1
|
Gattani A, Mandal S, Agrawal A, Patel P, Jain AK, Singh P, Garg A, Mishra A. CRISPR-based electrochemical biosensors for animal health: Recent advances. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:7-18. [PMID: 39237013 DOI: 10.1016/j.pbiomolbio.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Animal diseases are a major concern to animal welfare, human health and the global economy. Early detection, prevention and control of these animal diseases are crucial to ensure sustainability of livestock sector, to reduce farm losses and protecting public health. Points of care (POC) devices are small, portable instruments that provide rapid results thus reduce the risk of disease transmission and enable early intervention. CRISPR based diagnostics offer more accurate and efficient solution for monitoring animal health due to their quick response, can detect very low level of pathogenic organism or disease markers and specificity. These diagnostics are particularly useful in the in area with limited resources or access to common diagnostic methods, especially in developing countries. The ability of electrochemical sensors to detect accurately very low analyte concentration makes them suitable for POC diagnostics and field application. CRISPR base electrochemical biosensors show great potential in revolutionizing disease detection and diagnosis including animal health. However, challenges, such as achieving selectivity and sensitivity, need to be addressed to enhance the competitiveness of these biosensors. Currently, most CRISPR based bioassay research focuses on nucleic acid target detection, but researchers exploring to monitor small organic/inorganic non-nucleic acid molecules like toxins and proteins. Emerging diagnostics would be centered on CRISPR-Cas system will offer great potential as an accurate, specific and effective means to identify microorganism, virus, toxins, small molecules, peptides and nucleic acid related to various animal health disorders particularly when integrated into electrochemical biosensing platform.
Collapse
Affiliation(s)
- Anil Gattani
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India.
| | - Sanju Mandal
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Aditya Agrawal
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, Rewa, India
| | - Pragati Patel
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Anand Kumar Jain
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Purnima Singh
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| | - Akshay Garg
- Directorate of Research Services, NDVSU, Jabalpur, India
| | - Aditya Mishra
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Science and Animal Husbandry, NDVSU, Jabalpur, India
| |
Collapse
|
2
|
Lee CY, Kim H, Degani I, Lee H, Sandoval A, Nam Y, Pascavis M, Park HG, Randall T, Ly A, Castro CM, Lee H. Empowering the on-site detection of nucleic acids by integrating CRISPR and digital signal processing. Nat Commun 2024; 15:6271. [PMID: 39054353 PMCID: PMC11272939 DOI: 10.1038/s41467-024-50588-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Addressing the global disparity in cancer care necessitates the development of rapid and affordable nucleic acid (NA) testing technologies. This need is particularly critical for cervical cancer, where molecular detection of human papillomavirus (HPV) has emerged as an accurate screening method. However, implementing this transition in low- and middle-income countries has been challenging due to the high costs and centralized facilities required for current NA tests. Here, we present CreDiT (CRISPR Enhanced Digital Testing) for on-site NA detection. The CreDiT platform integrates i) a one-pot CRISPR strategy that simultaneously amplifies both target NAs and analytical signals and ii) a robust fluorescent detection based on digital communication (encoding/decoding) technology. These features enable a rapid assay (<35 minutes) in a single streamlined workflow. We demonstrate the sensitive detection of cell-derived HPV DNA targets down to single copies and accurate identification of HPV types in clinical cervical brushing specimens (n = 121).
Collapse
Affiliation(s)
- Chang Yeol Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hyunho Kim
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ismail Degani
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hanna Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Angel Sandoval
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Yoonho Nam
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Madeleine Pascavis
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- CaNCURE program, College of Science, Northeastern University, Boston, MA, USA
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Thomas Randall
- Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA, USA
| | - Amy Ly
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Liu Y, Sundah NR, Ho NRY, Shen WX, Xu Y, Natalia A, Yu Z, Seet JE, Chan CW, Loh TP, Lim BY, Shao H. Bidirectional linkage of DNA barcodes for the multiplexed mapping of higher-order protein interactions in cells. Nat Biomed Eng 2024; 8:909-923. [PMID: 38898172 DOI: 10.1038/s41551-024-01225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/05/2024] [Indexed: 06/21/2024]
Abstract
Capturing the full complexity of the diverse hierarchical interactions in the protein interactome is challenging. Here we report a DNA-barcoding method for the multiplexed mapping of pairwise and higher-order protein interactions and their dynamics within cells. The method leverages antibodies conjugated with barcoded DNA strands that can bidirectionally hybridize and covalently link to linearize closely spaced interactions within individual 3D protein complexes, encoding and decoding the protein constituents and the interactions among them. By mapping protein interactions in cancer cells and normal cells, we found that tumour cells exhibit a larger diversity and abundance of protein complexes with higher-order interactions. In biopsies of human breast-cancer tissue, the method accurately identified the cancer subtype and revealed that higher-order protein interactions are associated with cancer aggressiveness.
Collapse
Affiliation(s)
- Yu Liu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R Sundah
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Wan Xiang Shen
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yun Xu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Zhonglang Yu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Ching Wan Chan
- Department of Surgery, National University Hospital, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Brian Y Lim
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
| | - Huilin Shao
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
4
|
Wei Z, Zhang X, Chen Y, Liu H, Wang S, Zhang M, Ma H, Yu K, Wang L. A new strategy based on a cascade amplification strategy biosensor for on-site eDNA detection and outbreak warning of crown-of-thorns starfish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172258. [PMID: 38583618 DOI: 10.1016/j.scitotenv.2024.172258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Population outbreaks of the crown-of-thorns starfish (COTS) seriously threaten the sustainability of coral reef ecosystems. However, traditional ecological monitoring techniques cannot provide early warning before the outbreaks, thus preventing timely intervention. Therefore, there is an urgent need for a more accurate and faster technology to predict the outbreaks of COTS. In this work, we developed an electrochemical biosensor based on a programmed catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) cyclic amplification strategy for sensitive and selective detection of COTS environmental DNA (eDNA) in water bodies. This biosensor exhibited excellent electrochemical characteristics, including a low limit of detection (LOD = 18.4 fM), low limit of quantification (LOQ = 41.1 fM), and wide linear range (50 fM - 10 nM). The biosensing technology successfully allowed the detection of COTS eDNA in the aquarium environment, and the results also demonstrated a significant correlation between eDNA concentration and COTS number (r = 0.990; P < 0.001). The reliability and accuracy of the biosensor results have been further validated through comparison with digital droplet PCR (ddPCR). Moreover, the applicability and accuracy of the biosensor were reconfirmed in field tests at the COTS outbreak site in the South China Sea, which has shown potential application in dynamically monitoring the larvae before the COTS outbreak. Therefore, this efficient electrochemical biosensing technology offers a new solution for on-site monitoring and early warning of the COTS outbreak.
Collapse
Affiliation(s)
- Zongwu Wei
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xuzhe Zhang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yingzhan Chen
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Hongjie Liu
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shaopeng Wang
- School of Resources, Environment and Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Man Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Honglin Ma
- Sansha Track Ocean Coral Reef Conservation Research Institute Co. Ltd., Qionghai 571499, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Liwei Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
5
|
Pian H, Wang H, Wang H, Li Z. Dual CRISPR/Cas13a Cascade Strand Displacement-Triggered Transcription for Point-of-Care Detection of Plasmodium in Asymptomatic Malaria. Anal Chem 2024; 96:7524-7531. [PMID: 38695755 DOI: 10.1021/acs.analchem.4c00230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
Asymptomatic infections of Plasmodium parasites are major obstacles to malaria control and elimination. A sensitive, specific, and user-friendly method is urgently needed for point-of-care (POC) Plasmodium diagnostics in asymptomatic malaria, especially in resource-limited settings. In this work, we present a POC method (termed Cas13a-SDT) based on the cascade sequence recognition and signal amplification of dual Cas13a trans-cleavage and strand displacement-triggered transcription (SDT). Cas13a-SDT not only achieves exceptional specificity in discriminating the target RNA from nontarget RNAs with any cross-interaction but also meets the sensitivity criterion set by the World Health Organization (WHO) for effective malaria detection. Remarkably, this novel method was successfully applied to screen malaria in asymptomatic infections from clinical samples. The proposed method provides a user-friendly and visually interpretable output mode while maintaining high accuracy and reliability comparable to RT-PCR. These excellent features demonstrate the significant potential of Cas13a-SDT for POC diagnosis of Plasmodium infections, laying a vital foundation for advancing malaria control and elimination efforts.
Collapse
Affiliation(s)
- Hongru Pian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Honghong Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
6
|
Yang J, Xu Z, Yu L, Wang B, Hu R, Tang J, Lv J, Xiao H, Tan X, Wang G, Li JX, Liu Y, Shao PL, Zhang B. Organic Fluorophores with Large Stokes Shift for the Visualization of Rapid Protein and Nucleic Acid Assays. Angew Chem Int Ed Engl 2024; 63:e202318800. [PMID: 38443316 DOI: 10.1002/anie.202318800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
Organic small-molecule fluorophores, characterized by flexible chemical structure and adjustable optical performance, have shown tremendous potential in biosensing. However, classical organic fluorophore motifs feature large overlap between excitation and emission spectra, leading to the requirement of advanced optical set up to filter desired signal, which limits their application in scenarios with simple settings. Here, a series of wavelength-tunable small-molecule fluorescent dyes (PTs) bearing simple organic moieties have been developed, which exhibit Stokes shift up to 262 nm, molar extinction coefficients ranged 30,000-100,000 M-1 cm-1, with quantum yields up to 54.8 %. Furthermore, these dyes were formulated into fluorescent nanoparticles (PT-NPs), and applied in lateral flow assay (LFA). Consequently, limit of detection for SARS-CoV-2 nucleocapsid protein reached 20 fM with naked eye, a 100-fold improvement in sensitivity compared to the pM detection level for colloidal gold-based LFA. Besides, combined with loop-mediated isothermal amplification (LAMP), the LFA system achieved the visualization of single copy level nucleic acid detection for monkeypox (Mpox).
