1
|
Cui LJ, Liu XB, Cui ZH. Exceptionally Strong Triply Dative Be-F Bonds in [CO 3]BeF - and [C 2O 4]BeF - Complexes: Reducing Valence Shell Electron Repulsion to Achieve High Bond Dissociation Energies. Inorg Chem 2025; 64:1718-1725. [PMID: 39823365 DOI: 10.1021/acs.inorgchem.4c03909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Dative bonds are typically polar, weaker, and longer than electron-sharing covalent bonds. The intriguing diatomic BeF- anion uniquely exhibits triple Be-F dative bonding with a considerable bond dissociation energy (BDE) of 88 kcal/mol. Here, we report exceptionally strong dative-bonded systems, [CO3]BeF- and [C2O4]BeF-, with BDE values exceeding 155 kcal/mol by integrating [CO3] and [C2O4] groups into the BeF- framework. These designed C2v-symmetric molecules represent the lowest-energy configurations and maintain similar triply bonded Be-F interactions with orbital characteristics and bond distances closely resembling those in BeF-. Chemical bonding analysis reveals that [CO3] and [C2O4] groups significantly withdraw s-type nonbonding electrons from Be, which minimizes valence shell electron repulsion from the F- to Be interactions. This reduction in Pauli repulsion between the closed-shell fragments in [CO3]BeF- and [C2O4]BeF-, compared to that of BeF-, establishes a new record in dative bond strength and offers substantial insights into dative bonding mechanisms. The identified high thermodynamic and kinetic stability of these systems positions them as promising candidates for experimental detection in low-temperature matrices or the gas phase.
Collapse
Affiliation(s)
- Li-Juan Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Xin-Bo Liu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
2
|
Zhang Y, Wang W. Interplay Between the N→C Dative Bond, Intramolecular Chalcogen Bond and π Conjugation in the Complexes Formed by Cyclo[18]carbon and C 14 Polyyne with 1,2,5-Chalcogenadiazoles. Chempluschem 2025; 90:e202400557. [PMID: 39301590 DOI: 10.1002/cplu.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
The N→C dative bond (DB), intramolecular chalcogen bond and π conjugation play important roles in determining the structures and properties of some molecular carbon materials and organic/polymeric photovoltaic materials. In this work, the interplay between the N→C DB, intramolecular chalcogen bond and π conjugation in the complexes formed by cyclo[18]carbon and C14 polyyne with 1,2,5-chalcogenadiazoles has been investigated in detail by using reliable quantum chemical calculations. This study has made four main findings. First, only the Te-containing complexes bound by N→C DBs are much more stable than their corresponding van der Waals (vdW) complexes. Second, in addition to through-bond π conjugations, through-space π conjugations also exist in some Se/Te-containing complexes bound by N→C DBs. Third, the cooperativity between intramolecular chalcogen bond, π conjugation between two monomers and N→C DB is not very strong and can be ignored. Fourth, compared to π conjugations, intramolecular Ch⋅⋅⋅C (Ch=O, S, Se, Te) chalcogen bonds play a secondary role in stabilizing the complexes bound by N→C DBs. These findings clearly indicate that the role of "conformational lock", popular in the field of organic optoelectronic materials, may have been greatly overestimated.
Collapse
Affiliation(s)
- Yu Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, China
| |
Collapse
|
3
|
Malhotra V, Elvers BJ, Dolai R, Chrysochos N, Bandaru SSM, Gangber T, Britto NJ, Krummenacher I, Rajaraman G, Braunschweig H, Schulzke C, Jana A. Cross-Coupling of NHC/CAAC-Based Carbodicarbene: Synthesis of Electron-Deficient Diradicaloids. J Am Chem Soc 2024; 146:29481-29490. [PMID: 39425654 DOI: 10.1021/jacs.4c08876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Herein, we report nickel(0)-catalyzed cross-coupling reactions of NHC/CAAC-based carbodicarbene (NHC = N-heterocyclic carbene and CAAC = cyclic(alkyl)(amino)carbene) with different aryl chlorides, bromides, and iodides. The resulting aryl-substituted cationic carbodicarbene derivatives are prone to one-electron oxidation yielding radical-dications, which, depending on the aryl motif employed, follow different modes of radical-radical dimerization and constitute an entry point to carbon/nitrogen- and nitrogen/nitrogen-centered diradicaloids. Subsequently, this coupling strategy was strategically applied to the synthesis of p-phenylene- and p,p'-biphenylene-bridged carbon/carbon-centered electron-deficient diradicaloids. The employed π-conjugated spacer plays a crucial role in determining the triplet population at room temperature by modulation of the singlet-triplet gap: EPR inactive for p-phenylene vs EPR active for p,p'-biphenylene. Nearly two decades after the disclosure of carbodicarbenes as donor-stabilized atomic carbon equivalents by Tonner and Frenking in 2007, we demonstrate their cross-couplings with a series of aryl halides/dihalides and, based on this, developed a modular methodology for the systematic synthesis of various electron-deficient diradicaloids.
Collapse
Affiliation(s)
- Vasu Malhotra
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, D-17489 Greifswald, Germany
| | - Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | | | - Tejaswinee Gangber
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| | | | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, D-17489 Greifswald, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, India
| |
Collapse
|
4
|
Zafar M, Subramaniyan V, Tibika F, Tulchinsky Y. Cationic ligands - from monodentate to pincer systems. Chem Commun (Camb) 2024; 60:9871-9906. [PMID: 38920056 DOI: 10.1039/d4cc01489h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
For a long time, the small group of cationic ligands stood out as obscure systems within the general landscape of coordinative chemistry. However, this situation has started to change rapidly during the last decade, with more and more examples of metal-coordinated cationic species being reported. The growing interest in these systems is not only of purely academic nature, but also driven by accumulating evidence of their high catalytic utility. Overcoming the inherently poor coordinating ability of cationic species often required additional structural stabilization. In numerous cases this was realized by functionalizing them with a pair of chelating side-arms, effectively constructing a pincer-type scaffold. This comprehensive review aims to encompass all cationic ligands possessing such pincer architecture reported to date. Herein every cationic species that has ever been embedded in a pincer framework is described in terms of its electronic structure, followed by an in-depth discussion of its donor/acceptor properties, based on computational studies (DFT) and available experimental data (IR, NMR or CV). We then elaborate on how the positive charge of these ligands affects the spectroscopic and redox properties, as well as the reactivity, of their complexes, compared to those of the structurally related neutral ligands. Among other systems discussed, this review also surveys our own contribution to this field, namely, the introduction of sulfonium-based pincer ligands and their complexes, recently reported by our group.
Collapse
Affiliation(s)
- Mohammad Zafar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | | | - Françoise Tibika
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Yuri Tulchinsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
5
|
Cui LJ, Liu YQ, Pan S, Cui ZH, Frenking G. Unusual quadruple bonds featuring collective interaction-type σ bonds between first octal-row atoms in the alkaline-earth compounds AeOLi 2 (Ae = Be-Ba). Chem Sci 2024:d4sc01979b. [PMID: 39176245 PMCID: PMC11337084 DOI: 10.1039/d4sc01979b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024] Open
Abstract
Quantum chemical calculations are reported for the complexes of alkaline earth metals AeOLi2 (Ae = Be-Ba) at the BP86-D3(BJ)/def2-QZVPP and CCSD(T)/def2-QZVPPQZVPP levels. The nature of the Ae-OLi2 bond has been analyzed with a variety of methods. The AeOLi2 molecules exhibit an unprecedented σ donor bond Ae→OLi2 where the (n)s2 lone-pair electrons of the Ae atom are donated to vacant O-Li2 antibonding orbitals having the largest coefficient at lithium. This is a covalent bond where the accumulation of the associated electronic charge is located at two positions above and below the Ae-OLi2 axis. The bifurcated component of orbital interactions is structurally related to the recently proposed collective bonding model, but exhibits a completely different type of bonding. The most stable isomer of AeOLi2 has a C 2v geometry and a singlet (1A1) electronic ground state. The bond dissociation energy (BDE) of the Ae-OLi2 bonds exhibits a zig-zag trend from BeOLi2 to BaOLi2, with BeOLi2 having the largest BDE (D e = 73.0 kcal mol-1) and MgOLi2 possessing the lowest BDE (D e = 42.3 kcal mol-1) at the CCSD(T) level. The calculation of the atomic partial charges by the Hirshfeld and Voronoi methods suggests that Be and Mg carry small negative charges in the lighter molecules whereas the heavier atoms Ca-Ba have small positive charges. In contrast, the NBO and QTAIM methods give positive charges for all Ae atoms that are larger for Ca-Ba than that calculated by the Hirshfeld and Voronoi approaches. The molecules AeOLi2 have large dipole moments where the negative end is at the Ae atom with the polarity Ae→OLi2. The largest dipole moments are predicted for the lighter species BeOLi2 and MgOLi2 and the smallest value is calculated for BaOLi2. The calculation of the vibrational spectra shows a significant red-shift toward lower wave numbers for the Ae-OLi2 stretching mode in comparison to diatomic AeO. Besides the Ae→OLi2 σ-donor bonds there are also three dative bonds due to Ae←OLi2 backdonation which consist of one σ bond and two π bonds. The appearance of strong Ae→OLi2 σ donation leads to quadruple bonds AeOLi2 in all systems AeOLi2, even for the lightest species with Ae = Be, Mg. The valence orbitals of Ca, Sr, and Ba, which are involved in the dative interactions, are the (n)s and (n-1)d AOs whereas Be and Mg use their (n)s and (n)p AOs. The EDA-NOCV results are supported by the AdNDP calculations which give four 2c-2e bonding orbitals. Three bonding orbitals have occupation numbers ∼2. One σ orbital has smaller occupation numbers between 1.32 and 1.73 due to the delocalization to the lithium atoms. The analysis of the electronic structure with the ELF method suggests multicenter bonds with mainly trisynaptic and tetrasynaptic basins, which also support the results of the EDA-NOCV calculations.
