1
|
Roussel L, Dumont M, Gascoin S, Monteiro D, Bavay M, Nabat P, Ezzedine JA, Fructus M, Lafaysse M, Morin S, Maréchal E. Snowmelt duration controls red algal blooms in the snow of the European Alps. Proc Natl Acad Sci U S A 2024; 121:e2400362121. [PMID: 39312681 PMCID: PMC11474047 DOI: 10.1073/pnas.2400362121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
Algae populate multiple habitats, including snow and ice, where they can form red blooms. These decrease snow albedo, accelerating snowmelt and potentially feeding back on snow and glacier decline caused by climate change. Quantifying this feedback requires the understanding of bloom evolution with climate change. Little, however, is known about the drivers of red snow blooms. Here, we develop an algorithm to analyze 5 y of satellite data from the European Alps and separate bloom occurrences from similarly colored Saharan dust depositions. In a second step, we combine the occurrences of blooms with meteorological data and snow simulations to identify the drivers of blooms. Results show that the upward migration of algae from the ground and blooming requires the presence of liquid water throughout the whole snow column for at least 46 d. Our limited data suggest that moderate dust amounts provide nutrients favorable to bloom, whereas large dust amounts hasten snowmelt and reduce its duration below the threshold required for blooming. Over the period studied, blooms cover 1.3% of the area above 1,800 m elevation, advancing the snow melt-out date by 4 to 21 d in these areas. Under warmer climates, maximum snow mass will decrease whereas snowmelt duration, that controls algal blooms' occurrences, is less sensitive to global temperature increase. In this respect, the impact of bloom on snowmelt will either remain stable (RCP4.5) or decrease (RCP8.5). Algal blooms in the Alps therefore do not constitute a positive climate feedback.
Collapse
Affiliation(s)
- Léon Roussel
- Centre d’Études de la Neige, Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, Centre Nationale Recherches Météorologiques (CNRM), Grenoble38000, France
| | - Marie Dumont
- Centre d’Études de la Neige, Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, Centre Nationale Recherches Météorologiques (CNRM), Grenoble38000, France
| | - Simon Gascoin
- Centre d’Études Spatiales de la Biosphère (CESBIO), Université de Toulouse, Toulouse31000, France
| | - Diego Monteiro
- Centre d’Études de la Neige, Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, Centre Nationale Recherches Météorologiques (CNRM), Grenoble38000, France
| | - Mathias Bavay
- Institut für Schnee und Lawinenforschung (SLF), Forschungsanstalt für Wald, Schnee und Landschaft (WSL), Davos Dorf7260, Switzerland
| | - Pierre Nabat
- Centre Nationale Recherches Météorologiques (CNRM), Université de Toulouse, Météo-France, CNRS, Toulouse31000, France
| | - Jade Abdellatif Ezzedine
- Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Université Grenoble Alpes, CNRS, Commissariat á l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Grenoble38000, France
| | - Mathieu Fructus
- Centre d’Études de la Neige, Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, Centre Nationale Recherches Météorologiques (CNRM), Grenoble38000, France
| | - Matthieu Lafaysse
- Centre d’Études de la Neige, Université Grenoble Alpes, Université de Toulouse, Météo-France, CNRS, Centre Nationale Recherches Météorologiques (CNRM), Grenoble38000, France
| | - Samuel Morin
- Centre Nationale Recherches Météorologiques (CNRM), Université de Toulouse, Météo-France, CNRS, Toulouse31000, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Université Grenoble Alpes, CNRS, Commissariat á l’Énergie Atomique et aux Énergies Alternatives (CEA), Institut National de la Recherche Agronomique (INRA), Grenoble38000, France
| |
Collapse
|
2
|
Çiftçi O, Zervas A, Lutz S, Feord H, Keusching C, Leya T, Tranter M, Anesio AM, Benning LG. Long-Read-Based Hybrid Genome Assembly and Annotation of Snow Algal Strain CCCryo 101-99 (cf. Sphaerocystis sp., Chlamydomonadales). Genome Biol Evol 2024; 16:evae140. [PMID: 38941446 PMCID: PMC11247165 DOI: 10.1093/gbe/evae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Polar regions harbor a diversity of cold-adapted (cryophilic) algae, which can be categorized into psychrophilic (obligate cryophilic) and cryotrophic (nonobligate cryophilic) snow algae. Both can accumulate significant biomasses on glacier and snow habitats and play major roles in global climate dynamics. Despite their significance, genomic studies on these organisms remain scarce, hindering our understanding of their evolutionary history and adaptive mechanisms in the face of climate change. Here, we present the draft genome assembly and annotation of the psychrophilic snow algal strain CCCryo 101-99 (cf. Sphaerocystis sp.). The draft haploid genome assembly is 122.5 Mb in length and is represented by 664 contigs with an N50 of 0.86 Mb, a Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness of 92.9% (n = 1,519), a maximum contig length of 5.3 Mb, and a guanine-cystosine (GC) content of 53.1%. In total, 28.98% of the genome (35.5 Mb) contains repetitive elements. We identified 417 noncoding RNAs and annotated the chloroplast genome. The predicted proteome comprises 14,805 genes with a BUSCO completeness of 97.8%. Our preliminary analyses reveal a genome with a higher repeat content compared with mesophilic chlorophyte relatives, alongside enrichment in gene families associated with photosynthesis and flagella functions. Our current data will facilitate future comparative studies, improving our understanding of the likely response of polar algae to a warming climate as well as their evolutionary trajectories in permanently cold environments.
Collapse
Affiliation(s)
- Ozan Çiftçi
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Stefanie Lutz
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
- Plant-Soil Interactions, Department of Agroecology and Environment, Agroscope, Zurich, Switzerland
| | - Helen Feord
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Christoph Keusching
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Potsdam, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Alexandre M Anesio
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Liane G Benning
- Interface Geochemistry, GFZ German Research Centre for Geosciences, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Ren Z, Li H, Luo W. Unraveling the mystery of antibiotic resistance genes in green and red Antarctic snow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170148. [PMID: 38246373 DOI: 10.1016/j.scitotenv.2024.170148] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Antarctic snow is a thriving habitat for a diverse array of complex microorganisms, and can present in different colors due to algae blooms. However, the potential role of Antarctic snow as reservoirs for antibiotic resistance genes (ARGs) has not been studied. Using metagenomic sequencing, we studied ARGs in green-snow and red-snow on the Fildes Peninsula, Antarctica. Alpha and beta diversities of ARGs, as well as co-occurrence between ARGs and bacteria were assessed. The results showed that a total of 525 ARGs conferring resistance to 30 antibiotic classes were detected across the samples, with half of the ARGs presented in all samples. Green-snow exhibited a higher number of ARGs compared to red-snow. The most abundant ARGs conferring resistance to commonly used antibiotics, including disinfecting agents and antiseptics, peptide, isoniazid, MLS, fluoroquinolone, aminocoumarin, etc. Multidrug resistance genes stood out as the most diverse and abundant, with antibiotic efflux emerging as the dominant resistance mechanism. Interestingly, the composition of ARGs in green-snow markedly differed from that in red-snow, highlighting distinct ARG profiles. Beta-diversity partitioning showed a higher contribution of nestedness for ARG's variation in green-snow, while higher contribution of turnover in red-snow. Furthermore, the co-occurrence analysis between ARGs and bacteria unveiled intricate relationships, indicating that certain ARGs may have multiple potential hosts. The observed differences in co-occurrence networks between green-snow and red-snow suggested distinct host relationships between ARGs and bacteria in these colored snows. Given the increasing appearance of the colored snow around the world due to the climate change, the results shed light on the mystery and potential implication of ARGs in green and red Antarctic snow.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huirong Li
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wei Luo
- Key Laboratory for Polar Science, Polar Research Institute of China, Ministry of Natural Resources, Shanghai 200136, China; Key Laboratory of Polar Ecosystem and Climate Change, Shanghai Jiao Tong University, Ministry of Education, Shanghai 200030, China; Shanghai Key Laboratory of Polar Life and Environment Sciences, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
4
|
Remias D, Procházková L, Nedbalová L, Benning LG, Lutz S. Novel insights in cryptic diversity of snow and glacier ice algae communities combining 18S rRNA gene and ITS2 amplicon sequencing. FEMS Microbiol Ecol 2023; 99:fiad134. [PMID: 37880981 PMCID: PMC10659120 DOI: 10.1093/femsec/fiad134] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
Melting snow and glacier surfaces host microalgal blooms in polar and mountainous regions. The aim of this study was to determine the dominant taxa at the species level in the European Arctic and the Alps. A standardized protocol for amplicon metabarcoding using the 18S rRNA gene and ITS2 markers was developed. This is important because previous biodiversity studies have been hampered by the dominance of closely related algal taxa in snow and ice. Due to the limited resolution of partial 18S rRNA Illumina sequences, the hypervariable ITS2 region was used to further discriminate between the genotypes. Our results show that red snow was caused by the cosmopolitan Sanguina nivaloides (Chlamydomonadales, Chlorophyta) and two as of yet undescribed Sanguina species. Arctic orange snow was dominated by S. aurantia, which was not found in the Alps. On glaciers, at least three Ancylonema species (Zygnematales, Streptophyta) dominated. Golden-brown blooms consisted of Hydrurus spp. (Hydrurales, Stramenophiles) and these were mainly an Arctic phenomenon. For chrysophytes, only the 18S rRNA gene but not ITS2 sequences were amplified, showcasing how delicate the selection of eukaryotic 'universal' primers for community studies is and that primer specificity will affect diversity results dramatically. We propose our approach as a 'best practice'.
Collapse
Affiliation(s)
- Daniel Remias
- Paris Lodron University of Salzburg, Department of Ecology and Biodiversity, Hellbrunnerstr. 34, 5020 Salzburg, Austria
- University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Praha, Czech Republic
| | - Liane G Benning
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, 12249 Berlin, Germany
| | - Stefanie Lutz
- German Research Centre for Geoscience, GFZ, 14473 Potsdam, Germany
| |
Collapse
|
5
|
van Hees D, Hanneman C, Paradis S, Camara AG, Matsumoto M, Hamilton T, Krueger-Hadfield SA, Kodner RB. Patchy and Pink: Dynamics of a Chlainomonas sp. (Chlamydomonadales, chlorophyta) algal bloom on Bagley Lake, North Cascades, WA. FEMS Microbiol Ecol 2023; 99:fiad106. [PMID: 37675994 PMCID: PMC10580270 DOI: 10.1093/femsec/fiad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/18/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023] Open
Abstract
Snow algal blooms frequently occur throughout alpine and polar environments during spring and summer months; however, our understanding of bloom dynamics is limited. We tracked a recurrent bloom of Chlainomonas sp. on Upper Bagley Lake in the North Cascade Mountains, USA, to assess the spatiotemporal dynamics in bloom color intensity, community photophysiology, and community composition over eight weeks. We found that the algae biomass had a dynamic patchy distribution over space and time, which was decoupled from changes in community composition and life-cycle progress averaged across the bloom. The proportional representation of Chlainomonas sp. remained consistent throughout the study while the overall community composition shows a progression through the bloom. We found that community photophysiology, measured by the maximum quantum yield of PSII (Fv/Fm), decreased on average throughout the bloom. These findings suggest that the Chlainomonas sp. community on Bagley Lake is not simply an algal bloom with rapid increase in biomass followed by a population crash, as is often seen in aquatic systems, though there is a physiological trajectory and sensitivity to environmental stress. These results contribute to our understanding of the biology of Chlainomonas sp. and its response to environmental stress, specifically an extreme warming event.