Collapse
Affiliation(s)
- Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Ziyi Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Le Yu
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education, Department of Chemistry & Materials Science, Northwest University. Xi'an, Xi An Shi, 710127, China
| | - Bingyun Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jiahu Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Xuan Tan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Jia-Xin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| | - Pan-Lin Shao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China
| |
Collapse
|
7
|
Du J, Kong Y, Wen Y, Shen E, Xing H. HUH Endonuclease: A Sequence-specific Fusion Protein Tag for Precise DNA-Protein Conjugation. Bioorg Chem 2024; 144:107118. [PMID: 38330720 DOI: 10.1016/j.bioorg.2024.107118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/10/2024]
Abstract
Synthetic DNA-protein conjugates have found widespread applications in diagnostics and therapeutics, prompting a growing interest in developing chemical biology methodologies for the precise and site-specific preparation of covalent DNA-protein conjugates. In this review article, we concentrate on techniques to achieve precise control over the structural and site-specific aspects of DNA-protein conjugates. We summarize conventional methods involving unnatural amino acids and self-labeling proteins, accompanied by a discussion of their potential limitations. Our primary focus is on introducing HUH endonuclease as a novel generation of fusion protein tags for DNA-protein conjugate preparation. The detailed conjugation mechanisms and structures of representative endonucleases are surveyed, showcasing their advantages as fusion protein tag in sequence selectivity, biological orthogonality, and no requirement for DNA modification. Additionally, we present the burgeoning applications of HUH-tag-based DNA-protein conjugates in protein assembly, biosensing, and gene editing. Furthermore, we delve into the future research directions of the HUH-tag, highlighting its significant potential for applications in the biomedical and DNA nanotechnology fields.
Collapse
Affiliation(s)
- Jiajun Du
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Enxi Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, School of Chemistry and Chemical Engineering Hunan University Changsha, Hunan 410082, PR China.
| |
Collapse
|
8
|
Vealan K, Joseph N, Alimat S, Karumbati AS, Thilakavathy K. Lateral flow assay: a promising rapid point-of-care testing tool for infections and non-communicable diseases. ASIAN BIOMED 2023; 17:250-266. [PMID: 38161347 PMCID: PMC10754503 DOI: 10.2478/abm-2023-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The point-of-care testing (POCT) approach has established itself as having remarkable importance in diagnosing various infectious and non-communicable diseases (NCDs). The POCT approach has succeeded in meeting the current demand for having diagnostic strategies that can provide fast, sensitive, and highly accurate test results without involving complicated procedures. This has been accomplished by introducing rapid bioanalytical tools or biosensors such as lateral flow assays (LFAs). The production cost of these tools is very low, allowing developing countries with limited resources to utilize them or produce them on their own. Thus, their use has grown in various fields in recent years. More importantly, LFAs have created the possibility for a new era of incorporating nanotechnology in disease diagnosis and have already attained significant commercial success worldwide, making POCT an essential approach not just for now but also for the future. In this review, we have provided an overview of POCT and its evolution into the most promising rapid diagnostic approach. We also elaborate on LFAs with a special focus on nucleic acid LFAs.
Collapse
Affiliation(s)
- Kumaravel Vealan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Narcisse Joseph
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
| | - Sharizah Alimat
- Department of Chemistry Malaysia, Ministry of Science, Technology and Innovation, Petaling Jaya46661, Selangor, Malaysia
| | - Anandi S. Karumbati
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bangalore560065, India
| | - Karuppiah Thilakavathy
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang43400, Malaysia
- Malaysian Research Institute on Ageing (MyAgeing), Universiti Putra Malaysia, UPM Serdang43400, Selangor, Malaysia
| |
Collapse
|
9
|
Yang T, Luo Z, Wang Y, Li L, Xu Y, Lin X. Hydrogel Digital LAMP with Suppressed Nonspecific Amplification for Rapid Diagnostics of Fungal Disease in Fresh Fruits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18636-18644. [PMID: 37975529 DOI: 10.1021/acs.jafc.3c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Fungal disease, mainly caused by Alternaria alternata infection, can generate severe economic losses and health hazards. However, rapid nucleic acid test without nonspecific reaction still remains challenging. Here, we reported the hydrogel digital loop-mediated isothermal amplification (HdLAMP) with suppressed nonspecific amplification for rapid diagnosis of fungi in fresh fruits. The introduction of hydrogel offered a simple platform to achieve absolute quantification. By breaking the 3'end G-C anchor, the nonspecific amplification of primers could be suppressed, while the specific positive reaction in HdLAMP was not affected. This method could be applied for A. alternata detection in 9 min with excellent performances in speed, specificity, reproducibility, sensitivity, and detection limit down to a single copy. Finally, the real diseased jujubes during postharvest storage were successfully diagnosed as an A. alternata infection. HdLAMP promotes the molecular diagnosis of fungal diseases and broadens the application of hydrogels in the agricultural and food industry.
Collapse
Affiliation(s)
- Tao Yang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Yiru Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
10
|
He Y, Hu Q, San S, Kasputis T, Splinter MGD, Yin K, Chen J. CRISPR-based Biosensors for Human Health: A Novel Strategy to Detect Emerging Infectious Diseases. Trends Analyt Chem 2023; 168:117342. [PMID: 37840598 PMCID: PMC10571337 DOI: 10.1016/j.trac.2023.117342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Infectious diseases (such as sepsis, influenza, and malaria), caused by various pathogenic bacteria and viruses, are widespread across the world. Early and rapid detection of disease-related pathogens is necessary to reduce their spread in the world and prevent their potential global pandemics. The clustered regularly interspaced short palindromic repeats (CRISPR) technology, as the next-generation molecular diagnosis technique, holds immense promise in the detection of infectious diseases because of its remarkable advantages, including supreme flexibility, sensitivity, and specificity. While numerous CRISPR-based biosensors have been developed for application in environmental monitoring, food safety, and point-of-care diagnosis, there remains a critical need to summarize and explore their potential in human health. This review aims to address this gap by focusing on the latest advancements in CRISPR-based biosensors for infectious disease detection. We provide an overview of the current status, pre-amplification methods, the unique feature of each CRISPR system, and the design of CRISPR-based biosensing strategies to detect disease-associated nucleic acids. Last but not least, the review analyzes the current challenges and provides future perspectives, which will contribute to developing more effective CRISPR-based biosensors for human health.
Collapse
Affiliation(s)
- Yawen He
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People’s Republic of China
| | - Samantha San
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tom Kasputis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- One Health Center, Shanghai Jiao Tong University-The University of Edinburgh, Shanghai, People’s Republic of China
| | - Juhong Chen
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
11
|
Nixon SR, Phukan IK, Armijo BJ, Ebrahimi SB, Samanta D. Proximity-Driven DNA Nanosensors. ECS SENSORS PLUS 2023; 2:030601. [PMID: 37424706 PMCID: PMC10323711 DOI: 10.1149/2754-2726/ace068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Indexed: 07/11/2023]
Abstract
In proximity-driven sensing, interactions between a probe and an analyte produce a detectable signal by causing a change in distance of two probe components or signaling moieties. By interfacing such systems with DNA-based nanostructures, platforms that are highly sensitive, specific, and programmable can be designed. In this Perspective, we delineate the advantages of using DNA building blocks in proximity-driven nanosensors and provide an overview of recent progress in the field, from sensors that rapidly detect pesticides in food to probes that identify rare cancer cells in blood. We also discuss current challenges and identify key areas that need further development.
Collapse
Affiliation(s)
- Sara R. Nixon
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Imon Kanta Phukan
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Brian J. Armijo
- Department of Chemistry, Southwestern University, Georgetown, TX 78626, United States of America
| | - Sasha B. Ebrahimi
- Drug Product Development—Steriles, GlaxoSmithKline, Collegeville, PA 19426, United States of America
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
12
|
Xia A, Shen C, Wei C, Meng L, Hu Z, Zhang L, Chen M, Li L, He N, Hao X. Numerical and Experimental Investigation on a "Tai Chi"-Shaped Planar Passive Micromixer. MICROMACHINES 2023; 14:1414. [PMID: 37512725 PMCID: PMC10383477 DOI: 10.3390/mi14071414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
(1) Background: Microfluidic chips have found extensive applications in multiple fields due to their excellent analytical performance. As an important platform for micro-mixing, the performance of micromixers has a significant impact on analysis accuracy and rate. However, existing micromixers with high mixing efficiency are accompanied by high pressure drop, which is not conducive to the integration of micro-reaction systems; (2) Methods: This paper proposed a novel "Tai Chi"-shaped planar passive micromixer with high efficiency and low pressure drop. The effect of different structural parameters was investigated, and an optimal structure was obtained. Simulations on the proposed micromixer and two other micromixers were carried out while mixing experiments on the proposed micromixer were performed. The experimental and simulation results were compared; (3) Results: The optimized values of the parameters were that the straight channel width w, ratio K of the outer and inner walls of the circular cavity, width ratio w1/w2 of the arc channel, and number N of mixing units were 200 μm, 2.9, 1/2, and 6, respectively. Moreover, the excellent performance of the proposed micromixer was verified when compared with the other two micromixers; (4) Conclusions: The mixing efficiency M at all Re studied was more than 50%, and at most Re, the M was nearly 100%. Moreover, the pressure drop was less than 18,000 Pa.
Collapse
Affiliation(s)
- Annan Xia
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Cheng Shen
- College of Aerospace Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | | | - Lingchen Meng
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Zhiwen Hu
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Luming Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Mengyue Chen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Liang Li
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Ning He
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| | - Xiuqing Hao
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
| |
Collapse
|
13
|
Srivastava P, Prasad D. Isothermal nucleic acid amplification and its uses in modern diagnostic technologies. 3 Biotech 2023; 13:200. [PMID: 37215369 PMCID: PMC10193355 DOI: 10.1007/s13205-023-03628-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
Nucleic acids are prominent biomarkers for diagnosing infectious pathogens using nucleic acid amplification techniques (NAATs). PCR, a gold standard technique for amplifying nucleic acids, is widely used in scientific research and diagnosis. Efficient pathogen detection is a key to adequate food safety and hygiene. However, using bulky thermal cyclers and costly laboratory setup limits its uses in developing countries, including India. The isothermal amplification methods are exploited to develop miniaturized sensors against viruses, bacteria, fungi and other pathogenic organisms and have been applied for in situ diagnosis. Isothermal amplification techniques have been found suitable for POC techniques and follow WHO's ASSURED criteria. LAMP, NASBA, SDA, RCA and RPA are some of the isothermal amplification techniques which are preferable for POC diagnostics. Furthermore, methods such as WGA, CPA, HDA, EXPAR, SMART, SPIA and DAMP were introduced for even more accuracy and robustness. Using recombinant polymerases and other nucleic acid-modifying enzymes has dramatically broadened the detection range of target pathogens under the scanner. The coupling of isothermal amplification methods with advanced technologies such as CRISPR/Cas systems, fluorescence-based chemistries, microfluidics and paper-based sensors has significantly influenced the biosensing and diagnosis field. This review comprehensively analyzed isothermal nucleic acid amplification methods, emphasizing their advantages, disadvantages and limitations.