Collapse
Affiliation(s)
- Li-Juan Cui
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 China
| | - Yu-Qian Liu
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 China
| | - Sudip Pan
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University Changchun 130023 China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University Changchun 130023 China
| | - Gernot Frenking
- Philipps-Universität Marburg Hans-Meerwein-Strasse 4 D-35043 Marburg Germany
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
6
|
Moto JO, Adjieufack AI, Ndika Ngomb SC, D'ambassa GM, Djendo Mazia SL, Bikele DM. Deciphering the influence of Pd II and Pd IV oxidation states on non-standard chemical bonds within bis(jN-heterocyclic carbene) complexes: insights from DFT. RSC Adv 2024; 14:21075-21088. [PMID: 38962091 PMCID: PMC11221531 DOI: 10.1039/d4ra03893b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024] Open
Abstract
Bis-N-heterocyclic carbene ligands (bis(NHC)) have introduced a new approach to designing homogeneous and heterogeneous catalysts, demonstrating the versatility of ligand concepts in catalysis. This study presents a computational analysis of palladium (+ii and +iv) complexes containing either a normally (bis(nNHC)) or an abnormally (bis(aNHC)) bound CH2-bridged bis-N-heterocyclic carbene ligand; in addition, ancillary ligands are permuted from chlorides (X = Cl) to bromides (X = Br). Density functional theory at the B3PW91/6-31G(d)/Lanl2DZ level in the gas phase was used to investigate the electronic structure and bonding properties of bis(NHC)PdIIX2 and bis(NHC)PdIVX4 for bis(NHC) palladium(ii) dihalide and palladium(iv) tetrachloride complexes, respectively. Results indicate that all of the palladium complex structures prefer a flexible boat-type conformation with an average C 2v symmetry, according to bond property (Ccarbene-Pd and Pd-Cl[Br]) analysis. The strength of these bonds depends on coordinating halide ions (Cl- and Br-), the type of ligand (bis(nNHC) and bis(aNHC)), and the palladium oxidation state (+ii and +iv). Analysis of thermodynamic parameters (ΔH 0, ΔG 0, and ΔE bind) shows an increase in values from an abnormal to normal chelating mode in tetrahalides, whereas the opposite is observed for dihalide complexes. The lower π-backbonding ability of the metal, which is influenced by the quantity and size of halide ions involved, could be one possible explanation for this deficiency.
Collapse
Affiliation(s)
- Jean Ongagna Moto
- Computational and Theoretical Chemistry Unit, Department of Chemistry, Faculty of Science, University of Douala P.O. Box 24157 Douala Cameroon
| | - Abel Idrice Adjieufack
- Physical and Theoretical Chemistry Laboratory, University of Yaoundé I P.O. Box 812 Yaoundé Cameroon
| | - Simon Claude Ndika Ngomb
- Computational and Theoretical Chemistry Unit, Department of Chemistry, Faculty of Science, University of Douala P.O. Box 24157 Douala Cameroon
| | - Gaël Mouzong D'ambassa
- Computational and Theoretical Chemistry Unit, Department of Chemistry, Faculty of Science, University of Douala P.O. Box 24157 Douala Cameroon
| | - Suzane Leonie Djendo Mazia
- Computational and Theoretical Chemistry Unit, Department of Chemistry, Faculty of Science, University of Douala P.O. Box 24157 Douala Cameroon
| | - Désiré Mama Bikele
- Computational and Theoretical Chemistry Unit, Department of Chemistry, Faculty of Science, University of Douala P.O. Box 24157 Douala Cameroon
| |
Collapse
|
7
|
Lin X, Lu X, Tang S, Wu W, Mo Y. Multiconfigurational actinide nitrides assisted by double Möbius aromaticity. Chem Sci 2024; 15:8216-8226. [PMID: 38817572 PMCID: PMC11134321 DOI: 10.1039/d4sc01549e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024] Open
Abstract
Understanding the bonding nature between actinides and main-group elements remains a key challenge in actinide chemistry due to the involvement of f orbitals. Herein, we propose a unique "aromaticity-assisted multiconfiguration" (AAM) model to elucidate the bonding nature in actinide nitrides (An2N2, An = Ac, Th, Pa, U). Each planar four-membered An2N2 with equivalent An-N bonds possesses four delocalized π electrons and four delocalized σ electrons, forming a new family of double Möbius aromaticity that contributes to the molecular stability. The unprecedented aromaticity further supports actinide nitrides to exhibit multiconfigurational characters, where the unpaired electrons (2, 4 or 6 in naked Th2N2, Pa2N2 or U2N2, respectively) either are spin-free and localized on metal centres or form metal-ligand bonds. High-level multiconfigurational computations confirm an open-shell singlet ground state for actinide nitrides, with small energy gaps to high spin states. This is consistent with the antiferromagnetic nature observed experimentally in uranium nitrides. The novel AAM bonding model can be authenticated in both experimentally identified compounds containing a U2N2 motif and other theoretically modelled An2N2 clusters and is thus expected to be a general chemical bonding pattern between actinides and main-group elements.
Collapse
Affiliation(s)
- Xuhui Lin
- School of Physics, Central South University Changsha Hunan 410083 China
| | - Xiaoli Lu
- School of Chemistry, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Shenghui Tang
- School of Chemistry, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Wei Wu
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry and College of Chemistry and Chemical Engineering, Xiamen University Xiamen Fujian 361005 China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro Greensboro NC 27401 USA
| |
Collapse
|
8
|
Zhang S, Zhao X, Qiu Y, Xiong Y, Meng G, Chen W, Liu Z, Zhang J. Electron Deficient Ir-O Bonds Promote Heterogeneous Ir-Catalyzed Anti-Markovnikov Hydroboration of Alkenes under Mild Neat Conditions. NANO LETTERS 2024; 24:5165-5173. [PMID: 38630980 DOI: 10.1021/acs.nanolett.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Tuning electronic characteristics of metal-ligand bonds based on reaction pathways to achieve efficient catalytic processes has been widely studied and proven to be feasible in homogeneous catalysis, but it is scarcely investigated in heterogeneous catalysis. Herein, we demonstrate the regulation of the electronic configuration of Ir-O bonds in an Ir single-atom catalyst according to the borane activation mechanism. Ir-O bonds in Ir1/Ni(OH)x are found to be more electron-poor than those in Ir1/NiOx. Despite the mild solvent-free conditions and ambient temperature, Ir1/Ni(OH)x exhibits outstanding performance for the hydroboration of alkenes, furnishing the desired alkylboronic esters with a turnover frequency value of ≤3060 h-1 and 99% anti-Markovnikov selectivity, which is significantly better than that of Ir1/NiOx (42 h-1). It is further proven that the more electron-poor Ir-O bonds as active centers are more oxidative and so benefit the activation of the H-B bond in the reductive pinacolborane.
