1
|
Reid XJ, Zhong Y, Mackay JP. How does CHD4 slide nucleosomes? Biochem Soc Trans 2024; 52:1995-2008. [PMID: 39221830 DOI: 10.1042/bst20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Chromatin remodelling enzymes reposition nucleosomes throughout the genome to regulate the rate of transcription and other processes. These enzymes have been studied intensively since the 1990s, and yet the mechanism by which they operate has only very recently come into focus, following advances in cryoelectron microscopy and single-molecule biophysics. CHD4 is an essential and ubiquitous chromatin remodelling enzyme that until recently has received less attention than remodellers such as Snf2 and CHD1. Here we review what recent work in the field has taught us about how CHD4 reshapes the genome. Cryoelectron microscopy and single-molecule studies demonstrate that CHD4 shares a central remodelling mechanism with most other chromatin remodellers. At the same time, differences between CHD4 and other chromatin remodellers result from the actions of auxiliary domains that regulate remodeller activity by for example: (1) making differential interactions with nucleosomal epitopes such as the acidic patch and the N-terminal tail of histone H4, and (2) inducing the formation of distinct multi-protein remodelling complexes (e.g. NuRD vs ChAHP). Thus, although we have learned much about remodeller activity, there is still clearly much more waiting to be revealed.
Collapse
Affiliation(s)
- Xavier J Reid
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Darlington, NSW 2006, Australia
| |
Collapse
|
2
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
3
|
Laureano A, Kim J, Martinez E, Kwan KY. Chromodomain helicase DNA binding protein 4 in cell fate decisions. Hear Res 2023; 436:108813. [PMID: 37329862 PMCID: PMC10463912 DOI: 10.1016/j.heares.2023.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Loss of spiral ganglion neurons (SGNs) in the cochlea causes hearing loss. Understanding the mechanisms of cell fate transition accelerates efforts that employ directed differentiation and lineage conversion to repopulate lost SGNs. Proposed strategies to regenerate SGNs rely on altering cell fate by activating transcriptional regulatory networks, but repressing networks for alternative cell lineages is also essential. Epigenomic changes during cell fate transitions suggest that CHD4 represses gene expression by altering the chromatin status. Despite limited direct investigations, human genetic studies implicate CHD4 function in the inner ear. The possibility of CHD4 in suppressing alternative cell fates to promote inner ear regeneration is discussed.
Collapse
Affiliation(s)
- Alejandra Laureano
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jihyun Kim
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Edward Martinez
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Kelvin Y Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Nelson Labs D250 604 Allison Rd., Piscataway, NJ 08854, USA; Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
Zhong Y, Moghaddas Sani H, Paudel BP, Low JKK, Silva APG, Mueller S, Deshpande C, Panjikar S, Reid XJ, Bedward MJ, van Oijen AM, Mackay JP. The role of auxiliary domains in modulating CHD4 activity suggests mechanistic commonality between enzyme families. Nat Commun 2022; 13:7524. [PMID: 36473839 PMCID: PMC9726900 DOI: 10.1038/s41467-022-35002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
CHD4 is an essential, widely conserved ATP-dependent translocase that is also a broad tumour dependency. In common with other SF2-family chromatin remodelling enzymes, it alters chromatin accessibility by repositioning histone octamers. Besides the helicase and adjacent tandem chromodomains and PHD domains, CHD4 features 1000 residues of N- and C-terminal sequence with unknown structure and function. We demonstrate that these regions regulate CHD4 activity through different mechanisms. An N-terminal intrinsically disordered region (IDR) promotes remodelling integrity in a manner that depends on the composition but not sequence of the IDR. The C-terminal region harbours an auto-inhibitory region that contacts the helicase domain. Auto-inhibition is relieved by a previously unrecognized C-terminal SANT-SLIDE domain split by ~150 residues of disordered sequence, most likely by binding of this domain to substrate DNA. Our data shed light on CHD4 regulation and reveal strong mechanistic commonality between CHD family members, as well as with ISWI-family remodellers.
Collapse
Affiliation(s)
- Yichen Zhong
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Hakimeh Moghaddas Sani
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Bishnu P. Paudel
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Jason K. K. Low
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Ana P. G. Silva
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Stefan Mueller
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Chandrika Deshpande
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Santosh Panjikar
- grid.248753.f0000 0004 0562 0567Australian Synchrotron, Clayton, VIC 3168 Australia ,grid.1002.30000 0004 1936 7857Department of Molecular Biology and Biochemistry, Monash University, Clayton, VIC 3800 Australia
| | - Xavier J. Reid
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Max J. Bedward
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| | - Antoine M. van Oijen
- grid.1007.60000 0004 0486 528XMolecular Horizons, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522 Australia ,grid.510958.0Illawarra Health and Medical Research Institute, Wollongong, NSW 2522 Australia
| | - Joel P. Mackay
- grid.1013.30000 0004 1936 834XSchool of Life and Environmental Sciences, University of Sydney, The University of Sydney, NSW 2006 Australia
| |
Collapse
|
5
|
Reske JJ, Wilson MR, Armistead B, Harkins S, Perez C, Hrit J, Adams M, Rothbart SB, Missmer SA, Fazleabas AT, Chandler RL. ARID1A-dependent maintenance of H3.3 is required for repressive CHD4-ZMYND8 chromatin interactions at super-enhancers. BMC Biol 2022; 20:209. [PMID: 36153585 PMCID: PMC9509632 DOI: 10.1186/s12915-022-01407-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND SWI/SNF (BAF) chromatin remodeling complexes regulate lineage-specific enhancer activity by promoting accessibility for diverse DNA-binding factors and chromatin regulators. Additionally, they are known to modulate the function of the epigenome through regulation of histone post-translational modifications and nucleosome composition, although the way SWI/SNF complexes govern the epigenome remains poorly understood. Here, we investigate the function of ARID1A, a subunit of certain mammalian SWI/SNF chromatin remodeling complexes associated with malignancies and benign diseases originating from the uterine endometrium. RESULTS Through genome-wide analysis of human endometriotic epithelial cells, we show that more than half of ARID1A binding sites are marked by the variant histone H3.3, including active regulatory elements such as super-enhancers. ARID1A knockdown leads to H3.3 depletion and gain of canonical H3.1/3.2 at ARID1A-bound active regulatory elements, and a concomitant redistribution of H3.3 toward genic elements. ARID1A interactions with the repressive chromatin remodeler CHD4 (NuRD) are associated with H3.3, and ARID1A is required for CHD4 recruitment to H3.3. ZMYND8 interacts with CHD4 to suppress a subset of ARID1A, CHD4, and ZMYND8 co-bound, H3.3+ H4K16ac+ super-enhancers near genes governing extracellular matrix, motility, adhesion, and epithelial-to-mesenchymal transition. Moreover, these gene expression alterations are observed in human endometriomas. CONCLUSIONS These studies demonstrate that ARID1A-containing BAF complexes are required for maintenance of the histone variant H3.3 at active regulatory elements, such as super-enhancers, and this function is required for the physiologically relevant activities of alternative chromatin remodelers.