Collapse
Affiliation(s)
- Pulkit Srivastava
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215 India
| |
Collapse
|
14
|
Gokulu IS, Banta S. Biotechnology applications of proteins functionalized with DNA oligonucleotides. Trends Biotechnol 2023; 41:575-585. [PMID: 36115723 DOI: 10.1016/j.tibtech.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/14/2022]
Abstract
The functionalization of proteins with DNA through the formation of covalent bonds enables a wide range of biotechnology advancements. For example, single-molecule analytical methods rely on bioconjugated DNA as elastic biolinkers for protein immobilization. Labeling proteins with DNA enables facile protein identification, as well as spatial and temporal organization and control of protein within DNA-protein networks. Bioconjugation reactions can target native, engineered, and non-canonical amino acids (NCAAs) within proteins. In addition, further protein engineering via the incorporation of peptide tags and self-labeling proteins can also be used for conjugation reactions. The selection of techniques will depend on application requirements such as yield, selectivity, conjugation position, potential for steric hindrance, cost, commercial availability, and potential impact on protein function.
Collapse
Affiliation(s)
- Ipek Simay Gokulu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, New York, NY 10027, USA.
| |
Collapse
|
15
|
Qin L, Lou F, Wang Y, Zhang Y, Liu S, Hun X. CRISPR/Cas12a Coupled with Enzyme-DNA Molecular Switch Photoelectrochemical Assay for HIV Nucleic Acid. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Natalia A, Zhang L, Sundah NR, Zhang Y, Shao H. Analytical device miniaturization for the detection of circulating biomarkers. NATURE REVIEWS BIOENGINEERING 2023; 1:1-18. [PMID: 37359772 PMCID: PMC10064972 DOI: 10.1038/s44222-023-00050-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 06/28/2023]
Abstract
Diverse (sub)cellular materials are secreted by cells into the systemic circulation at different stages of disease progression. These circulating biomarkers include whole cells, such as circulating tumour cells, subcellular extracellular vesicles and cell-free factors such as DNA, RNA and proteins. The biophysical and biomolecular state of circulating biomarkers carry a rich repertoire of molecular information that can be captured in the form of liquid biopsies for disease detection and monitoring. In this Review, we discuss miniaturized platforms that allow the minimally invasive and rapid detection and analysis of circulating biomarkers, accounting for their differences in size, concentration and molecular composition. We examine differently scaled materials and devices that can enrich, measure and analyse specific circulating biomarkers, outlining their distinct detection challenges. Finally, we highlight emerging opportunities in biomarker and device integration and provide key future milestones for their clinical translation.
Collapse
Affiliation(s)
- Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Li Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Noah R. Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Gou H, Lin Q, Shen H, Jia K, Liang Y, Peng J, Zhang C, Qu X, Li Y, Lin J, Zhang J, Liao M. A novel linear displacement isothermal amplification with strand displacement probes (LDIA-SD) in a pocket-size device for point-of-care testing of infectious diseases. SENSORS AND ACTUATORS. B, CHEMICAL 2023; 379:133244. [PMID: 36589905 PMCID: PMC9789534 DOI: 10.1016/j.snb.2022.133244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Nucleic acid amplification is crucial for disease diagnosis, especially lethal infectious diseases such as COVID-19. Compared with PCR, isothermal amplification methods are advantageous for point-of-care testing (POCT). However, complicated primer design limits their application in detecting some short targets or sequences with abnormal GC content. Herein, we developed a novel linear displacement isothermal amplification (LDIA) method using two pairs of conventional primers and Bacillus stearothermophilus (Bst) DNA polymerase, and reactions could be accelerated by adding an extra primer. Pseudorabies virus gE (high GC content) and Salmonella fimW (low GC content) genes were used to evaluate the LDIA assay. Using strand displacement (SD) probes, a LDIA-SD method was developed to realize probe-based specific detection. Additionally, we incorporated a nucleic acid-free extraction step and a pocket-sized device to realize POCT applications of the LDIA-SD method. The LDIA-SD method has advantages including facile primer design, high sensitivity and specificity, and applicability for POCT, especially for amplification of complex sequences and detection of infectious diseases.
Collapse
Affiliation(s)
- Hongchao Gou
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Qijie Lin
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Shen
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Kaiyuan Jia
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yucen Liang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Peng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Chunhong Zhang
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
| | - Xiaoyun Qu
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yanbin Li
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Jianmin Zhang
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Ming Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Livestock Disease Prevention, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
- Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Guangzhou, China
- Key Laboratory of Zoonoses, Ministry of Agriculture, Guangzhou 510642, China
- Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
18
|
Naghdi T, Ardalan S, Asghari Adib Z, Sharifi AR, Golmohammadi H. Moving toward smart biomedical sensing. Biosens Bioelectron 2023; 223:115009. [PMID: 36565545 DOI: 10.1016/j.bios.2022.115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The development of novel biomedical sensors as highly promising devices/tools in early diagnosis and therapy monitoring of many diseases and disorders has recently witnessed unprecedented growth; more and faster than ever. Nonetheless, on the eve of Industry 5.0 and by learning from defects of current sensors in smart diagnostics of pandemics, there is still a long way to go to achieve the ideal biomedical sensors capable of meeting the growing needs and expectations for smart biomedical/diagnostic sensing through eHealth systems. Herein, an overview is provided to highlight the importance and necessity of an inevitable transition in the era of digital health/Healthcare 4.0 towards smart biomedical/diagnostic sensing and how to approach it via new digital technologies including Internet of Things (IoT), artificial intelligence, IoT gateways (smartphones, readers), etc. This review will bring together the different types of smartphone/reader-based biomedical sensors, which have been employing for a wide variety of optical/electrical/electrochemical biosensing applications and paving the way for future eHealth diagnostic devices by moving towards smart biomedical sensing. Here, alongside highlighting the characteristics/criteria that should be met by the developed sensors towards smart biomedical sensing, the challenging issues ahead are delineated along with a comprehensive outlook on this extremely necessary field.
Collapse
Affiliation(s)
- Tina Naghdi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Sina Ardalan
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Zeinab Asghari Adib
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Amir Reza Sharifi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
19
|
Zhao H, Pan S, Natalia A, Wu X, Ong CAJ, Teo MCC, So JBY, Shao H. A hydrogel-based mechanical metamaterial for the interferometric profiling of extracellular vesicles in patient samples. Nat Biomed Eng 2023; 7:135-148. [PMID: 36303008 DOI: 10.1038/s41551-022-00954-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 09/15/2022] [Indexed: 11/09/2022]
Abstract
The utility of mechanical metamaterials for biomedical applications has seldom been explored. Here we show that a metamaterial that is mechanically responsive to antibody-mediated biorecognition can serve as an optical interferometric mask to molecularly profile extracellular vesicles in ascites fluid from patients with cancer. The metamaterial consists of a hydrogel responsive to temperature and redox activity functionalized with antibodies to surface biomarkers on extracellular vesicles, and is patterned into micrometric squares on a gold-coated glass substrate. Through plasmonic heating, the metamaterial is maintained in a transition state between a relaxed form and a buckled state. Binding of extracellular vesicles from the patient samples to the antibodies on the hydrogel causes it to undergo crosslinking, induced by free radicals generated via the activity of horseradish peroxidase conjugated to the antibodies. Hydrogel crosslinking causes the metamaterial to undergo fast chiral re-organization, inducing amplified changes in its mechanical deformation and diffraction patterns, which are detectable by a smartphone camera. The mechanical metamaterial may find broad utility in the sensitive optical immunodetection of biomolecules.
Collapse
Affiliation(s)
- Haitao Zhao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Sijun Pan
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Xingjie Wu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Chin-Ann J Ong
- Division of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | - Melissa C C Teo
- Division of Surgical Oncology, National Cancer Centre, Singapore, Singapore
| | - Jimmy B Y So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Surgical Oncology, National University Cancer Institute, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore. .,Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore. .,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
20
|
Zou D, Gu Y, Luo D, Yang W, Gao R, Cao X, Dong W, Shi H, Zhao H, Liu C. Rapid and ultra-sensitive testosterone detection via aptamer-functional gold nanoparticles. NEW J CHEM 2023. [DOI: 10.1039/d2nj05316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The capability to monitor doping in a rapid and sensitive manner is highly promising in the field of doping control.
Collapse
Affiliation(s)
- Dixin Zou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, P. R. China
| | - Yujia Gu
- School of Sport Science, Beijing Sport University, Beijing, P. R. China
| | - Dan Luo
- School of Sport Science, Beijing Sport University, Beijing, P. R. China
| | - Weijun Yang
- School of Competitive Sports, Beijing Sport University, Beijing, P. R. China
| | - Ruirui Gao
- School of Sport Science, Beijing Sport University, Beijing, P. R. China
| | - Xin Cao
- School of Sport Science, Beijing Sport University, Beijing, P. R. China
| | - Wei Dong
- School of Sport Science, Beijing Sport University, Beijing, P. R. China
| | - Hanghao Shi
- Department of Physical Education, Jiangnan University, Wuxi, P. R. China
| | - Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi, P. R. China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing, P. R. China
| |
Collapse
|
21
|
Hu T, Ke X, Li W, Lin Y, Liang A, Ou Y, Chen C. CRISPR/Cas12a-Enabled Multiplex Biosensing Strategy Via an Affordable and Visual Nylon Membrane Readout. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204689. [PMID: 36442853 PMCID: PMC9839848 DOI: 10.1002/advs.202204689] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Most multiplex nucleic acids detection methods require numerous reagents and high-priced instruments. The emerging clustered regularly interspaced short palindromic repeats (CRISPR)/Cas has been regarded as a promising point-of-care (POC) strategy for nucleic acids detection. However, how to achieve CRISPR/Cas multiplex biosensing remains a challenge. Here, an affordable means termed CRISPR-RDB (CRISPR-based reverse dot blot) for multiplex target detection in parallel, which possesses the advantages of high sensitivity and specificity, cost-effectiveness, instrument-free, ease to use, and visualization is reported. CRISPR-RDB integrates the trans-cleavage activity of CRISPR-Cas12a with a commercial RDB technique. It utilizes different Cas12a-crRNA complexes to separately identify multiple targets in one sample and converts targeted information into colorimetric signals on a piece of accessible nylon membrane that attaches corresponding specific-oligonucleotide probes. It has demonstrated that the versatility of CRISPR-RDB by constructing a four-channel system to simultaneously detect influenza A, influenza B, respiratory syncytial virus, and SARS-CoV-2. With a simple modification of crRNAs, the CRISPR-RDB can be modified to detect human papillomavirus, saving two-thirds of the time compared to a commercial PCR-RDB kit. Further, a user-friendly microchip system for convenient use, as well as a smartphone app for signal interpretation, is engineered. CRISPR-RDB represents a desirable option for multiplexed biosensing and on-site diagnosis.