Collapse
Affiliation(s)
- Shasha Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Xudong Zhao
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Yajun Qiu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Wei Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Zhiliang Liu
- College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, China
| | - Jian Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
9
|
Jörges M, Gremillion AJ, Knyszek D, Kelley SP, Walensky JR, Gessner VH. From a mercury(II) bis(yldiide) complex to actinide yldiides. Chem Commun (Camb) 2024; 60:3190-3193. [PMID: 38415283 DOI: 10.1039/d3cc05553a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The bis(yldiide) mercury complex, (L-Hg-L) [L = C(PPh3)P(S)Ph2], is prepared from the corresponding potassium yldiide and used to access the first substituted yldiide actinide complexes [(C5Me5)2An(L)(Cl)] (An = U, Th) via salt metathesis. Compared to previously reported phosphinocarbene complexes, the complexes exhibit long actinide-carbon distances, which can be explained by the strong polarization of the π-electron density toward carbon.
Collapse
Affiliation(s)
- Mike Jörges
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Alexander J Gremillion
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Daniel Knyszek
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany.
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | - Viktoria H Gessner
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany.
| |
Collapse
|
10
|
Hu SX, Liu HT, Cao LZ, Chen XT, Guan PF, Zhang P. Distinguishing the Geometric and Electronic Structures of Actinide Carbides An xC 8 (An = Th, U; x = 2, 3) through Exchange Interactions. J Phys Chem A 2024; 128:829-839. [PMID: 38266177 DOI: 10.1021/acs.jpca.3c06060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Global-minimum optimizations combined with relativistic quantum chemistry calculations have been performed to characterize the ground-state stable structures of four titled compounds and to analyze the bonding properties. Th2C8 was identified as being a ThC4-Th(C2)2 structure, U2C8 has been found to favor the U-U(C8) structure, and both Th3C8 and U3C8 adopt the (AnC3)2-(AnC2) structure. Then, the wave function analyses reveal that the interactions between the Th 7s-based orbital and the σg molecular orbital of the C2 unit compensate for the excitation energy of 7s16d1 → 6d2 and lead to the stabilization of two Th(IV)s in the ThC4-Th(C2)2 structure. It also reveals that the U species exhibit magnetic exchange coupling behavior in UxC8, for instance, as seen in the direct interaction of U2C8 and the superexchange pathway of U3C8, which effectively stabilizes their low-spin states. This interpretation indicates that the geometric and electronic structures of AnxC8 species are largely influenced by the local magnetic moment and spin correlation.
Collapse
Affiliation(s)
- Shu-Xian Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Hai-Tao Liu
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| | - Ling-Zhi Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiao-Tong Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Peng-Fei Guan
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ping Zhang
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
11
|
Aweke BS, Yu CH, Shen JS, Wang S, Yap GPA, Chen WC, Ong TG. Binuclear Macrocyclic Silver(I) Complex of a Bis(carbone) Pincer Ligand: Synthesis and Application as a Carbone-Transfer Agent. Inorg Chem 2023; 62:12664-12673. [PMID: 37523291 DOI: 10.1021/acs.inorgchem.3c00765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
A facile synthesis of a binuclear AgI complex 2 of a bis(carbone) ligand L and its application as a carbone-transfer agent for the generation of other transition-metal complexes of AuI (3), NiII (4), and PdII (5) is presented. Complex 2 was synthesized through multiple synthetic routes under mild reaction conditions using the tetracationic [LH4][OTf·Cl]2 precursor salt, the dicationic [LH2][OTf]2 ylide salt, and the free ligand L. The first two synthesis routes require no prior isolation of the air-, moisture-, and temperature-sensitive free ligand L, thus affording complex 2 with high yield and purity. Multinuclear NMR techniques, high-resolution mass spectrometry, and single-crystal X-ray diffraction analysis confirmed the identity of complex 2 as a binuclear AgI complex of L with a molecular formula of [L2Ag2][OTf]2 and a 16-membered-ring metallomacrocyclic structure. During the transmetalation reaction with AuI, the binuclear nature of complex 2 remains intact to give analogous complex 3 ([L2Au2][OTf]2). However, the dimeric structure was disrupted upon the carbone-transfer reaction with NiII and PdII, yielding mononuclear C-N-C pincer-type complexes 4 ([LNiCl][OTf]) and 5 ([LPdCl][OTf]), respectively. These results demonstrated the versatile use of complex 2 as a carbone-transfer agent to other transition metals regardless of the type or size of the metals or the geometry they prefer.
Collapse
Affiliation(s)
- Bamlaku Semagne Aweke
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Cheng-Han Yu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jiun-Shian Shen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Sheng Wang
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Wen-Ching Chen
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
- Department of Medicinal and Applied Chemistry, National Taiwan University 10617 Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
12
|
Affiliation(s)
- Martin A L Johansen
- Department of Chemistry and Center for Sustainable STEM Education, UiT The Arctic University of Norway, Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry and Center for Sustainable STEM Education, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
13
|
Dolai R, Kumar R, Elvers BJ, Pal PK, Joseph B, Sikari R, Nayak MK, Maiti A, Singh T, Chrysochos N, Jayaraman A, Krummenacher I, Mondal J, Priyakumar UD, Braunschweig H, Yildiz CB, Schulzke C, Jana A. Carbodicarbenes and Striking Redox Transitions of their Conjugate Acids: Influence of NHC versus CAAC as Donor Substituents. Chemistry 2023; 29:e202202888. [PMID: 36129127 PMCID: PMC10100033 DOI: 10.1002/chem.202202888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/11/2023]
Abstract
Herein, a new type of carbodicarbene (CDC) comprising two different classes of carbenes is reported; NHC and CAAC as donor substituents and compare the molecular structure and coordination to Au(I)Cl to those of NHC-only and CAAC-only analogues. The conjugate acids of these three CDCs exhibit notable redox properties. Their reactions with [NO][SbF6 ] were investigated. The reduction of the conjugate acid of CAAC-only based CDC with KC8 results in the formation of hydrogen abstracted/eliminated products, which proceed through a neutral radical intermediate, detected by EPR spectroscopy. In contrast, the reduction of conjugate acids of NHC-only and NHC/CAAC based CDCs led to intermolecular reductive (reversible) carbon-carbon sigma bond formation. The resulting relatively elongated carbon-carbon sigma bonds were found to be readily oxidized. They were, thus, demonstrated to be potent reducing agents, underlining their potential utility as organic electron donors and n-dopants in organic semiconductor molecules.
Collapse
Affiliation(s)
- Ramapada Dolai
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rahul Kumar
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Benedict J. Elvers
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Pradeep Kumar Pal
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Benson Joseph
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Rina Sikari
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Avijit Maiti
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Tejender Singh
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - Arumugam Jayaraman
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| | - U. Deva Priyakumar
- International Institute of Information Technology GachibowliHyderabad500032India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB)Julius-Maximilians-Universität WürzburgAm Hubland97074WürzburgGermany
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal PlantsAksaray UniversityAksaray68100Turkey
| | - Carola Schulzke
- Institut für BiochemieUniversität GreifswaldFelix-Hausdorff-Strasse 417489GreifswaldGermany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad GopanpallyHyderabad500046TelanganaIndia
| |
Collapse
|
14
|
Pan S, Frenking G. Comment on "The oxidation state in low-valent beryllium and magnesium compounds" by M. Gimferrer, S. Danés, E. Vos, C. B. Yildiz, I. Corral, A. Jana, P. Salvador and D. M. Andrada, Chem. Sci. 2022, 13, 6583. Chem Sci 2023; 14:379-383. [PMID: 36687352 PMCID: PMC9811506 DOI: 10.1039/d2sc04231b] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022] Open
Abstract
We challenge the assignment of the oxidation state +2 for beryllium and magnesium in the complexes Be(cAACDip)2 and Mg(cAACDip)2 as suggested by Gimferrer et al., Chem. Sci. 2022, 13, 6583 in a recent study. A careful review of the data in the ESI contradicts their own statement and shows that the results support the earlier suggestion that the metals are in the zero oxidation state. The authors reported wrong data for the excitation energies of Be and Mg to the 1D (np2) state. We also correct some misleading statements about the EDA method.