Collapse
Affiliation(s)
- Jake J. Reske
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Mike R. Wilson
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Brooke Armistead
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Shannon Harkins
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Cristina Perez
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA
| | - Joel Hrit
- grid.251017.00000 0004 0406 2057Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Marie Adams
- grid.251017.00000 0004 0406 2057Genomics Core Facility, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Scott B. Rothbart
- grid.251017.00000 0004 0406 2057Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA
| | - Stacey A. Missmer
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA ,grid.416230.20000 0004 0406 3236Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341 USA
| | - Asgerally T. Fazleabas
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA ,grid.416230.20000 0004 0406 3236Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341 USA
| | - Ronald L. Chandler
- grid.17088.360000 0001 2150 1785Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503 USA ,grid.251017.00000 0004 0406 2057Department of Epigenetics, Van Andel Research Institute, Grand Rapids, MI 49503 USA ,grid.416230.20000 0004 0406 3236Department of Women’s Health, Spectrum Health System, Grand Rapids, MI 49341 USA
| |
Collapse
|
6
|
Ullah I, Thölken C, Zhong Y, John M, Rossbach O, Lenz J, Gößringer M, Nist A, Albert L, Stiewe T, Hartmann R, Vázquez O, Chung HR, Mackay JP, Brehm A. RNA inhibits dMi-2/CHD4 chromatin binding and nucleosome remodeling. Cell Rep 2022; 39:110895. [PMID: 35649367 DOI: 10.1016/j.celrep.2022.110895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 11/03/2022] Open
Abstract
The ATP-dependent nucleosome remodeler Mi-2/CHD4 broadly modulates chromatin landscapes to repress transcription and to maintain genome integrity. Here we use individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP) to show that Drosophila Mi-2 associates with thousands of mRNA molecules in vivo. Biochemical data reveal that recombinant dMi-2 preferentially binds to G-rich RNA molecules using two intrinsically disordered regions of unclear function. Pharmacological inhibition of transcription and RNase digestion approaches establish that RNA inhibits the association of dMi-2 with chromatin. We also show that RNA inhibits dMi-2-mediated nucleosome mobilization by competing with the nucleosome substrate. Importantly, this activity is shared by CHD4, the human homolog of dMi-2, strongly suggesting that RNA-mediated regulation of remodeler activity is an evolutionary conserved mechanism. Our data support a model in which RNA serves to protect actively transcribed regions of the genome from dMi-2/CHD4-mediated establishment of repressive chromatin structures.
Collapse
Affiliation(s)
- Ikram Ullah
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Marburg, Germany
| | - Clemens Thölken
- Institute for Medical Bioinformatics and Biostatistic, Philipps-University, Marburg, Germany
| | - Yichen Zhong
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Mara John
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Marburg, Germany
| | - Oliver Rossbach
- Institute of Biochemistry, Department of Biology and Chemistry, Justus Liebig University Giessen, Giessen, Germany
| | - Jonathan Lenz
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Marburg, Germany
| | - Markus Gößringer
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Lea Albert
- Faculty of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps-University, Marburg, Germany
| | - Roland Hartmann
- Institute of Pharmaceutical Chemistry, Philipps-University, Marburg, Germany
| | - Olalla Vázquez
- Faculty of Chemistry, Philipps-University, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
| | - Ho-Ryung Chung
- Institute for Medical Bioinformatics and Biostatistic, Philipps-University, Marburg, Germany
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Alexander Brehm
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Marburg, Germany.
| |
Collapse
|
7
|
Kumar A, Lyu Y, Yanagihashi Y, Chantarasrivong C, Majerciak V, Salemi M, Wang KH, Inagaki T, Chuang F, Davis RR, Tepper CG, Nakano K, Izumiya C, Shimoda M, Nakajima KI, Merleev A, Zheng ZM, Campbell M, Izumiya Y. KSHV episome tethering sites on host chromosomes and regulation of latency-lytic switch by CHD4. Cell Rep 2022; 39:110788. [PMID: 35545047 PMCID: PMC9153692 DOI: 10.1016/j.celrep.2022.110788] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/11/2022] [Accepted: 04/14/2022] [Indexed: 12/25/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the cell nucleus, but where KSHV episomal genomes are tethered and the mechanisms underlying KSHV lytic reactivation are unclear. Here, we study the nuclear microenvironment of KSHV episomes and show that the KSHV latency-lytic replication switch is regulated via viral long non-coding (lnc)RNA-CHD4 (chromodomain helicase DNA binding protein 4) interaction. KSHV episomes localize with CHD4 and ADNP proteins, components of the cellular ChAHP complex. The CHD4 and ADNP proteins occupy the 5'-region of the highly inducible lncRNAs and terminal repeats of the KSHV genome together with latency-associated nuclear antigen (LANA). Viral lncRNA binding competes with CHD4 DNA binding, and KSHV reactivation sequesters CHD4 from the KSHV genome, which is also accompanied by detachment of KSHV episomes from host chromosome docking sites. We propose a model in which robust KSHV lncRNA expression determines the latency-lytic decision by regulating LANA/CHD4 binding to KSHV episomes.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Yuanzhi Lyu
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | | | | | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Michelle Salemi
- Genome Center, Proteomics Core, Genome and Biomedical Sciences Facility, UC Davis, Davis, CA 95616, USA
| | - Kang-Hsin Wang
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Tomoki Inagaki
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Frank Chuang
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Ryan R Davis
- Department of Pathology and Laboratory Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA
| | - Clifford G Tepper
- Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kazushi Nakano
- Lifescience Division, Lifematics, Osaka, Osaka 541-0046, Japan
| | - Chie Izumiya
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Michiko Shimoda
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Alexander Merleev
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, National Cancer Institute, NIH, Frederick, MD 21702, USA
| | - Mel Campbell
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA.