Collapse
Affiliation(s)
- Tao Hu
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Xinxin Ke
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Wei Li
- The Children's HospitalZhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouZhejiang310052China
| | - Yu Lin
- International Peace Maternity & Child Health HospitalShanghai Municipal Key Clinical SpecialtyInstitute of Embryo‐Fetal Original Adult DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Ajuan Liang
- Center of Reproductive MedicineShanghai First Maternity and Infant HospitalTongji University School of MedicineShanghai201204China
| | - Yangjing Ou
- International Peace Maternity & Child Health HospitalShanghai Municipal Key Clinical SpecialtyInstitute of Embryo‐Fetal Original Adult DiseaseSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
| | - Chuanxia Chen
- School of Materials Science and EngineeringUniversity of JinanJinanShandong250022China
| |
Collapse
|
22
|
Snider DM, Pandit S, Coffin ML, Ebrahimi SB, Samanta D. DNA-Mediated Control of Protein Function in Semi-Synthetic Systems. Chembiochem 2022; 23:e202200464. [PMID: 36058885 DOI: 10.1002/cbic.202200464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/02/2022] [Indexed: 01/25/2023]
Abstract
The development of strategies for controlling protein function in a precise and predictable manner has the potential to revolutionize catalysis, diagnostics, and medicine. In this regard, the use of DNA has emerged as a powerful approach for modulating protein activity. The programmable nature of DNA allows for constructing sophisticated architectures wherein proteins can be placed with control over position, orientation, and stoichiometry. This ability is especially useful considering that the properties of proteins can be influenced by their local environment or their proximity to other functional molecules. Here, we chronicle the different strategies that have been developed to interface DNA with proteins in semi-synthetic systems. We further delineate the unique applications unlocked by the unprecedented level of structural control that DNA affords. We end by outlining outstanding challenges in the area and discuss future research directions towards potential solutions.
Collapse
Affiliation(s)
- Dylan M Snider
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Subrata Pandit
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Mackenzie L Coffin
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline 1250 S Collegeville Rd, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Austin, TX, 78712, USA
| |
Collapse
|
23
|
Jauset-Rubio M, Ortiz M, O’Sullivan CK. Exploiting the Nucleic Acid Nature of Aptamers for Signal Amplification. BIOSENSORS 2022; 12:972. [PMID: 36354481 PMCID: PMC9688535 DOI: 10.3390/bios12110972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Aptamer-based assays and sensors are garnering increasing interest as alternatives to antibodies, particularly due to their increased flexibility for implementation in alternative assay formats, as they can be employed in assays designed for nucleic acids, such as molecular aptamer beacons or aptamer detection combined with amplification. In this work, we took advantage of the inherent nucleic acid nature of aptamers to enhance sensitivity in a rapid and facile assay format. An aptamer selected against the anaphylactic allergen β-conglutin was used to demonstrate the proof of concept. The aptamer was generated by using biotinylated dUTPs, and the affinity of the modified aptamer as compared to the unmodified aptamer was determined by using surface plasmon resonance to calculate the dissociation constant (KD), and no significant improvement in affinity due to the incorporation of the hydrophobic biotin was observed. The modified aptamer was then applied in a colorimetric competitive enzyme-linked oligonucleotide assay, where β-conglutin was immobilized on the wells of a microtiter plate, competing with β-conglutin free in solution for the binding to the aptamer. The limit of detection achieved was 68 pM, demonstrating an improvement in detection limit of three orders of magnitude as compared with the aptamer simply modified with a terminal biotin label. The concept was then exploited by using electrochemical detection and screen-printed electrodes where detection limits of 326 fM and 7.89 fM were obtained with carbon and gold electrodes, respectively. The assay format is generic in nature and can be applied to all aptamers, facilitating an easy and cost-effective means to achieve lower detection limits.
Collapse
Affiliation(s)
- Miriam Jauset-Rubio
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira I Virgili, 43007 Tarragona, Spain
| | - Mayreli Ortiz
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira I Virgili, 43007 Tarragona, Spain
| | - Ciara K. O’Sullivan
- Interfibio Consolidated Research Group, Department of Chemical Engineering, Universitat Rovira I Virgili, 43007 Tarragona, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
24
|
Kachwala MJ, Smith CW, Nandu N, Yigit MV. Recombinase amplified CRISPR enhanced chain reaction (RACECAR) for viral genome detection. NANOSCALE 2022; 14:13500-13504. [PMID: 36102688 PMCID: PMC9623498 DOI: 10.1039/d2nr03590a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We have developed a 'recombinase amplified CRISPR enhanced chain reaction' (RACECAR) assay that can detect as little as 40 copies of hepatitis B virus (HBV) genome using a benchtop spectrofluorometer. The limit of detection was determined to be 3 copies of HBV genome. The specificity of RACECAR was confirmed against hepatitis A virus (HAV). This assay can detect the genomic targets directly in serum samples without an extraction step. The 4 h-long fluorometric assay was developed by combining three tiers of isothermal amplification processes and can be repurposed for any target of choice. This highly modular reaction setup is an untapped resource that can be incorporated into the front-runners of molecular diagnostics.
Collapse
Affiliation(s)
- Mahera J Kachwala
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Christopher W Smith
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Nidhi Nandu
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
| | - Mehmet V Yigit
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA.
- The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, USA
| |
Collapse
|
25
|
Zhang J, Li Y, Chai F, Li Q, Wang D, Liu L, Tang BZ, Jiang X. Ultrasensitive point-of-care biochemical sensor based on metal-AIEgen frameworks. SCIENCE ADVANCES 2022; 8:eabo1874. [PMID: 35895821 PMCID: PMC9328688 DOI: 10.1126/sciadv.abo1874] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Point-of-care (POC) biochemical sensors have found broad applications in areas ranging from clinical diagnosis to environmental monitoring. However, POC sensors often suffer from poor sensitivity. Here, we synthesized a metal-organic framework, where the ligand is the aggregation-induced emission luminogen (AIEgen), which we call metal-AIEgen frameworks (MAFs), for use in the ultrasensitive POC biochemical sensors. MAFs process a unique luminescent mechanism of structural rigidity-enhanced emission to achieve a high quantum yield (~99.9%). We optimized the MAFs to show 102- to 103-fold enhanced sensitivity for a hydrogel-based POC digital sensor and lateral flow immunoassays (LFIA). MAFs have a high affinity to directly absorb proteins, which can label antibodies for immunoassays. MAFs-based LFIA with enhanced sensitivity shows robust serum detection for POC clinical diagnosis.
Collapse
Affiliation(s)
- Jiangjiang Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Ying Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Fengli Chai
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Qizhen Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
| | - Liping Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Corresponding author. (X.J.); (B.Z.T.); (L.L.)
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
- Corresponding author. (X.J.); (B.Z.T.); (L.L.)
| | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering and Department of Hepatobiliary and Pancreas Surgery (The First Affiliated Hospital), Southern University of Science and Technology, No. 1088 Xueyuan Rd., Nanshan District, Shenzhen, Guangdong 518055, P. R. China
- Corresponding author. (X.J.); (B.Z.T.); (L.L.)
| |
Collapse
|
26
|
Baabu PRS, Srinivasan S, Nagarajan S, Muthamilselvan S, Selvi T, Suresh RR, Palaniappan A. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer. Synth Syst Biotechnol 2022; 7:802-814. [PMID: 35475253 PMCID: PMC9014444 DOI: 10.1016/j.synbio.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is a global public health subject as it affects women in the reproductive ages, and accounts for the second largest burden among cancer patients worldwide with an unforgiving 50% mortality rate. Relatively scant awareness and limited access to effective diagnosis have led to this enormous disease burden, calling for point-of-care, minimally invasive diagnosis methods. Here, an end-to-end quantitative unified pipeline for diagnosis has been developed, beginning with identification of optimal biomarkers, concurrent design of toehold switch sensors, and finally simulation of the designed diagnostic circuits to assess performance. Using miRNA expression data in the public domain, we identified miR-21–5p and miR-20a-5p as blood-based miRNA biomarkers specific to early-stage cervical cancer employing a multi-tier algorithmic screening. Synthetic riboregulators called toehold switches specific to the biomarker panel were then designed. To predict the dynamic range of toehold switches for use in genetic circuits as biosensors, we used a generic grammar of these switches, and built a neural network model of dynamic range using thermodynamic features derived from mRNA secondary structure and interaction. Second-generation toehold switches were used to overcome the design challenges associated with miRNA biomarkers. The resultant model yielded an adj. R2 ∼0.71, outperforming earlier models of toehold-switch dynamic range. Reaction kinetics modelling was performed to predict the sensitivity of the second-generation toehold switches to the miRNA biomarkers. Simulations showed a linear response between 10 nM and 100 nM before saturation. Our study demonstrates an end-to-end computational workflow for the efficient design of genetic circuits geared towards the effective detection of unique genomic/nucleic-acid signatures. The approach has the potential to replace iterative experimental trial and error, and focus time, money, and efforts. All software including the toehold grammar parser, neural network model and reaction kinetics simulation are available as open-source software (https://github.com/SASTRA-iGEM2019) under GNU GPLv3 licence.