Collapse
Affiliation(s)
- Sudip Pan
- Fachbereich Chemie, Philipps-Universität MarburgMarburgGermany
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität MarburgMarburgGermany,Donostia International Physics Center (DIPC)20018 San SebastianSpain,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech UniversityChina
| |
Collapse
|
15
|
Li K, Liu W, Zhang H, Cheng L, Zhang Y, Wang Y, Chen N, Zhu C, Chai Z, Wang S. Progress in solid state and coordination chemistry of actinides in China. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In the past decade, the area of solid state chemistry of actinides has witnessed a rapid development in China, based on the significantly increased proportion of the number of actinide containing crystal structures reported by Chinese researchers from only 2% in 2010 to 36% in 2021. In this review article, we comprehensively overview the synthesis, structure, and characterizations of representative actinide solid compounds including oxo-compounds, organometallic compounds, and endohedral metallofullerenes reported by Chinese researchers. In addition, Chinese researchers pioneered several potential applications of actinide solid compounds in terms of adsorption, separation, photoelectric materials, and photo-catalysis, which are also briefly discussed. It is our hope that this contribution not only calls for further development of this area in China, but also arouses new research directions and interests in actinide chemistry and material sciences.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University , Yantai , 264005 , China
| | - Hailong Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Liwei Cheng
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials Science and State Key Laboratory of Radiation Medicine and Protection, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials , School of Chemistry and Chemical Engineering, Nanjing University , Nanjing , 210023 , China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection , School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou , 215123 , China
| |
Collapse
|
16
|
Bickelhaupt FM, Fonseca Guerra C, Mitoraj M, Sagan F, Michalak A, Pan S, Frenking G. Clarifying notes on the bonding analysis adopted by the energy decomposition analysis. Phys Chem Chem Phys 2022; 24:15726-15735. [PMID: 35730200 DOI: 10.1039/d2cp02153f] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We discuss the fundamental aspects of the EDA-NOCV method and address some critical comments that have been made recently. The EDA-NOCV method unlike most other methods focuses on the process of bond formation between the interacting species and not just only on the analysis of the finally formed bond. This is demonstrated using LiF as an example. There is a difference between the interactions between the initial species which form the bond and are also the final product of bond cleavage, and the interactions between the fragments in the eventually formed molecule. The flexibility of the method allows the choice of the interacting fragments which helps to identify the charge and electron configuration of the fragments which describe the bond. This is very helpful in cases where the bond may be described with several Lewis structures. We reject the idea that it would be a disadvantage to have "bond path functions" as the energy components in the EDA, which actually indicate the variability of the method. The bonding analysis in a different sequence of the bond formation gives important results for the various questions that can be asked. This is demonstrated by using CH2, CO2 and the formation of a guanine quartet as examples. The fact that a bond is always defined by the bound molecule, the fragments, and their states is universal and deeply physical, as we show here again for various examples. The results of the EDA-NOCV method are in full accordance with the physical mechanism of the chemical bond as revealed by Ruedenberg.
Collapse
Affiliation(s)
- F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, The Netherlands.
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS) and Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, The Netherlands.
| | - Mariusz Mitoraj
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Gronostajowa 2, 30-387 Cracow, Poland.
| | - F Sagan
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Gronostajowa 2, 30-387 Cracow, Poland.
| | - Artur Michalak
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, R. Gronostajowa 2, 30-387 Cracow, Poland.
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Germany. .,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.,Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain
| |
Collapse
|
17
|
Seed JA, Vondung L, Adams RW, Wooles AJ, Lu E, Liddle ST. Mesoionic Carbene Complexes of Uranium(IV) and Thorium(IV). Organometallics 2022; 41:1353-1363. [PMID: 36157256 PMCID: PMC9490841 DOI: 10.1021/acs.organomet.2c00120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/30/2022]
Abstract
We report the synthesis and characterization of uranium(IV) and thorium(IV) mesoionic carbene complexes [An{N(SiMe3)2}2(CH2SiMe2NSiMe3){MIC}] (An = U, 4U and Th, 4Th; MIC = {CN(Me)C(Me)N(Me)CH}), which represent rare examples of actinide mesoionic carbene linkages and the first example of a thorium mesoionic carbene complex. Complexes 4U and 4Th were prepared via a C-H activation intramolecular cyclometallation reaction of actinide halides, with concomitant formal 1,4-proton migration of an N-heterocyclic olefin (NHO). Quantum chemical calculations suggest that the An-carbene bond comprises only a σ-component, in contrast to the uranium(III) analogue [U{N(SiMe3)2}3(MIC)] (1) where computational studies suggested that the 5f3 uranium(III) ion engages in a weak one-electron π-backbond to the MIC. This highlights the varying nature of actinide-MIC bonding as a function of actinide oxidation state. In solution, 4Th exists in equilibrium with the Th(IV) metallacycle [Th{N(SiMe3)2}2(CH2SiMe2NSiMe3)] (6Th) and free NHO (3). The thermodynamic parameters of this equilibrium were probed using variable-temperature NMR spectroscopy yielding an entropically favored but enthalpically endothermic process with an overall reaction free energy of ΔG 298.15K = 0.89 kcal mol-1. Energy decomposition analysis (EDA-NOCV) of the actinide-carbon bonds in 4U and 4Th reveals that the former is enthalpically stronger and more covalent than the latter, which accounts for the respective stabilities of these two complexes.
Collapse
Affiliation(s)
- John A. Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lisa Vondung
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ralph W. Adams
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Ashley J. Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Erli Lu
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Stephen T. Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
18
|
Aweke BS, Yu CH, Zhi M, Chen WC, Yap GPA, Zhao L, Ong TG. A Bis-(carbone) Pincer Ligand and Its Coordinative Behavior toward Multi-Metallic Configurations. Angew Chem Int Ed Engl 2022; 61:e202201884. [PMID: 35293113 DOI: 10.1002/anie.202201884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Carbones are divalent carbon(0) species that contain two lone pairs of electrons. Herein, we have prepared the first known stable and isolable free bis-(carbone) pincer framework with a well-defined solid-state structure. This bis-(carbone) ligand is an effective scaffold for forming monometallic (Ni and Pd) and trinuclear heterometallic complexes with Au-Pd-Au, Au-Ni-Au, and Cu-Ni-Cu configurations. Sophisticated quantum-theoretical analyses found that the metal-metal interactions are too weak to play a significant role in upholding these multi-metallic configurations; rather, the four lone pairs of electrons within the bis-(carbone) framework are the main contributors to the stability of the complexes.
Collapse
Affiliation(s)
- Bamlaku Semagne Aweke
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC.,Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, ROC.,Sustainable Chemical Science and Technology (SCST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei, Taiwan, ROC
| | - Cheng-Han Yu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Minna Zhi
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Wen-Ching Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Glenn P A Yap
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, China
| | - Tiow-Gan Ong
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, ROC.,Department of Chemistry, National Taiwan University, Taipei, Taiwan, ROC.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
| |
Collapse
|
19
|
Wang J, Wang CZ, Wu QY, Lan JH, Chai ZF, Nie CM, Shi WQ. Construction of the Largest Metal-Centered Double-Ring Tubular Boron Clusters Based on Actinide Metal Doping. J Phys Chem A 2022; 126:3445-3451. [PMID: 35612436 DOI: 10.1021/acs.jpca.2c00563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal doping has been considered to be an effective approach to stabilize various boron clusters. In this work, we constructed a series of largest metal-centered double-ring tubular boron clusters An@B24 (An = Th, Pa, Pu, and Am). Extensive global minimum structural searches combined with density functional theory predicted that the global minima of An@B24 (An = Th, Pu, and Am) are double-ring tubular structures. Formation energy analysis indicates that these boron clusters are highly stable, especially for Th@B24 and Pa@B24. Detailed bonding analysis shows that the significant stability of An@B24 is determined by the covalent character of the An-B bonding, which stems from the interactions of An 5f and 6d orbitals and B 2p orbitals. These results show that actinide metal doping is a feasible route to construct stable large metal-centered double-ring tubular boron clusters, offering the possibility to design boron nanomaterials with special physiochemical properties.
Collapse
Affiliation(s)
- Juan Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.,Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Tian J, Cordier M, Bour C, Auffrant A, Gandon V. A cyclic divalent N(I) species isoelectronic to carbodiphosphoranes. Chem Commun (Camb) 2022; 58:5741-5744. [PMID: 35466973 DOI: 10.1039/d2cc01637k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of a rare type of diphosphazenium cation is described. Its synthesis features a unique oxidative dealkylation of an iminophosphorane-phosphole by a silver(I) salt. DFT study of this compound reveals the low valent character of the N(I) center.
