and in a glove box filled with precisely controlled gaseous contents reveal that O2, CO2, and NO2 are the major competitors for the electrons, forming O2-, HCO2-, and NO2-, respectively. Taking these findings together, we opine that microdroplet chemistry might play significant but previously underestimated roles in atmospheric redox chemistry.
Collapse
Affiliation(s)
- Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Chiyu Liang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
40
|
Chen H, Wang R, Xu J, Yuan X, Zhang D, Zhu Z, Marshall M, Bowen K, Zhang X. Spontaneous Reduction by One Electron on Water Microdroplets Facilitates Direct Carboxylation with CO 2. J Am Chem Soc 2023; 145:2647-2652. [PMID: 36668682 DOI: 10.1021/jacs.2c12731] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recent advances in microdroplet chemistry have shown that chemical reactions in water microdroplets can be accelerated by several orders of magnitude compared to the same reactions in bulk water. Among the large plethora of unique properties of microdroplets, an especially intriguing one is the strong reducing power that can be sometimes as high as alkali metals as a result of the spontaneously generated electrons. In this study, we design a catalyst-free strategy that takes advantage of the reducing ability of water microdroplets to reduce a certain molecule, and the reduced form of that molecule can convert CO2 into value-added products. By spraying the water solution of C6F5I into microdroplets, an exotic and fragile radical anion, C6F5I•-, is observed, where the excess electron counter-intuitively locates on the σ* antibonding orbital of the C-I bond as evidenced by anion photoelectron spectroscopy. This electron weakens the C-I bond and causes the formation of C6F5-, and the latter attacks the carbon atom on CO2, forming the pentafluorobenzoate product, C6F5CO2-. This study provides a good example of strategically making use of the spontaneous properties of water microdroplets, and we anticipate that microdroplet chemistry will be a green avenue rich in new opportunities in CO2 utilization.
Collapse
Affiliation(s)
- Huan Chen
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Ruijing Wang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Jinheng Xu
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China.,Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xu Yuan
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Dongmei Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhaoguo Zhu
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Mary Marshall
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kit Bowen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Xinxing Zhang
- College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Centre, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Centre for New Organic Matter, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
41
|
Jin X, Wu Y, Dai C, Sun J, Ye M, Liu J, Cheng H. Catalyst-Free Accelerated Three-Component Synthesis of Betti Bases in Microdroplets. Chempluschem 2023; 88:e202200206. [PMID: 36026555 DOI: 10.1002/cplu.202200206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/28/2022] [Indexed: 02/03/2023]
Abstract
Due to their important roles in medicine and asymmetric metal catalysis, the formation of Betti bases has attracted wide interest in organic chemical community. Traditional multicomponent reaction methods for synthesizing Betti bases normally require long reaction times under harsh conditions (high temperature, microwave or ultrasonic irradiation, etc.) in the presence of various catalysts. In this study, we developed a mild, highly efficient and environmentally friendly method to synthesize Betti bases without the use of any catalysts in microdroplets. The Betti reaction was accelerated by 6.53×103 in microdroplets by comparing the measured rate constant in bulk. Fifteen Betti bases were synthesized by the microdroplet method using a variety of aldehydes, naphthols and amines with 68-98 % yields at a scaled-up amount of 1.9 g h-1 . Overall it is an attractive alternative to classic organic synthesis for the construction of Betti bases and derivatives.
Collapse
Affiliation(s)
- Xiaoxiao Jin
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Yikang Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Chengbiao Dai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jiannan Sun
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Meiying Ye
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Jinhua Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| | - Heyong Cheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, P. R. China
| |
Collapse
|
42
|
Nanomaterial-mediated photoporation for intracellular delivery. Acta Biomater 2023; 157:24-48. [PMID: 36584801 DOI: 10.1016/j.actbio.2022.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Translocation of extrinsic molecules into living cells is becoming increasingly crucial in biological studies ranging from cell engineering to biomedical applications. The concerns regarding biosafety and immunogenicity for conventional vectors and physical methods yet challenge effective intracellular delivery. Here, we begin with an overview of approaches for trans-membrane delivery up to now. These methods are featured with a relatively mature application but usually encounter low cell survival. Our review then proposes an advanced application for nanomaterial-sensitized photoporation triggered with a laser. We cover the mechanisms, procedures, and outcomes of photoporation-induced intracellular delivery with a highlight on its versatility to different living cells. We hope the review discussed here encourages researchers to further improvement and applications for photoporation-induced intracellular delivery. STATEMENT OF SIGNIFICANCE.