Collapse
Affiliation(s)
- Dan van Hees
- Biology Department, Western Washington University, Bellingham, WA 98225, United States
| | - Clare Hanneman
- Biology Department, Western Washington University, Bellingham, WA 98225, United States
| | - Sophie Paradis
- Biology Department, Western Washington University, Bellingham, WA 98225, United States
| | - A G Camara
- Biology Department, Western Washington University, Bellingham, WA 98225, United States
| | - Maya Matsumoto
- Biology Department, Western Washington University, Bellingham, WA 98225, United States
| | - Trinity Hamilton
- Department of Plant and Microbial Biology and the BioTechnology Institute, University of Minnesota
St. Paul, MN 55108, United States
| | - Stacy A Krueger-Hadfield
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Robin B Kodner
- Environmental Science, Western Washington University, Bellingham, WA 98225, United States
| |
Collapse
|
6
|
Soto DF, Gómez I, Huovinen P. Antarctic snow algae: unraveling the processes underlying microbial community assembly during blooms formation. MICROBIOME 2023; 11:200. [PMID: 37667346 PMCID: PMC10478455 DOI: 10.1186/s40168-023-01643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND AND AIMS At the West Antarctic Peninsula, snow algae blooms are composed of complex microbial communities dominated by green microalgae and bacteria. During their progression, the assembly of these microbial communities occurs under harsh environmental conditions and variable nutrient content due to fast snow melting. To date, it is still unclear what are the ecological mechanisms governing the composition and abundance of microorganisms during the formation of snow algae blooms. In this study, we aim to examine the main ecological mechanisms governing the assembly of snow algae blooms from early stages to colorful stages blooms. METHODS The composition of the microbial communities within snow algae blooms was recorded in the West Antarctic Peninsula (Isabel Riquelme Islet) during a 35-day period using 16S rRNA and 18S rRNA metabarcoding. In addition, the contribution of different ecological processes to the assembly of the microbial community was quantified using phylogenetic bin-based null model analysis. RESULTS Our results showed that alpha diversity indices of the eukaryotic communities displayed a higher variation during the formation of the algae bloom compared with the bacterial community. Additionally, in a macronutrients rich environment, the content of nitrate, ammonium, phosphate, and organic carbon did not play a major role in structuring the community. The quantification of ecological processes showed that the bacterial community assembly was governed by selective processes such as homogenous selection. In contrast, stochastic processes such as dispersal limitation and drift, and to a lesser extent, homogenous selection, regulate the eukaryotic community. CONCLUSIONS Overall, our study highlights the differences in the microbial assembly between bacteria and eukaryotes in snow algae blooms and proposes a model to integrate both assembly processes. Video Abstract.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia, Chile.
- Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile.
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia, Chile
- Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Campus Isla Teja, Universidad Austral de Chile, Valdivia, Chile
- Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| |
Collapse
|
7
|
Broadwell ELM, Pickford RE, Perkins RG, Sgouridis F, Williamson CJ. Adaptation versus plastic responses to temperature, light, and nitrate availability in cultured snow algal strains. FEMS Microbiol Ecol 2023; 99:fiad088. [PMID: 37553143 PMCID: PMC10481995 DOI: 10.1093/femsec/fiad088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023] Open
Abstract
Snow algal blooms are widespread, dominating low temperature, high light, and oligotrophic melting snowpacks. Here, we assessed the photophysiological and cellular stoichiometric responses of snow algal genera Chloromonas spp. and Microglena spp. in their vegetative life stage isolated from the Arctic and Antarctic to gradients in temperature (5 - 15°C), nitrate availability (1 - 10 µmol L-1), and light (50 and 500 µmol photons m-2 s-1). When grown under gradients in temperature, measured snow algal strains displayed Fv/Fm values increased by ∼115% and electron transport rates decreased by ∼50% at 5°C compared to 10 and 15°C, demonstrating how low temperatures can mimic high light impacts to photophysiology. When using carrying capacity as opposed to growth rate as a metric for determining the temperature optima, these snow algal strains can be defined as psychrophilic, with carrying capacities ∼90% higher at 5°C than warmer temperatures. All strains approached Redfield C:N stoichiometry when cultured under nutrient replete conditions regardless of temperature (5.7 ± 0.4 across all strains), whereas significant increases in C:N were apparent when strains were cultured under nitrate concentrations that reflected in situ conditions (17.8 ± 5.9). Intra-specific responses in photophysiology were apparent under high light with Chloromonas spp. more capable of acclimating to higher light intensities. These findings suggest that in situ conditions are not optimal for the studied snow algal strains, but they are able to dynamically adjust both their photochemistry and stoichiometry to acclimate to these conditions.
Collapse
Affiliation(s)
- Emily L M Broadwell
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rachel E Pickford
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Rupert G Perkins
- School of Earth and Environmental Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Fotis Sgouridis
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| | - Christopher J Williamson
- School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, United Kingdom
| |
Collapse
|
8
|
Němečková K, Mareš J, Procházková L, Culka A, Košek F, Wierzchos J, Nedbalová L, Dudák J, Tymlová V, Žemlička J, Kust A, Zima J, Nováková E, Jehlička J. Gypsum endolithic phototrophs under moderate climate (Southern Sicily): their diversity and pigment composition. Front Microbiol 2023; 14:1175066. [PMID: 37485515 PMCID: PMC10359912 DOI: 10.3389/fmicb.2023.1175066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 07/25/2023] Open
Abstract
In this study, we used microscopic, spectroscopic, and molecular analysis to characterize endolithic colonization in gypsum (selenites and white crystalline gypsum) from several sites in Sicily. Our results showed that the dominant microorganisms in these environments are cyanobacteria, including: Chroococcidiopsis sp., Gloeocapsopsis pleurocapsoides, Gloeocapsa compacta, and Nostoc sp., as well as orange pigmented green microalgae from the Stephanospherinia clade. Single cell and filament sequencing coupled with 16S rRNA amplicon metagenomic profiling provided new insights into the phylogenetic and taxonomic diversity of the endolithic cyanobacteria. These organisms form differently pigmented zones within the gypsum. Our metagenomic profiling also showed differences in the taxonomic composition of endoliths in different gypsum varieties. Raman spectroscopy revealed that carotenoids were the most common pigments present in the samples. Other pigments such as gloeocapsin and scytonemin were also detected in the near-surface areas, suggesting that they play a significant role in the biology of endoliths in this environment. These pigments can be used as biomarkers for basic taxonomic identification, especially in case of cyanobacteria. The findings of this study provide new insights into the diversity and distribution of phototrophic microorganisms and their pigments in gypsum in Southern Sicily. Furthemore, this study highlights the complex nature of endolithic ecosystems and the effects of gypsum varieties on these communities, providing additional information on the general bioreceptivity of these environments.
Collapse
Affiliation(s)
- Kateřina Němečková
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Mareš
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Center Algatech, Institute of Microbiology, The Czech Academy of Sciences, Třeboň, Czechia
| | - Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Adam Culka
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czechia
| | - Filip Košek
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czechia
| | - Jacek Wierzchos
- Department of Biochemistry and Microbial Ecology, Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Dudák
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Veronika Tymlová
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Jan Žemlička
- Institute of Experimental and Applied Physics, Czech Technical University in Prague, Prague, Czechia
| | - Andreja Kust
- Department of Earth and Planetary Science, University of Berkeley, Berkeley, CA, United States
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Jan Zima
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Eva Nováková
- Department of Parasitology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Jan Jehlička
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
9
|
Rybalka N, Blanke M, Tzvetkova A, Noll A, Roos C, Boy J, Boy D, Nimptsch D, Godoy R, Friedl T. Unrecognized diversity and distribution of soil algae from Maritime Antarctica (Fildes Peninsula, King George Island). Front Microbiol 2023; 14:1118747. [PMID: 37434717 PMCID: PMC10332270 DOI: 10.3389/fmicb.2023.1118747] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Eukaryotic algae in the top few centimeters of fellfield soils of ice-free Maritime Antarctica have many important effects on their habitat, such as being significant drivers of organic matter input into the soils and reducing the impact of wind erosion by soil aggregate formation. To better understand the diversity and distribution of Antarctic terrestrial algae, we performed a pilot study on the surface soils of Meseta, an ice-free plateau mountain crest of Fildes Peninsula, King George Island, being hardly influenced by the marine realm and anthropogenic disturbances. It is openly exposed to microbial colonization from outside Antarctica and connected to the much harsher and dryer ice-free zones of the continental Antarctic. A temperate reference site under mild land use, SchF, was included to further test for the Meseta algae distribution in a contrasting environment. Methods We employed a paired-end metabarcoding analysis based on amplicons of the highly variable nuclear-encoded ITS2 rDNA region, complemented by a clone library approach. It targeted the four algal classes, Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Xanthophyceae, representing key groups of cold-adapted soil algae. Results A surprisingly high diversity of 830 algal OTUs was revealed, assigned to 58 genera in the four targeted algal classes. Members of the green algal class Trebouxiophyceae predominated in the soil algae communities. The major part of the algal biodiversity, 86.1% of all algal OTUs, could not be identified at the species level due to insufficient representation in reference sequence databases. The classes Ulvophyceae and Xanthophyceae exhibited the most unknown species diversity. About 9% of the Meseta algae species diversity was shared with that of the temperate reference site in Germany. Discussion In the small portion of algal OTUs for which their distribution could be assessed, the entire ITS2 sequence identity with references shows that the soil algae likely have a wide distribution beyond the Polar regions. They probably originated from soil algae propagule banks in far southern regions, transported by aeolian transport over long distances. The dynamics and severity of environmental conditions at the soil surface, determined by high wind currents, and the soil algae's high adaptability to harsh environmental conditions may account for the high similarity of soil algal communities between the northern and southern parts of the Meseta.