Collapse
Affiliation(s)
- Jiaxin Tian
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | - Marie Cordier
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| | - Christophe Bour
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France.
| | - Audrey Auffrant
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay cedex, France. .,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168 Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91120 Palaiseau, France.
| |
Collapse
|
21
|
Aweke BS, Yu C, Zhi M, Chen W, Yap GPA, Zhao L, Ong T. A
Bis
‐(carbone) Pincer Ligand and Its Coordinative Behavior toward Multi‐Metallic Configurations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bamlaku Semagne Aweke
- Institute of Chemistry Academia Sinica Taipei Taiwan, ROC
- Department of Applied Chemistry National Yang Ming Chiao Tung University Hsinchu Taiwan, ROC
- Sustainable Chemical Science and Technology (SCST) Taiwan International Graduate Program (TIGP) Academia Sinica Taipei Taiwan, ROC
| | - Cheng‐Han Yu
- Institute of Chemistry Academia Sinica Taipei Taiwan, ROC
| | - Minna Zhi
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Wen‐Ching Chen
- Institute of Chemistry Academia Sinica Taipei Taiwan, ROC
| | - Glenn P. A. Yap
- Department of Chemistry and Biochemistry University of Delaware Newark, DE USA
| | - Lili Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University Nanjing China
| | - Tiow‐Gan Ong
- Institute of Chemistry Academia Sinica Taipei Taiwan, ROC
- Department of Chemistry National Taiwan University Taipei Taiwan, ROC
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung Taiwan, ROC
| |
Collapse
|
22
|
Lin X, Mo Y. Partial Double Metal-Carbon Bonding Model in Transition Metal Methyl Compounds. Inorg Chem 2022; 61:2892-2902. [PMID: 35104122 DOI: 10.1021/acs.inorgchem.1c03619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The chemical bond between a transition metal and a methyl group (M-CH3) is typically defined as a single covalent bond, which is of fundamental significance and general interest in understanding the structural properties and reactivity of transition metal alkyl compounds. Herein, we demonstrate that the M-CH3 bonding involves varying σ and π components and thus should be best described in terms of the partial double M═CH3 bond. The often-neglected π bonding stems from an occupied π-symmetric orbital of the methyl group comprising all three C-H σ bonds (but one C-H' contributes more than the other two) and a vacant low-lying metal d(π) orbital, and is associated with the intramolecular C-H'···M agostic effect (i.e., an acute M-C-H' angle and a short H'···M distance), whose origin is still controversial. We quantify the geometric and energetic impacts of the π interaction involved in the M-CH3 bond by explicitly computing the intramolecular πCH' → dM interaction with the ab initio valence bond (VB) theory. Our computations of the ligand-free [TiCH3]3+ and a series of metallocene catalysts provide a direct proof for the presence of the π bonding in M-CH3 bonds, which is the cause for the agostic effect. The partial double M═CH3 bonding model is not only validated by a range of bonding analyses including VB self-consistent field (VBSCF)-based energy decomposition and quantum theory of atoms in molecules (QTAIM) but also authenticated by the specific activity of double M═CH3 bonds in the C-H activation and olefin insertion. More importantly, the σ bond gradually switches from a classical covalent bond to a novel charge-shift bond with the π bonding becoming increasingly significant. We anticipate that the recognition of the π interaction between electrophilic metal centers and C-H bonds can benefit the understanding of the nature of metal-carbon bonds in transition metal ethyl, alkyl, and carbene compounds.
Collapse
Affiliation(s)
- Xuhui Lin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| |
Collapse
|
23
|
Liu K, Li B, Yu J, Shi W. Carbone Derivatives of Group 14: A Class of Important Reactive Intermediates. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Bonnin Q, Edlová T, Sosa Carrizo ED, Fleurat-Lessard P, Brandès S, Cattey H, Richard P, Le Gendre P, Normand AT. Coordinatively Unsaturated Amidotitanocene Cations with Inverted σ and π Bond Strengths: Controlled Release of Aminyl Radicals and Hydrogenation/Dehydrogenation Catalysis. Chemistry 2021; 27:18175-18187. [PMID: 34669988 DOI: 10.1002/chem.202103487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/05/2022]
Abstract
Cationic amidotitanocene complexes [Cp2 Ti(NPhAr)][B(C6 F5 )4 ] (Cp=η5 -C5 H5 ; Ar=phenyl (1 a), p-tolyl (1 b), p-anisyl (1 c)) were isolated. The bonding situation was studied by DFT (Density Functional Theory) using EDA-NOCV (Energy Decomposition Analysis with Natural Orbitals for Chemical Valence). The polar Ti-N bond in 1 a-c features an unusual inversion of σ and π bond strengths responsible for the balance between stability and reactivity in these coordinatively unsaturated species. In solution, 1 a-c undergo photolytic Ti-N cleavage to release Ti(III) species and aminyl radicals ⋅NPhAr. Reaction of 1 b with H3 BNHMe2 results in fast homolytic Ti-N cleavage to give [Cp2 Ti(H3 BNHMe2 )][B(C6 F5 )4 ] (3). 1 a-c are highly active precatalysts in olefin hydrogenation and silanes/amines cross-dehydrogenative coupling, whilst 3 efficiently catalyzes amine-borane dehydrogenation. The mechanism of olefin hydrogenation was studied by DFT and the cooperative H2 activation key step was disclosed using the Activation Strain Model (ASM).
Collapse
Affiliation(s)
- Quentin Bonnin
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Tereza Edlová
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - E Daiann Sosa Carrizo
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Paul Fleurat-Lessard
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Stéphane Brandès
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Hélène Cattey
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Philippe Richard
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| | - Adrien T Normand
- Institut de Chimie Moléculaire de L'Université de Bourgogne (ICMUB), Université de Bourgogne, 9 avenue Alain Savary, 21000, Dijon, France
| |
Collapse
|
25
|
Thomas-Hargreaves LR, Pan S, Ivlev SI, Frenking G, Buchner MR. π Back-Donation from a Beryllium Dibromide Fragment at the Expense of Its σ Strength. Inorg Chem 2021; 61:700-705. [PMID: 34894684 DOI: 10.1021/acs.inorgchem.1c03449] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is common knowledge that metal-to-ligand π back-donation requires filled atomic orbitals at the metal center. However, we show through a combined experimental and theoretical approach that Be(II)→N-heterocyclic carbene (NHC) π back-donation is present in the two carbene adducts [(iPr)BeBr2] (1) and [(iPr)2BeBr2] (2) (iPr = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene). These complexes were characterized with NMR, IR, and Raman spectroscopy as well as with single-crystal X-ray diffractometry. The unusual bonding situation is understood from the results of energy decomposition analysis in combination with natural orbital for chemical valence and quantum theory of atoms-in-molecules analysis. The obtained findings shed light on the unusually high Be-C bond strength in carbene adducts to beryllium compounds and rationalize their geometry and reactivity.
Collapse
Affiliation(s)
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Sergei I Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| | - Magnus R Buchner
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg 35043, Germany
| |
Collapse
|
26
|
Wang J, Zhang NX, Wang CZ, Wu QY, Lan JH, Chai ZF, Nie CM, Shi WQ. Theoretical probing of twenty-coordinate actinide-centered boron molecular drums. Phys Chem Chem Phys 2021; 23:26967-26973. [PMID: 34842871 DOI: 10.1039/d1cp03900h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exploration of metal-doped boron clusters has a great significance in the design of high coordination number (CN) compounds. Actinide-doped boron clusters are probable candidates for achieving high CNs. In this work, we systematically explored a series of actinide metal atom (U, Np, and Pu) doped B20 boron clusters An@B20 (An = U, Np, and Pu) by global minimum structural searches and density functional theory (DFT). Each An@B20 cluster is confirmed to be a twenty-coordinate complex, which is the highest CN obtained in the chemistry of actinide-doped boron clusters so far. The predicted global minima of An@B20 are tubular structures with actinide atoms as centers, which can be considered as boron molecular drums. In An@B20, U@B20 has a relatively high symmetry of C2, while both Np@B20 and Pu@B20 exhibit C1 symmetry. Extensive bonding analysis demonstrates that An@B20 has σ and π delocalized bonding, and the U-B bonds possess a relatively higher covalency than the Np-B and Pu-B bonds, resulting in the higher formation energy of U@B20. Therefore, the covalent character of An-B bonding may be crucial for the formation of these high CN actinide-centered boron clusters. These results deepen our understanding of actinide metal doped boron clusters and provide new clues for developing stable high CN boron-based nanomaterials.