Collapse
|
27
|
Hu T, Ke X, Ou Y, Lin Y. CRISPR/Cas12a-Triggered Chemiluminescence Enhancement Biosensor for Sensitive Detection of Nucleic Acids by Introducing a Tyramide Signal Amplification Strategy. Anal Chem 2022; 94:8506-8513. [PMID: 35635022 DOI: 10.1021/acs.analchem.2c01507] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CRISPR-based biosensors have attracted increasing attention in accurate and sensitive nucleic acid detection. In this work, we report a CRISPR/Cas12a-triggered chemiluminescence enhancement biosensor for the ultrasensitive detection of nucleic acids by introducing tyramide signal amplification for the first time (termed CRICED). The hybrid chain DNA (crDNA) formed by NH2-capture DNA (capDNA) and biotin-recognition DNA (recDNA) was preferentially attached to the magnetic beads (MBs), and the streptavidin-HRP was subsequently introduced to obtain MB@HRP-crDNA. In the presence of the DNA target, the activated CRISPR/Cas12a is capable of randomly cutting initiator DNA (intDNA) into vast short products, and thus the fractured intDNA could not trigger the toehold-mediated DNA-strand displacement reaction (TSDR) event with MB@HRP-crDNA. After the addition of tyramine-AP and H2O2, abundant HRP-tyramine-AP emerges through the covalent attachment of HRP-tyramine, exhibiting enhanced chemiluminescence (CL) signals or visual image readouts. By virtue of this biosensor, we achieved high sensitivity of synthetic DNA target and amplified DNA plasmid using recombinase polymerase amplification (RPA) as low as 17 pM and single-copy detection, respectively. Our proposed CRICED was further evaluated to test 20 HPV clinical samples, showing a superior sensitivity of 87.50% and specificity of 100.00%. Consequently, the CRICED platform could be an attractive means for ultrasensitive and imaging detection of nucleic acids and holds a promising strategy for the practical application of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Tao Hu
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Xinxin Ke
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Yangjing Ou
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
28
|
Miao P, Chai H, Tang Y. DNA Hairpins and Dumbbell-Wheel Transitions Amplified Walking Nanomachine for Ultrasensitive Nucleic Acid Detection. ACS NANO 2022; 16:4726-4733. [PMID: 35188755 DOI: 10.1021/acsnano.1c11582] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleic acids, including circulating tumor DNA (ctDNA), microRNA, and virus DNA/RNA, have been widely applied as potential disease biomarkers for early clinical diagnosis. In this study, we present a concept of DNA nanostructures transitions for the construction of DNA bipedal walking nanomachine, which integrates dual signal amplification for direct nucleic acid assay. DNA hairpins transition is developed to facilitate the generation of multiple target sequences; meanwhile, the subsequent DNA dumbbell-wheel transition is controlled to achieve the bipedal walker, which cleaves multiple tracks around electrode surface. Through combination of strand displacement reaction and digestion cycles, DNA monolayer at the electrode interface could be engineered and target-induced signal variation is realized. In addition, pH-assisted detachable intermolecular DNA triplex design is utilized for the regeneration of electrochemical biosensor. The high consistency between this work and standard quantitative polymerase chain reaction is validated. Moreover, the feasibilities of this biosensor to detect ctDNA and SARS-CoV-2 RNA in clinical samples are demonstrated with satisfactory accuracy and reliability. Therefore, the proposed approach has great potential applications for nucleic acid based clinical diagnostics.
Collapse
Affiliation(s)
- Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Hua Chai
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| | - Yuguo Tang
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
29
|
Fu X, Gou M, Zhang Y, Su H, Zhao H, Liu C, Han J. Simultaneous and visual detection of multiple dopes by an aptamer/AuNPs sensor. NEW J CHEM 2022. [DOI: 10.1039/d2nj03938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Through introducing multiple aptamers in a suitable ratio, we achieved the simultaneous and visual detection of three dopes in one sensor.
Collapse
Affiliation(s)
- Xuancheng Fu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Institute of Anti-Doping in China, Beijing Sport University, Beijing 100084, China
| | - Miaomiao Gou
- The Fifth Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yong Zhang
- The Second Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Hao Su
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Haotian Zhao
- School of Sport Science, Beijing Sport University, Beijing 100084, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China
- Institute of Anti-Doping in China, Beijing Sport University, Beijing 100084, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
30
|
Zhao H, Zhang Y, Chen Y, Ho NRY, Sundah NR, Natalia A, Liu Y, Miow QH, Wang Y, Tambyah PA, Ong CWM, Shao H. Accessible detection of SARS-CoV-2 through molecular nanostructures and automated microfluidics. Biosens Bioelectron 2021; 194:113629. [PMID: 34534949 PMCID: PMC8435073 DOI: 10.1016/j.bios.2021.113629] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 09/10/2021] [Indexed: 11/15/2022]
Abstract
Accurate and accessible nucleic acid diagnostics is critical to reducing the spread of COVID-19 and resuming socioeconomic activities. Here, we present an integrated platform for the direct detection of SARS-CoV-2 RNA targets near patients. Termed electrochemical system integrating reconfigurable enzyme-DNA nanostructures (eSIREN), the technology leverages responsive molecular nanostructures and automated microfluidics to seamlessly transduce target-induced molecular activation into an enhanced electrochemical signal. Through responsive enzyme-DNA nanostructures, the technology establishes a molecular circuitry that directly recognizes specific RNA targets and catalytically enhances signaling; only upon target hybridization, the molecular nanostructures activate to liberate strong enzymatic activity and initiate cascading reactions. Through automated microfluidics, the system coordinates and interfaces the molecular circuitry with embedded electronics; its pressure actuation and liquid-guiding structures improve not only analytical performance but also automated implementation. The developed platform establishes a detection limit of 7 copies of RNA target per μl, operates against the complex biological background of native patient samples, and is completed in <20 min at room temperature. When clinically evaluated, the technology demonstrates accurate detection in extracted RNA samples and direct swab lysates to diagnose COVID-19 patients.
Collapse
Affiliation(s)
- Haitao Zhao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Yuan Chen
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Noah R Sundah
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Yu Liu
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore
| | - Qing Hao Miow
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yu Wang
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Paul A Tambyah
- Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - Catherine W M Ong
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Infectious Diseases Translational Research Programme, Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore; Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
31
|
Lin X, Fang M, Yi C, Jiang Y, Zhang C, Pan X, Luo Z. Functional hydrogel for fast, precise and inhibition-free point-of-care bacteria analysis in crude food samples. Biomaterials 2021; 280:121278. [PMID: 34871876 DOI: 10.1016/j.biomaterials.2021.121278] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/30/2021] [Accepted: 11/23/2021] [Indexed: 11/02/2022]
Abstract
In this work, instead of performing nucleic acid amplification in the bulk solution, we report a nanoporous hydrogel with controlled release function for rapid, precise, and inhibition-free nucleic acid analysis in crude food samples. The cross-linked PEG hydrogel with nanoporous structures possesses adsorption, release, separation, restriction and self-cleaning abilities. When digital loop-mediated isothermal amplification (LAMP) was performed inside this hydrogel, the surrounding nanostructure act as a temporary reservoir for reagents storage and release them on demand during or after amplification. Meanwhile, the restricted nanoconfined environment of hydrogel also favor the enzymatic amplification process. Thus, an enhanced signal readout, robust anti-inhibition, faster amplification rate, more products yields and specific amplification without primer-dimers were obtained. Moreover, direct amplification in untreated complex food sample was successfully performed inside hydrogel without any sample pretreatment, while conventional droplets digital LAMP failed for detection. Absolute quantification of Escherichia coli and Salmonella typhi directly in fresh fruit and vegetables was achieved within 20 min, with high precision and sensitivity down to single cell. This novel lab-on-hydrogel concept has an enormous potential for future molecular diagnostic assays, and can be also applied for other point-of-care assays.
Collapse
Affiliation(s)
- Xingyu Lin
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Mei Fang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Changyu Yi
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China; College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yan Jiang
- Chemistry Instrumentation Center, Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Chao Zhang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
32
|
Chen Y, Sundah NR, Ho NRY, Natalia A, Liu Y, Miow QH, Wang Y, Beh DLL, Chew KL, Chan D, Tambyah PA, Ong CWM, Shao H. Collaborative Equilibrium Coupling of Catalytic DNA Nanostructures Enables Programmable Detection of SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101155. [PMID: 34278742 PMCID: PMC8420304 DOI: 10.1002/advs.202101155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/23/2021] [Indexed: 05/31/2023]
Abstract
Accessible and adaptable nucleic acid diagnostics remains a critical challenge in managing the evolving COVID-19 pandemic. Here, an integrated molecular nanotechnology that enables direct and programmable detection of SARS-CoV-2 RNA targets in native patient specimens is reported. Termed synergistic coupling of responsive equilibrium in enzymatic network (SCREEN), the technology leverages tunable, catalytic molecular nanostructures to establish an interconnected, collaborative architecture. SCREEN mimics the extraordinary organization and functionality of cellular signaling cascades. Through programmable enzyme-DNA nanostructures, SCREEN activates upon interaction with different RNA targets to initiate multi-enzyme catalysis; through system-wide favorable equilibrium shifting, SCREEN directly transduces a single target binding into an amplified electrical signal. To establish collaborative equilibrium coupling in the architecture, a computational model that simulates all reactions to predict overall performance and optimize assay configuration is developed. The developed platform achieves direct and sensitive RNA detection (approaching single-copy detection), fast response (assay reaction is completed within 30 min at room temperature), and robust programmability (across different genetic loci of SARS-CoV-2). When clinically evaluated, the technology demonstrates robust and direct detection in clinical swab lysates to accurately diagnose COVID-19 patients.