| | - Yoshihiro Izumiya
- Department of Dermatology School of Medicine, University of California Davis (UC Davis), Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA 95817, USA; Viral Oncology and Pathogen-Associated Malignancies Initiative, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA.
| |
Collapse
|
8
|
Hagman JR, Arends T, Laborda C, Knapp JR, Harmacek L, O'Connor BP. Chromodomain helicase DNA-binding 4 (CHD4) regulates early B cell identity and V(D)J recombination. Immunol Rev 2021; 305:29-42. [PMID: 34927255 DOI: 10.1111/imr.13054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
B lymphocytes develop from uncommitted precursors into immunoglobulin (antibody)-producing B cells, a major arm of adaptive immunity. Progression of early progenitors to antibody-expressing cells in the bone marrow is orchestrated by the temporal regulation of different gene programs at discrete developmental stages. A major question concerns how B cells control the accessibility of these genes to transcription factors. Research has implicated nucleosome remodeling ATPases as mediators of chromatin accessibility. Here, we describe studies of chromodomain helicase DNA-binding 4 (CHD4; also known as Mi-2β) in early B cell development. CHD4 comprises multiple domains that function in nucleosome mobilization and histone binding. CHD4 is a key component of Nucleosome Remodeling and Deacetylase, or NuRD (Mi-2) complexes, which assemble with other proteins that mediate transcriptional repression. We review data demonstrating that CHD4 is necessary for B lineage identity: early B lineage progression, proliferation in response to interleukin-7, responses to DNA damage, and cell survival in vivo. CHD4-NuRD is also required for the Ig heavy-chain repertoire by promoting utilization of distal variable (VH ) gene segments in V(D)J recombination. In conclusion, the regulation of chromatin accessibility by CHD4 is essential for production of antibodies by B cells, which in turn mediate humoral immune responses to pathogens and disease.
Collapse
Affiliation(s)
- James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tessa Arends
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Curtis Laborda
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Knapp
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Brian P O'Connor
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
9
|
Guo L, Luo X, Yang P, Zhang Y, Huang J, Wang H, Guo Y, Huang W, Chen Z, Wang S, Wang J, Lei J, Xiang S, Liu Y. Ilicicolin A Exerts Antitumor Effect in Castration-Resistant Prostate Cancer Via Suppressing EZH2 Signaling Pathway. Front Pharmacol 2021; 12:723729. [PMID: 34776951 PMCID: PMC8578973 DOI: 10.3389/fphar.2021.723729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
The Polycomb protein enhancer of zeste homolog 2 (EZH2) has critical roles in prostate cancer (PCa) progression and drug-resistance, which remains an obstacle for PCa treatment. Enzalutamide (ENZ) is a second-generation androgen receptor antagonist employed for treatment of metastatic castration-resistant prostate cancer A considerable proportion of tumors eventually develop resistance during treatment. Thus, agents that can overcome resistance to PCa are needed urgently. Ilicicolin A (Ili-A), an ascochlorin derivative isolated from the coral-derived fungus Acremonium sclerotigenum GXIMD 02501, shows antiproliferative activity in human PCa cells, but its mechanism of action against Castration-resistant prostate cancer is not known. Herein, RNA-sequencing showed the EZH2 pathway to be involved in PCa proliferation. Ili-A at low doses reduced the protein level of EZH2, leading to transcriptional change. Interestingly, Ili-A suppressed the binding of EZH2 to promoter regions in AR/serine/threonine polo-like kinase-1/aurora kinase A. Moreover, Ili-A could enhance the anticancer activity of enzalutamide in CRPC cancer models. These data suggest that Ili-A could be used in combination with enzalutamide to treat CRPC.
Collapse
Affiliation(s)
- Lang Guo
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaowei Luo
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Ping Yang
- Department of Pathology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yanting Zhang
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Jialuo Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yinfeng Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weifeng Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiqiang Chen
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shusheng Wang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinping Lei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Songtao Xiang
- Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghong Liu
- Institute of Marine Drugs/Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
10
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
11
|
Clapier CR. Sophisticated Conversations between Chromatin and Chromatin Remodelers, and Dissonances in Cancer. Int J Mol Sci 2021; 22:5578. [PMID: 34070411 PMCID: PMC8197500 DOI: 10.3390/ijms22115578] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 01/13/2023] Open
Abstract
The establishment and maintenance of genome packaging into chromatin contribute to define specific cellular identity and function. Dynamic regulation of chromatin organization and nucleosome positioning are critical to all DNA transactions-in particular, the regulation of gene expression-and involve the cooperative action of sequence-specific DNA-binding factors, histone modifying enzymes, and remodelers. Remodelers are molecular machines that generate various chromatin landscapes, adjust nucleosome positioning, and alter DNA accessibility by using ATP binding and hydrolysis to perform DNA translocation, which is highly regulated through sophisticated structural and functional conversations with nucleosomes. In this review, I first present the functional and structural diversity of remodelers, while emphasizing the basic mechanism of DNA translocation, the common regulatory aspects, and the hand-in-hand progressive increase in complexity of the regulatory conversations between remodelers and nucleosomes that accompanies the increase in challenges of remodeling processes. Next, I examine how, through nucleosome positioning, remodelers guide the regulation of gene expression. Finally, I explore various aspects of how alterations/mutations in remodelers introduce dissonance into the conversations between remodelers and nucleosomes, modify chromatin organization, and contribute to oncogenesis.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences & Howard Hughes Medical Institute, Huntsman Cancer Institute, University of Utah School of Medicine, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Novillo A, Fernández-Santander A, Gaibar M, Galán M, Romero-Lorca A, El Abdellaoui-Soussi F, Gómez-Del Arco P. Role of Chromodomain-Helicase-DNA-Binding Protein 4 (CHD4) in Breast Cancer. Front Oncol 2021; 11:633233. [PMID: 33981601 PMCID: PMC8107472 DOI: 10.3389/fonc.2021.633233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4—the core component of the nucleosome remodeling and deacetylase (NuRD) complex—may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either ‘deleterious’, ‘probably/possibly damaging’ or as ‘high/medium pathogenic’; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.