Collapse
|
43
|
Sun J, Tan H, Gao Y, Li J, Wei J, Zhang S, Ouyang J, Na N. Confined surface-enhanced indole cation-radical cyclization studied by mass spectrometry. Analyst 2023; 148:262-268. [PMID: 36503912 DOI: 10.1039/d2an01719a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Reactions in confined spaces exhibit unique reactivity, while how the confinement effect enhances reactions remains unclear. Herein, the reaction in the confined space of a nanopipette reactor was examined by in situ nano-electrospray mass spectrometry (nanoESI-MS). The indole cation-radical cyclization was selected as the model reaction, catalyzed by a common visible-light-harvesting complex Ru(bpz)3(PF6)2 (1% eq.) rather than traditional harsh reaction conditions (high temperature or pressure, etc.). As demonstrated by in situ nanoESI-MS, this reaction was readily promoted in the nanopipette under mild conditions, while it was inefficient in both normal flasks and microdroplets. Both experimental and theoretical evidence demonstrated the formation of concentrated Ru(II)-complexes on the inner surface of the nanopipette, which facilitated the accelerated reactions. As a result, dissociative reactive cation radicals with lower HOMO-LUMO gap were generated from the Ru(II)-complexes by ligand-to-metal charge transfer (LMCT). Furthermore, the crucial cation radical intermediates were captured and dynamically monitored via in situ nanoESI-MS, responsible for the electronically matched [4 + 2] cycloaddition and subsequent intramolecular dehydrogenation. This work inspires a deeper understanding of the unique reactions in confined spaces.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yixuan Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jingjing Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Juanjuan Wei
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Shengxi Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
44
|
Basuri P, Chakraborty A, Ahuja T, Mondal B, Kumar JS, Pradeep T. Spatial reorganization of analytes in charged aqueous microdroplets. Chem Sci 2022; 13:13321-13329. [PMID: 36507174 PMCID: PMC9682915 DOI: 10.1039/d2sc04589c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/11/2022] [Indexed: 12/15/2022] Open
Abstract
Imprinted charged aqueous droplets of micrometer dimensions containing spherical gold and silver nanoparticles, gold nanorods, proteins and simple molecules were visualized using dark-field and transmission electron microscopies. With such studies, we hoped to understand the unusual chemistry exhibited by microdroplets. These droplets with sizes in the range of 1-100 μm were formed using a home-built electrospray source with nitrogen as the nebulization gas. Several remarkable features such as mass/size-selective segregation and spatial localization of solutes in nanometer-thin regions of microdroplets were visualized, along with the formation of micro-nano vacuoles. Electrospray parameters such as distance between the spray tip and surface, voltage and nebulization gas pressure influenced particle distribution within the droplets. We relate these features to unusual phenomena such as the enhancement of rates of chemical reactions in microdroplets.
Collapse
Affiliation(s)
- Pallab Basuri
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Amrita Chakraborty
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Tripti Ahuja
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Biswajit Mondal
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Jenifer Shantha Kumar
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
| | - Thalappil Pradeep
- DST Unit of Nanoscience, Department of Chemistry, Indian Institute of Technology, Madras Chennai 600036 India
- International Centre for Clean Water Chennai Tamil Nadu 600113 India
| |
Collapse
|
45
|
Sun Q, Hu X, Xu B, Lin S, Deng X, Zhou S. Janus Charged Droplet Manipulation Mediated by Invisible Charge Walls. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204382. [PMID: 36202749 PMCID: PMC9685436 DOI: 10.1002/advs.202204382] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The ability to control the mobility and function of droplets is fundamental to developing open surface microfluidics. Despite notable progress in the manipulation of droplets, the existing strategies are still limited in functionalizing droplets. Herein, the coupling of droplet motion and functionalization elicited by an invisible charge wall is reported. The charged superamphiphobic surface is overlapped with a conductor to induce free charge, creating the invisible charge wall at the overlapping boundary. The charge wall can trap droplets and polarize them into Janus charged state. It is found that the trapping degree and the charge distribution in the Janus charged droplet depend on the original surface charge on the superamphiphobic surface. The invisible charge wall can also be established at diverse boundary curvatures, allowing to design pathways for droplet manipulations. Furthermore, the enrichment of protein and nanomaterial in the manipulated Janus charged droplet is demonstrated. The strategy provides a potential microfluidic platform with orthogonal functionalities.