Collapse
Affiliation(s)
- Nataliya Rybalka
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Matthias Blanke
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
- Department of Bioinformatics, Institute of Microbiology and Genetics, Georg August University, Göttingen, Germany
| | - Ana Tzvetkova
- Institute of Bioinformatics and Human Molecular Genetics Group, Department of Functional Genomics, Interfaculty Institute of Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Angela Noll
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Jens Boy
- Institute of Soil Science, Leibniz University, Hanover, Germany
| | - Diana Boy
- Institute of Microbiology, Leibniz University, Hanover, Germany
| | - Daniel Nimptsch
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| | - Roberto Godoy
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile
| | - Thomas Friedl
- Department of Experimental Phycology and Culture Collection of Algae (EPSAG), Albrecht-von-Haller-Institute for Plant Sciences, Georg August University, Göttingen, Germany
| |
Collapse
|
10
|
Nakanishi H, Seto K, Takeuchi N, Kagami M. Novel parasitic chytrids infecting snow algae in an alpine snow ecosystem in Japan. Front Microbiol 2023; 14:1201230. [PMID: 37408638 PMCID: PMC10318532 DOI: 10.3389/fmicb.2023.1201230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Introduction Microbial communities are important components of glacier and snowpack ecosystems that influence biogeochemical cycles and snow/ice melt. Recent environmental DNA surveys have revealed that chytrids dominate the fungal communities in polar and alpine snowpacks. These could be parasitic chytrids that infect snow algae as observed microscopically. However, the diversity and phylogenetic position of parasitic chytrids has not been identified due to difficulties in establishing their culture and subsequent DNA sequencing. In this study, we aimed to identify the phylogenetic positions of chytrids infecting the snow algae, Chloromonas spp., bloomed on snowpacks in Japan. Methods By linking a microscopically picked single fungal sporangium on a snow algal cell to a subsequent sequence of ribosomal marker genes, we identified three novel lineages with distinct morphologies. Results All the three lineages belonged to Mesochytriales, located within "Snow Clade 1", a novel clade consisting of uncultured chytrids from snow-covered environments worldwide. Additionally, putative resting spores of chytrids attached to snow algal cells were observed. Discussion This suggests that chytrids may survive as resting stage in soil after snowmelt. Our study highlights the potential importance of parasitic chytrids that infect snow algal communities.
Collapse
Affiliation(s)
- Hiroaki Nakanishi
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Kensuke Seto
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| | - Maiko Kagami
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| |
Collapse
|
11
|
Segawa T, Yonezawa T, Matsuzaki R, Mori H, Akiyoshi A, Navarro F, Fujita K, Aizen VB, Li Z, Mano S, Takeuchi N. Evolution of snow algae, from cosmopolitans to endemics, revealed by DNA analysis of ancient ice. THE ISME JOURNAL 2023; 17:491-501. [PMID: 36650274 PMCID: PMC10030584 DOI: 10.1038/s41396-023-01359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/24/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Recent studies of microbial biogeography have revealed the global distribution of cosmopolitans and dispersal of regional endemics, but little is known about how these processes are affected by microbial evolution. Here, we compared DNA sequences from snow/glacier algae found in an 8000-year-old ice from a glacier in central Asia with those from modern snow samples collected at 34 snow samples from globally distributed sites at the poles and mid-latitudes, to determine the evolutionary relationship between cosmopolitan and endemic phylotypes of snow algae. We further applied a coalescent theory-based demographic model to the DNA sequences. We found that the genus Raphidonema (Trebouxiophyceae) was distributed over both poles and mid-latitude regions and was detected in different ice core layers, corresponding to distinct time periods. Our results indicate that the modern cosmopolitan phylotypes belonging to Raphidonema were persistently present long before the last glacial period. Furthermore, endemic phylotypes originated from ancestral cosmopolitan phylotypes, suggesting that modern regional diversity of snow algae in the cryosphere is a product of microevolution. These findings suggest that the cosmopolitans dispersed across the world and then derived new localized endemics, which thus improves our understanding of microbial community formation by microevolution in natural environments.
Collapse
Affiliation(s)
- Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Yamanashi, Japan.
| | - Takahiro Yonezawa
- Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, Kanagawa, Japan.
| | - Ryo Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Biodiversity Division, National Institute for Environmental Studies, Ibaraki, Japan
| | - Hiroshi Mori
- Advanced Genomics Center, National Institute of Genetics, Shizuoka, Japan
| | | | - Francisco Navarro
- Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones, ETSI de Telecomunicación, Universidad Politécnica de Madrid, Madrid, Spain
| | - Koji Fujita
- Graduate School of Environmental Studies, Nagoya University, Aichi, Japan
| | - Vladimir B Aizen
- Department of Earth and Space Science, University of Idaho, Moscow, Idaho, USA
| | - Zhongqin Li
- Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and National Resources/Tianshan Glaciological Station, Chinese Academy of Sciences, Gansu, China
| | - Shuhei Mano
- The Institute of Statistical Mathematics, Tokyo, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
12
|
Novis PM, Dhami M, Podolyan A, Matsumoto M, Kodner R. The austral biflagellate Chloromonas rubroleosa (Chlorophyceae) is the closest relative of the unusual quadriflagellate genus Chlainomonas, both found in snow. JOURNAL OF PHYCOLOGY 2023; 59:342-355. [PMID: 36680562 DOI: 10.1111/jpy.13318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 05/28/2023]
Abstract
The quadriflagellate genus Chlainomonas frequently dominates red snow globally. It is unusual in several respects, with two separated pairs of flagella, apparent cell division via extrusion of cytoplasmic threads, and being nested phylogenetically within the biflagellate genus Chloromonas. Here, we showed that the austral species Chloromonas (Cr.) rubroleosa, originally described from Antarctic red snow, is a close biflagellate relative of Chlainomonas, challenging the monophyly of Chlainomonas as currently conceived. Sequences of the 18S rRNA gene robustly linked Cr. rubroleosa with near-identical environmental sequences from Antarctic red snow and Chlainomonas from North America, Japan, and Europe. Furthermore, the 18S rRNA and rbcL gene sequences of Cr. rubroleosa were almost identical to New Zealand and North American collections of Chlainomonas. Cr. rubroleosa and New Zealand Chlainomonas are separated by only a single-base substitution across the ITS1-5.8S-ITS2 rRNA loci (and according to ITS2, the North American collection is the next closest relative). This again raises the possibility that Chlainomonas is a life-cycle stage of vegetatively biflagellate organisms, although this remains confounded by the scarcity of biflagellates in field populations, the apparent cell division by quadriflagellates, and the absence of Chlainomonas-type cells in cultures of Cr. rubroleosa. The latter species is broadly similar to Chlainomonas, being poor at swimming, with similar pigment, chloroplast arrangement and ultrastructure, and is relatively large. Increased size is a feature of the wider clade of "Group D" snow algae. A synthesis of field and laboratory investigations may be needed to unravel the life cycle and correct the systematics of this group.
Collapse
Affiliation(s)
- Phil M Novis
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Manpreet Dhami
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | | | - Maya Matsumoto
- Department of Biology and Environmental Science, Western Washington University, Washington, USA
| | - Robin Kodner
- Department of Biology and Environmental Science, Western Washington University, Washington, USA
| |
Collapse
|
13
|
High prevalence of parasitic chytrids infection of glacier algae in cryoconite holes in Alaska. Sci Rep 2023; 13:3973. [PMID: 36894609 PMCID: PMC9998860 DOI: 10.1038/s41598-023-30721-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Glacier algae, which are photosynthetic microbes growing on ice, considerably reduce the surface albedo of glaciers and accelerate their melting rate. Although the growth of glacier algae can be suppressed by parasitic chytrids, the impact of chytrids on algal populations is still largely unknown. In this study, we described the morphology of the chytrid infecting the glacier alga Ancylonema nordenskioeldii and quantified the prevalence of infection in different habitats on a mountain glacier in Alaska, USA. Microscopic observations revealed three different morphological types of chytrids with distinct rhizoid shapes. Variations in the size of the sporangia were probably because of their different growth stages, indicating that they actively propagated on the glacier. The prevalence of infection did not vary among sites with different elevations but was substantially higher in cryoconite holes (20%) than on ice surfaces (4%) at all sites. This indicates that cryoconite holes are hot spots for chytrid infections of glacier algae, and the dynamics of cryoconite holes might affect the host-parasite interactions between chytrids and the glacier algae, which may in turn alter surface albedo and ice melting.
Collapse
|
14
|
Chekanov K. Diversity and Distribution of Carotenogenic Algae in Europe: A Review. Mar Drugs 2023; 21:108. [PMID: 36827149 PMCID: PMC9958874 DOI: 10.3390/md21020108] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Microalgae are the richest source of natural carotenoids, which are valuable pigments with a high share of benefits. Often, carotenoid-producing algae inhabit specific biotopes with unfavorable or even extremal conditions. Such biotopes, including alpine snow fields and hypersaline ponds, are widely distributed in Europe. They can serve as a source of new strains for biotechnology. The number of algal species used for obtaining these compounds on an industrial scale is limited. The data on them are poor. Moreover, some of them have been reported in non-English local scientific articles and theses. This review aims to summarize existing data on microalgal species, which are known as potential carotenoid producers in biotechnology. These include Haematococcus and Dunaliella, both well-known to the scientific community, as well as less-elucidated representatives. Their distribution will be covered throughout Europe: from the Greek Mediterranean coast in the south to the snow valleys in Norway in the north, and from the ponds in Amieiro (Portugal) in the west to the saline lakes and mountains in Crimea (Ukraine) in the east. A wide spectrum of algal secondary carotenoids is reviewed: β-carotene, astaxanthin, canthaxanthin, echinenone, adonixanthin, and adonirubin. For convenience, the main concepts of biology of carotenoid-producing algae are briefly explained.
Collapse
|
15
|
Tucker AE, Brown SP. Sampling a gradient of red snow algae bloom density reveals novel connections between microbial communities and environmental features. Sci Rep 2022; 12:10536. [PMID: 35732638 PMCID: PMC9217940 DOI: 10.1038/s41598-022-13914-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/30/2022] [Indexed: 12/03/2022] Open
Abstract
Snow algae blooms and associated microbial communities play large roles in snow ecosystem processes. Patterns and mechanisms underpinning snow algae bloom spatial distribution and associated microbial community assembly dynamics are poorly understood. Here we examine associations of microbial communities and environmental measures between/within snow algae blooms. Snows from the Cascade Mountains and the Rocky Mountains (USA) were collected from medial (M), peripheral (P), and adjacent (A) zones of red snow algae blooms. Medial snow shows increased levels of pollen, lower oxidation–reduction potential, decreased algal and increased bacterial richness, and increased levels of potassium when compared to A and P within the same bloom. Between the Cascade and Rocky Mountains, fungal communities are distinct but bacterial and algal communities show little differentiation. A weighted OTU co-expression analysis (WOCNA) explores OTU modules and their differential correlation with environmental features, suggesting certain subcommunities may be altered by ecological patterns. Individual OTU interaction networks (fungi and bacteria) show high levels of connectivity compared to networks based on the red snow alga Sanguina nivaloides, which underscores associative differences between algal dominated networks and other taxa.