Collapse
Affiliation(s)
- Apolonia Novillo
- Department of Pre-clinical Dentistry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana Fernández-Santander
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Maria Gaibar
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel Galán
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia Romero-Lorca
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | | | - Pablo Gómez-Del Arco
- Institute of Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
13
|
Mossink B, Negwer M, Schubert D, Nadif Kasri N. The emerging role of chromatin remodelers in neurodevelopmental disorders: a developmental perspective. Cell Mol Life Sci 2021; 78:2517-2563. [PMID: 33263776 PMCID: PMC8004494 DOI: 10.1007/s00018-020-03714-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/04/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022]
Abstract
Neurodevelopmental disorders (NDDs), including intellectual disability (ID) and autism spectrum disorders (ASD), are a large group of disorders in which early insults during brain development result in a wide and heterogeneous spectrum of clinical diagnoses. Mutations in genes coding for chromatin remodelers are overrepresented in NDD cohorts, pointing towards epigenetics as a convergent pathogenic pathway between these disorders. In this review we detail the role of NDD-associated chromatin remodelers during the developmental continuum of progenitor expansion, differentiation, cell-type specification, migration and maturation. We discuss how defects in chromatin remodelling during these early developmental time points compound over time and result in impaired brain circuit establishment. In particular, we focus on their role in the three largest cell populations: glutamatergic neurons, GABAergic neurons, and glia cells. An in-depth understanding of the spatiotemporal role of chromatin remodelers during neurodevelopment can contribute to the identification of molecular targets for treatment strategies.
Collapse
Affiliation(s)
- Britt Mossink
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Moritz Negwer
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, Geert Grooteplein 10, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Radboudumc, Donders Institute for Brain, Cognition and Behaviour, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Hoffmeister H, Fuchs A, Komives E, Groebner-Ferreira R, Strobl L, Nazet J, Heizinger L, Merkl R, Dove S, Längst G. Sequence and functional differences in the ATPase domains of CHD3 and SNF2H promise potential for selective regulability and drugability. FEBS J 2021; 288:4000-4023. [PMID: 33403747 DOI: 10.1111/febs.15699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
Chromatin remodelers use the energy of ATP hydrolysis to regulate chromatin dynamics. Their impact for development and disease requires strict enzymatic control. Here, we address the differential regulability of the ATPase domain of hSNF2H and hCHD3, exhibiting similar substrate affinities and enzymatic activities. Both enzymes are comparably strongly inhibited in their ATP hydrolysis activity by the competitive ATPase inhibitor ADP. However, the nucleosome remodeling activity of SNF2H is more strongly affected than that of CHD3. Beside ADP, also IP6 inhibits the nucleosome translocation of both enzymes to varying degrees, following a competitive inhibition mode at CHD3, but not at SNF2H. Our observations are further substantiated by mutating conserved Q- and K-residues of ATPase domain motifs. The variants still bind both substrates and exhibit a wild-type similar, basal ATP hydrolysis. Apart from three CHD3 variants, none of the variants can translocate nucleosomes, suggesting for the first time that the basal ATPase activity of CHD3 is sufficient for nucleosome remodeling. Together with the ADP data, our results propose a more efficient coupling of ATP hydrolysis and remodeling in CHD3. This aspect correlates with findings that CHD3 nucleosome translocation is visible at much lower ATP concentrations than SNF2H. We propose sequence differences between the ATPase domains of both enzymes as an explanation for the functional differences and suggest that aa interactions, including the conserved Q- and K-residues distinctly regulate ATPase-dependent functions of both proteins. Our data emphasize the benefits of remodeler ATPase domains for selective drugability and/or regulability of chromatin dynamics.
Collapse
Affiliation(s)
- Helen Hoffmeister
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Andreas Fuchs
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Elizabeth Komives
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Regina Groebner-Ferreira
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Laura Strobl
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| | - Julian Nazet
- Department of Biochemistry II, University of Regensburg, Germany
| | | | - Rainer Merkl
- Department of Biochemistry II, University of Regensburg, Germany
| | - Stefan Dove
- Department of Pharmaceutical and Medical Chemistry II, University of Regensburg, Germany
| | - Gernot Längst
- Department of Biochemistry, Genetics and Microbiology, Biochemistry III, University of Regensburg, Germany
| |
Collapse
|
15
|
Rives-Quinto N, Komori H, Ostgaard CM, Janssens DH, Kondo S, Dai Q, Moore AW, Lee CY. Sequential activation of transcriptional repressors promotes progenitor commitment by silencing stem cell identity genes. eLife 2020; 9:e56187. [PMID: 33241994 PMCID: PMC7728440 DOI: 10.7554/elife.56187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Stem cells that indirectly generate differentiated cells through intermediate progenitors drives vertebrate brain evolution. Due to a lack of lineage information, how stem cell functionality, including the competency to generate intermediate progenitors, becomes extinguished during progenitor commitment remains unclear. Type II neuroblasts in fly larval brains divide asymmetrically to generate a neuroblast and a progeny that commits to an intermediate progenitor (INP) identity. We identified Tailless (Tll) as a master regulator of type II neuroblast functional identity, including the competency to generate INPs. Successive expression of transcriptional repressors functions through Hdac3 to silence tll during INP commitment. Reducing repressor activity allows re-activation of Notch in INPs to ectopically induce tll expression driving supernumerary neuroblast formation. Knocking-down hdac3 function prevents downregulation of tll during INP commitment. We propose that continual inactivation of stem cell identity genes allows intermediate progenitors to stably commit to generating diverse differentiated cells during indirect neurogenesis.
