1
|
Simovic-Lorenz M, Ernst A. Chromothripsis in cancer. Nat Rev Cancer 2025; 25:79-92. [PMID: 39548283 DOI: 10.1038/s41568-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Chromothripsis is a mutational phenomenon in which a single catastrophic event generates extensive rearrangements of one or a few chromosomes. This extreme form of genome instability has been detected in 30-50% of cancers. Studies conducted in the past few years have uncovered insights into how chromothripsis arises and deciphered some of the cellular and molecular consequences of chromosome shattering. This Review discusses the defining features of chromothripsis and describes its prevalence across different cancer types as indicated by the manifestations of chromothripsis detected in human cancer samples. The different mechanistic models of chromothripsis, derived from in vitro systems that enable causal inference through experimental manipulation, are discussed in detail. The contribution of chromothripsis to cancer development, the selective advantages that cancer cells might gain from chromothripsis, the evolutionary trajectories of chromothriptic tumours, and the potential vulnerabilities and therapeutic opportunities presented by chromothriptic cells are also highlighted.
Collapse
Affiliation(s)
- Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center, Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
2
|
Kats I, Simovic-Lorenz M, Schreiber HS, Sant P, Mallm JP, Körber V, Li A, Velmurugan P, Heuer S, Kües L, Devens F, Sill M, Jugold M, Moustafa M, Abdollahi A, Winkler F, Korshunov A, Pfister SM, Stegle O, Ernst A. Spatio-temporal transcriptomics of chromothriptic SHH-medulloblastoma identifies multiple genetic clones that resist treatment and drive relapse. Nat Commun 2024; 15:10370. [PMID: 39609432 PMCID: PMC11604656 DOI: 10.1038/s41467-024-54709-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Paediatric medulloblastomas with chromothripsis are characterised by high genomic instability and are among the tumours with the worst prognosis. However, the molecular makeup and the determinants of the aggressiveness of chromothriptic medulloblastoma are not well understood. Here, we apply spatial transcriptomics to profile a cohort of 13 chromothriptic and non-chromothriptic medulloblastomas from the same molecular subgroup. Our data reveal a higher extent of spatial intra-tumour heterogeneity in chromothriptic medulloblastomas compared to non-chromothripictic tumours, which is associated with increased proliferation and stemness, but lower immune infiltration and differentiation. Spatial mapping of genetic subclones of the same tumour identify a regionally distinct architecture and clone-specific phenotypic features, with distinct degrees of differentiation, proliferation and immune infiltration between clones. We conduct temporal profiling of 11 samples from patient-derived xenografts from a patient with chromothriptic medulloblastoma, covering the transition from the minimal residual disease stage to treatment-resistant regrown tumours. In chromothriptic medulloblastoma, an ecosystem of cells from multiple genetic clones resist treatment and lead to relapse. Finally, we identify tumour microtubes in chromothriptic medulloblastoma, calling for exploration of cell network communication as a putative target.
Collapse
Affiliation(s)
- Ilia Kats
- Division of Computational Genomics and Systems Genetics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Hannah Sophia Schreiber
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Pooja Sant
- Single Cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single Cell Open Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Körber
- MRC Molecular Hematology Unit, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Albert Li
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Pravin Velmurugan
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Sophie Heuer
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurological Clinic, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Luisa Kües
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurological Clinic, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Frauke Devens
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Martin Sill
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility Small Animal Imaging Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahmoud Moustafa
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD), Heidelberg University Hospital (UKHD) and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
- Department of Clinical Pathology, Suez Canal University, Ismailia, Egypt
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Clinical Cooperation Unit Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg Faculty of Medicine (MFHD), Heidelberg University Hospital (UKHD) and Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Germany
| | - Frank Winkler
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Neurological Clinic, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Andrey Korshunov
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neuropathology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Stefan M Pfister
- German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Oliver Stegle
- Division of Computational Genomics and Systems Genetics, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
3
|
Smirnov P, Przybilla MJ, Simovic-Lorenz M, Parra RG, Susak H, Ratnaparkhe M, Wong JK, Körber V, Mallm JP, Philippos G, Sill M, Kolb T, Kumar R, Casiraghi N, Okonechnikov K, Ghasemi DR, Maaß KK, Pajtler KW, Jauch A, Korshunov A, Höfer T, Zapatka M, Pfister SM, Huber W, Stegle O, Ernst A. Multi-omic and single-cell profiling of chromothriptic medulloblastoma reveals genomic and transcriptomic consequences of genome instability. Nat Commun 2024; 15:10183. [PMID: 39580568 PMCID: PMC11585558 DOI: 10.1038/s41467-024-54547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
Chromothripsis is a frequent form of genome instability, whereby a presumably single catastrophic event generates extensive genomic rearrangements of one or multiple chromosome(s). However, little is known about the heterogeneity of chromothripsis across different clones from the same tumour, as well as changes in response to treatment. Here we analyse single-cell genomic and transcriptomic alterations linked with chromothripsis in human p53-deficient medulloblastoma and neural stem cells (n = 9). We reconstruct the order of somatic events, identify early alterations likely linked to chromothripsis and depict the contribution of chromothripsis to malignancy. We characterise subclonal variation of chromothripsis and its effects on extrachromosomal circular DNA, cancer drivers and putatively druggable targets. Furthermore, we highlight the causative role and the fitness consequences of specific rearrangements in neural progenitors.
Collapse
Affiliation(s)
- Petr Smirnov
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Moritz J Przybilla
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
| | - Milena Simovic-Lorenz
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - R Gonzalo Parra
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | - Hana Susak
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manasi Ratnaparkhe
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - John Kl Wong
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Verena Körber
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-cell Open Lab, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - George Philippos
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Kolb
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rithu Kumar
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Nicola Casiraghi
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David R Ghasemi
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kendra Korinna Maaß
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Andrey Korshunov
- Clinical Cooperation Unit Neuropathology, DKFZ, Department of Neuropathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neuro-oncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Oliver Stegle
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany.
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
4
|
Pastorczak A, Urbanska Z, Styka B, Miarka-Walczyk K, Sedek L, Wypyszczak K, Wakulinska A, Nowicka Z, Szczepański T, Stańczak M, Fendler W, Kowalczyk J, Młynarski W, Lejman M. Genetic hallmarks and clinical implications of chromothripsis in childhood T-cell acute lymphoblastic leukemia. Leukemia 2024; 38:2344-2354. [PMID: 39192035 PMCID: PMC11518979 DOI: 10.1038/s41375-024-02370-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024]
Abstract
Chromothripsis (cth) is a form of genomic instability leading to massive de novo structural chromosome rearrangements in a one-time catastrophic event. It can cause cancer-promoting alterations, such as loss of sequences for tumor-suppressor genes, formation of oncogenic fusions, and oncogene amplifications. We investigated the genetic background and clinical significance of cth in childhood T-cell acute lymphoblastic leukemia (T-ALL) patients. For this purpose, whole-genome copy number alterations were analyzed in 173 children with newly diagnosed T-ALL using high-density microarrays. Cth was identified in 10 T-ALL samples (5.78%). In six of them, cth occurred in a constitutional background of Nijmegen breakage syndrome (n = 5) or Li-Fraumeni syndrome (n = 1). Cth generated alterations, including deletions of CDKN2A/B (n = 4) and EZH2 (n = 4), amplifications of CDK6 (n = 2), and NUP214::ABL1 and TFG::GPR128 fusions. Cth-positive leukemias exhibited deletions involving the tumor-suppressor genes RB1 (n = 3), TP53 (n = 1) and MED12 (n = 2). Cth-positive T-ALL patients had a lower probability of 5-year overall survival (OS) [0.56 vs. 0.81; hazard ratio (HR) = 4.14 (1.42-12.02) p = 0.017] as did 5-year event-free survival [0.45 vs. 0.74; HR = 3.91 (1.52-10.08); p = 0.012]. Chromothripsis is an infrequent genomic phenomenon in pediatric T-ALL but is significantly associated with cancer-predisposing syndromes and may associate with inferior prognosis.
Collapse
Affiliation(s)
- Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland.
| | - Zuzanna Urbanska
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Borys Styka
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | | | - Lukasz Sedek
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Kamila Wypyszczak
- Department of Genetic Predisposition to Cancer, Medical University of Lodz, Lodz, Poland
| | - Anna Wakulinska
- Department of Oncology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Marcin Stańczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Jerzy Kowalczyk
- Department of Pediatric Hematology, Oncology and Transplantology, Medical University of Lublin, Lublin, Poland
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Institute of Medical Expertises, Lodz, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
5
|
Ejaz U, Dou Z, Yao PY, Wang Z, Liu X, Yao X. Chromothripsis: an emerging crossroad from aberrant mitosis to therapeutic opportunities. J Mol Cell Biol 2024; 16:mjae016. [PMID: 38710586 PMCID: PMC11487160 DOI: 10.1093/jmcb/mjae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/04/2024] [Indexed: 05/08/2024] Open
Abstract
Chromothripsis, a type of complex chromosomal rearrangement originally known as chromoanagenesis, has been a subject of extensive investigation due to its potential role in various diseases, particularly cancer. Chromothripsis involves the rapid acquisition of tens to hundreds of structural rearrangements within a short period, leading to complex alterations in one or a few chromosomes. This phenomenon is triggered by chromosome mis-segregation during mitosis. Errors in accurate chromosome segregation lead to formation of aberrant structural entities such as micronuclei or chromatin bridges. The association between chromothripsis and cancer has attracted significant interest, with potential implications for tumorigenesis and disease prognosis. This review aims to explore the intricate mechanisms and consequences of chromothripsis, with a specific focus on its association with mitotic perturbations. Herein, we discuss a comprehensive analysis of crucial molecular entities and pathways, exploring the intricate roles of the CIP2A-TOPBP1 complex, micronuclei formation, chromatin bridge processing, DNA damage repair, and mitotic checkpoints. Moreover, the review will highlight recent advancements in identifying potential therapeutic targets and the underlying molecular mechanisms associated with chromothripsis, paving the way for future therapeutic interventions in various diseases.
Collapse
Affiliation(s)
- Umer Ejaz
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Phil Y Yao
- University of California San Diego School of Medicine, San Diego, CA 92103, USA
| | - Zhikai Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
- Anhui Key Laboratory for Chemical Biology, Hefei National Science Center for Inter-disciplinary Sciences, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China School of Life Sciences, Hefei 230027, China
| |
Collapse
|
6
|
Sergeeva SV, Loshchenova PS, Oshchepkov DY, Orishchenko KE. Crosstalk between BER and NHEJ in XRCC4-Deficient Cells Depending on hTERT Overexpression. Int J Mol Sci 2024; 25:10405. [PMID: 39408734 PMCID: PMC11476898 DOI: 10.3390/ijms251910405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Targeting DNA repair pathways is an important strategy in anticancer therapy. However, the unrevealed interactions between different DNA repair systems may interfere with the desired therapeutic effect. Among DNA repair systems, BER and NHEJ protect genome integrity through the entire cell cycle. BER is involved in the repair of DNA base lesions and DNA single-strand breaks (SSBs), while NHEJ is responsible for the repair of DNA double-strand breaks (DSBs). Previously, we showed that BER deficiency leads to downregulation of NHEJ gene expression. Here, we studied BER's response to NHEJ deficiency induced by knockdown of NHEJ scaffold protein XRCC4 and compared the knockdown effects in normal (TIG-1) and hTERT-modified cells (NBE1). We investigated the expression of the XRCC1, LIG3, and APE1 genes of BER and LIG4; the Ku70/Ku80 genes of NHEJ at the mRNA and protein levels; as well as p53, Sp1 and PARP1. We found that, in both cell lines, XRCC4 knockdown leads to a decrease in the mRNA levels of both BER and NHEJ genes, though the effect on protein level is not uniform. XRCC4 knockdown caused an increase in p53 and Sp1 proteins, but caused G1/S delay only in normal cells. Despite the increased p53 protein, p21 did not significantly increase in NBE1 cells with overexpressed hTERT, and this correlated with the absence of G1/S delay in these cells. The data highlight the regulatory function of the XRCC4 scaffold protein and imply its connection to a transcriptional regulatory network or mRNA metabolism.
