1
|
Reavis EA, Wynn JK, Green MF. Pre-stimulus EEG phase coherence predicts visual target detection failures in schizophrenia: A pilot study. Schizophr Res 2024; 272:112-119. [PMID: 39214021 DOI: 10.1016/j.schres.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Impaired visual target detection is a common finding in schizophrenia that is linked to poor functional outcomes. However, the neural mechanisms that contribute to this deficit remain unclear. Recent research in healthy samples has identified relationships between the phase of pre-stimulus electroencephalographic (EEG) activity in the alpha band (8-12 Hz) or theta band (4-7 Hz) and the likelihood of visual target detection with and without attentional cueing, but these effects have not yet been explored in schizophrenia. We performed a study to investigate such effects in schizophrenia (n = 19) and healthy participants (n = 14), using a visual target detection task with attentional cues. We found significant relationships between pre-stimulus EEG phase properties and visual target detection in both groups, but also clear differences in the effects as a function of frequency, group, and attentional cueing. Alpha-band phase effects were relatively uniform across groups and conditions. By contrast, theta-band phase effects showed differences by group and attentional condition which could be consistent with attentional hyperfocusing in the schizophrenia group. Thus, our results elucidate a novel neural mechanism that may help to explain known impairments affecting both visual target detection and attention in schizophrenia.
Collapse
Affiliation(s)
- Eric A Reavis
- Semel Institute for Neuroscience and Human Behavior; University of California, Los Angeles, United States of America; VA Greater Los Angeles Healthcare System, United States of America.
| | - Jonathan K Wynn
- Semel Institute for Neuroscience and Human Behavior; University of California, Los Angeles, United States of America; VA Greater Los Angeles Healthcare System, United States of America
| | - Michael F Green
- Semel Institute for Neuroscience and Human Behavior; University of California, Los Angeles, United States of America; VA Greater Los Angeles Healthcare System, United States of America
| |
Collapse
|
2
|
Jones HM, Diaz GK, Ngiam WXQ, Awh E. Electroencephalogram Decoding Reveals Distinct Processes for Directing Spatial Attention and Encoding Into Working Memory. Psychol Sci 2024; 35:1108-1138. [PMID: 39159181 DOI: 10.1177/09567976241263002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024] Open
Abstract
Past work reveals a tight relationship between spatial attention and storage in visual working memory. But is spatially attending an item tantamount to working memory encoding? Here, we tracked electroencephalography (EEG) signatures of spatial attention and working memory encoding while independently manipulating the number of memory items and the spatial extent of attention in two studies of adults (N = 39; N = 33). Neural measures of spatial attention tracked the position and size of the attended area independent of the number of individuated items encoded into working memory. At the same time, multivariate decoding of the number of items stored in working memory was insensitive to variations in the breadth and position of spatial attention. Finally, representational similarity analyses provided converging evidence for a pure load signal that is insensitive to the spatial extent of the stored items. Thus, although spatial attention is a persistent partner of visual working memory, it is functionally dissociable from the selection and maintenance of individuated representations in working memory.
Collapse
Affiliation(s)
- Henry M Jones
- Department of Psychology, The University of Chicago
- Institute for Mind and Biology, The University of Chicago
| | - Gisella K Diaz
- Department of Psychology, The University of Chicago
- Institute for Mind and Biology, The University of Chicago
| | - William X Q Ngiam
- Department of Psychology, The University of Chicago
- Institute for Mind and Biology, The University of Chicago
| | - Edward Awh
- Department of Psychology, The University of Chicago
- Institute for Mind and Biology, The University of Chicago
| |
Collapse
|
3
|
Riyahi P, Phillips MA, Boley N, Colonnese MT. Experience Dependence of Alpha Rhythms and Neural Dynamics in the Mouse Visual Cortex. J Neurosci 2024; 44:e2011222024. [PMID: 39151954 PMCID: PMC11411595 DOI: 10.1523/jneurosci.2011-22.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
The role of experience in the development and maintenance of emergent network properties such as cortical oscillations and states is poorly understood. To define how early-life experience affects cortical dynamics in the visual cortex of adult, head-fixed mice, we examined the effects of two forms of blindness initiated before eye opening and continuing through recording: (1) bilateral loss of retinal input (enucleation) and (2) degradation of visual input (eyelid suture). Neither form of deprivation fundamentally altered the state-dependent regulation of firing rates or local field potentials. However, each deprivation caused unique changes in network behavior. Laminar analysis revealed two different generative mechanisms for low-frequency synchronization: one prevalent during movement and the other during quiet wakefulness. The former was absent in enucleated mice, suggesting a mouse homolog of human alpha oscillations. In addition, neurons in enucleated animals were less correlated and fired more regularly, but no change in mean firing rate. Eyelid suture decreased firing rates during quiet wakefulness, but not during movement, with no effect on neural correlations or regularity. Sutured animals showed a broadband increase in depth EEG power and an increased occurrence, but reduced central frequency, of narrowband gamma oscillations. The complementary-rather than additive-effects of lid suture and enucleation suggest that the development of emergent network properties does not require vision but is plastic to modified input. Our results suggest a complex interaction of internal set points and experience determines mature cortical activity, with low-frequency synchronization being particularly susceptible to early deprivation.
Collapse
Affiliation(s)
- Pouria Riyahi
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
- Department of Biomedical Engineering, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Marnie A Phillips
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| | - Nathaniel Boley
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, District of Columbia 20052
| | - Matthew T Colonnese
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia 20052
| |
Collapse
|
4
|
Boroujeni KB, Helfrich RF, Fiebelkorn IC, Bentley N, Lin JJ, Knight RT, Kastner S. Attentional Information Routing in The Human Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612548. [PMID: 39314423 PMCID: PMC11419049 DOI: 10.1101/2024.09.11.612548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Brain-wide communication supports behaviors that require coordination between sensory and associative regions. However, how large-scale brain networks route sensory information at fast timescales to guide upcoming actions remains unclear. Using spiking neural networks and human intracranial electrophysiology during spatial attention tasks, where participants detected a target at cued locations, we show that high-frequency activity bursts (HFAb) serve as information-carrying events, facilitating fast and long-range communications. HFAbs emerged as bouts of neural population spiking and were coordinated brain-wide through low-frequency rhythms. At the network-level, HFAb coordination identified distinct cue- and target-activated subnetworks. HFAbs following the cue onset in cue-subnetworks predicted successful target detection and preceded the information in target-subnetworks following target onset. Our findings suggest HFAbs as a neural mechanism for fast brain-wide information routing that supports attentional performance.
Collapse
|
5
|
Soh C, Hervault M, Chalkley NH, Moore CM, Rohl A, Zhang Q, Uc EY, Greenlee JDW, Wessel JR. The human subthalamic nucleus transiently inhibits active attentional processes. Brain 2024; 147:3204-3215. [PMID: 38436939 PMCID: PMC11370801 DOI: 10.1093/brain/awae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The subthalamic nucleus (STN) of the basal ganglia is key to the inhibitory control of movement. Consequently, it is a primary target for the neurosurgical treatment of movement disorders like Parkinson's disease, where modulating the STN via deep brain stimulation (DBS) can release excess inhibition of thalamocortical motor circuits. However, the STN is also anatomically connected to other thalamocortical circuits, including those underlying cognitive processes like attention. Notably, STN-DBS can also affect these processes. This suggests that the STN may also contribute to the inhibition of non-motor activity and that STN-DBS may cause changes to this inhibition. Here we tested this hypothesis in humans. We used a novel, wireless outpatient method to record intracranial local field potentials (LFP) from STN DBS implants during a visual attention task (Experiment 1, n = 12). These outpatient measurements allowed the simultaneous recording of high-density EEG, which we used to derive the steady state visual evoked potential (SSVEP), a well established neural index of visual attentional engagement. By relating STN activity to this neural marker of attention (instead of overt behaviour), we avoided possible confounds resulting from STN's motor role. We aimed to test whether the STN contributes to the momentary inhibition of the SSVEP caused by unexpected, distracting sounds. Furthermore, we causally tested this association in a second experiment, where we modulated STN via DBS across two sessions of the task, spaced at least 1 week apart (n = 21, no sample overlap with Experiment 1). The LFP recordings in Experiment 1 showed that reductions of the SSVEP after distracting sounds were preceded by sound-related γ-frequency (>60 Hz) activity in the STN. Trial-to-trial modelling further showed that this STN activity statistically mediated the sounds' suppressive effect on the SSVEP. In Experiment 2, modulating STN activity via DBS significantly reduced these sound-related SSVEP reductions. This provides causal evidence for the role of the STN in the surprise-related inhibition of attention. These findings suggest that the human STN contributes to the inhibition of attention, a non-motor process. This supports a domain-general view of the inhibitory role of the STN. Furthermore, these findings also suggest a potential mechanism underlying some of the known cognitive side effects of STN-DBS treatment, especially on attentional processes. Finally, our newly established outpatient LFP recording technique facilitates the testing of the role of subcortical nuclei in complex cognitive tasks, alongside recordings from the rest of the brain, and in much shorter time than peri-surgical recordings.
Collapse
Affiliation(s)
- Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
| | - Mario Hervault
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
| | - Nathan H Chalkley
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Cathleen M Moore
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - Andrea Rohl
- Department of Neurosurgery, University of Iowa, Iowa City, IA 52242, USA
| | - Qiang Zhang
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - Ergun Y Uc
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
- Neurology Service, Iowa City VA Medical Center, Iowa City, IA 52246, USA
| | | | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA 52242, USA
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
6
|
Miller JA, Constantinidis C. Timescales of learning in prefrontal cortex. Nat Rev Neurosci 2024; 25:597-610. [PMID: 38937654 DOI: 10.1038/s41583-024-00836-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
The lateral prefrontal cortex (PFC) in humans and other primates is critical for immediate, goal-directed behaviour and working memory, which are classically considered distinct from the cognitive and neural circuits that support long-term learning and memory. Over the past few years, a reconsideration of this textbook perspective has emerged, in that different timescales of memory-guided behaviour are in constant interaction during the pursuit of immediate goals. Here, we will first detail how neural activity related to the shortest timescales of goal-directed behaviour (which requires maintenance of current states and goals in working memory) is sculpted by long-term knowledge and learning - that is, how the past informs present behaviour. Then, we will outline how learning across different timescales (from seconds to years) drives plasticity in the primate lateral PFC, from single neuron firing rates to mesoscale neuroimaging activity patterns. Finally, we will review how, over days and months of learning, dense local and long-range connectivity patterns in PFC facilitate longer-lasting changes in population activity by changing synaptic weights and recruiting additional neural resources to inform future behaviour. Our Review sheds light on how the machinery of plasticity in PFC circuits facilitates the integration of learned experiences across time to best guide adaptive behaviour.