Collapse
Affiliation(s)
| | - Hideyuki Komori
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Cyrina M Ostgaard
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
| | - Derek H Janssens
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Shu Kondo
- Invertebrate Genetics Laboratory, National Institute of GeneticsMishimaJapan
| | - Qi Dai
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | | | - Cheng-Yu Lee
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Cell and Developmental Biology, University of Michigan Medical SchoolAnn ArborUnited States
- Division of Genetic Medicine, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan Medical SchoolAnn ArborUnited States
| |
Collapse
|
16
|
Clapier CR, Verma N, Parnell TJ, Cairns BR. Cancer-Associated Gain-of-Function Mutations Activate a SWI/SNF-Family Regulatory Hub. Mol Cell 2020; 80:712-725.e5. [PMID: 33058778 PMCID: PMC7853424 DOI: 10.1016/j.molcel.2020.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
Abstract
SWI/SNF-family remodelers (BAF/PBAF in mammals) are essential chromatin regulators, and mutations in human BAF/PBAF components are associated with ∼20% of cancers. Cancer-associated missense mutations in human BRG1 (encoding the catalytic ATPase) have been characterized previously as conferring loss-of-function. Here, we show that cancer-associated missense mutations in BRG1, when placed into the orthologous Sth1 ATPase of the yeast RSC remodeler, separate into two categories: loss-of-function enzymes, or instead, gain-of-function enzymes that greatly improve DNA translocation efficiency and nucleosome remodeling in vitro. Our work identifies a structural "hub," formed by the association of several Sth1 domains, that regulates ATPase activity and DNA translocation efficiency. Remarkably, all gain-of-function cancer-associated mutations and all loss-of-function mutations physically localize to distinct adjacent regions in the hub, which specifically regulate and implement DNA translocation, respectively. In vivo, only gain-of-function cancer-associated mutations conferred precocious chromatin accessibility. Taken together, we provide a structure-function mechanistic basis for cancer-associated hyperactivity.
Collapse
Affiliation(s)
- Cedric R Clapier
- Department of Oncological Sciences and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | - Naveen Verma
- Department of Oncological Sciences and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Bradley R Cairns
- Department of Oncological Sciences and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
17
|
Blessing C, Knobloch G, Ladurner AG. Restraining and unleashing chromatin remodelers - structural information guides chromatin plasticity. Curr Opin Struct Biol 2020; 65:130-138. [PMID: 32693313 DOI: 10.1016/j.sbi.2020.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022]
Abstract
Chromatin remodeling enzymes are large molecular machines that guard the genome by reorganizing chromatin structure. They can reposition, space and evict nucleosomes and thus control gene expression, DNA replication and repair. Recent cryo-electron microscopy (cryo-EM) analyses have captured snapshots of various chromatin remodelers as they interact with nucleosomes. In this review, we summarize and discuss the advances made in our understanding of the regulation of chromatin remodelers, the mode of DNA translocation, as well as the influence of associated protein domains and remodeler subunits on the specific functions of chromatin remodeling complexes. The emerging structural information will help our understanding of disease mechanisms and guide our knowledge toward innovative therapeutic interventions.
Collapse
Affiliation(s)
- Charlotte Blessing
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School for Molecular Life Sciences, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Gunnar Knobloch
- Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany
| | - Andreas G Ladurner
- Department of Physiological Chemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany; International Max Planck Research School for Molecular Life Sciences, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany; Eisbach Bio GmbH, Am Klopferspitz 19, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
18
|
Farnung L, Ochmann M, Cramer P. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. eLife 2020; 9:56178. [PMID: 32543371 PMCID: PMC7338049 DOI: 10.7554/elife.56178] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Chromatin remodeling plays important roles in gene regulation during development, differentiation and in disease. The chromatin remodeling enzyme CHD4 is a component of the NuRD and ChAHP complexes that are involved in gene repression. Here, we report the cryo-electron microscopy (cryo-EM) structure of Homo sapiens CHD4 engaged with a nucleosome core particle in the presence of the non-hydrolysable ATP analogue AMP-PNP at an overall resolution of 3.1 Å. The ATPase motor of CHD4 binds and distorts nucleosomal DNA at superhelical location (SHL) +2, supporting the ‘twist defect’ model of chromatin remodeling. CHD4 does not induce unwrapping of terminal DNA, in contrast to its homologue Chd1, which functions in gene activation. Our structure also maps CHD4 mutations that are associated with human cancer or the intellectual disability disorder Sifrim-Hitz-Weiss syndrome.
Collapse
Affiliation(s)
- Lucas Farnung
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Moritz Ochmann
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Göttingen, Germany
| |
Collapse
|
19
|
Demirdizen E, Spiller-Becker M, Förtsch A, Wilhelm A, Corless S, Bade D, Bergner A, Hessling B, Erhardt S. Localization of Drosophila CENP-A to non-centromeric sites depends on the NuRD complex. Nucleic Acids Res 2020; 47:11589-11608. [PMID: 31713634 PMCID: PMC7145711 DOI: 10.1093/nar/gkz962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 09/12/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
Centromere function requires the presence of the histone H3 variant CENP-A in most eukaryotes. The precise localization and protein amount of CENP-A are crucial for correct chromosome segregation, and misregulation can lead to aneuploidy. To characterize the loading of CENP-A to non-centromeric chromatin, we utilized different truncation- and localization-deficient CENP-A mutant constructs in Drosophila melanogaster cultured cells, and show that the N-terminus of Drosophila melanogaster CENP-A is required for nuclear localization and protein stability, and that CENP-A associated proteins, rather than CENP-A itself, determine its localization. Co-expression of mutant CENP-A with its loading factor CAL1 leads to exclusive centromere loading of CENP-A whereas co-expression with the histone-binding protein RbAp48 leads to exclusive non-centromeric CENP-A incorporation. Mass spectrometry analysis of non-centromeric CENP-A interacting partners identified the RbAp48-containing NuRD chromatin remodeling complex. Further analysis confirmed that NuRD is required for ectopic CENP-A incorporation, and RbAp48 and MTA1-like subunits of NuRD together with the N-terminal tail of CENP-A mediate the interaction. In summary, our data show that Drosophila CENP-A has no intrinsic specificity for centromeric chromatin and utilizes separate loading mechanisms for its incorporation into centromeric and ectopic sites. This suggests that the specific association and availability of CENP-A interacting factors are the major determinants of CENP-A loading specificity.