Collapse
Affiliation(s)
- Svetlana V. Sergeeva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Polina S. Loshchenova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Dmitry Yu. Oshchepkov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, Russian Academy of Sciences, Lavrentieva 10, Novosibirsk 630090, Russia; (P.S.L.); (K.E.O.)
- Department of Genetic Technologies, Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
7
|
Liu L, Gong D, Sun H, Feng F, Xu J, Sun X, Gong L, Yu Z, Fang T, Xu Y, Lyu R, Wang T, Wang W, Tian W, Qiu L, An G, Hao M. DNp73 enhances tumor progression and immune evasion in multiple myeloma by targeting the MYC and MYCN pathways. Front Immunol 2024; 15:1470328. [PMID: 39380995 PMCID: PMC11459316 DOI: 10.3389/fimmu.2024.1470328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Multiple myeloma (MM) is an incurable hematological malignancy with high chromosome instability and heavy dependence on the immunosuppressive bone marrow microenvironment. P53 mutations are adverse prognostic factors in MM; however, clinically, some patients without P53 mutations also exhibit aggressive disease progression. DNp73, an inhibitor of TP53 tumor suppressor family members, drives drug resistance and cancer progression in several solid malignancies. Nevertheless, the biological functions of DNp73 and the molecular mechanisms in myelomagenesis remain unclear. Methods The effects of DNp73 on proliferation and drug sensitivity were assessed using flow cytometry and xenograft models. To investigate the mechanisms of drug resistance, RNA-seq and ChIP-seq analyses were performed in MM cell lines, with validation by Western blot and RT-qPCR. Immunofluorescence and transwell assays were used to assess DNA damage and cell invasion in MM cells. Additionally, in vitro phagocytosis assays were conducted to confirm the role of DNp73 in immune evasion. Results Our study found that activation of NF-κB-p65 in multiple myeloma cells with different p53 mutation statuses upregulates DNp73 expression at the transcriptional level. Forced expression of DNp73 promoted aggressive proliferation and multidrug resistance in MM cells. Bulk RNA-seq analysis was conducted to assess the levels of MYCN, MYC, and CDK7. A ChIP-qPCR assay was used to reveal that DNp73 acts as a transcription factor regulating MYCN gene expression. Bulk RNA-seq analysis demonstrated increased levels of MYCN, MYC, and CDK7 with forced DNp73 expression in MM cells. A ChIP-qPCR assay revealed that DNp73 upregulates MYCN gene expression as a transcription factor. Additionally, DNp73 promoted immune evasion of MM cells by upregulating MYC target genes CD47 and PD-L1. Blockade of the CD47/SIRPα and PD-1/PD-L1 signaling pathways by the SIRPα-Fc fusion protein IMM01 and monoclonal antibody atezolizumab significantly restored the anti-MM activity of macrophages and T cells in the microenvironment, respectively. Discussion In summary, our study demonstrated for the first time that the p53 family member DNp73 remarkably induces proliferation, drug resistance, and immune escape of myeloma cells by directly targeting MYCN and regulating the MYC pathway. The oncogenic function of DNp73 is independent of p53 status in MM cells. These data contribute to a better understanding of the function of TP53 and its family members in tumorigenesis. Moreover, our study clarified that DNp73 overexpression not only promotes aggressive growth of tumor cells but, more importantly, promotes immune escape of MM cells through upregulation of immune checkpoints. DNp73 could serve as a biomarker for immunotherapy targeting PD-L1 and CD47 blockade in MM patients.
Collapse
Affiliation(s)
- Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Dasen Gong
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Tianjin, China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fangshuo Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Jie Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiyue Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Lixin Gong
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Rui Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Tingyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wentian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Wenzhi Tian
- ImmuneOnco Biopharmaceuticals (Shanghai) Inc., Shanghai, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
- Gobroad Healthcare Group, Beijing, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
8
|
Hu Q, Espejo Valle-Inclán J, Dahiya R, Guyer A, Mazzagatti A, Maurais EG, Engel JL, Lu H, Davis AJ, Cortés-Ciriano I, Ly P. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. Nat Commun 2024; 15:5611. [PMID: 38965240 PMCID: PMC11224358 DOI: 10.1038/s41467-024-49985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jose Espejo Valle-Inclán
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth G Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Justin L Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huiming Lu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
9
|
Zhang M, He D, Zhang Y, Cheng K, Li H, Zhou Y, Long Q, Liu R, Liu J. Chromothripsis is a novel biomarker for prognosis and differentiation diagnosis of pancreatic neuroendocrine neoplasms. MedComm (Beijing) 2024; 5:e623. [PMID: 38988495 PMCID: PMC11234462 DOI: 10.1002/mco2.623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/22/2024] [Accepted: 05/20/2024] [Indexed: 07/12/2024] Open
Abstract
This study aimed to identify the role of chromothripsis as a novel biomarker in the prognosis and differentiation diagnosis of pancreatic neuroendocrine neoplasms (pNENs). We conducted next-generation gene sequencing in a cohort of 30 patients with high-grade (G3) pNENs. As a reference, a similar analysis was also performed on 25 patients with low-grade (G1/G2) pancreatic neuroendocrine tumors (pNETs). Chromothripsis and its relationship with clinicopathological features and prognosis were investigated. The results showed that DNA damage response and repair gene alteration and TP53 mutation were found in 29 and 11 patients, respectively. A total of 14 out of 55 patients had chromothripsis involving different chromosomes. Chromothripsis had a close relationship with TP53 alteration and higher grade. In the entire cohort, chromothripsis was associated with a higher risk of distant metastasis; both chromothripsis and metastasis (ENETS Stage IV) suggested a significantly shorter overall survival (OS). Importantly, in the high-grade pNENs group, chromothripsis was the only independent prognostic indicator significantly associated with a shorter OS, other than TP53 alteration or pathological pancreatic neuroendocrine carcinomas (pNECs) diagnosis. Chromothripsis can guide worse prognosis in pNENs, and help differentiate pNECs from high-grade (G3) pNETs.
Collapse
Affiliation(s)
- Ming‐Yi Zhang
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Du He
- Department of Pathology, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yi Zhang
- Center of Life SciencesPeking UniversityBeijingChina
| | - Ke Cheng
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Hong‐Shuai Li
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Yu‐Wen Zhou
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
| | - Qiong‐Xian Long
- Department of Pathology, Nan Chong Central Hospitalthe Second Affiliated Hospital of North Sichuan Medical CollegeNanchongSichuanChina
| | - Rui‐Zhi Liu
- School of Medical and Life SciencesChengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Ji‐Yan Liu
- Department of Biotherapy, West China HospitalSichuan UniversityChengduSichuanChina
- Sichuan Clinical Research Center of BiotherapyChengduSichuanChina
- Department of OncologyThe First People's Hospital of ZiyangZiyangSichuanChina
| |
Collapse
|
10
|
Wu H, Liu S, Wu D, Zhou H, Wu G. Tumor extrachromosomal DNA: Biogenesis and recent advances in the field. Biomed Pharmacother 2024; 174:116588. [PMID: 38613997 DOI: 10.1016/j.biopha.2024.116588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Extrachromosomal DNA (ecDNA) is a self-replicating circular DNA originating from the chromosomal genome and exists outside the chromosome. It contains specific gene sequences and non-coding regions that regulate transcription. Recent studies have demonstrated that ecDNA is present in various malignant tumors. Malignant tumor development and poor prognosis may depend on ecDNA's distinctive ring structure, which assists in amplifying oncogenes. During cell division, an uneven distribution of ecDNA significantly enhances tumor cells' heterogeneity, allowing tumor cells to adapt to changes in the tumor microenvironment and making them more resistant to treatments. The application of ecDNA as a cancer biomarker and therapeutic target holds great potential. This article examines the latest advancements in this area and discusses the potential clinical applications of ecDNA.
Collapse
Affiliation(s)
- Haomin Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Shiqi Liu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Di Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Haonan Zhou
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China
| | - Gang Wu
- Department of General Surgery, the First Hospital of China Medical University, 155# Nanjing Street, Shenyang 110001, China.
| |
Collapse
|
11
|
Krupina K, Goginashvili A, Cleveland DW. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements. Nat Rev Genet 2024; 25:196-210. [PMID: 37938738 PMCID: PMC10922386 DOI: 10.1038/s41576-023-00663-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Complex chromosome rearrangements, known as chromoanagenesis, are widespread in cancer. Based on large-scale DNA sequencing of human tumours, the most frequent type of complex chromosome rearrangement is chromothripsis, a massive, localized and clustered rearrangement of one (or a few) chromosomes seemingly acquired in a single event. Chromothripsis can be initiated by mitotic errors that produce a micronucleus encapsulating a single chromosome or chromosomal fragment. Rupture of the unstable micronuclear envelope exposes its chromatin to cytosolic nucleases and induces chromothriptic shattering. Found in up to half of tumours included in pan-cancer genomic analyses, chromothriptic rearrangements can contribute to tumorigenesis through inactivation of tumour suppressor genes, activation of proto-oncogenes, or gene amplification through the production of self-propagating extrachromosomal circular DNAs encoding oncogenes or genes conferring anticancer drug resistance. Here, we discuss what has been learned about the mechanisms that enable these complex genomic rearrangements and their consequences in cancer.
Collapse
Affiliation(s)
- Ksenia Krupina
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Alexander Goginashvili
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Don W Cleveland
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Hu Q, Valle-Inclan JE, Dahiya R, Guyer A, Mazzagatti A, Maurais EG, Engel JL, Cortés-Ciriano I, Ly P. Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552800. [PMID: 37609143 PMCID: PMC10441393 DOI: 10.1101/2023.08.10.552800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Errors in mitosis can generate micronuclei that entrap mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through a process termed chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates a spectrum of simple and complex genomic rearrangements that are associated with human cancers and disorders. How specific DSB repair pathways recognize and process these lesions remains poorly understood. Here we used CRISPR/Cas9 to systematically inactivate distinct DSB processing or repair pathways and interrogated the rearrangement landscape of fragmented chromosomes from micronuclei. Deletion of canonical non-homologous end joining (NHEJ) components, including DNA-PKcs, LIG4, and XLF, substantially reduced the formation of complex rearrangements and shifted the rearrangement landscape toward simple alterations without the characteristic patterns of cancer-associated chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within micronuclei bodies (MN bodies) and undergo successful ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments were rarely engaged by polymerase theta-mediated alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics and persistent 53BP1-labeled MN bodies in the interphase nucleus. Prolonged DNA damage signaling from unrepaired fragments ultimately triggered cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements following chromothripsis from mitotic errors.
Collapse
Affiliation(s)
- Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Jose Espejo Valle-Inclan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Alison Guyer
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Present address: Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Alice Mazzagatti
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Elizabeth G. Maurais
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Justin L. Engel
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Isidro Cortés-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Cell Biology, Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
13
|
Yue X, Liu T, Wang X, Wu W, Wen G, Yi Y, Wu J, Wang Z, Zhan W, Wu R, Meng Y, Cao Z, Le L, Qiu W, Zhang X, Li Z, Chen Y, Wan G, Bu X, Peng Z, Liu RY. Pharmacological inhibition of BAP1 recruits HERC2 to competitively dissociate BRCA1-BARD1, suppresses DNA repair and sensitizes CRC to radiotherapy. Acta Pharm Sin B 2023; 13:3382-3399. [PMID: 37655321 PMCID: PMC10466008 DOI: 10.1016/j.apsb.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/10/2023] [Accepted: 04/03/2023] [Indexed: 09/02/2023] Open
Abstract
Radiotherapy is widely used in the management of advanced colorectal cancer (CRC). However, the clinical efficacy is limited by the safe irradiated dose. Sensitizing tumor cells to radiotherapy via interrupting DNA repair is a promising approach to conquering the limitation. The BRCA1-BARD1 complex has been demonstrated to play a critical role in homologous recombination (HR) DSB repair, and its functions may be affected by HERC2 or BAP1. Accumulated evidence illustrates that the ubiquitination-deubiquitination balance is involved in these processes; however, the precise mechanism for the cross-talk among these proteins in HR repair following radiation hasn't been defined. Through activity-based profiling, we identified PT33 as an active entity for HR repair suppression. Subsequently, we revealed that BAP1 serves as a novel molecular target of PT33 via a CRISPR-based deubiquitinase screen. Mechanistically, pharmacological covalent inhibition of BAP1 with PT33 recruits HERC2 to compete with BARD1 for BRCA1 interaction, interrupting HR repair. Consequently, PT33 treatment can substantially enhance the sensitivity of CRC cells to radiotherapy in vitro and in vivo. Overall, these findings provide a mechanistic basis for PT33-induced HR suppression and may guide an effective strategy to improve therapeutic gain.