Collapse
Affiliation(s)
- Qiangqiang Sun
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Xuanming Hu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Boran Xu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Shiji Lin
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xu Deng
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| |
Collapse
|
46
|
Holden DT, Morato NM, Cooks RG. Aqueous microdroplets enable abiotic synthesis and chain extension of unique peptide isomers from free amino acids. Proc Natl Acad Sci U S A 2022; 119:e2212642119. [PMID: 36191178 PMCID: PMC9586328 DOI: 10.1073/pnas.2212642119] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
Amide bond formation, the essential condensation reaction underlying peptide synthesis, is hindered in aqueous systems by the thermodynamic constraints associated with dehydration. This represents a key difficulty for the widely held view that prebiotic chemical evolution leading to the formation of the first biomolecules occurred in an oceanic environment. Recent evidence for the acceleration of chemical reactions at droplet interfaces led us to explore aqueous amino acid droplet chemistry. We report the formation of dipeptide isomer ions from free glycine or L-alanine at the air-water interface of aqueous microdroplets emanating from a single spray source (with or without applied potential) during their flight toward the inlet of a mass spectrometer. The proposed isomeric dipeptide ion is an oxazolidinone that takes fully covalent and ion-neutral complex forms. This structure is consistent with observed fragmentation patterns and its conversion to authentic dipeptide ions upon gentle collisions and for its formation from authentic dipeptides at ultra-low concentrations. It also rationalizes the results of droplet fusion experiments that show that the dipeptide isomer facilitates additional amide bond formation events, yielding authentic tri- through hexapeptides. We propose that the interface of aqueous microdroplets serves as a drying surface that shifts the equilibrium between free amino acids in favor of dehydration via stabilization of the dipeptide isomers. These findings offer a possible solution to the water paradox of biopolymer synthesis in prebiotic chemistry.
Collapse
Affiliation(s)
- Dylan T. Holden
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - Nicolás M. Morato
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| | - R. Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
47
|
Chamberlayne CF, Zare RN. Simple Estimate of the Potential Drop across an Amphiprotic Liquid-Liquid Interface. J Phys Chem B 2022; 126:8112-8118. [PMID: 36194396 DOI: 10.1021/acs.jpcb.2c05696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two immiscible liquids in contact with each other can have different internal electrostatic potentials. An associated electric double layer (EDL) therefore exists within each liquid. For amphiprotic liquids, the exchange of protons between the two liquids gives rise to two EDLs, a positively charged EDL in one of the liquids and negatively charged EDL in the other. Using the pKa and pKb of one liquid dissolved in the other and the pH equivalent within each amphiprotic liquid, we can estimate the potential drop, Δφ, between the interior of the two liquids, also known as the Galvani potential or liquid-liquid junction potential. This estimation is independent of surface charge and ionic strength. By using the ionic strength to find the thickness of the EDL, we also estimate the average electric field strength across the interface. For the special case of water (H2O) in contact with an immiscible alcohol (ROH), the potential drop across the interface from the water to the alcohol is Δφ = 2.303VT (pKb + pH - pKw - pH2OR), where VT is the thermal voltage at a given temperature T.
Collapse
Affiliation(s)
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| |
Collapse
|
48
|
Vannoy KJ, Dick JE. Oxidation of Cysteine by Electrogenerated Hexacyanoferrate(III) in Microliter Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11892-11898. [PMID: 36121813 PMCID: PMC10232928 DOI: 10.1021/acs.langmuir.2c01385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Chemical reactivity in droplets is often assumed to mimic reactivity in bulk, continuous water. Here, we study the catalytic oxidation of cysteine by electrogenerated hexacyanoferrate(III) in microliter droplets. These droplets are adsorbed onto glassy carbon macroelectrodes and placed into an immiscible 1,2-dichloroethane phase. We combined cyclic voltammetry, optical microscopy, and finite element simulations to quantify the apparent bimolecular rate constant, kc,app, in microdroplets and bulk water. Statistical analyses reveal that the apparent bimolecular rate constant (kc,app) values formicrodroplets are larger than those in the continuous phase. Reactant adsorption to the droplet boundary has previously been implicated as the cause of such rate accelerations. Finite element modeling of this system suggests that molecular adsorption to the liquid|liquid interface cannot alone account for our observations, implicating kinetics of the bimolecular reaction either at the boundary or throughout the microliter volume. Our results indicate that cysteine oxidation by electrogenerated hexacyanoferrate(III) can be accelerated within a microenvironment, which may have profound implications on understanding biological processes within a cell.