Collapse
Affiliation(s)
- Jacob A Miller
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Christos Constantinidis
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA.
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Greenwood PE, Ward LM. Attentional selection and communication through coherence: Scope and limitations. PLoS Comput Biol 2024; 20:e1011431. [PMID: 39102437 PMCID: PMC11326628 DOI: 10.1371/journal.pcbi.1011431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Synchronous neural oscillations are strongly associated with a variety of perceptual, cognitive, and behavioural processes. It has been proposed that the role of the synchronous oscillations in these processes is to facilitate information transmission between brain areas, the 'communication through coherence,' or CTC hypothesis. The details of how this mechanism would work, however, and its causal status, are still unclear. Here we investigate computationally a proposed mechanism for selective attention that directly implicates the CTC as causal. The mechanism involves alpha band (about 10 Hz) oscillations, originating in the pulvinar nucleus of the thalamus, being sent to communicating cortical areas, organizing gamma (about 40 Hz) oscillations there, and thus facilitating phase coherence and communication between them. This is proposed to happen contingent on control signals sent from higher-level cortical areas to the thalamic reticular nucleus, which controls the alpha oscillations sent to cortex by the pulvinar. We studied the scope of this mechanism in parameter space, and limitations implied by this scope, using a computational implementation of our conceptual model. Our results indicate that, although the CTC-based mechanism can account for some effects of top-down and bottom-up attentional selection, its limitations indicate that an alternative mechanism, in which oscillatory coherence is caused by communication between brain areas rather than being a causal factor for it, might operate in addition to, or even instead of, the CTC mechanism.
Collapse
Affiliation(s)
| | - Lawrence M Ward
- Department of Psychology and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| |
Collapse
|
8
|
Lustig C, Bohnen NI. The Middle Managers: Thalamic and Cholinergic Contributions To Coordinating Top-Down And Bottom-Up Processing. Curr Opin Behav Sci 2024; 58:101406. [PMID: 39220566 PMCID: PMC11361277 DOI: 10.1016/j.cobeha.2024.101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Methodological advances have facilitated extensive revision of traditional views of thalamic and cholinergic contributions to cognition and behavior. Increasing attention to the integrative capabilities of the thalamus highlights its role beyond a simple sensory relay, recognizing its complex connectivity and role in orchestrating different phases of attention. Correspondingly, modern conceptualizations position the cholinergic system as key in integrating sensory information with attention and goals. These theoretical developments have occurred largely in parallel, but have large conceptual overlap. We review this overlap, including evidence from animal, patient, neuroimaging, and computational studies, and suggest thalamo-cholinergic cognition plays a key role in coordinating stable and flexible attention.
Collapse
|
9
|
Zhou Y, Yang B, Wang C. Multiband task related components enhance rapid cognition decoding for both small and similar objects. Neural Netw 2024; 175:106313. [PMID: 38640695 DOI: 10.1016/j.neunet.2024.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/19/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
The cortically-coupled target recognition system based on rapid serial visual presentation (RSVP) has a wide range of applications in brain computer interface (BCI) fields such as medical and military. However, in the complex natural environment backgrounds, the identification of event-related potentials (ERP) of both small and similar objects that are quickly presented is a research challenge. Therefore, we designed corresponding experimental paradigms and proposed a multi-band task related components matching (MTRCM) method to improve the rapid cognitive decoding of both small and similar objects. We compared the areas under the receiver operating characteristic curve (AUC) between MTRCM and other 9 methods under different numbers of training sample using RSVP-ERP data from 50 subjects. The results showed that MTRCM maintained an overall superiority and achieved the highest average AUC (0.6562 ± 0.0091). We also optimized the frequency band and the time parameters of the method. The verification on public data sets further showed the necessity of designing MTRCM method. The MTRCM method provides a new approach for neural decoding of both small and similar RSVP objects, which is conducive to promote the further development of RSVP-BCI.
Collapse
Affiliation(s)
- Yusong Zhou
- School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Banghua Yang
- School of Mechanical Engineering and Automation, Shanghai University, Shanghai 200444, China.
| | - Changyong Wang
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| |
Collapse
|
10
|
Redding ZV, Fiebelkorn IC. Separate Cue- and Alpha-Related Mechanisms for Distractor Suppression. J Neurosci 2024; 44:e1444232024. [PMID: 38729761 PMCID: PMC11209672 DOI: 10.1523/jneurosci.1444-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Research on selective attention has largely focused on the enhancement of behaviorally important information, with less focus on the suppression of distracting information. Enhancement and suppression can operate through a push-pull relationship attributable to competitive interactions among neural populations. There has been considerable debate, however, regarding (1) whether suppression can be voluntarily deployed, independent of enhancement, and (2) whether voluntary deployment of suppression is associated with neural processes occurring prior to the distractor onset. Here, we investigated the interplay between pre- and post-distractor neural processes, while male and female human subjects performed a visual search task with a cue that indicated the location of an upcoming distractor. We utilized two established EEG markers of suppression: the distractor positivity (PD) and alpha power (∼8-15 Hz). The PD-a component of event-related potentials-has been linked with successful distractor suppression, and increased alpha power has been linked with attenuated sensory processing. Cueing the location of an upcoming distractor speeded responses and led to an earlier PD, consistent with earlier suppression due to strategic use of a spatial cue. In comparison, higher predistractor alpha power contralateral to distractors led to a later PD, consistent with later suppression. Lower alpha power contralateral to distractors instead led to distractor-related attentional capture. Lateralization of alpha power was not linked to the spatial cue. This observation, combined with differences in the timing of suppression-as indexed by earlier and later PD components-demonstrates that cue-related, voluntary suppression can occur separate from alpha-related gating of sensory processing.
Collapse
Affiliation(s)
- Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14627
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, New York 14627
| |
Collapse
|
11
|
Kaduk K, Wilke M, Kagan I. Dorsal pulvinar inactivation leads to spatial selection bias without perceptual deficit. Sci Rep 2024; 14:12852. [PMID: 38834578 DOI: 10.1038/s41598-024-62056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
The dorsal pulvinar has been implicated in visuospatial attentional and perceptual confidence processing. Pulvinar lesions in humans and monkeys lead to spatial neglect symptoms, including an overt spatial saccade bias during free choices. However, it remains unclear whether disrupting the dorsal pulvinar during target selection that relies on a perceptual decision leads to a perceptual impairment or a more general spatial orienting and choice deficit. To address this question, we reversibly inactivated the unilateral dorsal pulvinar by injecting GABA-A agonist THIP while two macaque monkeys performed a color discrimination saccade task with varying perceptual difficulty. We used Signal Detection Theory and simulations to dissociate perceptual sensitivity (d-prime) and spatial selection bias (response criterion) effects. We expected a decrease in d-prime if dorsal pulvinar affects perceptual discrimination and a shift in response criterion if dorsal pulvinar is mainly involved in spatial orienting. After the inactivation, we observed response criterion shifts away from contralesional stimuli, especially when two competing stimuli in opposite hemifields were present. Notably, the d-prime and overall accuracy remained largely unaffected. Our results underline the critical contribution of the dorsal pulvinar to spatial orienting and action selection while showing it to be less important for visual perceptual discrimination.
Collapse
Affiliation(s)
- Kristin Kaduk
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Melanie Wilke
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
- Cognitive Neurology Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany
| | - Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Cognitive Neurology, University of Goettingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, 37077, Göttingen, Germany.
| |
Collapse
|
12
|
Huang WA, Zhou ZC, Stitt IM, Ramasamy NS, Radtke-Schuller S, Frohlich F. Causal oscillations in the visual thalamo-cortical network in sustained attention in ferrets. Curr Biol 2024; 34:727-739.e5. [PMID: 38262418 PMCID: PMC10922762 DOI: 10.1016/j.cub.2023.12.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/07/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Sustained visual attention allows us to process and react to unpredictable, behaviorally relevant sensory input. Sustained attention engages communication between the higher-order visual thalamus and its connected cortical regions. However, it remains unclear whether there is a causal relationship between oscillatory circuit dynamics and attentional behavior in these thalamo-cortical circuits. By using rhythmic optogenetic stimulation in the ferret, we provide causal evidence that higher-order visual thalamus coordinates thalamo-cortical and cortico-cortical functional connectivity during sustained attention via spike-field phase locking. Increasing theta but not alpha power in the thalamus improved accuracy and reduced omission rates in a sustained attention task. Further, the enhancement of effective connectivity by stimulation was correlated with improved behavioral performance. Our work demonstrates a potential circuit-level causal mechanism for how the higher-order visual thalamus modulates cortical communication through rhythmic synchronization during sustained attention.
Collapse
Affiliation(s)
- Wei A Huang
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Zhe C Zhou
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Iain M Stitt
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nivetha S Ramasamy
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Susanne Radtke-Schuller
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Flavio Frohlich
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA; Carolina Center for Neurostimulation, University of North Carolina, Chapel Hill, NC 27599, USA; Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
13
|
Mukherjee A, Halassa MM. The Associative Thalamus: A Switchboard for Cortical Operations and a Promising Target for Schizophrenia. Neuroscientist 2024; 30:132-147. [PMID: 38279699 PMCID: PMC10822032 DOI: 10.1177/10738584221112861] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Schizophrenia is a brain disorder that profoundly perturbs cognitive processing. Despite the success in treating many of its symptoms, the field lacks effective methods to measure and address its impact on reasoning, inference, and decision making. Prefrontal cortical abnormalities have been well documented in schizophrenia, but additional dysfunction in the interactions between the prefrontal cortex and thalamus have recently been described. This dysfunction may be interpreted in light of parallel advances in neural circuit research based on nonhuman animals, which show critical thalamic roles in maintaining and switching prefrontal activity patterns in various cognitive tasks. Here, we review this basic literature and connect it to emerging innovations in clinical research. We highlight the value of focusing on associative thalamic structures not only to better understand the very nature of cognitive processing but also to leverage these circuits for diagnostic and therapeutic development in schizophrenia. We suggest that the time is right for building close bridges between basic thalamic research and its clinical translation, particularly in the domain of cognition and schizophrenia.