Collapse
Affiliation(s)
- Xin Yue
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Tingyu Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xuecen Wang
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weijian Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Gesi Wen
- Department of Clinical Research, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Yang Yi
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jiaxin Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Ziyang Wang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Weixiang Zhan
- Department of Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Ruirui Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuan Meng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhirui Cao
- Department of Traditional Chinese Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Liyuan Le
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wenyan Qiu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoyue Zhang
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhenyu Li
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yong Chen
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Guohui Wan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xianzhang Bu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zhenwei Peng
- Department of Radiation Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ran-yi Liu
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
14
|
Suspitsin EN, Imyanitov EN. Hereditary Conditions Associated with Elevated Cancer Risk in Childhood. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:880-891. [PMID: 37751861 DOI: 10.1134/s0006297923070039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 09/28/2023]
Abstract
Received January, 31, 2023 Revised March, 16, 2023 Accepted March, 18, 2023 Widespread use of the next-generation sequencing (NGS) technologies revealed that a significant percentage of tumors in children develop as a part of monogenic hereditary diseases. Predisposition to the development of pediatric neoplasms is characteristic of a wide range of conditions including hereditary tumor syndromes, primary immunodeficiencies, RASopathies, and phakomatoses. The mechanisms of tumor molecular pathogenesis are diverse and include disturbances in signaling cascades, defects in DNA repair, chromatin remodeling, and microRNA processing. Timely diagnosis of tumor-associated syndromes is important for the proper choice of cancer treatment, genetic counseling of families, and development of the surveillance programs. The review describes the spectrum of neoplasms characteristic of the most common syndromes and molecular pathogenesis of these diseases.
Collapse
Affiliation(s)
- Evgeny N Suspitsin
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Saint Petersburg, 197758, Russia.
- St.-Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia
| | - Evgeny N Imyanitov
- N. N. Petrov National Medical Research Center of Oncology, Ministry of Health of the Russian Federation, Saint Petersburg, 197758, Russia
- St.-Petersburg State Pediatric Medical University, Saint Petersburg, 194100, Russia
| |
Collapse
|
15
|
Arshadi A, Tolomeo D, Venuto S, Storlazzi CT. Advancements in Focal Amplification Detection in Tumor/Liquid Biopsies and Emerging Clinical Applications. Genes (Basel) 2023; 14:1304. [PMID: 37372484 PMCID: PMC10298061 DOI: 10.3390/genes14061304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Focal amplifications (FAs) are crucial in cancer research due to their significant diagnostic, prognostic, and therapeutic implications. FAs manifest in various forms, such as episomes, double minute chromosomes, and homogeneously staining regions, arising through different mechanisms and mainly contributing to cancer cell heterogeneity, the leading cause of drug resistance in therapy. Numerous wet-lab, mainly FISH, PCR-based assays, next-generation sequencing, and bioinformatics approaches have been set up to detect FAs, unravel the internal structure of amplicons, assess their chromatin compaction status, and investigate the transcriptional landscape associated with their occurrence in cancer cells. Most of them are tailored for tumor samples, even at the single-cell level. Conversely, very limited approaches have been set up to detect FAs in liquid biopsies. This evidence suggests the need to improve these non-invasive investigations for early tumor detection, monitoring disease progression, and evaluating treatment response. Despite the potential therapeutic implications of FAs, such as, for example, the use of HER2-specific compounds for patients with ERBB2 amplification, challenges remain, including developing selective and effective FA-targeting agents and understanding the molecular mechanisms underlying FA maintenance and replication. This review details a state-of-the-art of FA investigation, with a particular focus on liquid biopsies and single-cell approaches in tumor samples, emphasizing their potential to revolutionize the future diagnosis, prognosis, and treatment of cancer patients.
Collapse
Affiliation(s)
| | | | | | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy; (A.A.); (D.T.); (S.V.)
| |
Collapse
|
16
|
2-Hydroxy-3-methylanthraquinone inhibits homologous recombination repair in osteosarcoma through the MYC-CHK1-RAD51 axis. Mol Med 2023; 29:15. [PMID: 36717782 PMCID: PMC9887913 DOI: 10.1186/s10020-023-00611-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Osteosarcoma is a malignant bone tumor that usually affects adolescents aged 15-19 y. The DNA damage response (DDR) is significantly enhanced in osteosarcoma, impairing the effect of systemic chemotherapy. Targeting the DDR process was considered a feasible strategy benefitting osteosarcoma patients. However, the clinical application of DDR inhibitors is not impressive because of their side effects. Chinese herbal medicines with high anti-tumor effects and low toxicity in the human body have gradually gained attention. 2-Hydroxy-3-methylanthraquinone (HMA), a Chinese medicine monomer found in the extract of Oldenlandia diffusa, exerts significant inhibitory effects on various tumors. However, its anti-osteosarcoma effects and defined molecular mechanisms have not been reported. METHODS After HMA treatment, the proliferation and metastasis capacity of osteosarcoma cells was detected by CCK-8, colony formation, transwell assays and Annexin V-fluorescein isothiocyanate/propidium iodide staining. RNA-sequence, plasmid infection, RNA interference, Western blotting and immunofluorescence assay were used to investigate the molecular mechanism and effects of HMA inhibiting osteosarcoma. Rescue assay and CHIP assay was used to further verified the relationship between MYC, CHK1 and RAD51. RESULTS HMA regulate MYC to inhibit osteosarcoma proliferation and DNA damage repair through PI3K/AKT signaling pathway. The results of RNA-seq, IHC, Western boltting etc. showed relationship between MYC, CHK1 and RAD51. Rescue assay and CHIP assay further verified HMA can impair homologous recombination repair through the MYC-CHK1-RAD51 pathway. CONCLUSION HMA significantly inhibits osteosarcoma proliferation and homologous recombination repair through the MYC-CHK1-RAD51 pathway, which is mediated by the PI3K-AKT signaling pathway. This study investigated the exact mechanism of the anti-osteosarcoma effect of HMA and provided a potential feasible strategy for the clinical treatment of human osteosarcoma.
Collapse
|
17
|
Zhang Q, Yang L, Xiao H, Dang Z, Kuang X, Xiong Y, Zhu J, Huang Z, Li M. Pan-cancer analysis of chromothripsis-related gene expression patterns indicates an association with tumor immune and therapeutic agent responses. Front Oncol 2023; 13:1074955. [PMID: 36761982 PMCID: PMC9902954 DOI: 10.3389/fonc.2023.1074955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Chromothripsis is a catastrophic event involving numerous chromosomal rearrangements in confined genomic regions of one or a few chromosomes, causing complex effects on cells via the extensive structural variation. The development of whole-genome sequencing (WGS) has promoted great progress in exploring the mechanism and effect of chromothripsis. However, the gene expression characteristics of tumors undergone chromothripsis have not been well characterized. In this study, we found that the transcriptional profile of five tumor types experiencing chromothripsis is associated with an immune evasion phenotype. A gene set variation analysis (GSVA) was used to develop a CHP score, which is based on differentially expressed gene sets in the TCGA database, revealing that chromothripsis status in multiple cancers is consistent with an abnormal tumor immune microenvironment and immune cell cytotoxicity. Evaluation using four immunotherapy datasets uncovered the ability of the CHP score to predict immunotherapy response in diverse tumor types. In addition, the CHP score was found to be related to resistance against a variety of anti-tumor drugs, including anti-angiogenesis inhibitors and platinum genotoxins, while EGFR pathway inhibitors were found to possibly be sensitizers for high CHP score tumors. Univariate COX regression analysis indicated that the CHP score can be prognostic for several types of tumors. Our study has defined gene expression characteristics of tumors with chromothripsis, supporting the controversial link between chromothripsis and tumor immunity. We also describe the potential value of the CHP score in predicting the efficacy of immunotherapy and other treatments, elevating chromothripsis as a tool in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhou Huang
- *Correspondence: Zhou Huang, ; Mengxia Li,
| | - Mengxia Li
- *Correspondence: Zhou Huang, ; Mengxia Li,
| |
Collapse
|
18
|
de Groot D, Spanjaard A, Hogenbirk MA, Jacobs H. Chromosomal Rearrangements and Chromothripsis: The Alternative End Generation Model. Int J Mol Sci 2023; 24:ijms24010794. [PMID: 36614236 PMCID: PMC9821053 DOI: 10.3390/ijms24010794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
Chromothripsis defines a genetic phenomenon where up to hundreds of clustered chromosomal rearrangements can arise in a single catastrophic event. The phenomenon is associated with cancer and congenital diseases. Most current models on the origin of chromothripsis suggest that prior to chromatin reshuffling numerous DNA double-strand breaks (DSBs) have to exist, i.e., chromosomal shattering precedes rearrangements. However, the preference of a DNA end to rearrange in a proximal accessible region led us to propose chromothripsis as the reaction product of successive chromatin rearrangements. We previously coined this process Alternative End Generation (AEG), where a single DSB with a repair-blocking end initiates a domino effect of rearrangements. Accordingly, chromothripsis is the end product of this domino reaction taking place in a single catastrophic event.
Collapse
Affiliation(s)
- Daniel de Groot
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Aldo Spanjaard
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Marc A. Hogenbirk
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Agendia NV, Radarweg 60, 1043 NT Amsterdam, The Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Correspondence: ; Tel.: +31-20-512-2065
| |
Collapse
|
19
|
Matsuno Y, Kusumoto-Matsuo R, Manaka Y, Asai H, Yoshioka KI. Echoed induction of nucleotide variants and chromosomal structural variants in cancer cells. Sci Rep 2022; 12:20964. [PMID: 36470958 PMCID: PMC9723101 DOI: 10.1038/s41598-022-25479-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022] Open
Abstract
Generally, the number of single-nucleotide variants (SNVs) in somatic cells increases with age, which is expected for replication errors. The number of SNVs in cancer cells, however, is often much higher than that in somatic cells, raising the question of whether cancer cells possess SNV induction pathways. The present study shows that the number of SNVs in cancer cells correlates with the number of chromosomal structural variants (SVs). While Kataegis, localized hypermutations typically arising near SV sites, revealed multiple SNVs within 1 kb, SV-associated SNVs were generally observed within 0.1-1 Mb of SV sites, irrespective of Kataegis status. SNVs enriched within 1 Mb of SV regions were associated with deficiency of DNA damage repair, including HR deficiency-associated single base substitution 3 (SBS3) and exogenous damage-associated SBS7 and SBS36 signatures. We also observed a similar correlation between SVs and SNVs in cells that had undergone clonal evolution in association with genomic instability, implying an association between genomic instability and SV-associated induction of SNVs.