Collapse
Affiliation(s)
- Engin Demirdizen
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Matthias Spiller-Becker
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Arion Förtsch
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Alexander Wilhelm
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Samuel Corless
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Debora Bade
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Andrea Bergner
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Bernd Hessling
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Sylvia Erhardt
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks - Cluster of Excellence, University of Heidelberg, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
- To whom correspondence should be addressed. Tel: +49 6221 54 6898; Fax: +49 6221 54 5892;
| |
Collapse
|
20
|
Weiss K, Lazar HP, Kurolap A, Martinez AF, Paperna T, Cohen L, Smeland MF, Whalen S, Heide S, Keren B, Terhal P, Irving M, Takaku M, Roberts JD, Petrovich RM, Schrier Vergano SA, Kenney A, Hove H, DeChene E, Quinonez SC, Colin E, Ziegler A, Rumple M, Jain M, Monteil D, Roeder ER, Nugent K, van Haeringen A, Gambello M, Santani A, Medne L, Krock B, Skraban CM, Zackai EH, Dubbs HA, Smol T, Ghoumid J, Parker MJ, Wright M, Turnpenny P, Clayton-Smith J, Metcalfe K, Kurumizaka H, Gelb BD, Baris Feldman H, Campeau PM, Muenke M, Wade PA, Lachlan K. The CHD4-related syndrome: a comprehensive investigation of the clinical spectrum, genotype-phenotype correlations, and molecular basis. Genet Med 2020; 22:389-397. [PMID: 31388190 PMCID: PMC8900827 DOI: 10.1038/s41436-019-0612-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Sifrim-Hitz-Weiss syndrome (SIHIWES) is a recently described multisystemic neurodevelopmental disorder caused by de novo variants inCHD4. In this study, we investigated the clinical spectrum of the disorder, genotype-phenotype correlations, and the effect of different missense variants on CHD4 function. METHODS We collected clinical and molecular data from 32 individuals with mostly de novo variants in CHD4, identified through next-generation sequencing. We performed adenosine triphosphate (ATP) hydrolysis and nucleosome remodeling assays on variants from five different CHD4 domains. RESULTS The majority of participants had global developmental delay, mild to moderate intellectual disability, brain anomalies, congenital heart defects, and dysmorphic features. Macrocephaly was a frequent but not universal finding. Additional common abnormalities included hypogonadism in males, skeletal and limb anomalies, hearing impairment, and ophthalmic abnormalities. The majority of variants were nontruncating and affected the SNF2-like region of the protein. We did not identify genotype-phenotype correlations based on the type or location of variants. Alterations in ATP hydrolysis and chromatin remodeling activities were observed in variants from different domains. CONCLUSION The CHD4-related syndrome is a multisystemic neurodevelopmental disorder. Missense substitutions in different protein domains alter CHD4 function in a variant-specific manner, but result in a similar phenotype in humans.
Collapse
Affiliation(s)
- Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.
| | - Hayley P Lazar
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Lior Cohen
- Genetics Institute, Schneider Children's Medical Center, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marie F Smeland
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Sandra Whalen
- UF de génétique clinique, Centre de Référence Maladies Rares des Anomalies du développement et syndromes malformatifs, APHP, Hôpital Trousseau, Paris, France
| | - Solveig Heide
- AP-HP, Département de Génétique, Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs" Hôpital de la Pitié Salpêtrière, Paris, France
| | - Boris Keren
- AP-HP, Département de Génétique, Centre de Référence Maladies Rares "Anomalies du développement et syndromes malformatifs" Hôpital de la Pitié Salpêtrière, Paris, France
| | - Pauline Terhal
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Melita Irving
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Motoki Takaku
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - John D Roberts
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Robert M Petrovich
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Samantha A Schrier Vergano
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA, USA
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Amy Kenney
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, VA, USA
| | - Hanne Hove
- Centre for Rare Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Elizabeth DeChene
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shane C Quinonez
- Department of Pediatrics, Division of Genetics, Metabolism and Genomic Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Estelle Colin
- Department of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Alban Ziegler
- Department of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | | | - Mahim Jain
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Bone and Osteogenesis Imperfecta Department, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Danielle Monteil
- Department of Pediatrics, Naval Medical Center Portsmouth, Portsmouth, VA, USA
| | - Elizabeth R Roeder
- Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, San Antonio, TX, USA
| | - Kimberly Nugent
- Departments of Pediatrics and Molecular and Human Genetics, Baylor College of Medicine, San Antonio, TX, USA
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Gambello
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Avni Santani
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Līvija Medne
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Bryan Krock
- Division of Genomic Diagnostics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cara M Skraban
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Thomas Smol
- Department of Clinical Genetics, Lille University Hospital, CHU Lille, Lille, France
- EA7364 RADEME (Research Team on Rare Developmental and Metabolic Diseases), Lille 2 University, Lille, France
| | - Jamal Ghoumid
- Department of Clinical Genetics, Lille University Hospital, CHU Lille, Lille, France
- EA7364 RADEME (Research Team on Rare Developmental and Metabolic Diseases), Lille 2 University, Lille, France
| | - Michael J Parker
- Sheffield Children's Hospital NHS Foundation Trust, Western Bank, Sheffield, UK
| | - Michael Wright
- Northern Genetics Service, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Institute of Human Genetics, International Centre for Life, Newcastle upon Tyne, UK
| | - Peter Turnpenny
- University of Exeter Medical School, Clinical Genetics Royal Devon & Exeter Hospital, Exeter, UK
| | - Jill Clayton-Smith
- Institute of Evolution, Systems and Genomics, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Kay Metcalfe
- Institute of Evolution, Systems and Genomics, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Bruce D Gelb
- Mindich Child Health and Development Institute and Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Philippe M Campeau
- Department of Pediatrics, University of Montreal and CHU Sainte-Justine, Montreal, QC, Canada
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Paul A Wade
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Katherine Lachlan
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Trust. Department of Human Genetics and Genomic Medicine, Southampton University, Southampton, UK
| |
Collapse
|
21
|
Mačinković I, Theofel I, Hundertmark T, Kovač K, Awe S, Lenz J, Forné I, Lamp B, Nist A, Imhof A, Stiewe T, Renkawitz-Pohl R, Rathke C, Brehm A. Distinct CoREST complexes act in a cell-type-specific manner. Nucleic Acids Res 2019; 47:11649-11666. [PMID: 31701127 PMCID: PMC7145674 DOI: 10.1093/nar/gkz1050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/10/2023] Open
Abstract
CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila. We identify three distinct histone deacetylase complexes built around a common dCoREST/dRPD3 core: A dLSD1/dCoREST complex, the LINT complex and a dG9a/dCoREST complex. The latter two complexes can incorporate both dCoREST isoforms. By contrast, the dLSD1/dCoREST complex exclusively assembles with the dCoREST-L isoform. Genome-wide studies show that the three dCoREST complexes associate with chromatin predominantly at promoters. Transcriptome analyses in S2 cells and testes reveal that different cell lineages utilize distinct dCoREST complexes to maintain cell-type-specific gene expression programmes: In macrophage-like S2 cells, LINT represses germ line-related genes whereas other dCoREST complexes are largely dispensable. By contrast, in testes, the dLSD1/dCoREST complex prevents transcription of germ line-inappropriate genes and is essential for spermatogenesis and fertility, whereas depletion of other dCoREST complexes has no effect. Our study uncovers three distinct dCoREST complexes that function in a lineage-restricted fashion to repress specific sets of genes thereby maintaining cell-type-specific gene expression programmes.