Collapse
Affiliation(s)
- Arghya Mukherjee
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael M Halassa
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
14
|
Cortes N, Ladret HJ, Abbas-Farishta R, Casanova C. The pulvinar as a hub of visual processing and cortical integration. Trends Neurosci 2024; 47:120-134. [PMID: 38143202 DOI: 10.1016/j.tins.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/26/2023]
Abstract
The pulvinar nucleus of the thalamus is a crucial component of the visual system and plays significant roles in sensory processing and cognitive integration. The pulvinar's extensive connectivity with cortical regions allows for bidirectional communication, contributing to the integration of sensory information across the visual hierarchy. Recent findings underscore the pulvinar's involvement in attentional modulation, feature binding, and predictive coding. In this review, we highlight recent advances in clarifying the pulvinar's circuitry and function. We discuss the contributions of the pulvinar to signal modulation across the global cortical network and place these findings within theoretical frameworks of cortical processing, particularly the global neuronal workspace (GNW) theory and predictive coding.
Collapse
Affiliation(s)
- Nelson Cortes
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Hugo J Ladret
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada; Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, 13005, France
| | - Reza Abbas-Farishta
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada
| | - Christian Casanova
- Visual Neuroscience Laboratory, School of Optometry, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
15
|
Aboutorabi E, Baloni Ray S, Kaping D, Shahbazi F, Treue S, Esghaei M. Phase of neural oscillations as a reference frame for attention-based routing in visual cortex. Prog Neurobiol 2024; 233:102563. [PMID: 38142770 DOI: 10.1016/j.pneurobio.2023.102563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Selective attention allows the brain to efficiently process the image projected onto the retina, selectively focusing neural processing resources on behaviorally relevant visual information. While previous studies have documented the crucial role of the action potential rate of single neurons in relaying such information, little is known about how the activity of single neurons relative to their neighboring network contributes to the efficient representation of attended stimuli and transmission of this information to downstream areas. Here, we show in the dorsal visual pathway of monkeys (medial superior temporal area) that neurons fire spikes preferentially at a specific phase of the ongoing population beta (∼20 Hz) oscillations of the surrounding local network. This preferred spiking phase shifts towards a later phase when monkeys selectively attend towards (rather than away from) the receptive field of the neuron. This shift of the locking phase is positively correlated with the speed at which animals report a visual change. Furthermore, our computational modeling suggests that neural networks can manipulate the preferred phase of coupling by imposing differential synaptic delays on postsynaptic potentials. This distinction between the locking phase of neurons activated by the spatially attended stimulus vs. that of neurons activated by the unattended stimulus, may enable the neural system to discriminate relevant from irrelevant sensory inputs and consequently filter out distracting stimuli information by aligning the spikes which convey relevant/irrelevant information to distinct phases linked to periods of better/worse perceptual sensitivity for higher cortices. This strategy may be used to reserve the narrow windows of highest perceptual efficacy to the processing of the most behaviorally relevant information, ensuring highly efficient responses to attended sensory events.
Collapse
Affiliation(s)
- Ehsan Aboutorabi
- Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada; Robarts Research Institute, Western University, London, Ontario, Canada
| | - Sonia Baloni Ray
- Indraprastha Institute of Information Technology, New Delhi, India
| | - Daniel Kaping
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Farhad Shahbazi
- Department of Physics, Isfahan University of Technology, Isfahan, Iran
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty for Biology and Psychology, University of Goettingen, Germany; Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
| | - Moein Esghaei
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Westa Higher Education Center, Karaj, Iran.
| |
Collapse
|
16
|
Hüer J, Saxena P, Treue S. Pathway-selective optogenetics reveals the functional anatomy of top-down attentional modulation in the macaque visual cortex. Proc Natl Acad Sci U S A 2024; 121:e2304511121. [PMID: 38194453 PMCID: PMC10801865 DOI: 10.1073/pnas.2304511121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 10/07/2023] [Indexed: 01/11/2024] Open
Abstract
Spatial attention represents a powerful top-down influence on sensory responses in primate visual cortical areas. The frontal eye field (FEF) has emerged as a key candidate area for the source of this modulation. However, it is unclear whether the FEF exerts its effects via its direct axonal projections to visual areas or indirectly through other brain areas and whether the FEF affects both the enhancement of attended and the suppression of unattended sensory responses. We used pathway-selective optogenetics in rhesus macaques performing a spatial attention task to inhibit the direct input from the FEF to area MT, an area along the dorsal visual pathway specialized for the processing of visual motion information. Our results show that the optogenetic inhibition of the FEF input specifically reduces attentional modulation in MT by about a third without affecting the neurons' sensory response component. We find that the direct FEF-to-MT pathway contributes to both the enhanced processing of target stimuli and the suppression of distractors. The FEF, thus, selectively modulates firing rates in visual area MT, and it does so via its direct axonal projections.
Collapse
Affiliation(s)
- Janina Hüer
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt60528, Germany
| | - Pankhuri Saxena
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen37077, Germany
- Faculty of Biology and Psychology, University of Göttingen, Göttingen37073, Germany
- Leibniz-ScienceCampus Primate Cognition, Göttingen37077, Germany
- Bernstein Center for Computational Neuroscience, Göttingen37073, Germany
| |
Collapse
|
17
|
Raposo I, Szczepanski SM, Haaland K, Endestad T, Solbakk AK, Knight RT, Helfrich RF. Periodic attention deficits after frontoparietal lesions provide causal evidence for rhythmic attentional sampling. Curr Biol 2023; 33:4893-4904.e3. [PMID: 37852264 PMCID: PMC10842514 DOI: 10.1016/j.cub.2023.09.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
Contemporary models conceptualize spatial attention as a blinking spotlight that sequentially samples visual space. Hence, behavior fluctuates over time, even in states of presumed "sustained" attention. Recent evidence has suggested that rhythmic neural activity in the frontoparietal network constitutes the functional basis of rhythmic attentional sampling. However, causal evidence to support this notion remains absent. Using a lateralized spatial attention task, we addressed this issue in patients with focal lesions in the frontoparietal attention network. Our results revealed that frontoparietal lesions introduce periodic attention deficits, i.e., temporally specific behavioral deficits that are aligned with the underlying neural oscillations. Attention-guided perceptual sensitivity was on par with that of healthy controls during optimal phases but was attenuated during the less excitable sub-cycles. Theta-dependent sampling (3-8 Hz) was causally dependent on the prefrontal cortex, while high-alpha/low-beta sampling (8-14 Hz) emerged from parietal areas. Collectively, our findings reveal that lesion-induced high-amplitude, low-frequency brain activity is not epiphenomenal but has immediate behavioral consequences. More generally, these results provide causal evidence for the hypothesis that the functional architecture of attention is inherently rhythmic.
Collapse
Affiliation(s)
- Isabel Raposo
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany; International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction, University of Tübingen, Tübingen, Germany
| | - Sara M Szczepanski
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Kathleen Haaland
- Department of Psychiatry and Behavioral Sciences, University of New Mexico Health Sciences, Albuquerque, NM 87102, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, 0373 Oslo, Norway; RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, University of Oslo, 0371 Oslo, Norway
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, 0373 Oslo, Norway; RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, University of Oslo, 0371 Oslo, Norway; Department of Neurosurgery, Oslo University Hospital, 0372 Oslo, Norway; Department of Neuropsychology, Helgeland Hospital, 8656 Mosjøen, Norway
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, CA 94720, USA
| | - Randolph F Helfrich
- Hertie Institute for Clinical Brain Research, University Medical Center Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
18
|
Wodeyar A, Marshall FA, Chu CJ, Eden UT, Kramer MA. Different Methods to Estimate the Phase of Neural Rhythms Agree But Only During Times of Low Uncertainty. eNeuro 2023; 10:ENEURO.0507-22.2023. [PMID: 37833061 PMCID: PMC10626504 DOI: 10.1523/eneuro.0507-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Rhythms are a common feature of brain activity. Across different types of rhythms, the phase has been proposed to have functional consequences, thus requiring its accurate specification from noisy data. Phase is conventionally specified using techniques that presume a frequency band-limited rhythm. However, in practice, observed brain rhythms are typically nonsinusoidal and amplitude modulated. How these features impact methods to estimate phase remains unclear. To address this, we consider three phase estimation methods, each with different underlying assumptions about the rhythm. We apply these methods to rhythms simulated with different generative mechanisms and demonstrate inconsistency in phase estimates across the different methods. We propose two improvements to the practice of phase estimation: (1) estimating confidence in the phase estimate, and (2) examining the consistency of phase estimates between two (or more) methods.
Collapse
Affiliation(s)
- Anirudh Wodeyar
- Department of Mathematics & Statistics, Boston University, Boston, MA 02215
| | | | - Catherine J Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02215
- Harvard Medical School, Boston, MA 02114
| | - Uri T Eden
- Department of Mathematics & Statistics, Boston University, Boston, MA 02215
- Center for Systems Neuroscience, Boston University, Boston, MA 02215
| | - Mark A Kramer
- Department of Mathematics & Statistics, Boston University, Boston, MA 02215
- Center for Systems Neuroscience, Boston University, Boston, MA 02215
| |
Collapse
|
19
|
Wessel JR, Anderson MC. Neural mechanisms of domain-general inhibitory control. Trends Cogn Sci 2023; 28:S1364-6613(23)00258-9. [PMID: 39492255 DOI: 10.1016/j.tics.2023.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2024]
Abstract
Inhibitory control is a fundamental mechanism underlying flexible behavior and features in theories across many areas of cognitive and psychological science. However, whereas many theories implicitly or explicitly assume that inhibitory control is a domain-general process, the vast majority of neuroscientific work has hitherto focused on individual domains, such as motor, mnemonic, or attentional inhibition. Here, we attempt to close this gap by highlighting recent work that demonstrates shared neuroanatomical and neurophysiological signatures of inhibitory control across domains. We propose that the regulation of thalamocortical drive by a fronto-subthalamic mechanism operating in the β band might be a domain-general mechanism for inhibitory control in the human brain.