Collapse
Affiliation(s)
- Yusuke Matsuno
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Rika Kusumoto-Matsuo
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yuya Manaka
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Haruka Asai
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Ken-ichi Yoshioka
- grid.272242.30000 0001 2168 5385Laboratory of Genome Stability Maintenance, National Cancer Center Research Institute, Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
20
|
Urbańska Z, Lejman M, Taha J, Madzio J, Ostrowska K, Miarka-Walczyk K, Wypyszczak K, Styka B, Jakubowska J, Sędek Ł, Szczepański T, Stańczak M, Fendler W, Młynarski W, Pastorczak A. The kinetics of blast clearance are associated with copy number alterations in childhood B-cell acute lymphoblastic leukemia. Neoplasia 2022; 35:100840. [PMID: 36288679 PMCID: PMC9593738 DOI: 10.1016/j.neo.2022.100840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
We analyzed the pattern of whole-genome copy number alterations (CNAs) and their association with the kinetics of blast clearance during the induction treatment among 195 pediatric patients with B-cell precursor acute lymphoblastic leukemia (BCP-ALL) who displayed intermediate or high levels of minimal residual disease (MRD). Using unsupervised hierarchical clustering of CNAs > 5 Mbp, we dissected three clusters of leukemic samples with distinct kinetics of blast clearance [A - early slow responders (n=105), B - patients with persistent leukemia (n=24), C - fast responders with the low but detectable disease at the end of induction (n=66)] that corresponded with the patients' clinical features, the microdeletion profile,the presence of gene fusions and patients survival. Low incidence of large CNAs and chromosomal numerical aberrations occurred in cluster A which included ALL samples showing recurrent microdeletions within the genes encoding transcription factors (i.e., IKZF1, PAX5, ETV6, and ERG), DNA repair genes (XRCC3 and TOX), or harboring chromothriptic pattern of CNAs. Low hyperdiploid karyotype with trisomy 8 or hypodiploidy was predominantly observed in cluster B. Whereas cluster C included almost exclusively high-hyperdiploid ALL samples with concomitant mutations in RAS pathway genes. The pattern of CNAs influences the kinetics of leukemic cell clearance and selected aberrations affecting DNA repair genes may contribute to BCP-ALL chemoresistance.
Collapse
Affiliation(s)
- Zuzanna Urbańska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Joanna Taha
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Kinga Ostrowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Kamila Wypyszczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Borys Styka
- Laboratory of Genetic Diagnostics, Medical University of Lublin, Lublin, Poland
| | - Justyna Jakubowska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Łukasz Sędek
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Tomasz Szczepański
- Department of Pediatric Hematology and Oncology, Medical University of Silesia, Zabrze, Poland
| | - Marcin Stańczak
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland; Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Wojciech Młynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Agata Pastorczak
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
21
|
Kim J, Huang AY, Johnson SL, Lai J, Isacco L, Jeffries AM, Miller MB, Lodato MA, Walsh CA, Lee EA. Prevalence and mechanisms of somatic deletions in single human neurons during normal aging and in DNA repair disorders. Nat Commun 2022; 13:5918. [PMID: 36207339 PMCID: PMC9546902 DOI: 10.1038/s41467-022-33642-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Replication errors and various genotoxins cause DNA double-strand breaks (DSBs) where error-prone repair creates genomic mutations, most frequently focal deletions, and defective repair may lead to neurodegeneration. Despite its pathophysiological importance, the extent to which faulty DSB repair alters the genome, and the mechanisms by which mutations arise, have not been systematically examined reflecting ineffective methods. Here, we develop PhaseDel, a computational method to detect focal deletions and characterize underlying mechanisms in single-cell whole genome sequences (scWGS). We analyzed high-coverage scWGS of 107 single neurons from 18 neurotypical individuals of various ages, and found that somatic deletions increased with age and in highly expressed genes in human brain. Our analysis of 50 single neurons from DNA repair-deficient diseases with progressive neurodegeneration (Cockayne syndrome, Xeroderma pigmentosum, and Ataxia telangiectasia) reveals elevated somatic deletions compared to age-matched controls. Distinctive mechanistic signatures and transcriptional associations suggest roles for somatic deletions in neurodegeneration.
Collapse
Affiliation(s)
- Junho Kim
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | - August Yue Huang
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shelby L Johnson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jenny Lai
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Laura Isacco
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ailsa M Jeffries
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michael B Miller
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael A Lodato
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
22
|
Ectopic expression of meiotic cohesin generates chromosome instability in cancer cell line. Proc Natl Acad Sci U S A 2022; 119:e2204071119. [PMID: 36179046 PMCID: PMC9549395 DOI: 10.1073/pnas.2204071119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
This work originated from mining of cancer genome data and proceeded to analyze the effects of ectopic expression of meiotic cohesins in mitotic cells in culture. In the process, apart from conclusively answering the question on mechanisms for RAD21L toxicity and its underrepresentation in tumor transcriptomes, we found an association of meiotic cohesin binding with BORIS/CTCFL sites in the normal testis. We also elucidated the patterns and outcomes of meiotic cohesin binding to chromosomes in model cell lines. Furthermore, we uncovered that RAD21L-based meiotic cohesin possesses a self-contained chromosome restructuring activity able to trigger sustainable but imperfect mitotic arrest leading to chromosomal instability. The discovered epigenomic and genetic mechanisms can be relevant to chromosome instability in cancer. Many tumors express meiotic genes that could potentially drive somatic chromosome instability. While germline cohesin subunits SMC1B, STAG3, and REC8 are widely expressed in many cancers, messenger RNA and protein for RAD21L subunit are expressed at very low levels. To elucidate the potential of meiotic cohesins to contribute to genome instability, their expression was investigated in human cell lines, predominately in DLD-1. While the induction of the REC8 complex resulted in a mild mitotic phenotype, the expression of the RAD21L complex produced an arrested but viable cell pool, thus providing a source of DNA damage, mitotic chromosome missegregation, sporadic polyteny, and altered gene expression. We also found that genomic binding profiles of ectopically expressed meiotic cohesin complexes were reminiscent of their corresponding specific binding patterns in testis. Furthermore, meiotic cohesins were found to localize to the same sites as BORIS/CTCFL, rather than CTCF sites normally associated with the somatic cohesin complex. These findings highlight the existence of a germline epigenomic memory that is conserved in cells that normally do not express meiotic genes. Our results reveal a mechanism of action by unduly expressed meiotic cohesins that potentially links them to aneuploidy and chromosomal mutations in affected cells.
Collapse
|
23
|
Arrey G, Keating ST, Regenberg B. A unifying model for extrachromosomal circular DNA load in eukaryotic cells. Semin Cell Dev Biol 2022; 128:40-50. [PMID: 35292190 DOI: 10.1016/j.semcdb.2022.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023]
Abstract
Extrachromosomal circular DNA (eccDNA) with exons and whole genes are common features of eukaryotic cells. Work from especially tumours and the yeast Saccharomyces cerevisiae has revealed that eccDNA can provide large selective advantages and disadvantages. Besides the phenotypic effect due to expression of an eccDNA fragment, eccDNA is different from other mutations in that it is released from 1:1 segregation during cell division. This means that eccDNA can quickly change copy number, pickup secondary mutations and reintegrate into a chromosome to establish substantial genetic variation that could not have evolved via canonical mechanisms. We propose a unifying 5-factor model for conceptualizing the eccDNA load of a eukaryotic cell, emphasizing formation, replication, segregation, selection and elimination. We suggest that the magnitude of these sequential events and their interactions determine the copy number of eccDNA in mitotically dividing cells. We believe that our model will provide a coherent framework for eccDNA research, to understand its biology and the factors that can be manipulated to modulate eccDNA load in eukaryotic cells.
Collapse
Affiliation(s)
- Gerard Arrey
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Samuel T Keating
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Regenberg
- Section for Ecology and Evolution, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
24
|
Li R, Wang Y, Li J, Zhou X. Extrachromosomal circular DNA (eccDNA): an emerging star in cancer. Biomark Res 2022; 10:53. [PMID: 35883211 PMCID: PMC9327165 DOI: 10.1186/s40364-022-00399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/08/2023] Open
Abstract
Extrachromosomal circular DNA (eccDNA) is defined as a type of circular DNA that exists widely in nature and is independent of chromosomes. EccDNA has attracted the attention of researchers due to its broad, random distribution, complex biogenesis and tumor-relevant functions. EccDNA can carry complete gene information, especially the oncogenic driver genes that are often carried in tumors, with increased copy number and high transcriptional activity. The high overexpression of oncogenes by eccDNA leads to malignant growth of tumors. Regardless, the exact generation and functional mechanisms of eccDNA in disease progression are not yet clear. There is, however, an emerging body of evidence characterizing that eccDNA can be generated from multiple pathways, including DNA damage repair pathways, breakage-fusion-bridge (BFB) mechanisms, chromothripsis and cell apoptosis, and participates in the regulation of tumor progression with multiplex functions. This up-to-date review summarizes and discusses the origins, biogenesis and functions of eccDNA, including its contribution to the formation of oncogene instability and mutations, the heterogeneity and cellular senescence of tumor cells, and the proinflammatory response of tumors. We highlight the possible cancer-related applications of eccDNA, such as its potential use in the diagnosis, targeted therapy and prognostic assessment of cancer.
Collapse
Affiliation(s)
- Ruomeng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ying Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
25
|
Michel N, Young HMR, Atkin ND, Arshad U, Al-Humadi R, Singh S, Manukyan A, Gore L, Burbulis IE, Wang YH, McConnell MJ. Transcription-associated DNA DSBs activate p53 during hiPSC-based neurogenesis. Sci Rep 2022; 12:12156. [PMID: 35840793 PMCID: PMC9287420 DOI: 10.1038/s41598-022-16516-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Neurons are overproduced during cerebral cortical development. Neural progenitor cells (NPCs) divide rapidly and incur frequent DNA double-strand breaks (DSBs) throughout cortical neurogenesis. Although half of the neurons born during neurodevelopment die, many neurons with inaccurate DNA repair survive leading to brain somatic mosaicism. Recurrent DNA DSBs during neurodevelopment are associated with both gene expression level and gene length. We used imaging flow cytometry and a genome-wide DNA DSB capture approach to quantify and map DNA DSBs during human induced pluripotent stem cell (hiPSC)-based neurogenesis. Reduced p53 signaling was brought about by knockdown (p53KD); p53KD led to elevated DNA DSB burden in neurons that was associated with gene expression level but not gene length in neural progenitor cells (NPCs). Furthermore, DNA DSBs incurred from transcriptional, but not replicative, stress lead to p53 activation in neurotypical NPCs. In p53KD NPCs, DNA DSBs accumulate at transcription start sites of genes that are associated with neurological and psychiatric disorders. These findings add to a growing understanding of how neuronal genome dynamics are engaged by high transcriptional or replicative burden during neurodevelopment.
Collapse
Affiliation(s)
- Nadine Michel
- Neuroscience Graduate Program, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Heather M Raimer Young
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Naomi D Atkin
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Umar Arshad
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Reem Al-Humadi
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Sandeep Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Lana Gore
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA
| | - Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
- Sede de la Patagonia, Facultad de Medicina y Ciencias, Universidad San Sebastián, Puerto Montt, Chile
| | - Yuh-Hwa Wang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Michael J McConnell
- Lieber Institute for Brain Development, 855 N. Wolfe St., Ste. 300, Baltimore, MD, 21205, USA.
| |
Collapse
|
26
|
Wang X, Wu C, Liu S, Peng D. Combinatorial therapeutic strategies for enhanced delivery of therapeutics to brain cancer cells through nanocarriers: current trends and future perspectives. Drug Deliv 2022; 29:1370-1383. [PMID: 35532094 PMCID: PMC9090367 DOI: 10.1080/10717544.2022.2069881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Brain cancer is the most aggressive one among various cancers. It has a drastic impact on people's lives because of the failure in treatment efficacy of the currently employed strategies. Various strategies used to relieve pain in brain cancer patients and to prolong survival time include radiotherapy, chemotherapy, and surgery. Nevertheless, several inevitable limitations are accompanied by such treatments due to unsatisfactory curative effects. Generally, the treatment of cancers is very challenging due to many reasons including drugs’ intrinsic factors and physiological barriers. Blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are the two additional hurdles in the way of therapeutic agents to brain tumors delivery. Combinatorial and targeted therapies specifically in cancer show a very promising role where nanocarriers’ based formulations are designed primarily to achieve tumor-specific drug release. A dual-targeting strategy is a versatile way of chemotherapeutics delivery to brain tumors that gets the aid of combined ligands and mediators that cross the BBB and reaches the target site efficiently. In contrast to single targeting where one receptor or mediator is targeted, the dual-targeting strategy is expected to produce a multiple-fold increase in therapeutic efficacy for cancer therapy, especially in brain tumors. In a nutshell, a dual-targeting strategy for brain tumors enhances the delivery efficiency of chemotherapeutic agents via penetration across the blood-brain barrier and enhances the targeting of tumor cells. This review article highlights the ongoing status of the brain tumor therapy enhanced by nanoparticle based delivery with the aid of dual-targeting strategies. The future perspectives in this regard have also been highlighted.