Collapse
Affiliation(s)
- Avery E Tucker
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA. .,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA.
| | - Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA.,Center for Biodiversity Research, The University of Memphis, Memphis, TN, 38152, USA
| |
Collapse
|
16
|
Soto DF, Franzetti A, Gómez I, Huovinen P. Functional filtering and random processes affect the assembly of microbial communities of snow algae blooms at Maritime Antarctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150305. [PMID: 34818790 DOI: 10.1016/j.scitotenv.2021.150305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 05/10/2023]
Abstract
The increasing temperatures at the West Antarctic Peninsula (Maritime Antarctic) could lead to a higher occurrence of snow algal blooms which are ubiquitous events that change the snow coloration, reducing albedo and in turn exacerbating melting. However, there is a limited understanding of snow algae blooms biodiversity, composition, and their functional profiles, especially in one of the world's areas most affected by climate change. In this study we used 16S rRNA and 18S rRNA metabarcoding, and shotgun metagenomics to assess the diversity, composition, and functional potential of the snow algae blooms bacterial and eukaryotic communities at three different sites of Maritime Antarctic, between different colors of the algae blooms and between seasonal and semi-permanent snowfields. We tested the hypothesis that the functional potential of snow algae blooms is conserved despite a changing taxonomic composition. Furthermore, we determined taxonomic co-occurrence patterns of bacteria and eukaryotes and assessed the potential for the exchange of metabolites among bacterial taxa. Here, we tested the prediction that there are co-occurring taxa within snow algae whose biotic interactions are marked by the exchange of metabolites. Our results show that the composition of snow algae blooms vary significantly among sites. For instance, a higher abundance of fungi and protists were detected in Fildes Peninsula compared with Doumer Island and O'Higgins. Likewise, the composition varied between snow colors and snow types. However, the functional potential varied only among sampling sites with a higher abundance of genes involved in tolerance to environmental stress at O'Higgins. Co-occurrence patterns of dominant bacterial genera such as Pedobacter, Polaromonas, Flavobacterium and Hymenobacter were recorded, contrasting the absence of co-occurring patterns displayed by Chlamydomonadales algae with other eukaryotes. Finally, genome-scale metabolic models revealed that bacteria within snow algae blooms likely compete for resources instead of forming cooperative communities.
Collapse
Affiliation(s)
- Daniela F Soto
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile.
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile; Research Centre on Dynamics of High Latitude Marine Ecosystems (IDEAL), Valdivia, Chile
| |
Collapse
|
17
|
Paramecium bursaria—A Complex of Five Cryptic Species: Mitochondrial DNA COI Haplotype Variation and Biogeographic Distribution. DIVERSITY 2021. [DOI: 10.3390/d13110589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ciliates are a diverse protistan group and many consist of cryptic species complexes whose members may be restricted to particular biogeographic locations. Mitochondrial genes, characterized by a high resolution for closely related species, were applied to identify new species and to distinguish closely related morphospecies. In the current study, we analyzed 132 sequences of COI mtDNA fragments obtained from P. bursaria species collected worldwide. The results allowed, for the first time, to generate a network of COI haplotypes and demonstrate the relationships between P. bursaria strains, as well as to confirm the existence of five reproductively isolated haplogroups. The P. bursaria haplogroups identified in the present study correspond to previously reported syngens (R1, R2, R3, R4, and R5), thus we decided to propose the following binominal names for each of them: P. primabursaria, P. bibursaria, P. tribursaria, P. tetrabursaria, and P. pentabursaria, respectively. The phylogeographic distribution of P. bursaria species showed that P. primabursaria and P. bibursaria were strictly Eurasian, except for two South Australian P. bibursaria strains. P. tribursaria was found mainly in Eastern Asia, in two stands in Europe and in North America. In turn, P. tetrabursaria was restricted to the USA territory, whereas P. pentabursaria was found in two European localities.
Collapse
|
18
|
Applications of unmanned aerial vehicles in Antarctic environmental research. Sci Rep 2021; 11:21717. [PMID: 34741078 PMCID: PMC8571321 DOI: 10.1038/s41598-021-01228-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/14/2021] [Indexed: 11/08/2022] Open
Abstract
Antarctica plays a fundamental role in the Earth's climate, oceanic circulation and global ecosystem. It is a priority and a scientific challenge to understand its functioning and responses under different scenarios of global warming. However, extreme environmental conditions, seasonality and isolation hampers the efforts to achieve a comprehensive understanding of the physical, biological, chemical and geological processes taking place in Antarctica. Here we present unmanned aerial vehicles (UAVs) as feasible, rapid and accurate tools for environmental and wildlife research in Antarctica. UAV surveys were carried out on Deception Island (South Shetland Islands) using visible, multispectral and thermal sensors, and a water sampling device to develop precise thematic ecological maps, detect anomalous thermal zones, identify and census wildlife, build 3D images of geometrically complex geological formations, and sample dissolved chemicals (< 0.22 µm) waters from inaccessible or protected areas.
Collapse
|
19
|
Nakashima T, Uetake J, Segawa T, Procházková L, Tsushima A, Takeuchi N. Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan. FRONTIERS IN PLANT SCIENCE 2021; 12:689119. [PMID: 34290725 PMCID: PMC8289405 DOI: 10.3389/fpls.2021.689119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 05/25/2023]
Abstract
Snow algae are photosynthetic microbes that inhabit the melting snow surface in alpine and polar regions. We analyzed the pigment and species composition of colored snow collected on Mt. Tateyama in Japan during the melting seasons of 2015 and 2016. High-performance liquid chromatographic analyses of the pigments extracted from the colored snow showed that their composition varied within the study area and were classified into four types: Type A (astaxanthin-monoester dominant), Type B (medium astaxanthin-monoester content), Type C (abundant primary carotenoids and free-astaxanthin), and Type D (abundant primary carotenoids and astaxanthin diesters). Types A and B were most commonly observed in the study area, whereas Types C and D appeared only at specific sites. Analysis of the 18S ribosomal RNA (18S rRNA) gene revealed six major amplicon sequence variants (ASVs) of snow algae, belonging to the Sanguina, Chloromonas, and Chlainomonas groups. The relative abundance of the algal ASVs showed that Sanguina was dominant (>48%) in both Types A and B, suggesting that the difference in astaxanthin abundance between the two types was caused by the production of pigments in the algal cells. The algal community structures of Types C and D differed from those of Types A and B, indicating that the primary carotenoids and astaxanthin diesters were derived from certain algal species in these types. Therefore, astaxanthin-rich Sanguina algae mostly induced the red snow that appeared widely in this alpine area; however, they were partially dominated by Chloromonas or Chlainomonas algae, causing different pigment compositions.
Collapse
Affiliation(s)
| | - Jun Uetake
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Takahiro Segawa
- Center for Life Science Research, University of Yamanashi, Kofu, Japan
| | - Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Prague, Czechia
| | - Akane Tsushima
- Graduate School of Science, Chiba University, Chiba, Japan
| | | |
Collapse
|
20
|
De Luca D, Piredda R, Sarno D, Kooistra WHCF. Resolving cryptic species complexes in marine protists: phylogenetic haplotype networks meet global DNA metabarcoding datasets. THE ISME JOURNAL 2021; 15:1931-1942. [PMID: 33589768 PMCID: PMC8245484 DOI: 10.1038/s41396-021-00895-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
Marine protists have traditionally been assumed to be lowly diverse and cosmopolitan. Yet, several recent studies have shown that many protist species actually consist of cryptic complexes of species whose members are often restricted to particular biogeographic regions. Nonetheless, detection of cryptic species is usually hampered by sampling coverage and application of methods (e.g. phylogenetic trees) that are not well suited to identify relatively recent divergence and ongoing gene flow. In this paper, we show how these issues can be overcome by inferring phylogenetic haplotype networks from global metabarcoding datasets. We use the Chaetoceros curvisetus (Bacillariophyta) species complex as study case. Using two complementary metabarcoding datasets (Ocean Sampling Day and Tara Oceans), we equally resolve the cryptic complex in terms of number of inferred species. We detect new hypothetical species in both datasets. Gene flow between most of species is absent, but no barcoding gap exists. Some species have restricted distribution patterns whereas others are widely distributed. Closely related taxa occupy contrasting biogeographic regions, suggesting that geographic and ecological differentiation drive speciation. In conclusion, we show the potential of the analysis of metabarcoding data with evolutionary approaches for systematic and phylogeographic studies of marine protists.
Collapse
Affiliation(s)
- Daniele De Luca
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
- Department of Biology, Botanical Garden of Naples, University of Naples Federico II, Naples, Italy
| | - Roberta Piredda
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Diana Sarno
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Wiebe H C F Kooistra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
21
|
Gray A, Krolikowski M, Fretwell P, Convey P, Peck LS, Mendelova M, Smith AG, Davey MP. Remote Sensing Phenology of Antarctic Green and Red Snow Algae Using WorldView Satellites. FRONTIERS IN PLANT SCIENCE 2021; 12:671981. [PMID: 34226827 PMCID: PMC8254402 DOI: 10.3389/fpls.2021.671981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023]
Abstract
Snow algae are an important group of terrestrial photosynthetic organisms in Antarctica, where they mostly grow in low lying coastal snow fields. Reliable observations of Antarctic snow algae are difficult owing to the transient nature of their blooms and the logistics involved to travel and work there. Previous studies have used Sentinel 2 satellite imagery to detect and monitor snow algal blooms remotely, but were limited by the coarse spatial resolution and difficulties detecting red blooms. Here, for the first time, we use high-resolution WorldView multispectral satellite imagery to study Antarctic snow algal blooms in detail, tracking the growth of red and green blooms throughout the summer. Our remote sensing approach was developed alongside two Antarctic field seasons, where field spectroscopy was used to build a detection model capable of estimating cell density. Global Positioning System (GPS) tagging of blooms and in situ life cycle analysis was used to validate and verify our model output. WorldView imagery was then used successfully to identify red and green snow algae on Anchorage Island (Ryder Bay, 67°S), estimating peak coverage to be 9.48 × 104 and 6.26 × 104 m2, respectively. Combined, this was greater than terrestrial vegetation area coverage for the island, measured using a normalized difference vegetation index. Green snow algae had greater cell density and average layer thickness than red blooms (6.0 × 104 vs. 4.3 × 104 cells ml-1) and so for Anchorage Island we estimated that green algae dry biomass was over three times that of red algae (567 vs. 180 kg, respectively). Because the high spatial resolution of the WorldView imagery and its ability to detect red blooms, calculated snow algal area was 17.5 times greater than estimated with Sentinel 2 imagery. This highlights a scaling problem of using coarse resolution imagery and suggests snow algal contribution to net primary productivity on Antarctica may be far greater than previously recognized.