Collapse
Affiliation(s)
- Jan R Wessel
- Cognitive Control Collaborative, Department of Psychological and Brain Sciences, Department of Neurology, University of Iowa, Iowa City, IA, USA.
| | - Michael C Anderson
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Schneider L, Dominguez-Vargas AU, Gibson L, Wilke M, Kagan I. Visual, delay, and oculomotor timing and tuning in macaque dorsal pulvinar during instructed and free choice memory saccades. Cereb Cortex 2023; 33:10877-10900. [PMID: 37724430 DOI: 10.1093/cercor/bhad333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/16/2023] [Accepted: 08/16/2023] [Indexed: 09/20/2023] Open
Abstract
Causal perturbations suggest that primate dorsal pulvinar plays a crucial role in target selection and saccade planning, though its basic neuronal properties remain unclear. Some functional aspects of dorsal pulvinar and interconnected frontoparietal areas-e.g. ipsilesional choice bias after inactivation-are similar. But it is unknown if dorsal pulvinar shares oculomotor properties of cortical circuitry, in particular delay and choice-related activity. We investigated such properties in macaque dorsal pulvinar during instructed and free-choice memory saccades. Most recorded units showed visual (12%), saccade-related (30%), or both types of responses (22%). Visual responses were primarily contralateral; diverse saccade-related responses were predominantly post-saccadic with a weak contralateral bias. Memory delay and pre-saccadic enhancement was infrequent (11-9%)-instead, activity was often suppressed during saccade planning (25%) and further during execution (15%). Surprisingly, only few units exhibited classical visuomotor patterns combining cue and continuous delay activity or pre-saccadic ramping; moreover, most spatially-selective neurons did not encode the upcoming decision during free-choice delay. Thus, in absence of a visible goal, the dorsal pulvinar has a limited role in prospective saccade planning, with patterns partially complementing its frontoparietal partners. Conversely, prevalent visual and post-saccadic responses imply its participation in integrating spatial goals with processing across saccades.
Collapse
Affiliation(s)
- Lukas Schneider
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Adan-Ulises Dominguez-Vargas
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Département de Neurosciences, Faculté de Médecine, Université de Montréal, QC H3C 3J7, Canada
| | - Lydia Gibson
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Melanie Wilke
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Department of Cognitive Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
- DFG Center for Nanoscale Microscopy & Molecular Physiology of the Brain (CNMPB), Robert-Koch-Str. 40, Göttingen 37075, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| | - Igor Kagan
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany
- Leibniz ScienceCampus Primate Cognition, Kellnerweg 4, Goettingen 37077, Germany
| |
Collapse
|
21
|
Neske GT, Cardin JA. Transthalamic input to higher-order cortex selectively conveys state information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561424. [PMID: 37873181 PMCID: PMC10592671 DOI: 10.1101/2023.10.08.561424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Communication among different neocortical areas is largely thought to be mediated by long-range synaptic interactions between cortical neurons, with the thalamus providing only an initial relay of information from the sensory periphery. Higher-order thalamic nuclei receive strong synaptic inputs from the cortex and send robust projections back to other cortical areas, providing a distinct and potentially critical route for cortico-cortical communication. However, the relative contributions of corticocortical and thalamocortical inputs to higher-order cortical function remain unclear. Using imaging of cortical neurons and projection axon terminals in combination with optogenetic manipulations, we find that the higher-order visual thalamus of mice conveys a specialized stream of information to higher-order visual cortex. Whereas corticocortical projections from lower cortical areas convey robust visual information, higher-order thalamocortical projections convey strong behavioral state information. Together, these findings suggest a key role for higher-order thalamus in providing contextual signals that flexibly modulate sensory processing in higher-order cortex.
Collapse
Affiliation(s)
- Garrett T. Neske
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
- Present address: Department of Physiology and Biophysics, State University of New York at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Jessica A. Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Wu Tsai Neuroscience Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Chen N, Ai H, Lu X. Context-dependent attentional spotlight in pulvinar-V1 interaction. Neuroimage 2023; 279:120341. [PMID: 37619793 DOI: 10.1016/j.neuroimage.2023.120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Spatial attention is often described as a mental spotlight that enhances information processing at the attended location. Using fMRI, we investigated background connectivity between the pulvinar and V1 in relation to focused versus diffused attention allocation, in weak and strong crowding contexts. Our findings revealed that focused attention led to enhanced correlations between the pulvinar and V1. Notably, this modulation was initiated by the pulvinar, and the strength of the modulation was dependent on the saliency of the target. These findings suggest that the pulvinar initiates information reweighting to V1, which underlies attentional selection in cluttered scenes.
Collapse
Affiliation(s)
- Nihong Chen
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, People's Republic of China; THU-IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Hailin Ai
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xincheng Lu
- Department of Psychology, School of Social Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
23
|
Odean NN, Sanayei M, Shadlen MN. Transient Oscillations of Neural Firing Rate Associated With Routing of Evidence in a Perceptual Decision. J Neurosci 2023; 43:6369-6383. [PMID: 37550053 PMCID: PMC10500999 DOI: 10.1523/jneurosci.2200-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023] Open
Abstract
To form a perceptual decision, the brain must acquire samples of evidence from the environment and incorporate them in computations that mediate choice behavior. While much is known about the neural circuits that process sensory information and those that form decisions, less is known about the mechanisms that establish the functional linkage between them. We trained monkeys of both sexes to make difficult decisions about the net direction of visual motion under conditions that required trial-by-trial control of functional connectivity. In one condition, the motion appeared at different locations on different trials. In the other, two motion patches appeared, only one of which was informative. Neurons in the parietal cortex produced brief oscillations in their firing rate at the time routing was established: upon onset of the motion display when its location was unpredictable across trials, and upon onset of an attention cue that indicated in which of two locations an informative patch of dots would appear. The oscillation was absent when the stimulus location was fixed across trials. We interpret the oscillation as a manifestation of the mechanism that establishes the source and destination of flexibly routed information, but not the transmission of the information per se Significance Statement It has often been suggested that oscillations in neural activity might serve a role in routing information appropriately. We observe an oscillation in neural firing rate in the lateral intraparietal area consistent with such a role. The oscillations are transient. They coincide with the establishment of routing, but they do not appear to play a role in the transmission (or conveyance) of the routed information itself.
Collapse
Affiliation(s)
- Naomi N Odean
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York 10025
| | - Mehdi Sanayei
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York 10025
| | - Michael N Shadlen
- Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, New York 10025
- Howard Hughes Medical Institute, Columbia University, New York, New York 10025
- Kavli Institute, New York, New York 10025
| |
Collapse
|
24
|
Comeaux P, Clark K, Noudoost B. A recruitment through coherence theory of working memory. Prog Neurobiol 2023; 228:102491. [PMID: 37393039 PMCID: PMC10530428 DOI: 10.1016/j.pneurobio.2023.102491] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
The interactions between prefrontal cortex and other areas during working memory have been studied for decades. Here we outline a conceptual framework describing interactions between these areas during working memory, and review evidence for key elements of this model. We specifically suggest that a top-down signal sent from prefrontal to sensory areas drives oscillations in these areas. Spike timing within sensory areas becomes locked to these working-memory-driven oscillations, and the phase of spiking conveys information about the representation available within these areas. Downstream areas receiving these phase-locked spikes from sensory areas can recover this information via a combination of coherent oscillations and gating of input efficacy based on the phase of their local oscillations. Although the conceptual framework is based on prefrontal interactions with sensory areas during working memory, we also discuss the broader implications of this framework for flexible communication between brain areas in general.
Collapse
Affiliation(s)
- Phillip Comeaux
- Dept. of Biomedical Engineering, University of Utah, 36 S. Wasatch Drive, Salt Lake City, UT 84112, USA; Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Kelsey Clark
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA
| | - Behrad Noudoost
- Dept. of Ophthalmology and Visual Sciences, University of Utah, 65 Mario Capecchi Drive, Salt Lake City, UT 84132, USA.
| |
Collapse
|
25
|
Casanova C, Chalupa LM. The dorsal lateral geniculate nucleus and the pulvinar as essential partners for visual cortical functions. Front Neurosci 2023; 17:1258393. [PMID: 37712093 PMCID: PMC10498387 DOI: 10.3389/fnins.2023.1258393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
In most neuroscience textbooks, the thalamus is presented as a structure that relays sensory signals from visual, auditory, somatosensory, and gustatory receptors to the cerebral cortex. But the function of the thalamic nuclei goes beyond the simple transfer of information. This is especially true for the second-order nuclei, but also applies to first-order nuclei. First order thalamic nuclei receive information from the periphery, like the dorsal lateral geniculate nucleus (dLGN), which receives a direct input from the retina. In contrast, second order thalamic nuclei, like the pulvinar, receive minor or no input from the periphery, with the bulk of their input derived from cortical areas. The dLGN refines the information received from the retina by temporal decorrelation, thereby transmitting the most "relevant" signals to the visual cortex. The pulvinar is closely linked to virtually all visual cortical areas, and there is growing evidence that it is necessary for normal cortical processing and for aspects of visual cognition. In this article, we will discuss what we know and do not know about these structures and propose some thoughts based on the knowledge gained during the course of our careers. We hope that these thoughts will arouse curiosity about the visual thalamus and its important role, especially for the next generation of neuroscientists.
Collapse
Affiliation(s)
| | - Leo M. Chalupa
- School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
26
|
Wodeyar A, Marshall FA, Chu CJ, Eden UT, Kramer MA. Different methods to estimate the phase of neural rhythms agree, but only during times of low uncertainty. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522914. [PMID: 37693592 PMCID: PMC10491120 DOI: 10.1101/2023.01.05.522914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Rhythms are a common feature of brain activity. Across different types of rhythms, the phase has been proposed to have functional consequences, thus requiring its accurate specification from noisy data. Phase is conventionally specified using techniques that presume a frequency band-limited rhythm. However, in practice, observed brain rhythms are typically non-sinusoidal and amplitude modulated. How these features impact methods to estimate phase remains unclear. To address this, we consider three phase estimation methods, each with different underlying assumptions about the rhythm. We apply these methods to rhythms simulated with different generative mechanisms and demonstrate inconsistency in phase estimates across the different methods. We propose two improvements to the practice of phase estimation: (1) estimating confidence in the phase estimate, and (2) examining the consistency of phase estimates between two (or more) methods.