Collapse
Affiliation(s)
- Juan Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. .,School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Nai-Xin Zhang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. .,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Kumar V, Gonnade RG, Yildiz CB, Majumdar M. Stabilization of the Elusive Antimony(I) Cation and Its Coordination Complexes with Transition Metals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vikas Kumar
- Department of Chemistry Indian Institute of Science Education and Research, Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Rajesh G. Gonnade
- Physical and Materials Chemistry Division CSIR-National Chemical Laboratory Pune 411008 Maharashtra India
| | - Cem B. Yildiz
- Department of Aromatic and Medicinal Plants Aksaray University 68100 Aksaray Turkey
| | - Moumita Majumdar
- Department of Chemistry Indian Institute of Science Education and Research, Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
28
|
Deb R, Balakrishna P, Majumdar M. Recent Developments in the Chemistry of Pn(I) (Pn=N, P, As, Sb, Bi) Cations. Chem Asian J 2021; 17:e202101133. [PMID: 34786856 DOI: 10.1002/asia.202101133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Indexed: 12/16/2022]
Abstract
The Group 15 Pn(I) cations (Pn=N, P, As, Sb and Bi), which are isoelectronic with the donor-stabilized carbones, have emerged recently. Despite the presence of two lone pair of electrons, the Pn(I) cations are weakly nucleophilic due to their inherent positive charge. Strongly electron-donating supporting ligands including zwitterionic forms have been used to enhance their Lewis basicity. Furthermore, the chelating effect of cyclic ligand systems proved effective in increasing their nucleophilicity. The strategies involved in successfully isolating the fleeting Sb(I) and Bi(I) cations as the recent most achievements in this field have been discussed. The syntheses, structure, bonding situations and reactivity of the Pn(I) cations are discussed. An outlook on the periodic trends and future applications of these electronically unique electron-rich cationic moieties have been provided.
Collapse
Affiliation(s)
- Rahul Deb
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| | - P Balakrishna
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune-411008, Maharashtra, India
| |
Collapse
|
29
|
Staun SL, Kent GT, Gomez-Torres A, Wu G, Fortier S, Hayton TW. Reductive Coupling of Xylyl Isocyanide Mediated by Low-Valent Uranium. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Selena L. Staun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alejandra Gomez-Torres
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Skye Fortier
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
30
|
Kumar V, Gonnade RG, Yildiz CB, Majumdar M. Stabilization of the Elusive Antimony(I) Cation and Its Coordination Complexes with Transition Metals. Angew Chem Int Ed Engl 2021; 60:25522-25529. [PMID: 34505340 DOI: 10.1002/anie.202111339] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Indexed: 12/16/2022]
Abstract
Upon stabilization by 5,6-bis(diisopropylphosphino)acenaphthene to form compound 1, the fugitive antimony (I) cation exhibited nucleophilic behavior towards coinage metals. Compound 1 was strategically synthesized at room temperature from SbCl3 , the bis(phosphine), and trimethylsilyl trifluoromethanesulfonate taken in a 1:2:3 ratio, whereby the bis(phosphine) plays the dual role of a reductant and a supporting ligand. The generation of 1 involves two-electron oxidation of the ligand to form a P-P bonded diphosphonium dication. Compound 1 was separated from this dication to give both products in pure form in moderate yields. Despite the overall positive charge, the SbI site in 1 was found to bind to metal centers, forming complexes with AuI , AgI and CuI . Compound 1 reduced CuII to CuI and formed a coordination complex with the resulting CuI species. The effects of the electron-rich bis(phosphine) and the constrained peri geometry in stabilizing and enhancing the nucleophilicity of 1 have been rationalized through computational studies.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Rajesh G Gonnade
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune, 411008, Maharashtra, India
| | - Cem B Yildiz
- Department of Aromatic and Medicinal Plants, Aksaray University, 68100, Aksaray, Turkey
| | - Moumita Majumdar
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
31
|
Maser L, Vogt M, Langer R. Facial vs. Meridional Coordination Modes in Re
I
Tricarbonyl Complexes with a Carbodiphosphorane‐based Tridentate Ligand. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leon Maser
- Institute of Chemistry Faculty of Natural Science II Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Str. 2 06120 Halle (Saale) Germany
| | - Matthias Vogt
- Institute of Chemistry Faculty of Natural Science II Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Str. 2 06120 Halle (Saale) Germany
| | - Robert Langer
- Institute of Chemistry Faculty of Natural Science II Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Str. 2 06120 Halle (Saale) Germany
| |
Collapse
|
32
|
Su W, Ma Y, Xiang L, Wang J, Wang S, Zhao L, Frenking G, Ye Q. Isolation of a Uranium(III)-Carbon Multiple Bond Complex. Chemistry 2021; 27:10006-10011. [PMID: 33913186 PMCID: PMC8362146 DOI: 10.1002/chem.202100699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Indexed: 12/16/2022]
Abstract
Low-valent uranium-element multiple bond complexes remain scarce, though there is burgeoning interest regarding to their bonding and reactivity. Herein, isolation of a uranium(III)-carbon double bond complex [(Cp*)2 U(CDP)](BPh4 ) (1) comprising a tridentate carbodiphosphorane (CDP) was reported for the first time. Oxidation of 1 afforded the corresponding U(IV) complex [(Cp*)2 U(CDP)](BPh4 )2 (2). The distance between U and C in 2 is 2.481 Å, indicating the existence of a typical U=C double bond, which is further confirmed by quantum chemical calculations. Bonding analysis suggested that the CDP also serves as both σ- and π-donor in complex 1, though a longer U-C bond (2.666(3) Å) is observed. It implies that 1 is the first isolable mononuclear uranium(III) carbene complex. Moreover, these results suggest that CDPs are promising ligands to establish other low-valent f-block metal-carbon multiple bond complexes.
Collapse
Affiliation(s)
- Wei Su
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenChina
| | - Yanshun Ma
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringNanjing Tech University211816NanjingChina
| | - Libo Xiang
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenChina
| | - Junyi Wang
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenChina
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection School for Radiological and interdisciplinary Sciences (RAD−X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education InstitutionsSooChow University199 Ren'ai Road215123SuzhouChina
| | - Lili Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringNanjing Tech University211816NanjingChina
| | - Gernot Frenking
- Institute of Advanced Synthesis School of Chemistry and Molecular EngineeringNanjing Tech University211816NanjingChina
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435032MarburgGermany
| | - Qing Ye
- Department of ChemistrySouthern University of Science and Technology518055ShenzhenChina
| |
Collapse
|
33
|
Klein M, Sundermeyer J. Modular Design Strategy toward Second-Generation Tridentate Carbodiphosphorane N,C,N Ligands with a Central Four-Electron Carbon Donor Motif and Their Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marius Klein
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| | - Jörg Sundermeyer
- Fachbereich Chemie and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043 Marburg, Germany
| |
Collapse
|
34
|
Li AL, Zhang NX, Wu QY, Wang CZ, Lan JH, Nie CM, Chai ZF, Shi WQ. Theoretical Insights into the Actinide–Silicon Bonding Nature and Stability of a Series of Actinide Complexes with Different Oxidation States. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ai-Lin Li
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Nai-Xin Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Chang-Ming Nie
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Walley JE, Warring LS, Wang G, Dickie DA, Pan S, Frenking G, Gilliard RJ. Carbodicarbene Bismaalkene Cations: Unravelling the Complexities of Carbene versus Carbone in Heavy Pnictogen Chemistry. Angew Chem Int Ed Engl 2021; 60:6682-6690. [PMID: 33290596 PMCID: PMC7986408 DOI: 10.1002/anie.202014398] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/02/2020] [Indexed: 12/24/2022]
Abstract
We report a combined experimental and theoretical study on the first examples of carbodicarbene (CDC)-stabilized bismuth complexes, which feature low-coordinate cationic bismuth centers with C=Bi multiple-bond character. Monocations [(CDC)Bi(Ph)Cl][SbF6 ] (8) and [(CDC)BiBr2 (THF)2 ][SbF6 ] (11), dications [(CDC)Bi(Ph)][SbF6 ]2 (9) and [(CDC)BiBr(THF)3 ][NTf2 ]2 (12), and trication [(CDC)2 Bi][NTf2 ]3 (13) have been synthesized via sequential halide abstractions from (CDC)Bi(Ph)Cl2 (7) and (CDC)BiBr3 (10). Notably, the dications and trication exhibit C ⇉ Bi double dative bonds and thus represent unprecedented bismaalkene cations. The synthesis of these species highlights a unique non-reductive route to C-Bi π-bonding character. The CDC-[Bi] complexes (7-13) were compared with related NHC-[Bi] complexes (1, 3-6) and show substantially different structural properties. Indeed, the CDC ligand has a remarkable influence on the overall stability of the resulting low-coordinate Bi complexes, suggesting that CDC is a superior ligand to NHC in heavy pnictogen chemistry.