Collapse
Affiliation(s)
- Kathryn J Vannoy
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
49
|
Lee K, Lee HR, Kim YH, Park J, Cho S, Li S, Seo M, Choi SQ. Microdroplet-Mediated Radical Polymerization. ACS CENTRAL SCIENCE 2022; 8:1265-1271. [PMID: 36188353 PMCID: PMC9523774 DOI: 10.1021/acscentsci.2c00694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 06/16/2023]
Abstract
Micrometer-sized aqueous droplets serve as a unique reactor that drives various chemical reactions not seen in bulk solutions. However, their utilization has been limited to the synthesis of low molecular weight products at low reactant concentrations (nM to μM). Moreover, the nature of chemical reactions occurring outside the droplet remains unknown. This study demonstrated that oil-confined aqueous microdroplets continuously generated hydroxyl radicals near the interface and enabled the synthesis of polymers at high reactant concentrations (mM to M), thus successfully converting the interfacial energy into the synthesis of polymeric materials. The polymerized products maintained the properties of controlled radical polymerization, and a triblock copolymer with tapered interfaces was prepared by the sequential addition of different monomers into the aqueous microdroplets. Furthermore, a polymerization reaction in the continuous oil phase was effectively achieved by the transport of the hydroxyl radicals through the oil/water interface. This interfacial phenomenon is also successfully applied to the chain extension of a hydrophilic polymer with an oil-soluble monomer across the microdroplet interface. Our comprehensive study of radical polymerization using compartmentalization in microdroplets is expected to have important implications for the emerging field of microdroplet chemistry and polymerization in cellular biochemistry without any invasive chemical initiators.
Collapse
Affiliation(s)
- Kyoungmun Lee
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Hyun-Ro Lee
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Young Hun Kim
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Jaemin Park
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Suchan Cho
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Sheng Li
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the Nanocentury, KAIST, Daejeon 34141, Republic
of Korea
| | - Myungeun Seo
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the Nanocentury, KAIST, Daejeon 34141, Republic
of Korea
| | - Siyoung Q. Choi
- Department
of Chemical and Biomolecular Engineering, Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the Nanocentury, KAIST, Daejeon 34141, Republic
of Korea
| |
Collapse
|
50
|
Song X, Meng Y, Zare RN. Spraying Water Microdroplets Containing 1,2,3-Triazole Converts Carbon Dioxide into Formic Acid. J Am Chem Soc 2022; 144:16744-16748. [PMID: 36075012 DOI: 10.1021/jacs.2c07779] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the use of 1,2,3-triazole (Tz)-containing water microdroplets for gas-phase carbon dioxide (CO2) reduction at room temperature. Using a coaxial sonic spraying setup, the CO2 can be efficiently captured by Tz and converted to formic acid (HCOOH; FA) at the gas-liquid interface (GLI). A mass spectrometer operated in negative ion mode monitors the capture of CO2 to form the bicarbonate anion (HCO3-) and conversion to form the formate anion (HCOO-). Varied FA species were successfully identified by MS/MS experiments including the formate monomer ([FA - H]-, m/z 45), the dimer ([2FA - H]-, m/z 91; [2FA + Na - 2H]-, m/z 113), the trimer ([3FA - H]-, m/z 137), and some other adducts (such as [FA - H + H2CO3]-, m/z 107; [2FA + Na - 2H + Tz]-, m/z 182). The reaction conditions were systematically optimized to make the maximum conversion yield reach over 80% with an FA concentration of approximately 71 ± 3.1 μM. The mechanism for the reaction is speculated to be that Tz donates the proton and the hydroxide (OH-) at the GLI, resulting in a stepwise yield of electrons to reduce gas-phase CO2 to FA.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, California 94305 United States
| | - Yifan Meng
- Department of Chemistry, Stanford University, Stanford, California 94305 United States
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, California 94305 United States
| |
Collapse
|