Collapse
Affiliation(s)
- Anirudh Wodeyar
- Department of Mathematics & Statistics, Boston University, Boston MA, USA, 02215
| | - François A. Marshall
- Department of Mathematics & Statistics, Boston University, Boston MA, USA, 02215
| | - Catherine J. Chu
- Department of Neurology, Massachusetts General Hospital, Boston, MA; USA, 02215
- Harvard Medical School, Boston, MA, USA, 02114
| | - Uri T. Eden
- Department of Mathematics & Statistics, Boston University, Boston MA, USA, 02215
- Center for Systems Neuroscience, Boston University, Boston MA, USA, 02215
| | - Mark A. Kramer
- Department of Mathematics & Statistics, Boston University, Boston MA, USA, 02215
- Center for Systems Neuroscience, Boston University, Boston MA, USA, 02215
| |
Collapse
|
27
|
van der Werf OJ, Schuhmann T, de Graaf T, Ten Oever S, Sack AT. Investigating the role of task relevance during rhythmic sampling of spatial locations. Sci Rep 2023; 13:12707. [PMID: 37543646 PMCID: PMC10404272 DOI: 10.1038/s41598-023-38968-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 07/18/2023] [Indexed: 08/07/2023] Open
Abstract
Recently it has been discovered that visuospatial attention operates rhythmically, rather than being stably employed over time. A low-frequency 7-8 Hz rhythmic mechanism coordinates periodic windows to sample relevant locations and to shift towards other, less relevant locations in a visual scene. Rhythmic sampling theories would predict that when two locations are relevant 8 Hz sampling mechanisms split into two, effectively resulting in a 4 Hz sampling frequency at each location. Therefore, it is expected that rhythmic sampling is influenced by the relative importance of locations for the task at hand. To test this, we employed an orienting task with an arrow cue, where participants were asked to respond to a target presented in one visual field. The cue-to-target interval was systematically varied, allowing us to assess whether performance follows a rhythmic pattern across cue-to-target delays. We manipulated a location's task relevance by altering the validity of the cue, thereby predicting the correct location in 60%, 80% or 100% of trials. Results revealed significant 4 Hz performance fluctuations at cued right visual field targets with low cue validity (60%), suggesting regular sampling of both locations. With high cue validity (80%), we observed a peak at 8 Hz towards non-cued targets, although not significant. These results were in line with our hypothesis suggesting a goal-directed balancing of attentional sampling (cued location) and shifting (non-cued location) depending on the relevance of locations in a visual scene. However, considering the hemifield specificity of the effect together with the absence of expected effects for cued trials in the high valid conditions we further discuss the interpretation of the data.
Collapse
Affiliation(s)
- Olof J van der Werf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands.
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands.
| | - Teresa Schuhmann
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | - Tom de Graaf
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | - Sanne Ten Oever
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
- Language and Computation in Neural Systems Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Alexander T Sack
- Section Brain Stimulation and Cognition, Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Brain and Nerve Centre, Maastricht University Medical Centre+ (MUMC+), Maastricht, The Netherlands
| |
Collapse
|
28
|
Redding ZV, Fiebelkorn IC. Distractor suppression does and does not depend on pre-distractor alpha-band activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549512. [PMID: 37502869 PMCID: PMC10370075 DOI: 10.1101/2023.07.18.549512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Selective attention enhances behaviorally important information and suppresses distracting information. Research on the neural basis of selective attention has largely focused on sensory enhancement, with less focus on sensory suppression. Enhancement and suppression can operate through a push-pull relationship that arises from competitive interactions among neural populations. There has been considerable debate, however, regarding (i) whether suppression can also operate independent of enhancement and (ii) whether neural processes associated with the voluntary deployment of suppression can occur prior to distractor onset. We provide further behavioral and electrophysiological evidence of independent suppression at cued distractor locations while humans performed a visual search task. We specifically utilize two established EEG markers of suppression: alpha power (∼8-15 Hz) and the distractor positivity (P D ). Increased alpha power has been linked with attenuated sensory processing, while the P D -a component of event-related potentials-has been linked with successful distractor suppression. The present results demonstrate that cueing the location of an upcoming distractor speeded responding and led to an earlier onset P D , consistent with earlier suppression due to strategic use of a spatial cue. We further demonstrate that higher pre-distractor alpha power contralateral to distractors was generally associated with successful suppression on both cued and non-cued trials. However, there was no consistent change in alpha power associated with the spatial cue, meaning cueing effects on behavioral and neural measures occurred independent of alpha-related gating of sensory processing. These findings reveal the importance of pre-distractor neural processes for subsequent distractor suppression. Significance Statement Selective suppression of distracting information is important for survival, contributing to preferential processing of behaviorally important information. Does foreknowledge of an upcoming distractor's location help with suppression? Here, we recorded EEG while subjects performed a target detection task with cues that indicated the location of upcoming distractors. Behavioral and electrophysiological results revealed that foreknowledge of a distractor's location speeded suppression, thereby facilitating target detection. The results further revealed a significant relationship between pre-stimulus alpha-band activity and successful suppression; however, pre-stimulus alpha-band activity was not consistently lateralized relative to the spatially informative cues. The present findings therefore demonstrate that target detection can benefit from foreknowledge of distractor location in a process that is independent of alpha-related gating of sensory processing.
Collapse
|
29
|
Abdalaziz M, Redding ZV, Fiebelkorn IC. Rhythmic temporal coordination of neural activity prevents representational conflict during working memory. Curr Biol 2023; 33:1855-1863.e3. [PMID: 37100058 DOI: 10.1016/j.cub.2023.03.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023]
Abstract
Selective attention1 is characterized by alternating states associated with either attentional sampling or attentional shifting, helping to prevent functional conflicts by isolating function-specific neural activity in time.2,3,4,5 We hypothesized that such rhythmic temporal coordination might also help to prevent representational conflicts during working memory.6 Multiple items can be simultaneously held in working memory, and these items can be represented by overlapping neural populations.7,8,9 Traditional theories propose that the short-term storage of to-be-remembered items occurs through persistent neural activity,10,11,12 but when neurons are simultaneously representing multiple items, persistent activity creates a potential for representational conflicts. In comparison, more recent, "activity-silent" theories of working memory propose that synaptic changes also contribute to short-term storage of to-be-remembered items.13,14,15,16 Transient bursts in neural activity,17 rather than persistent activity, could serve to occasionally refresh these synaptic changes. Here, we used EEG and response times to test whether rhythmic temporal coordination helps to isolate neural activity associated with different to-be-remembered items, thereby helping to prevent representational conflicts. Consistent with this hypothesis, we report that the relative strength of different item representations alternates over time as a function of the frequency-specific phase. Although RTs were linked to theta (∼6 Hz) and beta (∼25 Hz) phases during a memory delay, the relative strength of item representations only alternated as a function of the beta phase. The present findings (1) are consistent with rhythmic temporal coordination being a general mechanism for preventing functional or representational conflicts during cognitive processes and (2) inform models describing the role of oscillatory dynamics in organizing working memory.13,18,19,20,21.
Collapse
Affiliation(s)
- Miral Abdalaziz
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Zach V Redding
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
30
|
Guedj C, Vuilleumier P. Modulation of pulvinar connectivity with cortical areas in the control of selective visual attention. Neuroimage 2023; 266:119832. [PMID: 36572132 DOI: 10.1016/j.neuroimage.2022.119832] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
Selective attention mechanisms operate across large-scale cortical networks by amplifying behaviorally relevant sensory information while suppressing interference from distractors. Although it is known that fronto-parietal regions convey information about attentional priorities, it is unclear how such cortical communication is orchestrated. Based on its unique connectivity pattern with the cortex, we hypothesized that the pulvinar, a nucleus of the thalamus, may play a key role in coordinating and modulating remote cortical activity during selective attention. By using a visual task that orthogonally manipulated top-down selection and bottom-up competition during functional MRI, we investigated the modulations induced by task-relevant (spatial cue) and task-irrelevant but salient (distractor) stimuli on functional interactions between the pulvinar, occipito-temporal cortex, and frontoparietal areas involved in selective attention. Pulvinar activity and connectivity were distinctively modulated during the co-occurrence of the cue and salient distractor stimuli, as opposed to the presence of one of these factors alone. Causal modelling analysis further indicated that the pulvinar acted by weighting excitatory signals to cortical areas, predominantly in the presence of both the cue and the distractor. These results converge to support a pivotal role of the pulvinar in integrating top-down and bottom-up signals among distributed networks when confronted with conflicting visual stimuli, and thus contributing to shape priority maps for the guidance of attention.
Collapse
Affiliation(s)
- Carole Guedj
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, Faculty of Medicine, University of Geneva, Campus BIOTECH H8, 9 Chemin des Mines, Geneva 1202, Switzerland.
| | - Patrik Vuilleumier
- Neuroscience Department, Laboratory for Behavioral Neurology and Imaging of Cognition, Faculty of Medicine, University of Geneva, Campus BIOTECH H8, 9 Chemin des Mines, Geneva 1202, Switzerland
| |
Collapse
|
31
|
Aussel A, Fiebelkorn IC, Kastner S, Kopell NJ, Pittman-Polletta BR. Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention. eLife 2023; 12:e67684. [PMID: 36718998 PMCID: PMC10129332 DOI: 10.7554/elife.67684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, β, and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.