Collapse
Affiliation(s)
- Xiande Wang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin'an People's Hospital, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, China
| | - Cheng Wu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shiming Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Deqing Peng
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
27
|
Khalid U, Simovic M, Hammann LA, Iskar M, Kl Wong J, Kumar R, Jugold M, Sill M, Bolkestein M, Kolb T, Hergt M, Devens F, Ecker J, Kool M, Milde T, Westermann F, Benner A, Lewis J, Dietrich S, Pfister SM, Lichter P, Zapatka M, Ernst A. A synergistic interaction between HDAC- and PARP inhibitors in childhood tumors with chromothripsis. Int J Cancer 2022; 151:590-606. [PMID: 35411591 DOI: 10.1002/ijc.34027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 11/06/2022]
Abstract
Chromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses, and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.
Collapse
Affiliation(s)
- Umar Khalid
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University of Heidelberg, Germany
| | - Milena Simovic
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University of Heidelberg, Germany
| | - Linda A Hammann
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.,University of Heidelberg, Germany
| | - Murat Iskar
- Division of Molecular Genetics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - John Kl Wong
- Division of Molecular Genetics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rithu Kumar
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Jugold
- Core Facility, Small Animal Imaging Center, DKFZ, Heidelberg, Germany
| | - Martin Sill
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michiel Bolkestein
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thorsten Kolb
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michaela Hergt
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frauke Devens
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jonas Ecker
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Marcel Kool
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Till Milde
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center and German Consortium for Translational Cancer Research, Heidelberg, Germany; KiTZ Clinical Trial Unit.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Frank Westermann
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joe Lewis
- European Molecular Biology Laboratory
| | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Pediatric Neurooncology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
28
|
Zhang CZ, Pellman D. Cancer Genomic Rearrangements and Copy Number Alterations from Errors in Cell Division. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-094029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Analysis of cancer genomes has shown that a large fraction of chromosomal changes originate from catastrophic events including whole-genome duplication, chromothripsis, breakage-fusion-bridge cycles, and chromoplexy. Through sophisticated computational analysis of cancer genomes and experimental recapitulation of these catastrophic alterations, we have gained significant insights into the origin, mechanism, and evolutionary dynamics of cancer genome complexity. In this review, we summarize this progress and survey the major unresolved questions, with particular emphasis on the relative contributions of chromosome fragmentation and DNA replication errors to complex chromosomal alterations.
Collapse
Affiliation(s)
- Cheng-Zhong Zhang
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Biomedical Informatics, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David Pellman
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cell Biology, Blavatnik Institute of Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Athar F, Templeman NM. C. elegans as a model organism to study female reproductive health. Comp Biochem Physiol A Mol Integr Physiol 2022; 266:111152. [PMID: 35032657 DOI: 10.1016/j.cbpa.2022.111152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Female reproductive health has been historically understudied and underfunded. Here, we present the advantages of using a free-living nematode, Caenorhabditis elegans, as an animal system to study fundamental aspects of female reproductive health. C. elegans is a powerful high-throughput model organism that shares key genetic and physiological similarities with humans. In this review, we highlight areas of pressing medical and biological importance in the 21st century within the context of female reproductive health. These include the decline in female reproductive capacity with increasing chronological age, reproductive dysfunction arising from toxic environmental insults, and cancers of the reproductive system. C. elegans has been instrumental in uncovering mechanistic insights underlying these processes, and has been valuable for developing and testing therapeutics to combat them. Adopting a convenient model organism such as C. elegans for studying reproductive health will encourage further research into this field, and broaden opportunities for making advancements into evolutionarily conserved mechanisms that control reproductive function.
Collapse
Affiliation(s)
- Faria Athar
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nicole M Templeman
- Department of Biology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada.
| |
Collapse
|
30
|
Yoon JY, Chapel D, Goebel E, Qian X, Mito J, Horowitz N, Miron A, Soong TR, Xian W, Crum CP. Molecular catastrophe, the peritoneal cavity and ovarian cancer prevention. J Pathol 2022; 257:255-261. [PMID: 35238033 DOI: 10.1002/path.5891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 11/06/2022]
Abstract
The current theory of carcinogenesis for the deadliest of "ovarian" cancers - high-grade serous carcinoma (HGSC) - holds that the malignancy develops first in the fallopian tube and spreads to the ovaries, peritoneum and/or regional lymph nodes. This is based primarily on the observation of early forms of serous neoplasia (serous tubular intraepithelial lesions (STILs), and serous tubular intraepithelial carcinomas (STICS)) in the fimbria of women undergoing risk reduction surgery. However, these lesions are uncommon in the general population, confer a low risk (5%) of HGSC following their removal in at-risk women with germ-line BRCA1/2 mutations and require 4 or more years to recur as intraperitoneal HGSC. These features suggest that isolated STILs and STICs behave as precursors with uncertain cancer risk rather than carcinomas. Their evolution to HGSC after escape from the tube could proceed step-wise with multiple biologic events; however, it is unclear whether immediately adjacent HGSCs in the setting of advanced disease evolved in the same fashion. The latter scenario could also be explained by a "catastrophic" model in which STICs suddenly develop with invasive and metastatic potential, overwhelming or obscuring the site of origin. Moreover, a similar model might explain the sudden emergence of HGSC in the peritoneal cavity following escape of precursor cells years before. Long term follow-up data from opportunistic or prophylactic salpingectomy should shed light on where malignant transformation occurs, as well as the time-line from precursor to metastatic HGSC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ju Yoon Yoon
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA.,Department of Laboratory Medicine, St. Michaels Hospital, Unity Health Toronto, Toronto, Ontario
| | - David Chapel
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA.,Department of Pathology, University of Michigan Medical Center, Ann Arbor, MI
| | - Emily Goebel
- Department of Pathology and Laboratory Medicine, London Health Sciences Centre and Western University, London, Ontario
| | - Xiaohua Qian
- Department of Pathology, Division of Cytopathology, Stanford University Medical Center, Palo Alto, CA
| | - Jeffrey Mito
- Department of Pathology, Division of Cytopathology, Brigham and Women's Hospital, Boston, MA
| | - Neil Horowitz
- Division of Gynecologic Oncology, Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | | | - T Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Wa Xian
- University of Houston Stem Cell Center, Houston, TX
| | - Christopher P Crum
- Department of Pathology, Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
31
|
Dahiya R, Hu Q, Ly P. Mechanistic origins of diverse genome rearrangements in cancer. Semin Cell Dev Biol 2022; 123:100-109. [PMID: 33824062 PMCID: PMC8487437 DOI: 10.1016/j.semcdb.2021.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/14/2022]
Abstract
Cancer genomes frequently harbor structural chromosomal rearrangements that disrupt the linear DNA sequence order and copy number. To date, diverse classes of structural variants have been identified across multiple cancer types. These aberrations span a wide spectrum of complexity, ranging from simple translocations to intricate patterns of rearrangements involving multiple chromosomes. Although most somatic rearrangements are acquired gradually throughout tumorigenesis, recent interrogation of cancer genomes have uncovered novel categories of complex rearrangements that arises rapidly through a one-off catastrophic event, including chromothripsis and chromoplexy. Here we review the cellular and molecular mechanisms contributing to the formation of diverse structural rearrangement classes during cancer development. Genotoxic stress from a myriad of extrinsic and intrinsic sources can trigger DNA double-strand breaks that are subjected to DNA repair with potentially mutagenic outcomes. We also highlight how aberrant nuclear structures generated through mitotic cell division errors, such as rupture-prone micronuclei and chromosome bridges, can instigate massive DNA damage and the formation of complex rearrangements in cancer genomes.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Qing Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peter Ly
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
32
|
Chromothripsis is a frequent event and underlies typical genetic changes in early T-cell precursor lymphoblastic leukemia in adults. Leukemia 2022; 36:2577-2585. [PMID: 35974102 PMCID: PMC9613476 DOI: 10.1038/s41375-022-01671-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
Abstract
Chromothripsis is a mitotic catastrophe that arises from multiple double strand breaks and incorrect re-joining of one or a few chromosomes. We report on incidence, distribution, and features of chromothriptic events in T-cell acute lymphoblastic leukemias (T-ALL). SNP array was performed in 103 T-ALL (39 ETP/near ETP, 59 non-ETP, and 5 with unknown stage of differentiation), including 38 children and 65 adults. Chromothripsis was detected in 11.6% of all T-ALL and occurred only in adult cases with an immature phenotype (12/39 cases; 30%). It affected 1 to 4 chromosomes, and recurrently involved chromosomes 1, 6, 7, and 17. Abnormalities of genes typically associated with T-ALL were found at breakpoints of chromothripsis. In addition, it gave rise to new/rare alterations, such as, the SFPQ::ZFP36L2 fusion, reported in pediatric T-ALL, deletions of putative suppressors, such as IKZF2 and CSMD1, and amplification of the BCL2 gene. Compared to negative cases, chromothripsis positive T-ALL had a significantly higher level of MYCN expression, and a significant downregulation of RGCC, which is typically induced by TP53 in response to DNA damage. Furthermore we identified mutations and/or deletions of DNA repair/genome stability genes in all cases, and an association with NUP214 rearrangements in 33% of cases.
Collapse
|
33
|
Robert M, Crasta K. Breaking the vicious circle: Extrachromosomal circular DNA as an emerging player in tumour evolution. Semin Cell Dev Biol 2021; 123:140-150. [PMID: 34857471 DOI: 10.1016/j.semcdb.2021.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 12/16/2022]
Abstract
Extrachromosomal circular DNA (ecDNA) or double minutes have gained renewed interest since its discovery more than five decades ago, emerging as potent drivers of tumour evolution. This has largely been motivated by recent discovery that the tumour-exclusive ecDNA are highly prevalent in almost all cancers unlike previously thought. EcDNAs contribute to elevated oncogene expression, intratumoural heterogeneity, tumour adaptation and therapy resistance independently of canonical chromosomal alterations. Importantly, ecDNAs play a critical role in patient survival as ecDNA-based oncogene amplification adversely affects clinical outcome to a significantly greater extent than intrachromosomal amplification. Chromothripsis, a major driver of ecDNA biogenesis and gene amplification, is a mutational process characterised by chromosomal shattering and localised complex genome rearrangement. Chemotherapeutic drugs can lead to chromothriptic rearrangements and therapy resistance. In this review, we examine how ecDNAs mediate oncogene overexpression, facilitate accelerated tumour malignancy and enhance rapid adaptation independently of linear chromosomes. We delve into discoveries pertaining to mechanisms of biogenesis, distinctive features of ecDNA, gene regulation and topological interactions with active chromatin. We also discuss the critical role of chromothripsis in engendering ecDNA amplification and evolution. One envisions that insights into ecDNA biology not only hold importance for the cancer genome and tumour evolutionary dynamics, but could also inform prognostication and clinical intervention, particularly for cancers characterised by high oncogene amplification.
Collapse
Affiliation(s)
- Matius Robert
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, National University of Singapore, Singapore
| | - Karen Crasta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Healthy Longevity Translational Research Program, National University of Singapore, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Agency for Science, Technology & Research (A⁎STAR), Institute of Molecular and Cell Biology, Singapore.
| |
Collapse
|
34
|
Zhao XK, Xing P, Song X, Zhao M, Zhao L, Dang Y, Lei LL, Xu RH, Han WL, Wang PP, Yang MM, Hu JF, Zhong K, Zhou FY, Han XN, Meng CL, Ji JJ, Chen X, Wang LD. Focal amplifications are associated with chromothripsis events and diverse prognoses in gastric cardia adenocarcinoma. Nat Commun 2021; 12:6489. [PMID: 34764264 PMCID: PMC8586158 DOI: 10.1038/s41467-021-26745-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/21/2021] [Indexed: 01/24/2023] Open
Abstract
The role of focal amplifications and extrachromosomal DNA (ecDNA) is unknown in gastric cardia adenocarcinoma (GCA). Here, we identify frequent focal amplifications and ecDNAs in Chinese GCA patient samples, and find focal amplifications in the GCA cohort are associated with the chromothripsis process and may be induced by accumulated DNA damage due to local dietary habits. We observe diverse correlations between the presence of oncogene focal amplifications and prognosis, where ERBB2 focal amplifications positively correlate with prognosis and EGFR focal amplifications negatively correlate with prognosis. Large-scale ERBB2 immunohistochemistry results from 1668 GCA patients show survival probability of ERBB2 positive patients is lower than that of ERBB2 negative patients when their surviving time is under 2 years, however, the tendency is opposite when their surviving time is longer than 2 years. Our observations indicate that the ERBB2 focal amplifications may represent a good prognostic marker in GCA patients.