Collapse
Affiliation(s)
- Andrew Gray
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- Field Spectroscopy Facility (Natural Environment Research Council), University of Edinburgh, Edinburgh, United Kingdom
| | - Monika Krolikowski
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Peter Fretwell
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Peter Convey
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge, United Kingdom
| | - Monika Mendelova
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alison G. Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Matthew P. Davey
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- The Scottish Association for Marine Science, Oban, United Kingdom
| |
Collapse
|
22
|
Irwin NAT, Twynstra CS, Mathur V, Keeling PJ. The molecular phylogeny of Chionaster nivalis reveals a novel order of psychrophilic and globally distributed Tremellomycetes (Fungi, Basidiomycota). PLoS One 2021; 16:e0247594. [PMID: 33760841 PMCID: PMC7990227 DOI: 10.1371/journal.pone.0247594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/09/2021] [Indexed: 12/04/2022] Open
Abstract
Snow and ice present challenging substrates for cellular growth, yet microbial snow communities not only exist, but are diverse and ecologically impactful. These communities are dominated by green algae, but additional organisms, such as fungi, are also abundant and may be important for nutrient cycling, syntrophic interactions, and community structure in general. However, little is known about these non-algal community members, including their taxonomic affiliations. An example of this is Chionaster nivalis, a unicellular fungus that is morphologically enigmatic and frequently observed in snow communities globally. Despite being described over one hundred years ago, the phylogeny and higher-level taxonomic classifications of C. nivalis remain unknown. Here, we isolated and sequenced the internal transcribed spacer (ITS) and the D1-D2 region of the large subunit ribosomal RNA gene of C. nivalis, providing a molecular barcode for future studies. Phylogenetic analyses using the ITS and D1-D2 region revealed that C. nivalis is part of a novel lineage in the class Tremellomycetes (Basidiomycota, Agaricomycotina) for which a new order Chionasterales ord. nov. (MB838717) and family Chionasteraceae fam. nov. (MB838718) are proposed. Comparisons between C. nivalis and sequences generated from environmental surveys revealed that the Chionasterales are globally distributed and probably psychrophilic, as they appear to be limited to the high alpine and arctic regions. These results highlight the unexplored diversity that exists within these extreme habitats and emphasize the utility of single-cell approaches in characterizing these complex algal-dominated communities.
Collapse
Affiliation(s)
- Nicholas A. T. Irwin
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Merton College, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Chantelle S. Twynstra
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Varsha Mathur
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick J. Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Gálvez FE, Saldarriaga-Córdoba M, Huovinen P, Silva AX, Gómez I. Revealing the Characteristics of the Antarctic Snow Alga Chlorominima collina gen. et sp. nov. Through Taxonomy, Physiology, and Transcriptomics. FRONTIERS IN PLANT SCIENCE 2021; 12:662298. [PMID: 34163502 PMCID: PMC8215615 DOI: 10.3389/fpls.2021.662298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/10/2021] [Indexed: 05/13/2023]
Abstract
Snow algae play crucial roles in cold ecosystems, however, many aspects related to their biology, adaptations and especially their diversity are not well known. To improve the identification of snow algae from colored snow, in the present study we used a polyphasic approach to describe a new Antarctic genus, Chlorominima with the species type Chlorominima collina. This new taxon was isolated of colored snow collected from the Collins Glacier (King George Island) in the Maritime Antarctic region. Microscopy revealed biflagellated ellipsoidal cells with a rounded posterior end, a C-shaped parietal chloroplast without a pyrenoid, eyespot, and discrete papillae. Several of these characteristics are typical of the genus Chloromonas, but the new isolate differs from the described species of this genus by the unusual small size of the cells, the presence of several vacuoles, the position of the nucleus and the shape of the chloroplast. Molecular analyzes confirm that the isolated alga does not belong to Chloromonas and therefore forms an independent lineage, which is closely related to other unidentified Antarctic and Arctic strains, forming a polar subclade in the Stephanosphaerinia phylogroup within the Chlamydomonadales. Secondary structure comparisons of the ITS2 rDNA marker support the idea that new strain is a distinct taxon within of Caudivolvoxa. Physiological experiments revealed psychrophilic characteristics, which are typical of true snow algae. This status was confirmed by the partial transcriptome obtained at 2°C, in which various cold-responsive and cryoprotective genes were identified. This study explores the systematics, cold acclimatization strategies and their implications for the Antarctic snow flora.
Collapse
Affiliation(s)
- Francisca E. Gálvez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
- *Correspondence: Francisca E. Gálvez,
| | - Mónica Saldarriaga-Córdoba
- Centro de Investigación en Recursos Naturales y Sustentabilidad (CIRENYS), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Pirjo Huovinen
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| | - Andrea X. Silva
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- AUSTRAL-omics, Vicerrectoría de Investigación, Desarrollo y Creación Artística, Universidad Austral de Chile, Valdivia, Chile
| | - Iván Gómez
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Centro FONDAP de Investigación en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
| |
Collapse
|
24
|
Matsuzaki R, Takashima Y, Suzuki I, Kawachi M, Nozaki H, Nohara S, Degawa Y. The Enigmatic Snow Microorganism, Chionaster nivalis, Is Closely Related to Bartheletia paradoxa (Agaricomycotina, Basidiomycota). Microbes Environ 2021; 36. [PMID: 34135204 PMCID: PMC8209449 DOI: 10.1264/jsme2.me21011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chionaster nivalis is frequently detected in thawing snowpacks and glaciers. However, the taxonomic position of this species above the genus level remains unclear. We herein conducted molecular analyses of C. nivalis using the ribosomal RNA operon sequences obtained from more than 200 cells of this species isolated from a field-collected material. Our molecular phylogenetic analyses revealed that C. nivalis is a sister to Bartheletia paradoxa, which is an orphan basal lineage of Agaricomycotina. We also showed that C. nivalis sequences were contained in several previously examined meta-amplicon sequence datasets from snowpacks and glaciers in the Northern Hemisphere and Antarctica.
Collapse
Affiliation(s)
- Ryo Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Biodiversity Division, National Institute for Environmental Studies
| | - Yusuke Takashima
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba
| | - Masanobu Kawachi
- Biodiversity Division, National Institute for Environmental Studies
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo
| | - Seiichi Nohara
- Biodiversity Division, National Institute for Environmental Studies
| | - Yousuke Degawa
- Faculty of Life and Environmental Sciences, University of Tsukuba.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba
| |
Collapse
|
25
|
Procházková L, Remias D, Bilger W, Křížková H, Řezanka T, Nedbalová L. Cysts of the Snow Alga Chloromonas krienitzii (Chlorophyceae) Show Increased Tolerance to Ultraviolet Radiation and Elevated Visible Light. FRONTIERS IN PLANT SCIENCE 2020; 11:617250. [PMID: 33391329 PMCID: PMC7773729 DOI: 10.3389/fpls.2020.617250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/30/2020] [Indexed: 05/25/2023]
Abstract
Melting mountainous snowfields are populated by extremophilic microorganisms. An alga causing orange snow above timberline in the High Tatra Mountains (Poland) was characterised using multiple methods examining its ultrastructure, genetics, life cycle, photosynthesis and ecophysiology. Based on light and electron microscopy and ITS2 rDNA, the species was identified as Chloromonas krienitzii (Chlorophyceae). Recently, the taxon was described from Japan. However, cellular adaptations to its harsh environment and details about the life cycle were so far unknown. In this study, the snow surface population consisted of egg-shaped cysts containing large numbers of lipid bodies filled presumably with the secondary carotenoid astaxanthin. The outer, spiked cell wall was shed during cell maturation. Before this developmental step, the cysts resembled a different snow alga, Chloromonas brevispina. The remaining, long-lasting smooth cell wall showed a striking UV-induced blue autofluorescence, indicating the presence of short wavelengths absorbing, protective compounds, potentially sporopollenin containing polyphenolic components. Applying a chlorophyll fluorescence assay on intact cells, a significant UV-A and UV-B screening capability of about 30 and 50%, respectively, was measured. Moreover, intracellular secondary carotenoids were responsible for a reduction of blue-green light absorbed by chloroplasts by about 50%. These results revealed the high capacity of cysts to reduce the impact of harmful UV and high visible irradiation to the chloroplast and nucleus when exposed at alpine snow surfaces during melting. Consistently, the observed photosynthetic performance of photosystem II (evaluated by fluorometry) showed no decline up to 2100 μmol photons m-2 s-1. Cysts accumulated high contents of polyunsaturated fatty acids (about 60% of fatty acids), which are advantageous at low temperatures. In the course of this study, C. krienitzii was found also in Slovakia, Italy, Greece and the United States, indicating a widespread distribution in the Northern Hemisphere.
Collapse
Affiliation(s)
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Wels, Austria
| | - Wolfgang Bilger
- Botanical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Heda Křížková
- Faculty of Science, Charles University, Prague, Czechia
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czechia
| | | |
Collapse
|
26
|
Procházková L, Remias D, Holzinger A, Řezanka T, Nedbalová L. Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta). Polar Biol 2020; 44:105-117. [PMID: 33519055 PMCID: PMC7819945 DOI: 10.1007/s00300-020-02778-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 12/20/2022]
Abstract
Red snow caused by spherical cysts can be found worldwide, while an orange snow phenomenon caused by spherical cells is restricted to (Sub-)Arctic climates. Both bloom types, occurring in the same localities at Svalbard, were compared ecophysiologically. Using a combination of molecular markers and light- and transmission electron microscopy, cells were identified as Sanguina nivaloides and Sanguina aurantia (Chlorophyceae). In search for reasons for a cosmopolitan vs. a more restricted distribution of these microbes, significant differences in fatty acid and pigment profiles of field samples were found. S. aurantia accumulated much lower levels of polyunsaturated fatty acids (21% vs. 48% of total fatty acids) and exhibited lower astaxanthin-to-chlorophyll-a ratio (2-8 vs. 12-18). These compounds play an important role in adaptation to extreme conditions at the snow surface and within snow drifts. Accordingly, the performance of photosystem II showed that one third to nearly half of the photosynthetic active irradiation was sufficient in S. aurantia, compared to S. nivaloides, to become light saturated. Furthermore, formation of plastoglobules observed in S. nivaloides but missing in S. aurantia may contribute to photoprotection. The rapid light curves of the two species show to a certain extent the shade-adapted photosynthesis under the light conditions at Svalbard (high α-value 0.16 vs. 0.11, low saturation point I k 59 vs. 86). These results indicate significant physiological and ultrastructural differences of the two genetically closely related cryoflora species, but the reasons why S. aurantia has not been found at conditions outside (Sub-)Arctic climate types remain unknown. SUPPLEMENTARY INFORMATION The online version of this article (10.1007/s00300-020-02778-0) contains supplementary material, which is available to authorised users.