Collapse
Affiliation(s)
- Amélie Aussel
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester Medical Center, University of RochesterRochesterUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Nancy J Kopell
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| | - Benjamin Rafael Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| |
Collapse
|
32
|
Perry BAL, Mendez JC, Mitchell AS. Cortico-thalamocortical interactions for learning, memory and decision-making. J Physiol 2023; 601:25-35. [PMID: 35851953 PMCID: PMC10087288 DOI: 10.1113/jp282626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/30/2022] [Indexed: 01/03/2023] Open
Abstract
The thalamus and cortex are interconnected both functionally and anatomically and share a common developmental trajectory. Interactions between the mediodorsal thalamus (MD) and different parts of the prefrontal cortex are essential in cognitive processes, such as learning and adaptive decision-making. Cortico-thalamocortical interactions involving other dorsal thalamic nuclei, including the anterior thalamus and pulvinar, also influence these cognitive processes. Our work, and that of others, indicates a crucial influence of these interdependent cortico-thalamocortical neural networks that contributes actively to the processing of information within the cortex. Each of these thalamic nuclei also receives potent subcortical inputs that are likely to provide additional influences on their regulation of cortical activity. Here, we highlight our current neuroscientific research aimed at establishing when cortico-MD thalamocortical neural network communication is vital within the context of a rapid learning and memory discrimination task. We are collecting evidence of MD-prefrontal cortex neural network communication in awake, behaving male rhesus macaques. Given the prevailing evidence, further studies are needed to identify both broad and specific mechanisms that govern how the MD, anterior thalamus and pulvinar cortico-thalamocortical interactions support learning, memory and decision-making. Current evidence shows that the MD (and the anterior thalamus) are crucial for frontotemporal communication, and the pulvinar is crucial for frontoparietal communication. Such work is crucial to advance our understanding of the neuroanatomical and physiological bases of these brain functions in humans. In turn, this might offer avenues to develop effective treatment strategies to improve the cognitive deficits often observed in many debilitating neurological disorders and diseases and in neurodegeneration.
Collapse
Affiliation(s)
| | - Juan Carlos Mendez
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
- College of Medicine and HealthUniversity of ExeterExeterUK
| | - Anna S. Mitchell
- Department of Experimental PsychologyUniversity of OxfordOxfordUK
| |
Collapse
|
33
|
Fiebelkorn IC. There Is More Evidence of Rhythmic Attention than Can Be Found in Behavioral Studies: Perspective on Brookshire, 2022. J Cogn Neurosci 2022; 35:128-134. [PMID: 36306250 DOI: 10.1162/jocn_a_01936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent research indicates periodicity in attention-related sampling and switching, with some of the initial findings coming from behavioral studies. Brookshire [Brookshire, G. Putative rhythms in attentional switching can be explained by aperiodic temporal structure. Nature Human Behaviour, 2022, https://doi.org/10.1038/s41562-022-01364-0], points out that widely used approaches to testing for rhythms in behavioral times series can misclassify consistent aperiodic patterns in temporal structure as periodic patterns. Evidence for rhythmic attention, however, is not limited to behavioral data. Here, I briefly discuss (i) issues with differentiating periodic and aperiodic structure in both behavioral and neural time series, (ii) findings from neural data that are consistent with rhythmic sampling and switching during attentional deployment, and (iii) whether alternative approaches to establishing periodicity in behavioral time series, recommended by Brookshire are appropriate for this particular research topic.
Collapse
|
34
|
Hussin AT, Abbaspoor S, Hoffman KL. Retrosplenial and Hippocampal Synchrony during Retrieval of Old Memories in Macaques. J Neurosci 2022; 42:7947-7956. [PMID: 36261267 PMCID: PMC9617609 DOI: 10.1523/jneurosci.0001-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Memory for events from the distant past relies on multiple brain regions, but little is known about the underlying neural dynamics that give rise to such abilities. We recorded neural activity in the hippocampus and retrosplenial cortex of two female rhesus macaques as they visually selected targets in year-old and newly acquired object-scene associations. Whereas hippocampal activity was unchanging with memory age, the retrosplenial cortex responded with greater magnitude alpha oscillations (10-15 Hz) and greater phase locking to memory-guided eye movements during retrieval of old events. A similar old-memory enhancement was observed in the anterior cingulate cortex but in a beta2/gamma band (28-35 Hz). In contrast, remote retrieval was associated with decreased gamma-band synchrony between the hippocampus and each neocortical area. The increasing retrosplenial alpha oscillation and decreasing hippocampocortical synchrony with memory age may signify a shift in frank memory allocation or, alternatively, changes in selection among distributed memory representations in the primate brain.SIGNIFICANCE STATEMENT Memory depends on multiple brain regions, whose involvement is thought to change with time. Here, we recorded neuronal population activity from the hippocampus and retrosplenial cortex as nonhuman primates searched for objects embedded in scenes. These memoranda were either newly presented or a year old. Remembering old material drove stronger oscillations in the retrosplenial cortex and led to a greater locking of neural activity to search movements. Remembering new material revealed stronger oscillatory synchrony between the hippocampus and retrosplenial cortex. These results suggest that with age, memories may come to rely more exclusively on neocortical oscillations for retrieval and search guidance and less on long-range coupling with the hippocampus.
Collapse
Affiliation(s)
- Ahmed T Hussin
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
| | | | - Kari L Hoffman
- Department of Biology, Centre for Vision Research, York University, Toronto Ontario M3J 1P3, Canada
- Departments of Psychology
- Biomedical Engineering, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee 37240
| |
Collapse
|
35
|
Xie J, Yan T, Zhang J, Ma Z, Zhou H. Modulation of Neuronal Activity and Saccades at Theta Rhythm During Visual Search in Non-human Primates. Neurosci Bull 2022; 38:1183-1198. [PMID: 35608752 PMCID: PMC9554076 DOI: 10.1007/s12264-022-00884-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/18/2022] [Indexed: 10/18/2022] Open
Abstract
Active exploratory behaviors have often been associated with theta oscillations in rodents, while theta oscillations during active exploration in non-human primates are still not well understood. We recorded neural activities in the frontal eye field (FEF) and V4 simultaneously when monkeys performed a free-gaze visual search task. Saccades were strongly phase-locked to theta oscillations of V4 and FEF local field potentials, and the phase-locking was dependent on saccade direction. The spiking probability of V4 and FEF units was significantly modulated by the theta phase in addition to the time-locked modulation associated with the evoked response. V4 and FEF units showed significantly stronger responses following saccades initiated at their preferred phases. Granger causality and ridge regression analysis showed modulatory effects of theta oscillations on saccade timing. Together, our study suggests phase-locking of saccades to the theta modulation of neural activity in visual and oculomotor cortical areas, in addition to the theta phase locking caused by saccade-triggered responses.
Collapse
Affiliation(s)
- Jin Xie
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Yan
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Jie Zhang
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China
| | - Zhengyu Ma
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China
| | - Huihui Zhou
- The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- The Research Center for Artificial Intelligence, Peng Cheng Laboratory, Shenzhen, 518000, China.
| |
Collapse
|
36
|
Anil Meera A, Novicky F, Parr T, Friston K, Lanillos P, Sajid N. Reclaiming saliency: Rhythmic precision-modulated action and perception. Front Neurorobot 2022; 16:896229. [PMID: 35966370 PMCID: PMC9368584 DOI: 10.3389/fnbot.2022.896229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Computational models of visual attention in artificial intelligence and robotics have been inspired by the concept of a saliency map. These models account for the mutual information between the (current) visual information and its estimated causes. However, they fail to consider the circular causality between perception and action. In other words, they do not consider where to sample next, given current beliefs. Here, we reclaim salience as an active inference process that relies on two basic principles: uncertainty minimization and rhythmic scheduling. For this, we make a distinction between attention and salience. Briefly, we associate attention with precision control, i.e., the confidence with which beliefs can be updated given sampled sensory data, and salience with uncertainty minimization that underwrites the selection of future sensory data. Using this, we propose a new account of attention based on rhythmic precision-modulation and discuss its potential in robotics, providing numerical experiments that showcase its advantages for state and noise estimation, system identification and action selection for informative path planning.
Collapse
Affiliation(s)
- Ajith Anil Meera
- Department of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
- *Correspondence: Ajith Anil Meera
| | - Filip Novicky
- Department of Neurophysiology, Donders Institute for Brain Cognition and Behavior, Radboud University, Nijmegen, Netherlands
- Filip Novicky
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Pablo Lanillos
- Department of Artificial Intelligence, Donders Institute for Brain Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
37
|
Boshra R, Kastner S. Attention control in the primate brain. Curr Opin Neurobiol 2022; 76:102605. [PMID: 35850060 DOI: 10.1016/j.conb.2022.102605] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
Attention is fundamental to all cognition. In the primate brain, it is implemented by a large-scale network that consists of areas spanning across all major lobes, also including subcortical regions. Classical attention accounts assume that control over the selection process in this network is exerted by 'top-down' mechanisms in the fronto-parietal cortex that influence sensory representations via feedback signals. More recent studies have expanded this view of attentional control. In this review, we will start from a traditional top-down account of attention control, and then discuss more recent findings on feature-based attention, thalamic influences, temporal network dynamics, and behavioral dynamics that collectively lead to substantial modifications. We outline how the different emerging accounts can be reconciled and integrated into a unified theory.
Collapse
Affiliation(s)
- Rober Boshra
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA; Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
38
|
Griffiths BJ, Zaehle T, Repplinger S, Schmitt FC, Voges J, Hanslmayr S, Staudigl T. Rhythmic interactions between the mediodorsal thalamus and prefrontal cortex precede human visual perception. Nat Commun 2022; 13:3736. [PMID: 35768419 PMCID: PMC9243108 DOI: 10.1038/s41467-022-31407-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
The thalamus is much more than a simple sensory relay. High-order thalamic nuclei, such as the mediodorsal thalamus, exert a profound influence over animal cognition. However, given the difficulty of directly recording from the thalamus in humans, next-to-nothing is known about thalamic and thalamocortical contributions to human cognition. To address this, we analysed simultaneously-recorded thalamic iEEG and whole-head MEG in six patients (plus MEG recordings from twelve healthy controls) as they completed a visual detection task. We observed that the phase of both ongoing mediodorsal thalamic and prefrontal low-frequency activity was predictive of perceptual performance. Critically however, mediodorsal thalamic activity mediated prefrontal contributions to perceptual performance. These results suggest that it is thalamocortical interactions, rather than cortical activity alone, that is predictive of upcoming perceptual performance and, more generally, highlights the importance of accounting for the thalamus when theorising about cortical contributions to human cognition.