Collapse
Affiliation(s)
- Yuan Chen
- Institute for Health Innovation & TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Noah R. Sundah
- Institute for Health Innovation & TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Nicholas R. Y. Ho
- Institute for Health Innovation & TechnologyNational University of SingaporeSingapore117599Singapore
- Institute of Molecular and Cell BiologyAgency for ScienceTechnology and ResearchSingapore138673Singapore
| | - Auginia Natalia
- Institute for Health Innovation & TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Yu Liu
- Institute for Health Innovation & TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Qing Hao Miow
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Yu Wang
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| | - Darius L. L. Beh
- Division of Infectious DiseasesDepartment of MedicineNational University HospitalSingapore119074Singapore
| | - Ka Lip Chew
- Department of Laboratory MedicineNational University HospitalSingapore119074Singapore
| | - Douglas Chan
- Department of Laboratory MedicineNg Teng Fong General HospitalSingapore609606Singapore
| | - Paul A. Tambyah
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Division of Infectious DiseasesDepartment of MedicineNational University HospitalSingapore119074Singapore
| | - Catherine W. M. Ong
- Institute for Health Innovation & TechnologyNational University of SingaporeSingapore117599Singapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
- Division of Infectious DiseasesDepartment of MedicineNational University HospitalSingapore119074Singapore
| | - Huilin Shao
- Institute for Health Innovation & TechnologyNational University of SingaporeSingapore117599Singapore
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- Institute of Molecular and Cell BiologyAgency for ScienceTechnology and ResearchSingapore138673Singapore
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingapore117599Singapore
| |
Collapse
|
33
|
Pan S, Zhang Y, Natalia A, Lim CZJ, Ho NRY, Chowbay B, Loh TP, Tam JKC, Shao H. Extracellular vesicle drug occupancy enables real-time monitoring of targeted cancer therapy. NATURE NANOTECHNOLOGY 2021; 16:734-742. [PMID: 33686255 DOI: 10.1038/s41565-021-00872-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 01/28/2021] [Indexed: 05/21/2023]
Abstract
Current technologies to measure drug-target interactions require complex processing and invasive tissue biopsies, limiting their clinical utility for cancer treatment monitoring. Here we develop an analytical platform that leverages circulating extracellular vesicles (EVs) for activity-based assessment of tumour-specific drug-target interactions in patient blood samples. The technology, termed extracellular vesicle monitoring of small-molecule chemical occupancy and protein expression (ExoSCOPE), utilizes bio-orthogonal probe amplification and spatial patterning of molecular reactions within matched plasmonic nanoring resonators to achieve in situ analysis of EV drug dynamics. It measures changes in drug occupancy and protein composition in molecular subpopulations of EVs. When used to monitor various targeted therapies, the ExoSCOPE revealed EV signatures that closely reflected cellular treatment efficacy. We further applied the technology for clinical cancer diagnostics and treatment monitoring. Using a small volume of blood, the ExoSCOPE accurately classified disease status and rapidly distinguished between targeted treatment outcomes, within 24 h after treatment initiation.
Collapse
Affiliation(s)
- Sijun Pan
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
| | - Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Carine Z J Lim
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Balram Chowbay
- Clinical Pharmacology Laboratory, National Cancer Centre Singapore, Singapore, Singapore
- Centre for Clinician-Scientist Development, Duke-NUS Medical School, Singapore, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tze Ping Loh
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - John K C Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
34
|
Zhang M, Wang H, Wang H, Wang F, Li Z. CRISPR/Cas12a-Assisted Ligation-Initiated Loop-Mediated Isothermal Amplification (CAL-LAMP) for Highly Specific Detection of microRNAs. Anal Chem 2021; 93:7942-7948. [PMID: 34038095 DOI: 10.1021/acs.analchem.1c00686] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) has been increasingly applied in nucleic acid detection for clinical diagnosis and monitoring pathogenic microorganisms due to its isothermal nature and high sensitivity. However, the false-positive signal resulting from the non-specific amplification and the complexity of primer design are still technically challenging for wide applications. In this paper, we developed the CRISPR/Cas12a-assisted sequence-specific detection of LAMP products to eliminate the effect of non-specific amplification from primer dimers and spurious amplicons. Moreover, by designing a pair of target-specific stem-loop DNA probes, we greatly simplified the primer design for LAMP. The DNA probes could be ligated to form a double-stem-loop DNA template by the detected target, which initiated LAMP reaction and achieved one-nucleotide resolution due to the highly specific ligase reaction. Using microRNAs (miRNAs) as the model targets, the CRISPR/Cas12a-assisted ligation-initiated loop-mediated isothermal amplification (CAL-LAMP) can sensitively detect as low as 0.1 fM miRNAs with high specificity.
Collapse
Affiliation(s)
- Mai Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Honghong Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hui Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Fangfang Wang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhengping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
35
|
Stem-loop-primer assisted isothermal amplification enabling high-specific and ultrasensitive nucleic acid detection. Biosens Bioelectron 2021; 184:113239. [PMID: 33857727 DOI: 10.1016/j.bios.2021.113239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/20/2022]
Abstract
It is highly desired to perform accurate and rapid nucleic acid detections for disease diagnosis at resource-limited setting, such as small clinics, remote areas and home. However, the challenges in sample handling, expensive equipment and complicated operation make canonical polymerase chain reaction (PCR) impossible to run the point-of-care testing (POCT). Herein we report a novel nucleic acid detection method, named stem-loop-primer assisted isothermal amplification (SPA), which specifically and sensitively amplifies target nucleic acid by using Bst DNA polymerase, a pair of canonical PCR primers and their stem-loop derivatives. The stem-loop-primers are easily designed by adding a stem-loop sequence to the canonical PCR primers at 5'-ends. In contrast to loop-mediated isothermal amplification (LAMP), which is a widespread isothermal amplification technology, our SPA is more specific and convenient to design and run. Further, we have demonstrated that SPA can specifically detect type 16, 18, 52 and 58 Human Papilloma viruses (HPV) in cervical samples, suggesting its specificity and robustness for nucleic acid detection. Moreover, pH indicator based colorimetric SPA was developed, which offered 100% accuracy for HPV16 detection in cervical samples, thereby demonstrating its great potential for POCT nucleic acid testing.
Collapse
|
36
|
Ghodake GS, Shinde SK, Kadam AA, Saratale RG, Saratale GD, Syed A, Elgorban AM, Marraiki N, Kim DY. Biological characteristics and biomarkers of novel SARS-CoV-2 facilitated rapid development and implementation of diagnostic tools and surveillance measures. Biosens Bioelectron 2021; 177:112969. [PMID: 33434780 PMCID: PMC7836906 DOI: 10.1016/j.bios.2021.112969] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 01/08/2023]
Abstract
Existing coronavirus named as a severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has speeded its spread across the globe immediately after emergence in China, Wuhan region, at the end of the year 2019. Different techniques, including genome sequencing, structural feature classification by electron microscopy, and chest imaging using computed tomography, are primarily used to diagnose and screen SARS-CoV-2 suspected individuals. Determination of the viral structure, surface proteins, and genome sequence has provided a design blueprint for the diagnostic investigations of novel SARS-CoV-2 virus and rapidly emerging diagnostic technologies, vaccine trials, and cell-entry-inhibiting drugs. Here, we describe recent understandings on the spike glycoprotein (S protein), receptor-binding domain (RBD), and angiotensin-converting enzyme 2 (ACE2) and their receptor complex. This report also aims to review recently established diagnostic technologies and developments in surveillance measures for SARS-CoV-2 as well as the characteristics and performance of emerging techniques. Smartphone apps for contact tracing can help nations to conduct surveillance measures before a vaccine and effective medicines become available. We also describe promising point-of-care (POC) diagnostic technologies that are under consideration by researchers for advancement beyond the proof-of-concept stage. Developing novel diagnostic techniques needs to be facilitated to establish automatic systems, without any personal involvement or arrangement to curb an existing SARS-CoV-2 epidemic crisis, and could also be appropriate for avoiding the emergence of a future epidemic crisis.
Collapse
Affiliation(s)
- Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Surendra Krushna Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Avinash Ashok Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, South Korea
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455 Riyadh, 11451, Saudi Arabia
| | - Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, Medical Center Ilsan, Goyang-si, 10326, Gyeonggi-do, South Korea.
| |
Collapse
|
37
|
Abstract
Selective and sensitive detection of nucleic acid biomarkers is of great significance in early-stage diagnosis and targeted therapy. Therefore, the development of diagnostic methods capable of detecting diseases at the molecular level in biological fluids is vital to the emerging revolution in the early diagnosis of diseases. However, the vast majority of the currently available ultrasensitive detection strategies involve either target/signal amplification or involve complex designs. Here, using a p53 tumor suppressor gene whose mutation has been implicated in more than 50% of human cancers, we show a background-free ultrasensitive detection of this gene on a simple platform. The sensor exhibits a relatively static mid-FRET state in the absence of a target that can be attributed to the time-averaged fluorescence intensity of fast transitions among multiple states, but it undergoes continuous dynamic switching between a low- and a high-FRET state in the presence of a target, allowing a high-confidence detection. In addition to its simple design, the sensor has a detection limit down to low femtomolar (fM) concentration without the need for target amplification. We also show that this sensor is highly effective in discriminating against single-nucleotide polymorphisms (SNPs). Given the generic hybridization-based detection platform, the sensing strategy developed here can be used to detect a wide range of nucleic acid sequences enabling early diagnosis of diseases and screening genetic disorders.
Collapse
Affiliation(s)
- Anoja Megalathan
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Kalani M Wijesinghe
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Soma Dhakal
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
38
|
Yang Z, Francisco J, Reese AS, Spriggs DR, Im H, Castro CM. Addressing cervical cancer screening disparities through advances in artificial intelligence and nanotechnologies for cellular profiling. BIOPHYSICS REVIEWS 2021; 2:011303. [PMID: 33842926 PMCID: PMC8015256 DOI: 10.1063/5.0043089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Almost all cases of cervical cancer are caused by the human papilloma virus (HPV). Detection of pre-cancerous cervical changes provides a window of opportunity for cure of an otherwise lethal disease when metastatic. With a greater understanding of the biology and natural course of high-risk HPV infections, screening methods have shifted beyond subjective Pap smears toward more sophisticated and objective tactics. This has led to a substantial growth in the breadth and depth of HPV-based cervical cancer screening tests, especially in developed countries without constrained resources. Many low- and middle-income countries (LMICs) have less access to advanced laboratories and healthcare resources, so new point-of-care (POC) technologies have been developed to provide test results in real time, improve the efficiency of techniques, and increase screening adoption. In this Review, we will discuss how novel decentralized screening technologies and computational strategies improve upon traditional methods and how their realized promise could further democratize cervical cancer screening and promote greater disease prevention.