Collapse
Affiliation(s)
- Igor Mačinković
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ina Theofel
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Tim Hundertmark
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Kristina Kovač
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Stephan Awe
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Jonathan Lenz
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| | - Ignasi Forné
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstrasse 9, 82152 Martinsried, Germany
| | - Boris Lamp
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University Munich, Großhadernerstrasse 9, 82152 Martinsried, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Philipps-University, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany
| | - Renate Renkawitz-Pohl
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Christina Rathke
- Department of Biology, Philipps-University, Karl-von-Frisch-Strasse 8, 35043, Marburg, Germany
| | - Alexander Brehm
- Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany
| |
Collapse
|
22
|
Pierson TM, Otero MG, Grand K, Choi A, Graham JM, Young JI, Mackay JP. The NuRD complex and macrocephaly associated neurodevelopmental disorders. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:548-556. [PMID: 31737996 DOI: 10.1002/ajmg.c.31752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex is a major regulator of gene expression involved in pluripotency, lineage commitment, and corticogenesis. This important complex is composed of seven different proteins, with mutations in CHD3, CHD4, and GATAD2B being associated with neurodevelopmental disorders presenting with macrocephaly and intellectual disability similar to other overgrowth and intellectual disability (OGID) syndromes. Pathogenic variants in CHD3 and CHD4 primarily involve disruption of enzymatic function. GATAD2B variants include loss-of-function mutations that alter protein dosage and missense variants that involve either of two conserved domains (CR1 and CR2) known to interact with other NuRD proteins. In addition to macrocephaly and intellectual disability, CHD3 variants are associated with inguinal hernias and apraxia of speech; whereas CHD4 variants are associated with skeletal anomalies, deafness, and cardiac defects. GATAD2B-associated neurodevelopmental disorder (GAND) has phenotypic overlap with both of these disorders. Of note, structural models of NuRD indicate that CHD3 and CHD4 require direct contact with the GATAD2B-CR2 domain to interact with the rest of the complex. Therefore, the phenotypic overlaps of CHD3- and CHD4-related disorders with GAND are consistent with a loss in the ability of GATAD2B to recruit CHD3 or CHD4 to the complex. The shared features of these neurodevelopmental disorders may represent a new class of OGID syndrome: the NuRDopathies.
Collapse
Affiliation(s)
- Tyler Mark Pierson
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California.,Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Maria G Otero
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Katheryn Grand
- Department of Pediatrics, Medical Genetics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew Choi
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - John M Graham
- Department of Pediatrics, Medical Genetics, Cedars-Sinai Medical Center, Los Angeles, California
| | - Juan I Young
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
| | - Joel P Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Hoffmann A, Spengler D. Chromatin Remodeling Complex NuRD in Neurodevelopment and Neurodevelopmental Disorders. Front Genet 2019; 10:682. [PMID: 31396263 PMCID: PMC6667665 DOI: 10.3389/fgene.2019.00682] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/01/2019] [Indexed: 01/22/2023] Open
Abstract
The nucleosome remodeling and deacetylase (NuRD) complex presents one of the major chromatin remodeling complexes in mammalian cells. Here, we discuss current evidence for NuRD's role as an important epigenetic regulator of gene expression in neural stem cell (NSC) and neural progenitor cell (NPC) fate decisions in brain development. With the formation of the cerebellar and cerebral cortex, NuRD facilitates experience-dependent cerebellar plasticity and regulates additionally cerebral subtype specification and connectivity in postmitotic neurons. Consistent with these properties, genetic variation in NuRD's subunits emerges as important risk factor in common polygenic forms of neurodevelopmental disorders (NDDs) and neurodevelopment-related psychiatric disorders such as schizophrenia (SCZ) and bipolar disorder (BD). Overall, these findings highlight the critical role of NuRD in chromatin regulation in brain development and in mental health and disease.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Epigenomics of Early Life, Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
24
|
Goodman JV, Bonni A. Regulation of neuronal connectivity in the mammalian brain by chromatin remodeling. Curr Opin Neurobiol 2019; 59:59-68. [PMID: 31146125 DOI: 10.1016/j.conb.2019.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
Precise temporal and spatial control of gene expression is essential for brain development. Besides DNA sequence-specific transcription factors, epigenetic factors play an integral role in the control of gene expression in neurons. Among epigenetic mechanisms, chromatin remodeling enzymes have emerged as essential to the control of neural circuit assembly and function in the brain. Here, we review recent studies on the roles and mechanisms of the chromodomain-helicase-DNA-binding (Chd) family of chromatin remodeling enzymes in the regulation of neuronal morphogenesis and connectivity in the mammalian brain. We explore the field through the lens of Chd3, Chd4, and Chd5 proteins, which incorporate into the nucleosome remodeling and deacetylase (NuRD) complex, and the related proteins Chd7 and Chd8, implicated in the pathogenesis of intellectual disability and autism spectrum disorders. These studies have advanced our understanding of the mechanisms that regulate neuronal connectivity in brain development and neurodevelopmental disorders of cognition.