Collapse
Affiliation(s)
- Benjamin J Griffiths
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tino Zaehle
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany
| | - Stefan Repplinger
- Department of Neurology, Otto-von Guericke-University, Magdeburg, Germany
- ESF International Graduate School on Analysis, Imaging and Modelling of Neuronal and Inflammatory Processes, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Jürgen Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Simon Hanslmayr
- Centre for Cognitive Neuroimaging, Institute for Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Tobias Staudigl
- Department of Psychology, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
39
|
Schmid RR, Pomper U, Ansorge U. Cyclic reactivation of distinct feature dimensions in human visual working memory. Acta Psychol (Amst) 2022; 226:103561. [PMID: 35316710 DOI: 10.1016/j.actpsy.2022.103561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/28/2022] Open
Abstract
Several recent behavioral studies have observed 4-10 Hz rhythmic fluctuations in attention-related performance over time. So far, this rhythmic attentional sampling has predominantly been demonstrated with regards to external visual attention, directed toward one single feature dimension. Whether and how attention might sample from concurrent internal representations of different feature dimensions held in working memory (WM) is currently largely unknown. To elucidate this issue, we conducted a human behavioral dense-sampling experiment, in which participants had to hold representations of two distinct feature dimensions (color and orientation) in WM. By querying the contents of WM at 72 time-points after encoding, we estimated the activity time course of the individual feature representations. Our results demonstrate an oscillatory component at 9.4 Hz in the joint time courses of both representations, presumably reflecting a common early perceptual sampling process in the alpha-frequency range. Furthermore, we observed an oscillatory component at 3.5 Hz in the time course difference between the two representations. This likely corresponds to a later attentional sampling process and indicates that internal representations of distinct features are activated in alteration. In summary, we demonstrate the cyclic reactivation of internal WM representations of distinct feature dimensions, as well as the co-occurrence of behavioral fluctuations at distinct frequencies, presumably associated to internal perceptual- and attentional rhythms. In addition, our findings also challenge a model of strict parallel processing in visual search, thus, providing novel input to the ongoing debate on whether search for more than one target feature constitutes a parallel- or a sequential mechanism.
Collapse
Affiliation(s)
- Rebecca Rosa Schmid
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna.
| | - Ulrich Pomper
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna
| | - Ulrich Ansorge
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna; Cognitive Science Research Hub, University of Vienna; Research Platform Mediatised Lifeworlds, University of Vienna
| |
Collapse
|
40
|
van Es MWJ, Marshall TR, Spaak E, Jensen O, Schoffelen J. Phasic modulation of visual representations during sustained attention. Eur J Neurosci 2022; 55:3191-3208. [PMID: 33319447 PMCID: PMC9543919 DOI: 10.1111/ejn.15084] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/27/2022]
Abstract
Sustained attention has long been thought to benefit perception in a continuous fashion, but recent evidence suggests that it affects perception in a discrete, rhythmic way. Periodic fluctuations in behavioral performance over time, and modulations of behavioral performance by the phase of spontaneous oscillatory brain activity point to an attentional sampling rate in the theta or alpha frequency range. We investigated whether such discrete sampling by attention is reflected in periodic fluctuations in the decodability of visual stimulus orientation from magnetoencephalographic (MEG) brain signals. In this exploratory study, human subjects attended one of the two grating stimuli, while MEG was being recorded. We assessed the strength of the visual representation of the attended stimulus using a support vector machine (SVM) to decode the orientation of the grating (clockwise vs. counterclockwise) from the MEG signal. We tested whether decoder performance depended on the theta/alpha phase of local brain activity. While the phase of ongoing activity in the visual cortex did not modulate decoding performance, theta/alpha phase of activity in the frontal eye fields and parietal cortex, contralateral to the attended stimulus did modulate decoding performance. These findings suggest that phasic modulations of visual stimulus representations in the brain are caused by frequency-specific top-down activity in the frontoparietal attention network, though the behavioral relevance of these effects could not be established.
Collapse
Affiliation(s)
- Mats W. J. van Es
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Tom R. Marshall
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Wellcome Centre for Integrative NeuroimagingUniversity of OxfordOxfordUK
| | - Eelke Spaak
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
| | - Ole Jensen
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
- Department of PsychologyUniversity of BirminghamBirminghamUK
| | - Jan‐Mathijs Schoffelen
- Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
| |
Collapse
|
41
|
Merholz G, Grabot L, VanRullen R, Dugué L. Periodic attention operates faster during more complex visual search. Sci Rep 2022; 12:6688. [PMID: 35461325 PMCID: PMC9035177 DOI: 10.1038/s41598-022-10647-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Attention has been found to sample visual information periodically, in a wide range of frequencies below 20 Hz. This periodicity may be supported by brain oscillations at corresponding frequencies. We propose that part of the discrepancy in periodic frequencies observed in the literature is due to differences in attentional demands, resulting from heterogeneity in tasks performed. To test this hypothesis, we used visual search and manipulated task complexity, i.e., target discriminability (high, medium, low) and number of distractors (set size), while electro-encephalography was simultaneously recorded. We replicated previous results showing that the phase of pre-stimulus low-frequency oscillations predicts search performance. Crucially, such effects were observed at increasing frequencies within the theta-alpha range (6-18 Hz) for decreasing target discriminability. In medium and low discriminability conditions, correct responses were further associated with higher post-stimulus phase-locking than incorrect ones, in increasing frequency and latency. Finally, the larger the set size, the later the post-stimulus effect peaked. Together, these results suggest that increased complexity (lower discriminability or larger set size) requires more attentional cycles to perform the task, partially explaining discrepancies between reports of attentional sampling. Low-frequency oscillations structure the temporal dynamics of neural activity and aid top-down, attentional control for efficient visual processing.
Collapse
Affiliation(s)
- Garance Merholz
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France.
| | - Laetitia Grabot
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France
| | - Rufin VanRullen
- Centre National de la Recherche Scientifique, CerCo Unité Mixte de Recherche 5549, Université de Toulouse, 31052, Toulouse, France
| | - Laura Dugué
- Université Paris Cité, INCC UMR 8002, CNRS, 75006, Paris, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
42
|
Kurzawski JW, Lunghi C, Biagi L, Tosetti M, Morrone MC, Binda P. Short-term plasticity in the human visual thalamus. eLife 2022; 11:74565. [PMID: 35384840 PMCID: PMC9020816 DOI: 10.7554/elife.74565] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
While there is evidence that the visual cortex retains a potential for plasticity in adulthood, less is known about the subcortical stages of visual processing. Here we asked whether short-term ocular dominance plasticity affects the human visual thalamus. We addressed this question in normally sighted adult humans, using ultra-high field (7T) magnetic resonance imaging combined with the paradigm of short-term monocular deprivation. With this approach, we previously demonstrated transient shifts of perceptual eye dominance and ocular dominance in visual cortex (Binda et al., 2018). Here we report evidence for short-term plasticity in the ventral division of the pulvinar (vPulv), where the deprived eye representation was enhanced over the non-deprived eye. This ventral-pulvinar plasticity was similar as previously seen in visual cortex and it was correlated with the ocular dominance shift measured behaviorally. In contrast, there was no effect of monocular deprivation in two adjacent thalamic regions: dorsal pulvinar (dPulv), and Lateral Geniculate Nucleus (LGN). We conclude that the visual thalamus retains potential for short-term plasticity in adulthood; the plasticity effect differs across thalamic subregions, possibly reflecting differences in their cortico-fugal connectivity.
Collapse
Affiliation(s)
| | - Claudia Lunghi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Maria Concetta Morrone
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Paola Binda
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
43
|
Cheron G, Ristori D, Petieau M, Simar C, Zarka D, Cebolla AM. Effects of Pulsed-Wave Chromotherapy and Guided Relaxation on the Theta-Alpha Oscillation During Arrest Reaction. Front Psychol 2022; 13:792872. [PMID: 35310269 PMCID: PMC8929400 DOI: 10.3389/fpsyg.2022.792872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
The search for the best wellness practice has promoted the development of devices integrating different technologies and guided meditation. However, the final effects on the electrical activity of the brain remain relatively sparse. Here, we have analyzed of the alpha and theta electroencephalographic oscillations during the realization of the arrest reaction (AR; eyes close/eyes open transition) when a chromotherapy session performed in a dedicated room [Rebalance (RB) device], with an ergonomic bed integrating pulsed-wave light (PWL) stimulation, guided breathing, and body scan exercises. We demonstrated that the PWL induced an evoked-related potential characterized by the N2-P3 components maximally recorded on the fronto-central areas and accompanied by an event-related synchronization (ERS) of the delta–theta–alpha oscillations. The power of the alpha and theta oscillations was analyzed during repeated ARs testing realized along with the whole RB session. We showed that the power of the alpha and theta oscillations was significantly increased during the session in comparison to their values recorded before. Of the 14 participants, 11 and 6 showed a significant power increase of the alpha and theta oscillations, respectively. These increased powers were not observed in two different control groups (n = 28) who stayed passively outside or inside the RB room but without any type of stimulation. These preliminary results suggest that PWL chromotherapy and guided relaxation induce measurable electrical brain changes that could be beneficial under neuropsychiatric perspectives.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Neuroscience, Université de Mons, Mons, Belgium
| | - Dominique Ristori
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Mathieu Petieau
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Cédric Simar
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium.,Machine Learning Group, Computer Science Department, Université Libre de Bruxelles, Brussels, Belgium
| | - David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Ana-Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, Brussels, Belgium.,ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
44
|
Agadagba SK, Eldaly ABM, Chan LLH. Transcorneal Electrical Stimulation Induces Long-Lasting Enhancement of Brain Functional and Directional Connectivity in Retinal Degeneration Mice. Front Cell Neurosci 2022; 16:785199. [PMID: 35197826 PMCID: PMC8860236 DOI: 10.3389/fncel.2022.785199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
To investigate neuromodulation of functional and directional connectivity features in both visual and non-visual brain cortices after short-term and long-term retinal electrical stimulation in retinal degeneration mice. We performed spontaneous electrocorticography (ECoG) in retinal degeneration (rd) mice following prolonged transcorneal electrical stimulation (pTES) at varying currents (400, 500 and 600 μA) and different time points (transient or day 1 post-stimulation, 1-week post-stimulation and 2-weeks post-stimulation). We also set up a sham control group of rd mice which did not receive any electrical stimulation. Subsequently we analyzed alterations in cross-frequency coupling (CFC), coherence and directional connectivity of the primary visual cortex and the prefrontal cortex. It was observed that the sham control group did not display any significant changes in brain connectivity across all stages of electrical stimulation. For the stimulated groups, we observed that transient electrical stimulation of the retina did not significantly alter brain coherence and connectivity. However, for 1-week post-stimulation, we identified enhanced increase in theta-gamma CFC. Meanwhile, enhanced coherence and directional connectivity appeared predominantly in theta, alpha and beta oscillations. These alterations occurred in both visual and non-visual brain regions and were dependent on the current amplitude of stimulation. Interestingly, 2-weeks post-stimulation demonstrated long-lasting enhancement in network coherence and connectivity patterns at the level of cross-oscillatory interaction, functional connectivity and directional inter-regional communication between the primary visual cortex and prefrontal cortex. Application of electrical stimulation to the retina evidently neuromodulates brain coherence and connectivity of visual and non-visual cortices in retinal degeneration mice and the observed alterations are largely maintained. pTES holds strong possibility of modulating higher cortical functions including pathways of cognition, awareness, emotion and memory.