Collapse
Affiliation(s)
- Jacob E. Walley
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Levi S. Warring
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Guocang Wang
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Diane A. Dickie
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| | - Sudip Pan
- Fachbereich ChemiePhilipps-Universitt MarburgHans-Meerwein-Straße35043MarburgGermany
| | - Gernot Frenking
- Fachbereich ChemiePhilipps-Universitt MarburgHans-Meerwein-Straße35043MarburgGermany
| | - Robert J. Gilliard
- Department of ChemistryUniversity of Virginia409 McCormick Rd./ PO Box 400319CharlottesvilleVA22904USA
| |
Collapse
|
36
|
Xu W, Maser L, Alig L, Langer R. Rhodium carbonyl complexes featuring carbodiphosphorane-based pincer ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.115018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Walley JE, Warring LS, Wang G, Dickie DA, Pan S, Frenking G, Gilliard RJ. Carbodicarbene Bismaalkene Cations: Unravelling the Complexities of Carbene versus Carbone in Heavy Pnictogen Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jacob E. Walley
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Levi S. Warring
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Guocang Wang
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Diane A. Dickie
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| | - Sudip Pan
- Fachbereich Chemie Philipps-Universitt Marburg Hans-Meerwein-Straße 35043 Marburg Germany
| | - Gernot Frenking
- Fachbereich Chemie Philipps-Universitt Marburg Hans-Meerwein-Straße 35043 Marburg Germany
| | - Robert J. Gilliard
- Department of Chemistry University of Virginia 409 McCormick Rd./ PO Box 400319 Charlottesville VA 22904 USA
| |
Collapse
|
38
|
Gorantla SMNVT, Pan S, Mondal KC, Frenking G. Revisiting the Bonding Scenario of Two Donor Ligand Stabilized C 2 Species. J Phys Chem A 2021; 125:291-301. [PMID: 33369414 DOI: 10.1021/acs.jpca.0c09951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum chemical calculations using density functional methods were performed for complexes of type L2C2 with L = NHCMe (1), SNHCMe (2) (S = saturated), cAACMe (3), and diamidocarbene (DACMe) (4). The equilibrium structures of 1-4 possess almost linear C4 cores. A high thermochemical stability of the complexes with respect to dissociation, L2C2 → C2 + 2L, is indicated by the large bond dissociation energy following the order 3 > 4 > 2 > 1. The results show that the use of SNHCMe and DACMe as ligands is preferable over NHCMe. The bonding analysis using charge and energy decomposition methods reveals that (cAACMe)2C2 and (DACMe)2C2 possess genuine cumulene C4 moieties, which results from the electron-sharing bonding between quintet L2 and quintet C2 fragments. In contrast, the bonding in (NHCMe)2C2 and (SNHCMe)2C2 comes from a combination of dative and electron-sharing interactions between doublet L2+ and doublet C2- fragments.
Collapse
Affiliation(s)
- Sai Manoj N V T Gorantla
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.,Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Kartik Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35032 Marburg, Germany.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
39
|
Zhao L, Chai C, Petz W, Frenking G. Carbones and Carbon Atom as Ligands in Transition Metal Complexes. Molecules 2020; 25:molecules25214943. [PMID: 33114580 PMCID: PMC7663554 DOI: 10.3390/molecules25214943] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 01/22/2023] Open
Abstract
This review summarizes experimental and theoretical studies of transition metal complexes with two types of novel metal-carbon bonds. One type features complexes with carbones CL2 as ligands, where the carbon(0) atom has two electron lone pairs which engage in double (σ and π) donation to the metal atom [M]⇇CL2. The second part of this review reports complexes which have a neutral carbon atom C as ligand. Carbido complexes with naked carbon atoms may be considered as endpoint of the series [M]-CR3 → [M]-CR2 → [M]-CR → [M]-C. This review includes some work on uranium and cerium complexes, but it does not present a complete coverage of actinide and lanthanide complexes with carbone or carbide ligands.
Collapse
Affiliation(s)
- Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
| | - Chaoqun Chai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
| | - Wolfgang Petz
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany
- Correspondence: (W.P.); (G.F.)
| | - Gernot Frenking
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China; (L.Z.); (C.C.)
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany
- Correspondence: (W.P.); (G.F.)
| |
Collapse
|
40
|
Seed JA, Sharpe HR, Futcher HJ, Wooles AJ, Liddle ST. Nature of the Arsonium‐Ylide Ph
3
As=CH
2
and a Uranium(IV) Arsonium–Carbene Complex. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- John A. Seed
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Helen R. Sharpe
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Harry J. Futcher
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
41
|
Buchner MR, Pan S, Poggel C, Spang N, Müller M, Frenking G, Sundermeyer J. Di-ortho-beryllated Carbodiphosphorane: A Compound with a Metal–Carbon Double Bond to an Element of the s-Block. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00434] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Magnus R. Buchner
- Nachwuchsgruppe Berylliumchemie, Anorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Sudip Pan
- Theoretische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christina Poggel
- Anorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Nils Spang
- Nachwuchsgruppe Berylliumchemie, Anorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Matthias Müller
- Nachwuchsgruppe Berylliumchemie, Anorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Gernot Frenking
- Theoretische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Jörg Sundermeyer
- Anorganische Chemie, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
42
|
Böttger S, Gruber M, Münzer JE, Bernard GM, Kneusels NJH, Poggel C, Klein M, Hampel F, Neumüller B, Sundermeyer J, Michaelis VK, Tonner R, Tykwinski RR, Kuzu I. Solvent-Induced Bond-Bending Isomerism in Hexaphenyl Carbodiphosphorane: Decisive Dispersion Interactions in the Solid State. Inorg Chem 2020; 59:12054-12064. [DOI: 10.1021/acs.inorgchem.0c00994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Silas Böttger
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Marco Gruber
- Interdisciplinary Center of Molecular Materials (ICMM), Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Jörn Eike Münzer
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Guy M. Bernard
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Nis-Julian H. Kneusels
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Christina Poggel
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Marius Klein
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Frank Hampel
- Interdisciplinary Center of Molecular Materials (ICMM), Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Bernhard Neumüller
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Jörg Sundermeyer
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | | | - Ralf Tonner
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Rik R. Tykwinski
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Istemi Kuzu
- Department of Chemistry, Philipps-University of Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| |
Collapse
|
43
|
Kent GT, Staun SL, Wu G, Hayton TW. Reactivity of [Ce(NR 2) 3] (R = SiMe 3) with Prospective Carbon Atom Transfer Reagents. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Greggory T. Kent
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Selena L. Staun
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
44
|
Seed JA, Sharpe HR, Futcher HJ, Wooles AJ, Liddle ST. Nature of the Arsonium-Ylide Ph 3 As=CH 2 and a Uranium(IV) Arsonium-Carbene Complex. Angew Chem Int Ed Engl 2020; 59:15870-15874. [PMID: 32484980 DOI: 10.1002/anie.202004983] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Indexed: 11/11/2022]
Abstract
Treatment of [Ph3 EMe][I] with [Na{N(SiMe3 )2 }] affords the ylides [Ph3 E=CH2 ] (E=As, 1As; P, 1P). For 1As this overcomes prior difficulties in the synthesis of this classical arsonium-ylide that have historically impeded its wider study. The structure of 1As has now been determined, 45 years after it was first convincingly isolated, and compared to 1P, confirming the long-proposed hypothesis of increasing pyramidalisation of the ylide-carbon, highlighting the increasing dominance of E+ -C- dipolar resonance form (sp3 -C) over the E=C ene π-bonded form (sp2 -C), as group 15 is descended. The uranium(IV)-cyclometallate complex [U{N(CH2 CH2 NSiPri 3 )2 (CH2 CH2 SiPri 2 CH(Me)CH2 )}] reacts with 1As and 1P by α-proton abstraction to give [U(TrenTIPS )(CHEPh3 )] (TrenTIPS =N(CH2 CH2 NSiPri 3 )3 ; E=As, 2As; P, 2P), where 2As is an unprecedented structurally characterised arsonium-carbene complex. The short U-C distances and obtuse U-C-E angles suggest significant U=C double bond character. A shorter U-C distance is found for 2As than 2P, consistent with increased uranium- and reduced pnictonium-stabilisation of the carbene as group 15 is descended, which is supported by quantum chemical calculations.