Collapse
Affiliation(s)
| | | | - Alexandra S. Reese
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - David R. Spriggs
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Hyungsoon Im
- Authors to whom all correspondence should be addressed: and
| | | |
Collapse
|
39
|
Sundah NR, Natalia A, Liu Y, Ho NRY, Zhao H, Chen Y, Miow QH, Wang Y, Beh DLL, Chew KL, Chan D, Tambyah PA, Ong CWM, Shao H. Catalytic amplification by transition-state molecular switches for direct and sensitive detection of SARS-CoV-2. SCIENCE ADVANCES 2021; 7:7/12/eabe5940. [PMID: 33731349 PMCID: PMC7968834 DOI: 10.1126/sciadv.abe5940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Despite the importance of nucleic acid testing in managing the COVID-19 pandemic, current detection approaches remain limited due to their high complexity and extensive processing. Here, we describe a molecular nanotechnology that enables direct and sensitive detection of viral RNA targets in native clinical samples. The technology, termed catalytic amplification by transition-state molecular switch (CATCH), leverages DNA-enzyme hybrid complexes to form a molecular switch. By ratiometric tuning of its constituents, the multicomponent molecular switch is prepared in a hyperresponsive state-the transition state-that can be readily activated upon the binding of sparse RNA targets to turn on substantial enzymatic activity. CATCH thus achieves superior performance (~8 RNA copies/μl), direct fluorescence detection that bypasses all steps of PCR (<1 hour at room temperature), and versatile implementation (high-throughput 96-well format and portable microfluidic assay). When applied for clinical COVID-19 diagnostics, CATCH demonstrated direct and accurate detection in minimally processed patient swab samples.
Collapse
Affiliation(s)
- Noah R Sundah
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Auginia Natalia
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Yu Liu
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Haitao Zhao
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
| | - Yuan Chen
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Qing Hao Miow
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Wang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darius L L Beh
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Ka Lip Chew
- Department of Laboratory Medicine, National University Hospital, Singapore, Singapore
| | - Douglas Chan
- Department of Laboratory Medicine, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Paul A Tambyah
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Catherine W M Ong
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Infectious Diseases, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Huilin Shao
- Institute for Health Innovation&Technology, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
40
|
Taeger J, Bischoff S, Hagen R, Rak K. Utilization of Smartphone Depth Mapping Cameras for App-Based Grading of Facial Movement Disorders: Development and Feasibility Study. JMIR Mhealth Uhealth 2021; 9:e19346. [PMID: 33496670 PMCID: PMC7872839 DOI: 10.2196/19346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND For the classification of facial paresis, various systems of description and evaluation in the form of clinician-graded or software-based scoring systems are available. They serve the purpose of scientific and clinical assessment of the spontaneous course of the disease or monitoring therapeutic interventions. Nevertheless, none have been able to achieve universal acceptance in everyday clinical practice. Hence, a quick and precise tool for assessing the functional status of the facial nerve would be desirable. In this context, the possibilities that the TrueDepth camera of recent iPhone models offer have sparked our interest. OBJECTIVE This paper describes the utilization of the iPhone's TrueDepth camera via a specially developed app prototype for quick, objective, and reproducible quantification of facial asymmetries. METHODS After conceptual and user interface design, a native app prototype for iOS was programmed that accesses and processes the data of the TrueDepth camera. Using a special algorithm, a new index for the grading of unilateral facial paresis ranging from 0% to 100% was developed. The algorithm was adapted to the well-established Stennert index by weighting the individual facial regions based on functional and cosmetic aspects. Test measurements with healthy subjects using the app were performed in order to prove the reliability of the system. RESULTS After the development process, the app prototype had no runtime or buildtime errors and also worked under suboptimal conditions such as different measurement angles, so it met our criteria for a safe and reliable app. The newly defined index expresses the result of the measurements as a generally understandable percentage value for each half of the face. The measurements that correctly rated the facial expressions of healthy individuals as symmetrical in all cases were reproducible and showed no statistically significant intertest variability. CONCLUSIONS Based on the experience with the app prototype assessing healthy subjects, the use of the TrueDepth camera should have considerable potential for app-based grading of facial movement disorders. The app and its algorithm, which is based on theoretical considerations, should be evaluated in a prospective clinical study and correlated with common facial scores.
Collapse
Affiliation(s)
- Johannes Taeger
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Stefanie Bischoff
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Kristen Rak
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Pan MM, Wang YF, Wang L, Yu X, Xu L. Recent advances in visual detection for cancer biomarkers and infectious pathogens. J Mater Chem B 2021; 9:35-52. [PMID: 33225338 DOI: 10.1039/d0tb01883j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is an urgency to detect infectious pathogens or cancer biomarkers using rapid, simple, convenient and cost-effective methods in complex biological samples. Many existing approaches (traditional virus culture, ELISA or PCR) for the pathogen and biomarker assays face several challenges in the clinical applications that require lengthy time, sophisticated sample pre-treatment and expensive instruments. Due to the simple and rapid detection manner as well as no requirement of expensive equipment, many visual detection methods have been considered to resolve the aforementioned problems. Meanwhile, various new materials and colorimetric/fluorescent methods have been tried to construct new biosensors for infectious pathogens and biomarkers. However, the recent progress of these aspects is rarely reviewed, especially in terms of integration of new materials, microdevice and detection mechanism into the visual detection systems. Herein, we provide a broad field of view to discuss the recent progress in the visual detection of infectious pathogens and cancer biomarkers along with the detection mechanism, new materials, novel detection methods, special targets as well as multi-functional microdevices and systems. The novel visual approaches for the infectious pathogens and biomarkers, such as bioluminescence resonance energy transfer (BRET), metal-induced metallization and clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors, are discussed. Additionally, recent advancements in visual assays utilizing various new materials for proteins, nucleic acids, viruses, exosomes and small molecules are comprehensively reviewed. Future perspectives on the visual sensing systems for infectious pathogens and cancers are also proposed.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | |
Collapse
|
42
|
Rajendran VK, Bakthavathsalam P, Bergquist PL, Sunna A. Smartphone technology facilitates point-of-care nucleic acid diagnosis: a beginner's guide. Crit Rev Clin Lab Sci 2020; 58:77-100. [PMID: 32609551 DOI: 10.1080/10408363.2020.1781779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reliable detection of nucleic acids at low concentrations in clinical samples like blood, urine and saliva, and in food can be achieved by nucleic acid amplification methods. Several portable and hand-held devices have been developed to translate these laboratory-based methods to point-of-care (POC) settings. POC diagnostic devices could potentially play an important role in environmental monitoring, health, and food safety. Use of a smartphone for nucleic acid testing has shown promising progress in endpoint as well as real-time analysis of various disease conditions. The emergence of smartphone-based POC devices together with paper-based sensors, microfluidic chips and digital droplet assays are used currently in many situations to provide quantitative detection of nucleic acid targets. State-of-the-art portable devices are commercially available and rapidly emerging smartphone-based POC devices that allow the performance of laboratory-quality colorimetric, fluorescent and electrochemical detection are described in this review. We present a comprehensive review of smartphone-based POC sensing applications, specifically on microbial diagnostics, assess their performance and propose recommendations for the future.
Collapse
Affiliation(s)
| | - Padmavathy Bakthavathsalam
- School of Chemistry and Australian Centre for Nanomedicine, University of New South Wales, Sydney, Australia
| | - Peter L Bergquist
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Department of Molecular Medicine & Pathology, University of Auckland, Auckland, New Zealand.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| | - Anwar Sunna
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.,Biomolecular Discovery Research Centre, Macquarie University, Sydney, Australia
| |
Collapse
|
43
|
Lim CZJ, Natalia A, Sundah NR, Shao H. Biomarker Organization in Circulating Extracellular Vesicles: New Applications in Detecting Neurodegenerative Diseases. ACTA ACUST UNITED AC 2020; 4:e1900309. [PMID: 32597034 DOI: 10.1002/adbi.201900309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are heterogeneous disorders characterized by a progressive loss of function and/or death of nerve cells, leading to severe cognitive and functional decline. Due to the complex pathology, early detection and intervention are critical to the development of successful treatments; however, current diagnostic approaches are limited to subjective, late-stage clinical findings. Extracellular vesicles (EVs) have recently emerged as a promising circulating biomarker for neurodegenerative diseases. Actively released by diverse cells, EVs are nanoscale membrane vesicles. They abound in blood, readily cross the blood-brain barrier, and carry diverse molecular cargoes in different organizational states: these molecular cargoes are inherited from the parent cells or bound to the EV membrane through surface associations. Specifically, EVs have been found to be associated with several important pathogenic proteins of neurodegenerative diseases, and their involvement could alter disease progression. This article provides an overview of EVs as circulating biomarkers of neurodegenerative diseases and introduces new technological advances to characterize the biophysical properties of EV-associated biomarkers for accurate, blood-based detection of neurodegenerative diseases.
Collapse
Affiliation(s)
- Carine Z J Lim
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Auginia Natalia
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Noah R Sundah
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore
| | - Huilin Shao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117583, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, 117599, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore.,Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| |
Collapse
|
44
|
Luo Z, Ang MJY, Chan SY, Yi Z, Goh YY, Yan S, Tao J, Liu K, Li X, Zhang H, Huang W, Liu X. Combating the Coronavirus Pandemic: Early Detection, Medical Treatment, and a Concerted Effort by the Global Community. RESEARCH (WASHINGTON, D.C.) 2020; 2020:6925296. [PMID: 32607499 PMCID: PMC7315394 DOI: 10.34133/2020/6925296] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/08/2023]
Abstract
The World Health Organization (WHO) has declared the outbreak of 2019 novel coronavirus, known as 2019-nCoV, a pandemic, as the coronavirus has now infected over 2.6 million people globally and caused more than 185,000 fatalities as of April 23, 2020. Coronavirus disease 2019 (COVID-19) causes a respiratory illness with symptoms such as dry cough, fever, sudden loss of smell, and, in more severe cases, difficulty breathing. To date, there is no specific vaccine or treatment proven effective against this viral disease. Early and accurate diagnosis of COVID-19 is thus critical to curbing its spread and improving health outcomes. Reverse transcription-polymerase chain reaction (RT-PCR) is commonly used to detect the presence of COVID-19. Other techniques, such as recombinase polymerase amplification (RPA), loop-mediated isothermal amplification (LAMP), clustered regularly interspaced short palindromic repeats (CRISPR), and microfluidics, have allowed better disease diagnosis. Here, as part of the effort to expand screening capacity, we review advances and challenges in the rapid detection of COVID-19 by targeting nucleic acids, antigens, or antibodies. We also summarize potential treatments and vaccines against COVID-19 and discuss ongoing clinical trials of interventions to reduce viral progression.