Collapse
Affiliation(s)
- Lenka Procházková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Daniel Remias
- School of Engineering, University of Applied Sciences Upper Austria, Stelzhamerstr. 23, 4600 Wels, Austria
| | - Andreas Holzinger
- Functional Plant Biology, Department of Botany, University of Innsbruck, Sternwartestraße 15, 6020 Innsbruck, Austria
| | - Tomáš Řezanka
- Institute of Microbiology, The Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
27
|
Morphological and physicochemical diversity of snow algae from Alaska. Sci Rep 2020; 10:19167. [PMID: 33154522 PMCID: PMC7644681 DOI: 10.1038/s41598-020-76215-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022] Open
Abstract
Snow algae are photosynthetic microbes growing in thawing snow. They usually show various morphological cell types. The aim of this study was to carry out microscopic and spectroscopic analysis of different forms of cells of snow algae collected on glaciers in Alaska. Four different shapes of algal cells were observed with the use of bright field LM (Light Microscopy), DIC (Differential Interference Contrast), EDF (Extended Depth Focus), fluorescence microscopy, and SEM (Scanning Electron Microscopy). The cells exhibited the strongest autofluorescence after the exposure to 365-nm excitation light, and the intensity differed among the cell types. Zygotes (cysts) showed the most intense fluorescence. Acridine orange staining revealed the acid nature of the algal cells. The use of Congo red and Calcofluor white fluorochromes indicated differences in the structure of polysaccharides in the cell wall in the individual types of algal cells. FTIR (Fourier-Transform Infrared Spectroscopy) analyses showed the presence of polysaccharides not only in the algal cells but also in the fixative solution. The presence of polysaccharides in the extracellular algal fraction was confirmed by X-ray dispersion spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy imaging (SEM). The differences observed in the structure of the cell wall of the different forms of red snow algae prompt further analysis of this structure.
Collapse
|
28
|
Brown SP, Tucker AE. Distribution and biogeography of Sanguina snow algae: Fine-scale sequence analyses reveal previously unknown population structure. Ecol Evol 2020; 10:11352-11361. [PMID: 33144969 PMCID: PMC7593155 DOI: 10.1002/ece3.6772] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 01/27/2023] Open
Abstract
It has been previously suggested that snow algal species within the genus Sanguina (S. nivaloides and S. aurantia) show no population structure despite being found globally (S. nivaloides) or throughout the Northern Hemisphere (S. aurantia). However, systematic biogeographic research into global distributions is lacking due to few genetic and no genomic resources for these snow algae. Here, using all publicly available and previously unpublished Sanguina sequences of the Internal Transcribed Spacer 2 region, we investigated whether this purported lack of population structure within Sanguina species is supported by additional evidence. Using a minimum entropy decomposition (MED) approach to examine fine-scale genetic population structure, we find that these snow algae populations are largely distinct regionally and have some interesting biogeographic structuring. This is in opposition to the currently accepted idea that Sanguina species lack any observable population structure across their vast ranges and highlights the utility of fine-scale (sub-OTU) analytical tools to delineate geographic and genetic population structure. This work extends the known range of S. aurantia and emphasizes the need for development of genetic and genomic tools for additional studies on snow algae biogeography.
Collapse
Affiliation(s)
- Shawn P. Brown
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
- Center of Biodiversity ResearchUniversity of MemphisMemphisTNUSA
| | - Avery E. Tucker
- Department of Biological SciencesUniversity of MemphisMemphisTNUSA
- Center of Biodiversity ResearchUniversity of MemphisMemphisTNUSA
| |
Collapse
|
29
|
Zawierucha K, Porazinska DL, Ficetola GF, Ambrosini R, Baccolo G, Buda J, Ceballos JL, Devetter M, Dial R, Franzetti A, Fuglewicz U, Gielly L, Łokas E, Janko K, Novotna Jaromerska T, Kościński A, Kozłowska A, Ono M, Parnikoza I, Pittino F, Poniecka E, Sommers P, Schmidt SK, Shain D, Sikorska S, Uetake J, Takeuchi N. A hole in the nematosphere: tardigrades and rotifers dominate the cryoconite hole environment, whereas nematodes are missing. J Zool (1987) 2020. [DOI: 10.1111/jzo.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- K. Zawierucha
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - D. L. Porazinska
- Department of Entomology and Nematology University of Florida Gainesville FL USA
| | - G. F. Ficetola
- Department of Environmental Science and Policy University of Milan Milan Italy
- Laboratoire d'Ecologie Alpine University Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - R. Ambrosini
- Department of Environmental Science and Policy University of Milan Milan Italy
| | - G. Baccolo
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | - J. Buda
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - J. L. Ceballos
- Institute of Hydrology, Meteorology and Environmental Studies IDEAM Bogota' Colombia
| | - M. Devetter
- Institute of soil Biology Biology Centre CAS České Budějovice Czech Republic
- Centre for Polar Ecology Faculty of Science University of South Bohemia České Budějovice Czech Republic
| | - R. Dial
- Institute of Culture and the Environment Alaska Pacific University Anchorage AK USA
| | - A. Franzetti
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | | | - L. Gielly
- Laboratoire d'Ecologie Alpine University Grenoble Alpes Univ. Savoie Mont Blanc CNRS LECA Grenoble France
| | - E. Łokas
- Department of Mass Spectroscopy Institute of Nuclear Physics Polish Academy of Sciences Kraków Poland
| | - K. Janko
- Laboratory of Fish Genetics Institute of Animal Physiology and Genetics Academy of Sciences of the Czech Republic Libechov Czech Republic
- Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
| | | | | | - A. Kozłowska
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - M. Ono
- Graduate School of Science and Engineering Chiba University Chiba Japan
| | - I. Parnikoza
- State Institution National Antarctic Center of Ministry of Education and Science of Ukraine Kyiv Ukraine
- Institute of Molecular Biology and Genetics National Academy of Sciences of Ukraine Kyiv Ukraine
| | - F. Pittino
- Earth and Environmental Sciences Department University of Milano‐Bicocca Milan Italy
| | - E. Poniecka
- School of Earth and Ocean Sciences Cardiff University Cardiff UK
| | - P. Sommers
- Ecology and Evolutionary Biology Department University of Colorado Boulder CO USA
| | - S. K. Schmidt
- Ecology and Evolutionary Biology Department University of Colorado Boulder CO USA
| | - D. Shain
- Biology Department Rutgers, The State University of New Jersey Camden NJ USA
| | - S. Sikorska
- Department of Animal Taxonomy and Ecology Adam Mickiewicz University Poznań Poland
| | - J. Uetake
- The Arctic Environment Research Center National Institute of Polar Research Tachikawa Japan
| | - N. Takeuchi
- Department of Earth Sciences Graduate School of Science Chiba University Chiba Japan
| |
Collapse
|
30
|
Centers of endemism of freshwater protists deviate from pattern of taxon richness on a continental scale. Sci Rep 2020; 10:14431. [PMID: 32879396 PMCID: PMC7468153 DOI: 10.1038/s41598-020-71332-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/13/2020] [Indexed: 11/21/2022] Open
Abstract
Here, we analyzed patterns of taxon richness and endemism of freshwater protists in Europe. Even though the significance of physicochemical parameters but also of geographic constraints for protist distribution is documented, it remains unclear where regional areas of high protist diversity are located and whether areas of high taxon richness harbor a high proportion of endemics. Further, patterns may be universal for protists or deviate between taxonomic groups. Based on amplicon sequencing campaigns targeting the SSU and ITS region of the rDNA we address these patterns at two different levels of phylogenetic resolution. Our analyses demonstrate that protists have restricted geographical distribution areas. For many taxonomic groups the regions of high taxon richness deviate from those having a high proportion of putative endemics. In particular, the diversity of high mountain lakes as azonal habitats deviated from surrounding lowlands, i.e. many taxa were found exclusively in high mountain lakes and several putatively endemic taxa occurred in mountain regions like the Alps, the Pyrenees or the Massif Central. Beyond that, taxonomic groups showed a pronounced accumulation of putative endemics in distinct regions, e.g. Dinophyceae along the Baltic Sea coastline, and Chrysophyceae in Scandinavia. Many other groups did not have pronounced areas of increased endemism but geographically restricted taxa were found across Europe.
Collapse
|
31
|
Yakimovich KM, Engstrom CB, Quarmby LM. Alpine Snow Algae Microbiome Diversity in the Coast Range of British Columbia. Front Microbiol 2020; 11:1721. [PMID: 33013720 PMCID: PMC7485462 DOI: 10.3389/fmicb.2020.01721] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 01/31/2023] Open
Abstract
Snow algae blooms contain bacteria, fungi, and other microscopic organisms. We surveyed 55 alpine snow algae blooms, collecting a total of 68 samples, from 12 mountains in the Coast Range of British Columbia, Canada. We used microscopy and rDNA metabarcoding to document biodiversity and query species and taxonomic associations. Across all samples, we found 173 algal, 2,739 bacterial, 380 fungal, and 540 protist/animalia operational taxonomic units (OTUs). In a previous study, we reported that most algal species were distributed along an elevational gradient. In the current study, we were surprised to find no corresponding distribution in any other taxa. We also tested the hypothesis that certain bacterial and fungal taxa co-occur with specific algal taxa. However, despite previous evidence that particular genera co-occur, we found no significant correlations between taxa across our 68 samples. Notably, seven bacterial, one fungal, and two cercozoan OTUs were widely distributed across our study regions. Taken together, these data suggest that any mutualisms with algae may not be taxon specific. We also report evidence of snow algae predation by rotifers, tardigrades, springtails, chytrid fungi, and ciliates, establishing the framework for a complex food web.