Collapse
Affiliation(s)
- John A Seed
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Helen R Sharpe
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Harry J Futcher
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
45
|
Maity AK, Ward RJ, Rupasinghe DMRYP, Zeller M, Walensky JR, Bart SC. Organometallic Uranyl Complexes Featuring a Carbodicarbene Ligand. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arnab K. Maity
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Robert J. Ward
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
46
|
Kneusels NJH, Münzer JE, Flosdorf K, Jiang D, Neumüller B, Zhao L, Eichhöfer A, Frenking G, Kuzu I. Double donation in trigonal planar iron-carbodiphosphorane complexes - a concise study on their spectroscopic and electronic properties. Dalton Trans 2020; 49:2537-2546. [PMID: 32022052 DOI: 10.1039/c9dt04725e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present the syntheses of trigonal planar coordinated Fe(ii) carbodiphosphorane (CDPR) complexes, starting from iron(ii)-bis(trimethylsilylamide) [Fe{N(SiMe3)2}2] and hexaphenyl-(CDPPh) and sym-dimethyltetraphenyl-carbodiphosphoranes (CDPMe), respectively. Both complexes [CDPPh-Fe{N(SiMe3)2}2] (1) and [CDPMe-Fe{N(SiMe3)2}2] (2) were examined in solution and in the solid state. 1 shows a dissociation equilibrium in solution which we monitored by variable temperature 1H-NMR spectroscopy. Magnetic measurements of 1 and 2 yielded a high spin configuration (S = 2) for both complexes. Quantum chemical calculations were performed to analyze the bonding situation in compound 1.
Collapse
Affiliation(s)
- Nis-Julian H Kneusels
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Jörn E Münzer
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Kimon Flosdorf
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Dandan Jiang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Bernhard Neumüller
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| | - Lili Zhao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Andreas Eichhöfer
- Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), Campus Nord, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany. and Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China.
| | - Istemi Kuzu
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35032 Marburg, Germany.
| |
Collapse
|
47
|
Zhang WJ, Wang GJ, Zhang P, Zou W, Hu SX. The decisive role of 4f-covalency in the structural direction and oxidation state of XPrO compounds (X: group 13 to 17 elements). Phys Chem Chem Phys 2020; 22:27746-27756. [PMID: 33242323 DOI: 10.1039/d0cp04700g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Lanthanide oxo compounds are of vital importance in lanthanide chemistry, as well as in environmental and materials sciences. Praseodymium, as an exceptional element in lanthanides which can form a +V formal oxidation state (OSf) besides the dominant +III among the 4f-block element, displays the significant participation of the Pr 4f orbitals in bonding interactions which is commonly crucial in stabilizing the high oxidation state of Pr in PrO2+ and NPrO species. Here, we report a systematic theoretical study on the structures and stabilities of a series of XPrO (X: B, Al, C, Si, N, P, As, O, S, F, Cl) compounds along with [XPrO]+ cation (X: O, S) and [X3PrO] complexes (X: F and Cl). This work reveals that Pr is able to achieve the lowest and highest OSf and the OSf exhibits periodic variation from +I in BOPr and AlOPr to +II in SiOPr to +III in CPrO, FPrO, ClPrO and AsPrO to +IV in OPrO and SPrO and even to +V in NPrO, [OPrO]+, [SPrO]+, F3PrO and Cl3PrO. We found that the molecular structures are correlated to the Pr oxidation state due to the highly important 4f orbital in the chemical bonding of the high oxidation state compounds. Thus, not only the electronegativity of the ligand but also the quasi-degenerate Pr valence 4f orbitals, namely energetic covalency, control the oxidation state and play a fundamental role in affecting the electronic structural stability of Pr(v) compounds as well. This work demonstrates the structurally directing role of the f-orbital in the formation of the linear structure and is constructive for achieving the higher oxidation state of a given element by tuning the ligand.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- Beijing Computational Science Research Center, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
48
|
Ghara M, Pan S, Chattaraj PK. Donor-Acceptor vs Electron-Shared Bonding: Triatomic Si nC 3-n ( n ≤ 3) Clusters Stabilized by Cyclic Alkyl(amino) Carbene. J Phys Chem A 2019; 123:10764-10771. [PMID: 31774284 DOI: 10.1021/acs.jpca.9b09807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SinC3-n (n ≤ 3) clusters are interstellar species that are transient in nature at ambient conditions. Herein, the structure, stability, and nature of bonding in cyclic alkyl(amino) carbene (cAAC) protected SinC3-n (n ≤ 3) clusters are studied in silico. The Si3(cAAC)3 complex was previously reported to be synthesized in large scale. The present results indicate that because the C-CcAAC bond is stronger than the Si-CcAAC bond, C3(cAAC)3 and SiC2(cAAC)3 complexes have significantly larger stability with respect to ligand dissociation than the Si3(cAAC)3 complex, while Si2C(cAAC)3 has almost the same stability as in the latter complex. Moreover, considering the Si3(cAAC)3 complex as a precursor, the hypothetical successive single Si substitution process by a single C atom in Si3(cAAC)3 complex is exergonic in nature. The bonding situation is analyzed by employing natural bond orbital (NBO), electron density, and energy decomposition analyses in combination with the natural orbital for chemical valence theory. These studies show that the nature of bonding in C-CcAAC and Si-CcAAC bonds differs significantly from each other. The former bonds are best described as an electron-shared double bond, whereas the latter bonds are of donor-acceptor type consisting of two components, Si←CcAAC σ-donation and Si→CcAAC π-back-donation. Nevertheless, in the former bonds, covalent character is larger than the ionic one but in the latter bonds the reverse is true. For some Si-CcAAC bonds, the π-natural orbital cannot be located by the NBO method, presumably because of slightly lower occupancy than the cutoff values, but the electron density analysis confirms that different Si-CcAAC bonds in a given complex are almost equivalent in terms of electron density distribution. This paper reports an interesting change in bonding pattern when one replaces Si by a C atom in triatomic silicon carbide clusters stabilized by a ligand.
Collapse
Affiliation(s)
- Manas Ghara
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials , Nanjing Tech University , Nanjing 211816 , China
| | - Pratim K Chattaraj
- Department of Chemistry and Center for Theoretical Studies , Indian Institute of Technology Kharagpur , Kharagpur 721302 , India.,Department of Chemistry , Indian Institute of Technology Bombay , Mumbai 400076 , India
| |
Collapse
|
49
|
Zhuang J, Abella L, Sergentu DC, Yao YR, Jin M, Yang W, Zhang X, Li X, Zhang D, Zhao Y, Li X, Wang S, Echegoyen L, Autschbach J, Chen N. Diuranium(IV) Carbide Cluster U2C2 Stabilized Inside Fullerene Cages. J Am Chem Soc 2019; 141:20249-20260. [DOI: 10.1021/jacs.9b10247] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Laura Abella
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Yang-Rong Yao
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | | | | | | | | | | | | | | | | | - Luis Echegoyen
- Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | | |
Collapse
|
50
|
Ariyarathna IR, Miliordos E. Carbon monoxide activation by atomic thorium: ground and excited state reaction pathways. Phys Chem Chem Phys 2019; 21:24469-24477. [PMID: 31686066 DOI: 10.1039/c9cp04946k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-reference configuration interaction (MRCI) and single reference coupled cluster calculations are performed for the ThCO and OThC isomers. Scalar and spin-orbit relativistic effects are considered through a relativistic pseudopotential and the coupling of MRCI wavefunctions via the Breit-Pauli spin-orbit Hamiltonian. Optimized geometries, excitation energies, and vibrational frequencies are reported for both isomers. Full potential energy profiles are constructed for the Th+CO reaction and the conversion of the produced ThCO to OThC. Linear ThCO was found to be more stable than the highly ionic bent OThC system by about 4 kcal mol-1. The interconversion barrier is estimated to be around 30 kcal mol-1. Our results are in agreement with earlier experimental data for the two isomers. The lowest lying states of Th do not populate f-orbitals and resemble the electronic structure of Ti. Therefore, the ability of the two atoms to activate the C[triple bond, length as m-dash]O bond is compared. OTiC is found to be about 40 kcal mol-1 less stable than TiCO revealing the efficiency of Th and possibly other f-block elements to activate multiple chemical bonds as opposed to d-block metals.
Collapse
Affiliation(s)
- Isuru R Ariyarathna
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849-5312, USA.
| | | |
Collapse
|