Collapse
Affiliation(s)
- Zichao Luo
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Melgious Jin Yan Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhigao Yi
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Yi Yiing Goh
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456, Singapore
| | - Shuangqian Yan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Jun Tao
- Sports Medical Centre, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaosong Li
- Department of Oncology, The Fourth Medical Center of Chinese People's Liberation Army General Hospital, Beijing 100048, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Chang Chun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350807, China
| |
Collapse
|
45
|
Zhao D, Kong Y, Zhao S, Xing H. Engineering Functional DNA–Protein Conjugates for Biosensing, Biomedical, and Nanoassembly Applications. Top Curr Chem (Cham) 2020; 378:41. [DOI: 10.1007/s41061-020-00305-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 05/05/2020] [Indexed: 12/31/2022]
|
46
|
Li F, Mao X, Li F, Li M, Shen J, Ge Z, Fan C, Zuo X. Ultrafast DNA Sensors with DNA Framework-Bridged Hybridization Reactions. J Am Chem Soc 2020; 142:9975-9981. [PMID: 32369359 DOI: 10.1021/jacs.9b13737] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intracellular DNA-based hybridization reactions generally occur under tension rather than in free states, which are spatiotemporally controlled in physiological conditions. However, how nanomechanical forces affect DNA hybridization efficiencies in in-vitro DNA assays, for example, biosensors or biochips, remains largely elusive. Here, we design DNA framework-based nanomechanical handles that can control the stretching states of DNA molecules. Using a pair of tetrahedral DNA framework (TDF) nanostructured handles, we develop bridge DNA sensors that can capture target DNA with ultrafast speed and high efficiency. We find that the rigid TDF handles bind two ends of a single-stranded DNA (ssDNA) and hold it in a stretched state, with an apparent stretching length comparable to its counterpart of double-stranded DNA (dsDNA) via atomic force microscopy measurement. The DNA stretching effect of ssDNA is then monitored using single-molecule fluorescence energy transfer (FRET), resulting in decreased FRET efficiency in the stretched ssDNA. By controlling the stretching state of ssDNA, we obtained significantly improved hybridization kinetics (within 1 min) and hybridization efficiency (∼98%) under the target concentration of 500 nM. The bridge DNA sensors demonstrated high sensitivity (1 fM), high specificity (single mismatch mutation discrimination), and high selectivity (suitable for the detection in serum and blood) under the target concentration of 10 nM. Controlling the stretching state of ssDNA shows great potential in biosensors, bioimaging, and biochips applications.
Collapse
Affiliation(s)
- Fengqin Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology and Bioimaging Center, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlei Shen
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhilei Ge
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
47
|
Wu X, Zhao H, Natalia A, Lim CZJ, Ho NRY, Ong CAJ, Teo MCC, So JBY, Shao H. Exosome-templated nanoplasmonics for multiparametric molecular profiling. SCIENCE ADVANCES 2020; 6:eaba2556. [PMID: 32494726 PMCID: PMC7202874 DOI: 10.1126/sciadv.aba2556] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/25/2020] [Indexed: 05/04/2023]
Abstract
Exosomes are nanoscale vesicles distinguished by characteristic biophysical and biomolecular features; current analytical approaches, however, remain univariate. Here, we develop a dedicated platform for multiparametric exosome analysis-through simultaneous biophysical and biomolecular evaluation of the same vesicles-directly in clinical biofluids. Termed templated plasmonics for exosomes, the technology leverages in situ growth of gold nanoshells on vesicles to achieve multiselectivity. For biophysical selectivity, the nanoshell formation is templated by and tuned to distinguish exosome dimensions. For biomolecular selectivity, the nanoshell plasmonics locally quenches fluorescent probes only if they are target-bound on the same vesicle. The technology thus achieves multiplexed analysis of diverse exosomal biomarkers (e.g., proteins and microRNAs) but remains unresponsive to nonvesicle biomarkers. When implemented on a microfluidic, smartphone-based sensor, the platform is rapid, sensitive, and wash-free. It not only distinguished biomarker organizational states in native clinical samples but also showed that the exosomal subpopulation could more accurately differentiate patient prognosis.
Collapse
Affiliation(s)
- Xingjie Wu
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Haitao Zhao
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
| | - Auginia Natalia
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Carine Z J Lim
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Nicholas R Y Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Chin-Ann J Ong
- Division of Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Melissa C C Teo
- Division of Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore
| | - Jimmy B Y So
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Division of Surgical Oncology, National University Cancer Institute, Singapore 169610, Singapore
| | - Huilin Shao
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
48
|
Dong T, Mansour H, Hu H, Wang GA, Watson CJF, Yousef M, Matamoros G, Sanchez AL, MacNeil AJ, Wu P, Li F. Colorimetric Polymerase Chain Reaction Enabled by a Fast Light-Activated Substrate Chromogenic Detection Platform. Anal Chem 2020; 92:6456-6461. [PMID: 32259426 DOI: 10.1021/acs.analchem.9b05591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Miniaturization of nucleic acid tests (NATs) into portable, inexpensive detection platforms may aid disease diagnosis in point-of-care (POC) settings. Colorimetric signals are ideal readouts for portable NATs, and it remains of high demand to develop color readouts that are simple, quantitative, and versatile. Thus motivated, we report a fast light-activated substrate chromogenic polymerase chain reaction (FLASH PCR) that uses DNA intercalating dyes (DIDs) to enable colorimetric nucleic acid detection and quantification. The FLASH system is established on our finding that DID-DNA intercalation can promote the rapid photooxidation of chromogenic substrates through light-induced production of singlet oxygen. Using this principle, we have successfully converted DID-based fluorescent PCR assays into colorimetric FLASH PCR. To demonstrate the practical applicability of FLASH PCR to POC diagnosis, we also fabricated two readout platforms, including a portable electronic FLASH reader and a paper-based FLASH strip. Using the FLASH reader, we were able to detect as low as 60 copies of DNA standards, a limit of detection (LOD) comparable with commercial quantitative PCR. The FLASH strip further enables the reader-free detection of PCR amplicons by converting the colorimetric signal into the visual measurement of distance as a readout. Finally, the practical applicability of the FLASH PCR was demonstrated by the detection and/or quantification of nucleic acid markers in diverse clinical and biological samples.
Collapse
Affiliation(s)
- Tianyu Dong
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, P. R. China 610064.,Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Hayam Mansour
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada.,Department of Cell Biology, National Research Center, Cairo Governorate 12622, Egypt
| | - Hao Hu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, P. R. China 610064
| | - Guan A Wang
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Colton J F Watson
- Department of Health Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Michael Yousef
- Department of Health Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Gabriela Matamoros
- Department of Health Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Ana L Sanchez
- Department of Health Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Peng Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, P. R. China 610064
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, P. R. China 610064.,Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
49
|
Xu H, Xia A, Wang D, Zhang Y, Deng S, Lu W, Luo J, Zhong Q, Zhang F, Zhou L, Zhang W, Wang Y, Yang C, Chang K, Fu W, Cui J, Gan M, Luo D, Chen M. An ultraportable and versatile point-of-care DNA testing platform. SCIENCE ADVANCES 2020; 6:eaaz7445. [PMID: 32426466 PMCID: PMC7176422 DOI: 10.1126/sciadv.aaz7445] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/06/2020] [Indexed: 05/07/2023]
Abstract
Point-of-care testing (POCT) has broad applications in resource-limited settings. Here, a POCT platform termed POCKET (point-of-care kit for the entire test) is demonstrated that is ultraportable and versatile for analyzing multiple types of DNA in different fields in a sample-to-answer manner. The POCKET is less than 100 g and smaller than 25 cm in length. The kit consists of an integrated chip (i-chip) and a foldable box (f-box). The i-chip integrates the sample preparation with a previously unidentified, triple signal amplification. The f-box uses a smartphone as a heater, a signal detector, and a result readout. We detected different types of DNA from clinics to environment to food to agriculture. The detection is sensitive (<103 copies/ml), specific (single-base differentiation), speedy (<2 hours), and stable (>10 weeks shelf life). This inexpensive, ultraportable POCKET platform may become a versatile sample-to-answer platform for clinical diagnostics, food safety, agricultural protection, and environmental monitoring.
Collapse
Affiliation(s)
- Huan Xu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Anyue Xia
- First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing 210029, China
| | - Dandan Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yiheng Zhang
- Central Laboratory, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaoli Deng
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Weiping Lu
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Jie Luo
- Department of Clinical Laboratory, The 954th Hospital of Chinese People's Liberation Army, Xizang 856000, China
| | - Qiu Zhong
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Fengling Zhang
- Department of Clinical Laboratory Medicine, Institute of Surgery Research, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Lin Zhou
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wenqing Zhang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yang Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Cheng Yang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kai Chang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Weiling Fu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jinhui Cui
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Mingzhe Gan
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Suzhou 215123, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Dan Luo
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- College of Pharmacy and Laboratory Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Corresponding author. (M.C.); (D.L.); (M.G.); (J.C.)
| |
Collapse
|
50
|
Lim CZJ, Zhang L, Zhang Y, Sundah NR, Shao H. New Sensors for Extracellular Vesicles: Insights on Constituent and Associated Biomarkers. ACS Sens 2020; 5:4-12. [PMID: 31888329 DOI: 10.1021/acssensors.9b02165] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Extracellular vesicles (EVs) are diverse, nanoscale membrane vesicles released by cells into the circulation. As an emerging class of circulating biomarkers, EVs contain a trove of molecular information and play important roles in mediating intercellular communication. These EV molecular cargoes are differentially organized in the vesicles; they could be inherited from the parent cells or bound to the EV membrane through surface interactions. While the inherited constituents could serve as cell surrogate biomarkers, extravesicular association could reflect structural states of the bound molecules, revealing distinct subpopulations with different biophysical and/or biochemical properties. Despite the clinical potential of EVs and their diverse contents, conventional sensing technologies have limited compatibility to reveal nanoscale EV features. Complementary analytical platforms are being developed to address these technical challenges and expand the biomedical applications of EVs, to establish novel correlations and empower new diagnostics. This article provides a perspective on recent developments in sensor technologies to profile the diverse contents-different molecular types, quantities, and organizational states-in extracellular vesicles.
Collapse
Affiliation(s)
- Carine Z. J. Lim
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
| | - Li Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
| | - Yan Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
| | - Noah R. Sundah
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
| | - Huilin Shao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore 117583
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 117599
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
| |
Collapse
|