Collapse
Affiliation(s)
- Kurt M Yakimovich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
32
|
Procházková L, Leya T, Křížková H, Nedbalová L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol Ecol 2020; 95:5487888. [PMID: 31074825 PMCID: PMC6545352 DOI: 10.1093/femsec/fiz064] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/09/2019] [Indexed: 12/15/2022] Open
Abstract
Melting snowfields in polar and alpine regions often exhibit a red and orange colouration caused by microalgae. The diversity of these organisms is still poorly understood. We applied a polyphasic approach using three molecular markers and light and electron microscopy to investigate spherical cysts sampled from alpine mountains in Europe, North America and South America as well as from both polar regions. Molecular analyses revealed the presence of a single independent lineage within the Chlamydomonadales. The genus Sanguina is described, with Sanguina nivaloides as its type. It is distinguishable from other red cysts forming alga by the number of cell wall layers, cell size, cell surface morphology and habitat preference. Sanguina nivaloides is a diverse species containing a total of 18 haplotypes according to nuclear ribosomal DNA internal transcribed spacer 2, with low nucleotide divergence (≤3.5%). Based on molecular data we demonstrate that it has a cosmopolitan distribution with an absence of geographical structuring, indicating an effective dispersal strategy with the cysts being transported all around the globe, including trans-equatorially. Additionally, Sanguina aurantia is described, with small spherical orange cysts often clustered by means of mucilaginous sheaths, and causing orange blooms in snow in subarctic and Arctic regions.
Collapse
Affiliation(s)
- Lenka Procházková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Thomas Leya
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Extremophile Research & Biobank CCCryo, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| | - Heda Křížková
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic
| | - Linda Nedbalová
- Charles University, Faculty of Science, Department of Ecology, Viničná 7, 128 44 Prague 2, Czech Republic.,The Czech Academy of Sciences, Institute of Botany, Dukelská 135, Třeboň, 379 82, Czech Republic
| |
Collapse
|
33
|
Krug L, Erlacher A, Markut K, Berg G, Cernava T. The microbiome of alpine snow algae shows a specific inter-kingdom connectivity and algae-bacteria interactions with supportive capacities. ISME JOURNAL 2020; 14:2197-2210. [PMID: 32424246 PMCID: PMC7608445 DOI: 10.1038/s41396-020-0677-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/25/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
Mutualistic interactions within microbial assemblages provide a survival strategy under extreme conditions; however, little is known about the complexity of interaction networks in multipartite, free-living communities. In the present study, the interplay within algae-dominated microbial communities exposed to harsh environmental influences in the Austrian Alps was assessed in order to reveal the interconnectivity of eukaryotic and prokaryotic inhabitants. All analyzed snowfields harbored distinct microbial communities. Network analyses revealed that mutual exclusion prevailed among microalgae in the alpine environment, while bacteria were mainly positively embedded in the interaction networks. Especially members of Proteobacteria, with a high prevalence of Oxalobacteraceae, Pseudomonadaceae, and Sphingomonadaceae showed genus-specific co-occurrences with distinct microalgae. Co-cultivation experiments with algal and bacterial isolates confirmed beneficial interactions that were predicted based on the bioinformatic analyses; they resulted in up to 2.6-fold more biomass for the industrially relevant microalga Chlorella vulgaris, and up to 4.6-fold increase in biomass for the cryophilic Chloromonas typhlos. Our findings support the initial hypothesis that microbial communities exposed to adverse environmental conditions in alpine systems harbor inter-kingdom supportive capacities. The insights into mutualistic inter-kingdom interactions and the ecology of microalgae within complex microbial communities provide explanations for the prevalence and resilience of such assemblages in alpine environments.
Collapse
Affiliation(s)
- Lisa Krug
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.,ACIB GmbH, Petersgasse 14, 8010, Graz, Austria
| | - Armin Erlacher
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Katharina Markut
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010, Graz, Austria.
| |
Collapse
|
34
|
Pinseel E, Janssens SB, Verleyen E, Vanormelingen P, Kohler TJ, Biersma EM, Sabbe K, Van de Vijver B, Vyverman W. Global radiation in a rare biosphere soil diatom. Nat Commun 2020; 11:2382. [PMID: 32404869 PMCID: PMC7221085 DOI: 10.1038/s41467-020-16181-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 04/20/2020] [Indexed: 11/09/2022] Open
Abstract
Soil micro-organisms drive the global carbon and nutrient cycles that underlie essential ecosystem functions. Yet, we are only beginning to grasp the drivers of terrestrial microbial diversity and biogeography, which presents a substantial barrier to understanding community dynamics and ecosystem functioning. This is especially true for soil protists, which despite their functional significance have received comparatively less interest than their bacterial counterparts. Here, we investigate the diversification of Pinnularia borealis, a rare biosphere soil diatom species complex, using a global sampling of >800 strains. We document unprecedented high levels of species-diversity, reflecting a global radiation since the Eocene/Oligocene global cooling. Our analyses suggest diversification was largely driven by colonization of novel geographic areas and subsequent evolution in isolation. These results illuminate our understanding of how protist diversity, biogeographical patterns, and members of the rare biosphere are generated, and suggest allopatric speciation to be a powerful mechanism for diversification of micro-organisms. It is generally thought many microbes, owing to their ubiquity and dispersal capability, lack biogeographic structuring and clear speciation patterns compared to macroorganisms. However, Pinseel et al. demonstrate multiple cycles of colonization and diversification in Pinnularia borealis, a rare biosphere soil diatom.
Collapse
Affiliation(s)
- Eveline Pinseel
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium. .,Meise Botanic Garden, Nieuwelaan 38, 1860, Meise, Belgium. .,Ecosystem Management Research Group (ECOBE), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium. .,Department of Biological Sciences, University of Arkansas, 850 W Dickson St, SCEN 601, Fayetteville, AR, 72701-1201, USA.
| | | | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Pieter Vanormelingen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium.,Natuurpunt, Michiel Coxiestraat 11, 2800, Mechelen, Belgium
| | - Tyler J Kohler
- Department of Ecology, Charles University, Viničná 7, 128 44 Prague 2, Czech Republic.,Stream Biofilm and Ecosystem Research Laboratory, École Polytechnique Fédérale Lausanne, GR B0 422, CH-1015, Lausanne, Switzerland
| | - Elisabeth M Biersma
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge, CB3 0ET, UK.,Natural History Museum of Denmark, Øster Farimagsgade 5-Building 7, DK-1353, Copenhagen, Denmark
| | - Koen Sabbe
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Bart Van de Vijver
- Meise Botanic Garden, Nieuwelaan 38, 1860, Meise, Belgium.,Ecosystem Management Research Group (ECOBE), University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Wim Vyverman
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium.
| |
Collapse
|
35
|
Engstrom CB, Yakimovich KM, Quarmby LM. Variation in Snow Algae Blooms in the Coast Range of British Columbia. Front Microbiol 2020; 11:569. [PMID: 32351463 PMCID: PMC7174675 DOI: 10.3389/fmicb.2020.00569] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/15/2020] [Indexed: 01/08/2023] Open
Abstract
Snow algae blooms cover vast areas of summer snowfields worldwide, reducing albedo and increasing snow melt. Despite their global prevalence, little is known about the algae species that comprise these blooms. We used 18S and rbcL metabarcoding and light microscopy to characterize algae species composition in 31 snow algae blooms in the Coast Range of British Columbia, Canada. This study is the first to thoroughly document regional variation between blooms. We found all blooms were dominated by the genera Sanguina, Chloromonas, and Chlainomonas. There was considerable variation between blooms, most notably species assemblages above treeline were distinct from forested sites. In contrast to previous studies, the snow algae genus Chlainomonas was abundant and widespread in snow algae blooms. We found few taxa using traditional 18S metabarcoding, but the high taxonomic resolution of rbcL revealed substantial diversity, including OTUs that likely represent unnamed species of snow algae. These three cross-referenced datasets (rbcL, 18S, and microscopy) reveal that alpine snow algae blooms are more diverse than previously thought, with different species of algae dominating different elevations.
Collapse
Affiliation(s)
- Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Kurt M Yakimovich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
36
|
Hoham RW, Remias D. Snow and Glacial Algae: A Review 1. JOURNAL OF PHYCOLOGY 2020; 56:264-282. [PMID: 31825096 PMCID: PMC7232433 DOI: 10.1111/jpy.12952] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 05/03/2023]
Abstract
Snow or glacial algae are found on all continents, and most species are in the Chlamydomonadales (Chlorophyta) and Zygnematales (Streptophyta). Other algal groups include euglenoids, cryptomonads, chrysophytes, dinoflagellates, and cyanobacteria. They may live under extreme conditions of temperatures near 0°C, high irradiance levels in open exposures, low irradiance levels under tree canopies or deep in snow, acidic pH, low conductivity, and desiccation after snow melt. These primary producers may color snow green, golden-brown, red, pink, orange, or purple-grey, and they are part of communities that include other eukaryotes, bacteria, archaea, viruses, and fungi. They are an important component of the global biosphere and carbon and water cycles. Life cycles in the Chlamydomonas-Chloromonas-Chlainomonas complex include migration of flagellates in liquid water and formation of resistant cysts, many of which were identified previously as other algae. Species differentiation has been updated through the use of metagenomics, lipidomics, high-throughput sequencing (HTS), multi-gene analysis, and ITS. Secondary metabolites (astaxanthin in snow algae and purpurogallin in glacial algae) protect chloroplasts and nuclei from damaging PAR and UV, and ice binding proteins (IBPs) and polyunsaturated fatty acids (PUFAs) reduce cell damage in subfreezing temperatures. Molecular phylogenies reveal that snow algae in the Chlamydomonas-Chloromonas complex have invaded the snow habitat at least twice, and some species are polyphyletic. Snow and glacial algae reduce albedo, accelerate the melt of snowpacks and glaciers, and are used to monitor climate change. Selected strains of these algae have potential for producing food or fuel products.
Collapse
Affiliation(s)
- Ronald W. Hoham
- Department of BiologyColgate UniversityHamiltonNew York13346USA
| | - Daniel Remias
- School of EngineeringUniversity of Applied Sciences Upper AustriaWels4600Austria
| |
Collapse
|
37
|
Investigating Algal Communities in Lacustrine and Hydro-Terrestrial Environments of East Antarctica Using Deep Amplicon Sequencing. Microorganisms 2020; 8:microorganisms8040497. [PMID: 32244517 PMCID: PMC7232531 DOI: 10.3390/microorganisms8040497] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Antarctica has one of the most extreme environments on Earth, with low temperatures and low nutrient levels. Antarctica’s organisms live primarily in the coastal, ice-free areas which cover approximately 0.18% of the continent’s surface. Members of Cyanobacteria and eukaryotic algae are important primary producers in Antarctica since they can synthesize organic compounds from carbon dioxide and water using solar energy. However, community structures of photosynthetic algae in Antarctica have not yet been fully explored at molecular level. In this study, we collected diverse algal samples in lacustrine and hydro-terrestrial environments of Langhovde and Skarvsnes, which are two ice-free regions in East Antarctica. We performed deep amplicon sequencing of both 16S ribosomal ribonucleic acid (rRNA) and 18S rRNA genes, and we explored the distribution of sequence variants (SVs) of these genes at single nucleotide difference resolution. SVs of filamentous Cyanobacteria genera, including Leptolyngbya, Pseudanabaena, Phormidium, Nodosilinea, Geitlerinama, and Tychonema, were identified in most of the samples, whereas Phormidesmis SVs were distributed in fewer samples. We also detected unicellular, multicellular or heterocyst forming Cyanobacteria strains, but in relatively small abundance. For SVs of eukaryotic algae, Chlorophyta, Cryptophyta, and Ochrophyta were widely distributed among the collected samples. In addition, there was a red colored bloom of eukaryotic alga, Geminigera cryophile (Cryptophyta), in the Langhovde coastal area. Eukaryotic SVs of Acutuncus antarcticus and/or Diphascon pingue of Tardigrada were dominant among most of the samples. Our data revealed the detailed structures of the algal communities in Langhovde and Skarvsnes. This will contribute to our understanding of Antarctic ecosystems and support further research into this subject.