Collapse
Affiliation(s)
- Xue-Ke Zhao
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Pengwei Xing
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108, Uppsala, Sweden
| | - Xin Song
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108, Uppsala, Sweden
| | - Linxuan Zhao
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108, Uppsala, Sweden
| | - Yonglong Dang
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108, Uppsala, Sweden
| | - Ling-Ling Lei
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Rui-Hua Xu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Wen-Li Han
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Pan-Pan Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Miao-Miao Yang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Jing-Feng Hu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Kan Zhong
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Fu-You Zhou
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Xue-Na Han
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Chao-Long Meng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Jia-Jia Ji
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China
| | - Xingqi Chen
- Department of Immunology, Genetics and Pathology, Uppsala University, 75108, Uppsala, Sweden.
| | - Li-Dong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment and Henan Key, Laboratory for Esophageal Cancer Research of The First Affiliated Hospital, Zhengzhou University, 450052, Zhengzhou, Henan, PR China.
| |
Collapse
|
35
|
VAV2 is required for DNA repair and implicated in cancer radiotherapy resistance. Signal Transduct Target Ther 2021; 6:322. [PMID: 34462423 PMCID: PMC8405816 DOI: 10.1038/s41392-021-00735-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy remains the mainstay for treatment of various types of human cancer; however, the clinical efficacy is often limited by radioresistance, in which the underlying mechanism is largely unknown. Here, using esophageal squamous cell carcinoma (ESCC) as a model, we demonstrate that guanine nucleotide exchange factor 2 (VAV2), which is overexpressed in most human cancers, plays an important role in primary and secondary radioresistance. We have discovered for the first time that VAV2 is required for the Ku70/Ku80 complex formation and participates in non-homologous end joining repair of DNA damages caused by ionizing radiation. We show that VAV2 overexpression substantially upregulates signal transducer and activator of transcription 1 (STAT1) and the STAT1 inhibitor Fludarabine can significantly promote the sensitivity of radioresistant patient-derived ESCC xenografts in vivo in mice to radiotherapy. These results shed new light on the mechanism of cancer radioresistance, which may be important for improving clinical radiotherapy.
Collapse
|
36
|
Shrestha S, Morcavallo A, Gorrini C, Chesler L. Biological Role of MYCN in Medulloblastoma: Novel Therapeutic Opportunities and Challenges Ahead. Front Oncol 2021; 11:694320. [PMID: 34195095 PMCID: PMC8236857 DOI: 10.3389/fonc.2021.694320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
The constitutive and dysregulated expression of the transcription factor MYCN has a central role in the pathogenesis of the paediatric brain tumour medulloblastoma, with an increased expression of this oncogene correlating with a worse prognosis. Consequently, the genomic and functional alterations of MYCN represent a major therapeutic target to attenuate tumour growth in medulloblastoma. This review will provide a comprehensive synopsis of the biological role of MYCN and its family components, their interaction with distinct signalling pathways, and the implications of this network in medulloblastoma development. We will then summarise the current toolbox for targeting MYCN and highlight novel therapeutic avenues that have the potential to results in better-tailored clinical treatments.
Collapse
Affiliation(s)
- Sumana Shrestha
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Alaide Morcavallo
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Chiara Gorrini
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom
| | - Louis Chesler
- Division of Clinical Studies, Institute of Cancer Research (ICR), London and Royal Marsden NHS Trust, Sutton, United Kingdom.,Division of Cancer Therapeutics, The Institute of Cancer Research (ICR), and The Royal Marsden NHS Trust, Sutton, United Kingdom
| |
Collapse
|
37
|
Simovic M, Bolkestein M, Moustafa M, Wong JKL, Körber V, Benedetto S, Khalid U, Schreiber HS, Jugold M, Korshunov A, Hübschmann D, Mack N, Brons S, Wei PC, Breckwoldt MO, Heiland S, Bendszus M, Jürgen D, Höfer T, Zapatka M, Kool M, Pfister SM, Abdollahi A, Ernst A. Carbon ion radiotherapy eradicates medulloblastomas with chromothripsis in an orthotopic Li-Fraumeni patient-derived mouse model. Neuro Oncol 2021; 23:2028-2041. [PMID: 34049392 PMCID: PMC8643436 DOI: 10.1093/neuonc/noab127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Medulloblastomas with chromothripsis developing in children with Li-Fraumeni Syndrome (germline TP53 mutations) are highly aggressive brain tumors with dismal prognosis. Conventional photon radiotherapy and DNA-damaging chemotherapy are not successful for these patients and raise the risk of secondary malignancies. We hypothesized that the pronounced homologous recombination deficiency in these tumors might offer vulnerabilities that can be therapeutically utilized in combination with high linear energy transfer carbon ion radiotherapy. Methods We tested high-precision particle therapy with carbon ions and protons as well as topotecan with or without PARP inhibitor in orthotopic primary and matched relapsed patient-derived xenograft models. Tumor and normal tissue underwent longitudinal morphological MRI, cellular (markers of neurogenesis and DNA damage-repair), and molecular characterization (whole-genome sequencing). Results In the primary medulloblastoma model, carbon ions led to complete response in 79% of animals irrespective of PARP inhibitor within a follow-up period of 300 days postirradiation, as detected by MRI and histology. No sign of neurologic symptoms, impairment of neurogenesis or in-field carcinogenesis was detected in repair-deficient host mice. PARP inhibitors further enhanced the effect of proton irradiation. In the postradiotherapy relapsed tumor model, median survival was significantly increased after carbon ions (96 days) versus control (43 days, P < .0001). No major change in the clonal composition was detected in the relapsed model. Conclusion The high efficacy and favorable toxicity profile of carbon ions warrants further investigation in primary medulloblastomas with chromothripsis. Postradiotherapy relapsed medulloblastomas exhibit relative resistance compared to treatment-naïve tumors, calling for exploration of multimodal strategies.
Collapse
Affiliation(s)
- Milena Simovic
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ).,Faculty of Biosciences, Heidelberg University
| | - Michiel Bolkestein
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ)
| | - Mahmoud Moustafa
- Division of Molecular & Translational Radiation Oncology,Heidelberg Ion-Beam Therapy Center (HIT).,Heidelberg Institute for Radiation Oncology (HIRO).,National Center for Radiation Oncology (NCRO).,National Center for Tumor Diseases (NCT).,Heidelberg University Hospital (UKHD) and DKFZ.,German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Department of Clinical Pathology, Suez Canal University, Ismailia-Egypt
| | - John K L Wong
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Division of Molecular Genetics, DKFZ
| | | | | | - Umar Khalid
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ).,Faculty of Biosciences, Heidelberg University
| | - Hannah Sophia Schreiber
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ).,Faculty of Medicine, Heidelberg University
| | | | - Andrey Korshunov
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Clinical Cooperation Unit Neuropathology, DKFZ, Department of Neuropathology, UKHD
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Computational Oncology Group, Molecular Diagnostics Program at the NCT and DKFZ.,Heidelberg Institute for Stem cell Technology and Experimental Medicine.,Department of Pediatric Oncology, Hematology and Immunology, UKHD
| | - Norman Mack
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Division of Molecular Genetics, DKFZ.,Department of Pediatric Oncology, Hematology and Immunology, UKHD.,Hopp Children's Cancer Center, NCT Heidelberg (KiTZ).,Division of Pediatric Neurooncology, DKFZ
| | | | | | | | | | | | - Debus Jürgen
- Heidelberg Institute for Radiation Oncology (HIRO).,National Center for Tumor Diseases (NCT).,German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Department of Radiation Oncology, UKHD.,Department of Radiation Oncology, Eberhard-Karls-University Tuebingen.,Clinical Cooperation Unit Radiation Oncology, DKFZ
| | | | - Marc Zapatka
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Division of Molecular Genetics, DKFZ
| | - Marcel Kool
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Hopp Children's Cancer Center, NCT Heidelberg (KiTZ).,Division of Pediatric Neurooncology, DKFZ.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Stefan M Pfister
- German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ.,Department of Pediatric Oncology, Hematology and Immunology, UKHD.,Hopp Children's Cancer Center, NCT Heidelberg (KiTZ).,Division of Pediatric Neurooncology, DKFZ
| | - Amir Abdollahi
- Division of Molecular & Translational Radiation Oncology,Heidelberg Ion-Beam Therapy Center (HIT).,Heidelberg Institute for Radiation Oncology (HIRO).,National Center for Radiation Oncology (NCRO).,National Center for Tumor Diseases (NCT).,Heidelberg University Hospital (UKHD) and DKFZ.,German Cancer Consortium (DKTK), partner site Heidelberg, DKFZ
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Center (DKFZ)
| |
Collapse
|
38
|
Stok C, Kok Y, van den Tempel N, van Vugt MATM. Shaping the BRCAness mutational landscape by alternative double-strand break repair, replication stress and mitotic aberrancies. Nucleic Acids Res 2021; 49:4239-4257. [PMID: 33744950 PMCID: PMC8096281 DOI: 10.1093/nar/gkab151] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as 'BRCAness'. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.
Collapse
Affiliation(s)
- Colin Stok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Yannick P Kok
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Nathalie van den Tempel
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| |
Collapse
|
39
|
Mouse Models for Deciphering the Impact of Homologous Recombination on Tumorigenesis. Cancers (Basel) 2021; 13:cancers13092083. [PMID: 33923105 PMCID: PMC8123484 DOI: 10.3390/cancers13092083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination (HR) is a fundamental evolutionarily conserved process that plays prime role(s) in genome stability maintenance through DNA repair and through the protection and resumption of arrested replication forks. Many HR genes are deregulated in cancer cells. Notably, the breast cancer genes BRCA1 and BRCA2, two important HR players, are the most frequently mutated genes in familial breast and ovarian cancer. Transgenic mice constitute powerful tools to unravel the intricate mechanisms controlling tumorigenesis in vivo. However, the genes central to HR are essential in mammals, and their knockout leads to early embryonic lethality in mice. Elaborated strategies have been developed to overcome this difficulty, enabling one to analyze the consequences of HR disruption in vivo. In this review, we first briefly present the molecular mechanisms of HR in mammalian cells to introduce each factor in the HR process. Then, we present the different mouse models of HR invalidation and the consequences of HR inactivation on tumorigenesis. Finally, we discuss the use of mouse models for the development of targeted cancer therapies as well as perspectives on the future potential for understanding the mechanisms of HR inactivation-driven tumorigenesis in vivo.