Collapse
Affiliation(s)
- Jared V Goodman
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
25
|
Yoshida T, Hu Y, Zhang Z, Emmanuel AO, Galani K, Muhire B, Snippert HJ, Williams CJ, Tolstorukov MY, Gounari F, Georgopoulos K. Chromatin restriction by the nucleosome remodeler Mi-2β and functional interplay with lineage-specific transcription regulators control B-cell differentiation. Genes Dev 2019; 33:763-781. [PMID: 31123064 PMCID: PMC6601517 DOI: 10.1101/gad.321901.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
Abstract
Here, Yoshida et al. investigate the role of Mi-2β, a SNF-2-like nucleosome remodeler and key component of the nucleosome remodeling and histone deacetylase (NuRD) complex in early B cells. They found that the nucleosome remodeler Mi-2β promotes pre-B-cell differentiation by providing repression capabilities to distinct lineage-specific transcription factor-based regulatory networks. Coordinated induction, but also repression, of genes are key to normal differentiation. Although the role of lineage-specific transcription regulators has been studied extensively, their functional integration with chromatin remodelers, one of the key enzymatic machineries that control chromatin accessibility, remains ill-defined. Here we investigate the role of Mi-2β, a SNF-2-like nucleosome remodeler and key component of the nucleosome remodeling and histone deacetylase (NuRD) complex in early B cells. Inactivation of Mi-2β arrested differentiation at the large pre-B-cell stage and caused derepression of cell adhesion and cell migration signaling factors by increasing chromatin access at poised enhancers and chromosome architectural elements. Mi-2β also supported IL-7R signaling, survival, and proliferation by repressing negative effectors of this pathway. Importantly, overexpression of Bcl2, a mitochondrial prosurvival gene and target of IL-7R signaling, partly rescued the differentiation block caused by Mi-2β loss. Mi-2β stably associated with chromatin sites that harbor binding motifs for IKAROS and EBF1 and physically associated with these transcription factors both on and off chromatin. Notably, Mi-2β shared loss-of-function cellular and molecular phenotypes with IKAROS and EBF1, albeit in a distinct fashion. Thus, the nucleosome remodeler Mi-2β promotes pre-B-cell differentiation by providing repression capabilities to distinct lineage-specific transcription factor-based regulatory networks.
Collapse
Affiliation(s)
- Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Akinola O Emmanuel
- Knapp Center for Lupus Research, Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kiriaki Galani
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Brejnev Muhire
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Hugo J Snippert
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Christine J Williams
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Fotini Gounari
- Knapp Center for Lupus Research, Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
26
|
Hoffmeister H, Fuchs A, Strobl L, Sprenger F, Gröbner-Ferreira R, Michaelis S, Hoffmann P, Nazet J, Merkl R, Längst G. Elucidation of the functional roles of the Q and I motifs in the human chromatin-remodeling enzyme BRG1. J Biol Chem 2019; 294:3294-3310. [PMID: 30647132 DOI: 10.1074/jbc.ra118.005685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/08/2019] [Indexed: 12/26/2022] Open
Abstract
The Snf2 proteins, comprising 53 different enzymes in humans, belong to the SF2 family. Many Snf2 enzymes possess chromatin-remodeling activity, requiring a functional ATPase domain consisting of conserved motifs named Q and I-VII. These motifs form two recA-like domains, creating an ATP-binding pocket. Little is known about the function of the conserved motifs in chromatin-remodeling enzymes. Here, we characterized the function of the Q and I (Walker I) motifs in hBRG1 (SMARCA4). The motifs are in close proximity to the bound ATP, suggesting a role in nucleotide binding and/or hydrolysis. Unexpectedly, when substituting the conserved residues Gln758 (Q motif) or Lys785 (I motif) of both motifs, all variants still bound ATP and exhibited basal ATPase activity similar to that of wildtype BRG1 (wtBRG1). However, all mutants lost the nucleosome-dependent stimulation of the ATPase domain. Their chromatin-remodeling rates were impaired accordingly, but nucleosome binding was retained and still comparable with that of wtBRG1. Interestingly, a cancer-relevant substitution, L754F (Q motif), displayed defects similar to the Gln758 variant(s), arguing for a comparable loss of function. Because we excluded a mutual interference of ATP and nucleosome binding, we postulate that both motifs stimulate the ATPase and chromatin-remodeling activities upon binding of BRG1 to nucleosomes, probably via allosteric mechanisms. Furthermore, mutations of both motifs similarly affect the enzymatic functionality of BRG1 in vitro and in living cells. Of note, in BRG1-deficient H1299 cells, exogenously expressed wtBRG1, but not BRG1 Q758A and BRG1 K785R, exhibited a tumor suppressor-like function.
Collapse
Affiliation(s)
| | | | | | - Frank Sprenger
- the Institute of Biochemistry, Genetics and Microbiology, Cell Cycle Control
| | | | - Stefanie Michaelis
- Fraunhofer-Einrichtung für Mikrosysteme und Festkörper-Technologien, Fraunhofer Research Institution for Microsystems and Solid State Technologies, c/o Institute of Analytical Chemistry, Chemo- and Biosensors, and
| | - Petra Hoffmann
- the Department of Internal Medicine III, University Hospital Regensburg, 93059 Regensburg, Germany.,the Central FACS Facility, Regensburg Center for Interventional Immunology, University of Regensburg, 93053 Regensburg, Germany, and
| | | | | | | |
Collapse
|
27
|
Weaver TM, Morrison EA, Musselman CA. Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Molecules 2018; 23:molecules23102614. [PMID: 30322003 PMCID: PMC6222470 DOI: 10.3390/molecules23102614] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is packaged into the cell nucleus in the form of chromatin, a complex of genomic DNA and histone proteins. Chromatin structure regulation is critical for all DNA templated processes and involves, among many things, extensive post-translational modification of the histone proteins. These modifications can be “read out” by histone binding subdomains known as histone reader domains. A large number of reader domains have been identified and found to selectively recognize an array of histone post-translational modifications in order to target, retain, or regulate chromatin-modifying and remodeling complexes at their substrates. Interestingly, an increasing number of these histone reader domains are being identified as also harboring nucleic acid binding activity. In this review, we present a summary of the histone reader domains currently known to bind nucleic acids, with a focus on the molecular mechanisms of binding and the interplay between DNA and histone recognition. Additionally, we highlight the functional implications of nucleic acid binding in chromatin association and regulation. We propose that nucleic acid binding is as functionally important as histone binding, and that a significant portion of the as yet untested reader domains will emerge to have nucleic acid binding capabilities.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|