Collapse
|
38
|
Soto DF, Fuentes R, Huovinen P, Gómez I. Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
39
|
Cho SM, Kim S, Cho H, Lee H, Lee JH, Lee H, Park H, Kang S, Choi HG, Lee J. Type II Ice-Binding Proteins Isolated from an Arctic Microalga Are Similar to Adhesin-Like Proteins and Increase Freezing Tolerance in Transgenic Plants. PLANT & CELL PHYSIOLOGY 2019; 60:2744-2757. [PMID: 31418793 DOI: 10.1093/pcp/pcz162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
Microalgal ice-binding proteins (IBPs) in the polar region are poorly understood at the genome-wide level, although they are important for cold adaptation. Through the transcriptome study with the Arctic green alga Chloromonas sp. KNF0032, we identified six Chloromonas IBP genes (CmIBPs), homologous with the previously reported IBPs from Antarctic snow alga CCMP681 and Antarctic Chloromonas sp. They were organized with multiple exon/intron structures and low-temperature-responsive cis-elements in their promoters and abundantly expressed at low temperature. The biological functions of three representative CmIBPs (CmIBP1, CmIBP2 and CmIBP3) were tested using in vitro analysis and transgenic plant system. CmIBP1 had the most effective ice recrystallization inhibition (IRI) activities in both in vitro and transgenic plants, and CmIBP2 and CmIBP3 had followed. All transgenic plants grown under nonacclimated condition were freezing tolerant, and especially 35S::CmIBP1 plants were most effective. After cold acclimation, only 35S::CmIBP2 plants showed slightly increased freezing tolerance. Structurally, the CmIBPs were predicted to have β-solenoid forms with parallel β-sheets and repeated TXT motifs. The repeated TXT structure of CmIBPs appears similar to the AidA domain-containing adhesin-like proteins from methanogens. We have shown that the AidA domain has IRI activity as CmIBPs and phylogenetic analysis also supported that the AidA domains are monophyletic with ice-binding domain of CmIBPs, and these results suggest that CmIBPs are a type of modified adhesins.
Collapse
Affiliation(s)
- Sung Mi Cho
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Sanghee Kim
- Division of Polar Life Sciences, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Hojin Cho
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyoungseok Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jun Hyuck Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Horim Lee
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyun Park
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Science, University of Science and Technology, Daejeon 34113, Republic of Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Seunghyun Kang
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Han-Gu Choi
- Division of Polar Life Sciences, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
| | - Jungeun Lee
- Unit of Polar Genomics, Korea Polar Research Institute (KOPRI), Yeonsu-gu, Incheon 21990, Republic of Korea
- Department of Polar Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
40
|
Lutz S, Procházková L, Benning LG, Nedbalová L, Remias D. Evaluating High-Throughput Sequencing Data of Microalgae Living in Melting Snow: Improvements and Limitations 1. FOTTEA (PRAHA) 2019; 19:115-131. [PMID: 33414851 PMCID: PMC7116558 DOI: 10.5507/fot.2019.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Melting snow fields are an extremophilic habitat dominated by closely related Chlamydomonadaceae (Chlorophyta). Microscopy-based classification of these cryophilic microalgae is challenging and may not reveal the true diversity. High-throughput sequencing (HTS) allows for a more comprehensive evaluation of the community. However, HTS approaches have been rarely used in such ecosystems and the output of their application has not been evaluated. Furthermore, there is no consensus on the choice for a suitable DNA marker or data processing workflow. We found that the correct placement of taxonomic strings onto OTUs strongly depends on the quality of the reference databases. We improved the assignments of the HST data by generating additional reference sequences of the locally abundant taxa, guided by light microscopy. Furthermore, a manual inspection of all automated OTU assignments, oligotyping of the most abundant 18S OTUs, as well as ITS2 secondary structure analyses were necessary for accurate species assignments. Moreover, the sole use of one marker can cause misleading results, either because of insufficient variability within the locus (18S) or the scarcity of reference sequences (ITS2). Our evaluation reveals that HTS output needs to be thoroughly checked when the studied habitats or organisms are poorly represented in publicly available databases. We recommend an optimized workflow for an improved biodiversity evaluation of not only snow algal communities, but generally 'exotic' ecosystems where similar problems arise. A consistent sampling strategy, two- molecular marker approach, light microscopy-based guidance, generation of appropriate reference sequences and final manual verification of all taxonomic assignments are highly recommended.
Collapse
Affiliation(s)
| | | | - Liane G. Benning
- GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany School of Earth & Environment, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44 Prague 2, Czech Republic
- The Czech Academy of Sciences, Institute of Botany, Dukelská 135, 379 82 Třeboň, Czech Republic
| | - Daniel Remias
- University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria
| |
Collapse
|
41
|
de Carpentier F, Lemaire SD, Danon A. When Unity Is Strength: The Strategies Used by Chlamydomonas to Survive Environmental Stresses. Cells 2019; 8:E1307. [PMID: 31652831 PMCID: PMC6912462 DOI: 10.3390/cells8111307] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a valuable model system to study a wide spectrum of scientific fields, including responses to environmental conditions. Most studies are performed under optimal growth conditions or under mild stress. However, when environmental conditions become harsher, the behavior of this unicellular alga is less well known. In this review we will show that despite being a unicellular organism, Chlamydomonas can survive very severe environmental conditions. To do so, and depending on the intensity of the stress, the strategies used by Chlamydomonas can range from acclimation to the formation of multicellular structures, or involve programmed cell death.
Collapse
Affiliation(s)
- Félix de Carpentier
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
- Faculty of Sciences, Doctoral School of Plant Sciences, Université Paris-Sud, Paris-Saclay, 91400 Orsay, France.
| | - Stéphane D Lemaire
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
| | - Antoine Danon
- Institut de Biologie Physico-Chimique, UMR 8226, CNRS, Sorbonne Université, 75005 Paris, France.
| |
Collapse
|
42
|
Brown SP, Jumpponen A. Microbial Ecology of Snow Reveals Taxa-Specific Biogeographical Structure. MICROBIAL ECOLOGY 2019; 77:946-958. [PMID: 30868207 DOI: 10.1007/s00248-019-01357-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
Snows that persist late into the growing season become colonized with numerous metabolically active microorganisms, yet underlying mechanisms of community assembly and dispersal remain poorly known. We investigated (Illumina MiSeq) snow-borne bacterial, fungal, and algal communities across a latitudinal gradient in Fennoscandia and inter-continental distribution between northern Europe and North America. Our data indicate that bacterial communities are ubiquitous regionally (across Fennoscandia), whereas fungal communities are regionally heterogeneous. Both fungi and bacteria are biogeographically heterogeneous inter-continentally. Snow algae, generally thought to occur in colorful algae blooms (red, green, or yellow) on the snow surface, are molecularly described here as an important component of snows even in absence of visible algal growth. This suggests that snow algae are a previously underestimated major biological component of visually uncolonized snows. In contrast to fungi and bacteria, algae exhibit no discernible inter-continental or regional community structure and exhibit little endemism. These results indicate that global and regional snow microbial communities and their distributions may be dictated by a combination of size-limited propagule dispersal potential and restrictions (bacteria and fungi) and homogenization of ecologically specialized taxa (snow algae) across the globe. These results are among the first to compare inter-continental snow microbial communities and highlight how poorly understood microbial communities in these threatened ephemeral ecosystems are.
Collapse
Affiliation(s)
- Shawn P Brown
- Department of Biological Sciences, The University of Memphis, Memphis, TN, 38152, USA.
| | - Ari Jumpponen
- Division of Biology, Kansas State University, Manhattan, KS, 66506, USA
| |
Collapse
|
43
|
Margesin R, Collins T. Microbial ecology of the cryosphere (glacial and permafrost habitats): current knowledge. Appl Microbiol Biotechnol 2019; 103:2537-2549. [PMID: 30719551 PMCID: PMC6443599 DOI: 10.1007/s00253-019-09631-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 11/28/2022]
Abstract
Microorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| | - Tony Collins
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
44
|
Matsuzaki R, Nozaki H, Takeuchi N, Hara Y, Kawachi M. Taxonomic re-examination of "Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes" from Japan and description of C. muramotoi sp. nov. PLoS One 2019; 14:e0210986. [PMID: 30677063 PMCID: PMC6345437 DOI: 10.1371/journal.pone.0210986] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/06/2019] [Indexed: 11/19/2022] Open
Abstract
Recent molecular data has strongly suggested that field-collected cysts of snow algae that are morphologically identifiable as the zygotes of Chloromonas nivalis are composed of multiple species. Motile vegetative cells, however, have not been directly obtained from these cysts because of the difficulties involved in inducing their germination. Recently, our comparative molecular analyses, using both field-collected and cultured materials, demonstrated that one Japanese lineage of "C. nivalis zygotes" belongs to C. miwae. Herein, we examined another Japanese lineage of field-collected "C. nivalis zygotes" and a new strain originating from Japan. Our molecular data demonstrated that these two different life cycle stages are conspecific, and that they represent a new species that we herein describe as C. muramotoi sp. nov., based on the vegetative and asexual morphological characteristics of the strain. Multigene phylogenetic analyses showed that this new species was sister to C. miwae. Scanning electron microscopy demonstrated that the cysts of C. muramotoi are different from those of C. miwae, based on the arrangement of the flanges developing on the cell wall.
Collapse
Affiliation(s)
- Ryo Matsuzaki
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| | - Hisayoshi Nozaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Nozomu Takeuchi
- Department of Earth Sciences, Graduate School of Science, Chiba University, Yayoicho, Inage ward, Chiba, Chiba, Japan
| | - Yoshiaki Hara
- Institute of Arts and Sciences, Yamagata University, Kojirakawa, Yamagata, Yamagata, Japan
| | - Masanobu Kawachi
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Onogawa, Tsukuba, Ibaraki, Japan
| |
Collapse
|