Collapse
|
40
|
Skowron P, Farooq H, Cavalli FMG, Morrissy AS, Ly M, Hendrikse LD, Wang EY, Djambazian H, Zhu H, Mungall KL, Trinh QM, Zheng T, Dai S, Stucklin ASG, Vladoiu MC, Fong V, Holgado BL, Nor C, Wu X, Abd-Rabbo D, Bérubé P, Wang YC, Luu B, Suarez RA, Rastan A, Gillmor AH, Lee JJY, Zhang XY, Daniels C, Dirks P, Malkin D, Bouffet E, Tabori U, Loukides J, Doz FP, Bourdeaut F, Delattre OO, Masliah-Planchon J, Ayrault O, Kim SK, Meyronet D, Grajkowska WA, Carlotti CG, de Torres C, Mora J, Eberhart CG, Van Meir EG, Kumabe T, French PJ, Kros JM, Jabado N, Lach B, Pollack IF, Hamilton RL, Rao AAN, Giannini C, Olson JM, Bognár L, Klekner A, Zitterbart K, Phillips JJ, Thompson RC, Cooper MK, Rubin JB, Liau LM, Garami M, Hauser P, Li KKW, Ng HK, Poon WS, Yancey Gillespie G, Chan JA, Jung S, McLendon RE, Thompson EM, Zagzag D, Vibhakar R, Ra YS, Garre ML, Schüller U, Shofuda T, Faria CC, López-Aguilar E, Zadeh G, Hui CC, Ramaswamy V, Bailey SD, Jones SJ, Mungall AJ, Moore RA, Calarco JA, Stein LD, Bader GD, Reimand J, Ragoussis J, Weiss WA, Marra MA, Suzuki H, Taylor MD. The transcriptional landscape of Shh medulloblastoma. Nat Commun 2021; 12:1749. [PMID: 33741928 PMCID: PMC7979819 DOI: 10.1038/s41467-021-21883-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 01/26/2021] [Indexed: 01/31/2023] Open
Abstract
Sonic hedgehog medulloblastoma encompasses a clinically and molecularly diverse group of cancers of the developing central nervous system. Here, we use unbiased sequencing of the transcriptome across a large cohort of 250 tumors to reveal differences among molecular subtypes of the disease, and demonstrate the previously unappreciated importance of non-coding RNA transcripts. We identify alterations within the cAMP dependent pathway (GNAS, PRKAR1A) which converge on GLI2 activity and show that 18% of tumors have a genetic event that directly targets the abundance and/or stability of MYCN. Furthermore, we discover an extensive network of fusions in focally amplified regions encompassing GLI2, and several loss-of-function fusions in tumor suppressor genes PTCH1, SUFU and NCOR1. Molecular convergence on a subset of genes by nucleotide variants, copy number aberrations, and gene fusions highlight the key roles of specific pathways in the pathogenesis of Sonic hedgehog medulloblastoma and open up opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Patryk Skowron
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Hamza Farooq
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Florence M G Cavalli
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - A Sorana Morrissy
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Michelle Ly
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Liam D Hendrikse
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Evan Y Wang
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Haig Djambazian
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Helen Zhu
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Karen L Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Quang M Trinh
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Tina Zheng
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Shizhong Dai
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, United States
| | - Ana S Guerreiro Stucklin
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maria C Vladoiu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vernon Fong
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Borja L Holgado
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carolina Nor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiaochong Wu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Diala Abd-Rabbo
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Pierre Bérubé
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
| | - Yu Chang Wang
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
| | - Betty Luu
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Raul A Suarez
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Avesta Rastan
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Aaron H Gillmor
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John J Y Lee
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Xiao Yun Zhang
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Craig Daniels
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Dirks
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Eric Bouffet
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Uri Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - James Loukides
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - François P Doz
- SIREDO Center (pediatric, adolescent and young adults oncology), Institut Curie, University of Paris, Paris, France
| | - Franck Bourdeaut
- SIREDO Center (pediatric, adolescent and young adults oncology), Institut Curie, University of Paris, Paris, France
| | | | | | - Olivier Ayrault
- PSL Research University, Université Paris Sud, Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, Institut Curie, Paris, France
| | - Seung-Ki Kim
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, South Korea
| | - David Meyronet
- Hospices Civils de Lyon, Institute of Pathology, University Lyon 1, Department of Cancer Cell Plasticity-INSERM U1052 Cancer Research Center of Lyon, Lyon, France
| | | | - Carlos G Carlotti
- Department of Surgery and Anatomy, Faculty of Medicine of Ribeirão Preto, University of Sao Paulo, São Paulo, Brazil
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Charles G Eberhart
- Departments of Pathology, Ophthalmology and Oncology, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Erwin G Van Meir
- Department of Hematology & Medical Oncology, School of Medicine and Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Pim J French
- Department of Neurology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nada Jabado
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Boleslaw Lach
- Department of Pathology and Molecular Medicine, Division of Anatomical Pathology, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Laboratory Medicine, Hamilton General Hospital, Hamilton, ON, Canada
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ronald L Hamilton
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - James M Olson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - László Bognár
- Department of Neurosurgery, University of Debrecen, Medical and Health Science Centre, Debrecen, Hungary
| | - Almos Klekner
- Department of Neurosurgery, University of Debrecen, Medical and Health Science Centre, Debrecen, Hungary
| | - Karel Zitterbart
- Department of Pediatric Oncology, Masaryk University School of Medicine, Brno, Czech Republic
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Pathology, University of California San Francisco, San Francisco, CA, United States
| | - Reid C Thompson
- Department of Neurological Surgery, Vanderbilt Medical Center, Nashville, TN, United States
| | - Michael K Cooper
- Department of Neurology, Vanderbilt Medical Center, Nashville, TN, United States
| | - Joshua B Rubin
- Departments of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, United States
| | - Miklós Garami
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Peter Hauser
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Kay Ka Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - Wai Sang Poon
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | - G Yancey Gillespie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Shin Jung
- Department of Neurosurgery, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Hwasun Hospital and Medical School, Hwasun-gun, Jeollanam-do, South Korea
| | - Roger E McLendon
- Department of Pathology, Duke University, Durham, NC, United States
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - Eric M Thompson
- Department of Neurosurgery, Duke University, Durham, NC, United States
| | - David Zagzag
- Department of Pathology and Neurosurgery, NYU Grossman School of Medicine and NYU Langone Health, New York, NY, United States
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Denver, Aurora, CO, United States
| | - Young Shin Ra
- Department of Neurosurgery, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | | | - Ulrich Schüller
- Institute of Neuropathology, University Medical Center, Hamburg-Eppendorf, Germany
- Research Institute Children's Cancer Center, Hamburg, Germany
- Pediatric Hematology and Oncology, University Medical Center, Hamburg-Eppendorf, Germany
| | - Tomoko Shofuda
- Division of Stem Cell Research, Institute for Clinical Research, Osaka National Hospital, Osaka, Japan
| | - Claudia C Faria
- Division of Neurosurgery, Centro Hospitalar Lisboa Norte (CHULN), Hospital de Santa Maria, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Enrique López-Aguilar
- Division of Pediatric Hematology/Oncology, Hospital Pediatría Centro Médico Nacional century XXI, Mexico City, Mexico
| | - Gelareh Zadeh
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- MacFeeters-Hamilton Center for Neuro-Oncology Research, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Chi-Chung Hui
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Vijay Ramaswamy
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Division of Haematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | - Swneke D Bailey
- Department of Surgery, Division of Thoracic and Upper Gastrointestinal Surgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Steven J Jones
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
| | - John A Calarco
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Adaptive Oncology, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jüri Reimand
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Computational Biology Program, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Jiannis Ragoussis
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - William A Weiss
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hiromichi Suzuki
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Michael D Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
How Chaotic Is Genome Chaos? Cancers (Basel) 2021; 13:cancers13061358. [PMID: 33802828 PMCID: PMC8002653 DOI: 10.3390/cancers13061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer genomes can undergo major restructurings involving many chromosomal locations at key stages in tumor development. This restructuring process has been designated “genome chaos” by some authors. In order to examine how chaotic cancer genome restructuring may be, the cell and molecular processes for DNA restructuring are reviewed. Examination of the action of these processes in various cancers reveals a degree of specificity that indicates genome restructuring may be sufficiently reproducible to enable possible therapies that interrupt tumor progression to more lethal forms. Abstract Cancer genomes evolve in a punctuated manner during tumor evolution. Abrupt genome restructuring at key steps in this evolution has been called “genome chaos.” To answer whether widespread genome change is truly chaotic, this review (i) summarizes the limited number of cell and molecular systems that execute genome restructuring, (ii) describes the characteristic signatures of DNA changes that result from activity of those systems, and (iii) examines two cases where genome restructuring is determined to a significant degree by cell type or viral infection. The conclusion is that many restructured cancer genomes display sufficiently unchaotic signatures to identify the cellular systems responsible for major oncogenic transitions, thereby identifying possible targets for therapies to inhibit tumor progression to greater aggressiveness.
Collapse
|
42
|
Pan F, Zhang LL, Luo HJ, Chen Y, Long L, Wang X, Zhuang PT, Li EM, Xu LY. Dietary riboflavin deficiency induces ariboflavinosis and esophageal epithelial atrophy in association with modification of gut microbiota in rats. Eur J Nutr 2021; 60:807-820. [PMID: 32458157 DOI: 10.1007/s00394-020-02283-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/11/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE Riboflavin deficiency causes ariboflavinosis, a common nutritional deficiency disease. The purpose of this study is to investigate the effects of riboflavin deficiency on the important internal organs and its potential mechanisms. METHODS Experiment 1, male F344 rats were randomly assigned to R6 (normal riboflavin, 6 mg/kg) and R0 (riboflavin-deficient, 0 mg/kg) groups. Experiment 2 rats were assigned to R6, R0.6 (0.6 mg/kg) and R0.06 (0.06 mg/kg) groups. Experiment 3 rats were assigned to R6 and R0 → R6 (riboflavin replenishment) groups. Bacterial communities were analyzed based on 16S rRNA gene sequencing. RESULTS Riboflavin deficiency induced ariboflavinosis (R0.06 46.7%; R0 72%) and esophageal epithelial atrophy (R0.06 40%; R0 44%) in rats, while the R6 group did not display symptoms (P < 0.001, respectively). Esophageal epithelial atrophy occurred simultaneously (R0.06 66.7%; R0 63.6%) with ariboflavinosis or appeared alone (R0.06 33.3%; R0 36.4%). Esophagus is the most vulnerable internal organ. Riboflavin deficiency followed by replenishment (R0 → R6) was effective in treating ariboflavinosis (83.3% vs. 0%, P < 0.001) and esophageal epithelial atrophy (66.7% vs. 20%, P = 0.17). Riboflavin deficiency modulated gut microbiota composition. The several key genera (Romboutsia, Turicibacter and Clostridium sensu stricto 1) were strongly correlated with ariboflavinosis and esophageal epithelial atrophy (P < 0.01 or P < 0.05). The potential mechanism is that gut microbiota affects body's xenobiotic biodegradation and metabolism, and genomic instability. CONCLUSIONS Riboflavin deficiency induces ariboflavinosis and esophageal epithelial atrophy by modulating the gut microbiota, and offers new Queryinsight into riboflavin deficiency and esophageal lesions.
Collapse
Affiliation(s)
- Feng Pan
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Ling-Li Zhang
- Department of Experimental Animal Center, Shantou University Medical College, Shantou, 515041, China
| | - Hong-Jun Luo
- Bioanalytical Laboratory, Shantou University Medical College, Shantou, 515041, China
| | - Ye Chen
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Institute of Oncologic Pathology, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Lin Long
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Xuan Wang
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, Guangdong, China
| | - Pei-Tong Zhuang
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, Guangdong, China
| | - En-Min Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, Guangdong, China.
| | - Li-Yan Xu
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
- Institute of Oncologic Pathology, Shantou University Medical College, No.22, Xinling Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
43
|
Simovic M, Ernst A. Chromothripsis, DNA repair and checkpoints defects. Semin Cell Dev Biol 2021; 123:110-114. [PMID: 33589336 DOI: 10.1016/j.semcdb.2021.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/05/2021] [Indexed: 11/28/2022]
Abstract
Chromothripsis is a unique form of genome instability characterized by tens to hundreds of DNA double-strand breaks on one or very few chromosomes, followed by error-prone repair. The derivative chromosome(s) display massive rearrangements, which lead to the loss of tumor suppressor function and to the activation of oncogenes. Chromothripsis plays a major role in cancer as well as in other conditions, such as congenital diseases. In this review, we discuss the repair processes involved in the rejoining of the chromosome fragments, the role of DNA repair and checkpoint defects as a cause for chromothripsis as well as DNA repair defects resulting from chromothripsis. Finally, we consider clinical implications and potential therapeutic vulnerabilities that could be utilized to eliminate tumor cells with chromothripsis.