Collapse
Affiliation(s)
- Stephen K. Agadagba
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Abdelrahman B. M. Eldaly
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Electrical Engineering Department, Faculty of Engineering, Minia University, Minia, Egypt
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- *Correspondence: Leanne Lai Hang Chan,
| |
Collapse
|
45
|
Conklin BD. Spectral characteristics of visual working memory in the monkey frontoparietal network. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Dahl MJ, Mather M, Werkle-Bergner M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn Sci 2022; 26:38-52. [PMID: 34799252 PMCID: PMC8678372 DOI: 10.1016/j.tics.2021.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
During moments involving selective attention, the thalamus orchestrates the preferential processing of prioritized information by coordinating rhythmic neural activity within a distributed frontoparietal network. The timed release of neuromodulators from subcortical structures dynamically sculpts neural synchronization in thalamocortical networks to meet current attentional demands. In particular, noradrenaline modulates the balance of cortical excitation and inhibition, as reflected by thalamocortical alpha synchronization (~8-12 Hz). These neuromodulatory adjustments facilitate the selective processing of prioritized information. Thus, by disrupting effective rhythmic coordination in attention networks, age-related locus coeruleus (LC) degeneration can impair higher levels of neural processing. In sum, findings across different levels of analysis and modalities shed light on how the noradrenergic modulation of neural synchronization helps to shape selective attention.
Collapse
Affiliation(s)
- Martin J Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany; Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA.
| | - Mara Mather
- Davis School of Gerontology, University of Southern California, 90089 Los Angeles, CA, USA
| | - Markus Werkle-Bergner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, 14195 Berlin, Germany
| |
Collapse
|
47
|
Westerberg JA, Sigworth EA, Schall JD, Maier A. Pop-out search instigates beta-gated feature selectivity enhancement across V4 layers. Proc Natl Acad Sci U S A 2021; 118:e2103702118. [PMID: 34893538 PMCID: PMC8685673 DOI: 10.1073/pnas.2103702118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Visual search is a workhorse for investigating how attention interacts with processing of sensory information. Attentional selection has been linked to altered cortical sensory responses and feature preferences (i.e., tuning). However, attentional modulation of feature selectivity during search is largely unexplored. Here we map the spatiotemporal profile of feature selectivity during singleton search. Monkeys performed a search where a pop-out feature determined the target of attention. We recorded laminar neural responses from visual area V4. We first identified "feature columns" which showed preference for individual colors. In the unattended condition, feature columns were significantly more selective in superficial relative to middle and deep layers. Attending a stimulus increased selectivity in all layers but not equally. Feature selectivity increased most in the deep layers, leading to higher selectivity in extragranular layers as compared to the middle layer. This attention-induced enhancement was rhythmically gated in phase with the beta-band local field potential. Beta power dominated both extragranular laminar compartments, but current source density analysis pointed to an origin in superficial layers, specifically. While beta-band power was present regardless of attentional state, feature selectivity was only gated by beta in the attended condition. Neither the beta oscillation nor its gating of feature selectivity varied with microsaccade production. Importantly, beta modulation of neural activity predicted response times, suggesting a direct link between attentional gating and behavioral output. Together, these findings suggest beta-range synaptic activation in V4's superficial layers rhythmically gates attentional enhancement of feature tuning in a way that affects the speed of attentional selection.
Collapse
Affiliation(s)
- Jacob A Westerberg
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240;
| | | | - Jeffrey D Schall
- Centre for Vision Research, Vision: Science to Applications Program, Department of Biology and Department of Psychology, York University, Toronto, ON M3J 1P3, Canada
| | - Alexander Maier
- Department of Psychology, Vanderbilt Brain Institute, Vanderbilt Vision Research Center, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
48
|
Alpha suppression indexes a spotlight of visual-spatial attention that can shine on both perceptual and memory representations. Psychon Bull Rev 2021; 29:681-698. [PMID: 34877635 PMCID: PMC10067153 DOI: 10.3758/s13423-021-02034-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
Although researchers have been recording the human electroencephalogram (EEG) for almost a century, we still do not completely understand what cognitive processes are measured by the activity of different frequency bands. The 8- to 12-Hz activity in the alpha band has long been a focus of this research, but our understanding of its links to cognitive mechanisms has been rapidly evolving recently. Here, we review and discuss the existing evidence for two competing perspectives about alpha activity. One view proposes that the suppression of alpha-band power following the onset of a stimulus array measures attentional selection. The competing view is that this same activity measures the buffering of the task-relevant representations in working memory. We conclude that alpha-band activity following the presentation of stimuli appears to be due to the operation of an attentional selection mechanism, with characteristics that mirror the classic views of attention as selecting both perceptual inputs and representations already stored in memory.
Collapse
|
49
|
Cortes N, Abbas Farishta R, Ladret HJ, Casanova C. Corticothalamic Projections Gate Alpha Rhythms in the Pulvinar. Front Cell Neurosci 2021; 15:787170. [PMID: 34938163 PMCID: PMC8685293 DOI: 10.3389/fncel.2021.787170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Two types of corticothalamic (CT) terminals reach the pulvinar nucleus of the thalamus, and their distribution varies according to the hierarchical level of the cortical area they originate from. While type 2 terminals are more abundant at lower hierarchical levels, terminals from higher cortical areas mostly exhibit type 1 axons. Such terminals also evoke different excitatory postsynaptic potential dynamic profiles, presenting facilitation for type 1 and depression for type 2. As the pulvinar is involved in the oscillatory regulation between intercortical areas, fundamental questions about the role of these different terminal types in the neuronal communication throughout the cortical hierarchy are yielded. Our theoretical results support that the co-action of the two types of terminals produces different oscillatory rhythms in pulvinar neurons. More precisely, terminal types 1 and 2 produce alpha-band oscillations at a specific range of connectivity weights. Such oscillatory activity is generated by an unstable transition of the balanced state network's properties that it is found between the quiescent state and the stable asynchronous spike response state. While CT projections from areas 17 and 21a are arranged in the model as the empirical proportion of terminal types 1 and 2, the actions of these two cortical connections are antagonistic. As area 17 generates low-band oscillatory activity, cortical area 21a shifts pulvinar responses to stable asynchronous spiking activity and vice versa when area 17 produces an asynchronous state. To further investigate such oscillatory effects through corticothalamo-cortical projections, the transthalamic pathway, we created a cortical feedforward network of two cortical areas, 17 and 21a, with CT connections to a pulvinar-like network with two cortico-recipient compartments. With this model, the transthalamic pathway propagates alpha waves from the pulvinar to area 21a. This oscillatory transfer ceases when reciprocal connections from area 21a reach the pulvinar, closing the CT loop. Taken together, results of our model suggest that the pulvinar shows a bi-stable spiking activity, oscillatory or regular asynchronous spiking, whose responses are gated by the different activation of cortico-pulvinar projections from lower to higher-order areas such as areas 17 and 21a.
Collapse
Affiliation(s)
- Nelson Cortes
- Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada
| | - Reza Abbas Farishta
- Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada
| | - Hugo J. Ladret
- Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada
- Institut de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France
| | - Christian Casanova
- Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
50
|
A Stable Population Code for Attention in Prefrontal Cortex Leads a Dynamic Attention Code in Visual Cortex. J Neurosci 2021; 41:9163-9176. [PMID: 34583956 DOI: 10.1523/jneurosci.0608-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/13/2021] [Accepted: 09/15/2021] [Indexed: 11/21/2022] Open
Abstract
Attention often requires maintaining a stable mental state over time while simultaneously improving perceptual sensitivity. These requirements place conflicting demands on neural populations, as sensitivity implies a robust response to perturbation by incoming stimuli, which is antithetical to stability. Functional specialization of cortical areas provides one potential mechanism to resolve this conflict. We reasoned that attention signals in executive control areas might be highly stable over time, reflecting maintenance of the cognitive state, thereby freeing up sensory areas to be more sensitive to sensory input (i.e., unstable), which would be reflected by more dynamic attention signals in those areas. To test these predictions, we simultaneously recorded neural populations in prefrontal cortex (PFC) and visual cortical area V4 in rhesus macaque monkeys performing an endogenous spatial selective attention task. Using a decoding approach, we found that the neural code for attention states in PFC was substantially more stable over time compared with the attention code in V4 on a moment-by-moment basis, in line with our guiding thesis. Moreover, attention signals in PFC predicted the future attention state of V4 better than vice versa, consistent with a top-down role for PFC in attention. These results suggest a functional specialization of attention mechanisms across cortical areas with a division of labor. PFC signals the cognitive state and maintains this state stably over time, whereas V4 responds to sensory input in a manner dynamically modulated by that cognitive state.SIGNIFICANCE STATEMENT Attention requires maintaining a stable mental state while simultaneously improving perceptual sensitivity. We hypothesized that these two demands (stability and sensitivity) are distributed between prefrontal and visual cortical areas, respectively. Specifically, we predicted attention signals in visual cortex would be less stable than in prefrontal cortex, and furthermore prefrontal cortical signals would predict attention signals in visual cortex in line with the hypothesized role of prefrontal cortex in top-down executive control. Our results are consistent with suggestions deriving from previous work using separate recordings in the two brain areas in different animals performing different tasks and represent the first direct evidence in support of this hypothesis with simultaneous multiarea recordings within individual animals.
Collapse
|