Collapse
Affiliation(s)
- Milena Simovic
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| |
Collapse
|
44
|
汪 雨, 叶 凡, 张 霄, 邹 睿, 王 明, 俞 锴, 崔 诗. [Amplification of Extrachromosomal Oncogene and Tumorigenesis and Development]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:1101-1107. [PMID: 33357318 PMCID: PMC7786228 DOI: 10.3779/j.issn.1009-3419.2020.101.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 11/05/2022]
Abstract
Extrachromosomal DNA (ecDNA) is a small segment of circular DNA located outside the chromosome, which has the function of self-replication. Recently, amplification of oncogenes on ecDNA has been proved to be a common phenomenon in tumor cells, and has some characteristics worth studying, such as correlation with patients' poor prognosis. Multiple chromosomal events are involved in the formation of ecDNA, and its amplification can directly increase the number of DNA copies of extra-chromosomal oncogenes and accelerate the generation and development of tumors. Moreover, the segregation pattern of unequal transmission of parental ecDNA cells to offspring not only increases tumor heterogeneity, but also enhances tumor adaptation to environment and response to therapy. This article reviews the current status and potential significance of ecDNA in tumor cells.
.
Collapse
Affiliation(s)
- 雨彤 汪
- 211166 南京,南京医科大学第一临床医学院Nanjing Medical University, Nanjing 211166, China
| | - 凡 叶
- 211166 南京,南京医科大学第一临床医学院Nanjing Medical University, Nanjing 211166, China
| | - 霄 张
- 211166 南京,南京医科大学第一临床医学院Nanjing Medical University, Nanjing 211166, China
| | - 睿涵 邹
- 211166 南京,南京医科大学第一临床医学院Nanjing Medical University, Nanjing 211166, China
| | - 明远 王
- 211166 南京,南京医科大学第一临床医学院Nanjing Medical University, Nanjing 211166, China
| | - 锴 俞
- 211166 南京,南京医科大学第一临床医学院Nanjing Medical University, Nanjing 211166, China
| | - 诗允 崔
- 210029 南京,南京医科大学第一附属医院肿瘤科Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
45
|
Wang WJ, Li LY, Cui JW. Chromosome structural variation in tumorigenesis: mechanisms of formation and carcinogenesis. Epigenetics Chromatin 2020; 13:49. [PMID: 33168103 PMCID: PMC7654176 DOI: 10.1186/s13072-020-00371-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
With the rapid development of next-generation sequencing technology, chromosome structural variation has gradually gained increased clinical significance in tumorigenesis. However, the molecular mechanism(s) underlying this structural variation remain poorly understood. A search of the literature shows that a three-dimensional chromatin state plays a vital role in inducing structural variation and in the gene expression profiles in tumorigenesis. Structural variants may result in changes in copy number or deletions of coding sequences, as well as the perturbation of structural chromatin features, especially topological domains, and disruption of interactions between genes and their regulatory elements. This review focuses recent work aiming at elucidating how structural variations develop and misregulate oncogenes and tumor suppressors, to provide general insights into tumor formation mechanisms and to provide potential targets for future anticancer therapies.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Ling-Yu Li
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| | - Jiu-Wei Cui
- Cancer Center, The First Hospital of Jilin University, Jilin University, Changchun, 130021 Jilin China
| |
Collapse
|
46
|
DNA Associated with Circulating Exosomes as a Biomarker for Glioma. Genes (Basel) 2020; 11:genes11111276. [PMID: 33137926 PMCID: PMC7692052 DOI: 10.3390/genes11111276] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Cancerous and non-cancerous cells secrete exosomes, a type of nanovesicle known to carry the molecular signature of the parent for intercellular communications. Exosomes secreted by tumor cells carry abnormal DNA, RNA, and protein molecules that reflect the cancerous status. DNA is the master molecule that ultimately affects the function of RNA and proteins. Aberrations in DNA can potentially lead a cell to malignancy. Deviant quantities and the differential sequences of exosomal DNA are useful characteristics as cancer biomarkers. Since these alterations are either associated with specific stages of cancer or caused due to a clinical treatment, exosomal DNA is valuable as a diagnostic, prognostic, predictive, and therapeutic-intervention response biomarker. Notably, the exosomes can cross an intact blood–brain barrier and anatomical compartments by transcytosis. As such, the cancer-specific trademark molecules can be detected in systemic blood circulation and other body fluids, including cerebrospinal fluid, with non-invasive or minimally invasive procedures. This comprehensive review highlights the cancer-specific modulations of DNA associated with circulating exosomes that are beneficial as glioma biomarkers.
Collapse
|
47
|
López-Carrasco A, Martín-Vañó S, Burgos-Panadero R, Monferrer E, Berbegall AP, Fernández-Blanco B, Navarro S, Noguera R. Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuroblastoma cell line. J Exp Clin Cancer Res 2020; 39:226. [PMID: 33109237 PMCID: PMC7592549 DOI: 10.1186/s13046-020-01729-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased tissue stiffness is a common feature of malignant solid tumors, often associated with metastasis and poor patient outcomes. Vitronectin, as an extracellular matrix anchorage glycoprotein related to a stiff matrix, is present in a particularly increased quantity and specific distribution in high-risk neuroblastoma. Furthermore, as cells can sense and transform the proprieties of the extracellular matrix into chemical signals through mechanotransduction, genotypic changes related to stiffness are possible. METHODS We applied high density SNPa and NGS techniques to in vivo and in vitro models (orthotropic xenograft vitronectin knock-out mice and 3D bioprinted hydrogels with different stiffness) using two representative neuroblastoma cell lines (the MYCN-amplified SK-N-BE(2) and the ALK-mutated SH-SY5Y), to discern how tumor genomics patterns and clonal heterogeneity of the two cell lines are affected. RESULTS We describe a remarkable subclonal selection of genomic aberrations in SK-N-BE(2) cells grown in knock-out vitronectin xenograft mice that also emerged when cultured for long times in stiff hydrogels. In particular, we detected an enlarged subclonal cell population with chromosome 9 aberrations in both models. Similar abnormalities were found in human high-risk neuroblastoma with MYCN amplification. The genomics of the SH-SY5Y cell line remained stable when cultured in both models. CONCLUSIONS Focus on heterogeneous intratumor segmental chromosome aberrations and mutations, as a mirror image of tumor microenvironment, is a vital area of future research.
Collapse
Affiliation(s)
- Amparo López-Carrasco
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Susana Martín-Vañó
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Rebeca Burgos-Panadero
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Ezequiel Monferrer
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | | | - Samuel Navarro
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain
- CIBERONC, Madrid, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia, Spain.
- CIBERONC, Madrid, Spain.
| |
Collapse
|
48
|
Repair of G1 induced DNA double-strand breaks in S-G2/M by alternative NHEJ. Nat Commun 2020; 11:5239. [PMID: 33067475 PMCID: PMC7567796 DOI: 10.1038/s41467-020-19060-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022] Open
Abstract
The alternative non-homologous end-joining (NHEJ) pathway promotes DNA double-strand break (DSB) repair in cells deficient for NHEJ or homologous recombination, suggesting that it operates at all stages of the cell cycle. Here, we use an approach in which DNA breaks can be induced in G1 cells and their repair tracked, enabling us to show that joining of DSBs is not functional in G1-arrested XRCC4-deficient cells. Cell cycle entry into S-G2/M restores DSB repair by Pol θ-dependent and PARP1-independent alternative NHEJ with repair products bearing kilo-base long DNA end resection, micro-homologies and chromosome translocations. We identify a synthetic lethal interaction between XRCC4 and Pol θ under conditions of G1 DSBs, associated with accumulation of unresolved DNA ends in S-G2/M. Collectively, our results support the conclusion that the repair of G1 DSBs progressing to S-G2/M by alternative NHEJ drives genomic instability and represent an attractive target for future DNA repair-based cancer therapies. Depending on the cell cycle stage, cells can repair their genome via different pathways. Here the authors reveal mechanistic insights into repair of double strand breaks induced during G1 in an error-prone manner by Pol θ-dependent and PARP1-independent alt NHEJ during the SG2/M phases of the cell cycle
Collapse
|
49
|
Bolkestein M, Wong JKL, Thewes V, Körber V, Hlevnjak M, Elgaafary S, Schulze M, Kommoss FKF, Sinn HP, Anzeneder T, Hirsch S, Devens F, Schröter P, Höfer T, Schneeweiss A, Lichter P, Zapatka M, Ernst A. Chromothripsis in Human Breast Cancer. Cancer Res 2020; 80:4918-4931. [PMID: 32973084 DOI: 10.1158/0008-5472.can-20-1920] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/04/2020] [Accepted: 09/21/2020] [Indexed: 11/16/2022]
Abstract
Chromothripsis is a form of genome instability by which a presumably single catastrophic event generates extensive genomic rearrangements of one or a few chromosomes. Widely assumed to be an early event in tumor development, this phenomenon plays a prominent role in tumor onset. In this study, an analysis of chromothripsis in 252 human breast cancers from two patient cohorts (149 metastatic breast cancers, 63 untreated primary tumors, 29 local relapses, and 11 longitudinal pairs) using whole-genome and whole-exome sequencing reveals that chromothripsis affects a substantial proportion of human breast cancers, with a prevalence over 60% in a cohort of metastatic cases and 25% in a cohort comprising predominantly luminal breast cancers. In the vast majority of cases, multiple chromosomes per tumor were affected, with most chromothriptic events on chromosomes 11 and 17 including, among other significantly altered drivers, CCND1, ERBB2, CDK12, and BRCA1. Importantly, chromothripsis generated recurrent fusions that drove tumor development. Chromothripsis-related rearrangements were linked with univocal mutational signatures, with clusters of point mutations due to kataegis in close proximity to the genomic breakpoints and with the activation of specific signaling pathways. Analyzing the temporal order of events in tumors with and without chromothripsis as well as longitudinal analysis of chromothriptic patterns in tumor pairs offered important insights into the role of chromothriptic chromosomes in tumor evolution. SIGNIFICANCE: These findings identify chromothripsis as a major driving event in human breast cancer.
Collapse
Affiliation(s)
| | - John K L Wong
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Verena Thewes
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), University Hospital and DKFZ, Heidelberg, Germany
| | - Verena Körber
- Division of Theoretical Systems Biology, DKFZ, Heidelberg, Germany
| | - Mario Hlevnjak
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Shaymaa Elgaafary
- National Center for Tumor Diseases (NCT), University Hospital and DKFZ, Heidelberg, Germany.,Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Markus Schulze
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Computational Oncology Group, Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Felix K F Kommoss
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Steffen Hirsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Frauke Devens
- Group Genome Instability in Tumors, DKFZ, Heidelberg, Germany
| | - Petra Schröter
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, DKFZ, Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases (NCT), University Hospital and DKFZ, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany.,Molecular Diagnostics Program at the National Center for Tumor Diseases (NCT) and DKFZ, Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, DKFZ; DKFZ-Heidelberg Center for Personalized Oncology (HIPO) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Aurélie Ernst
- Group Genome Instability in Tumors, DKFZ, Heidelberg, Germany.
| |
Collapse
|
50
|
Yan Y, Guo G, Huang J, Gao M, Zhu Q, Zeng S, Gong Z, Xu Z. Current understanding of extrachromosomal circular DNA in cancer pathogenesis and therapeutic resistance. J Hematol Oncol 2020; 13:124. [PMID: 32928268 PMCID: PMC7491193 DOI: 10.1186/s13045-020-00960-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/03/2020] [Indexed: 02/08/2023] Open
Abstract
Extrachromosomal circular DNA was recently found to be particularly abundant in multiple human cancer cells, although its frequency varies among different tumor types. Elevated levels of extrachromosomal circular DNA have been considered an effective biomarker of cancer pathogenesis. Multiple reports have demonstrated that the amplification of oncogenes and therapeutic resistance genes located on extrachromosomal DNA is a frequent event that drives intratumoral genetic heterogeneity and provides a potential evolutionary advantage. This review highlights the current understanding of the extrachromosomal circular DNA present in the tissues and circulation of patients with advanced cancers and provides a detailed discussion of their substantial roles in tumor regulation. Confirming the presence of cancer-related extrachromosomal circular DNA would provide a putative testing strategy for the precision diagnosis and treatment of human malignancies in clinical practice.
Collapse
Affiliation(s)
- Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qian Zhu
- Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|