1
|
de Oliveira VM, Malospirito CC, da Silva FB, Videira NB, Dias MMG, Sanches MN, Leite VBP, Figueira ACM. Exploring the molecular pathways of the activation process in PPARγ recurrent bladder cancer mutants. J Chem Phys 2024; 161:165102. [PMID: 39440760 DOI: 10.1063/5.0232041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The intricate involvement of Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) in glucose homeostasis and adipogenesis is well-established. However, its role in cancer, particularly luminal bladder cancer, remains debated. The overexpression and activation of PPARγ are implicated in tumorigenesis. Specific gain-of-function mutations (M280I, I290M, and T475M) within the ligand-binding domain of PPARγ are associated with bladder cancer and receptor activation. The underlying molecular pathways prompted by these mutations remain unclear. We employed a dual-basin structure-based model (db-SBM) to explore the conformational dynamics between the inactive and active states of PPARγ and examined the effects of the M280I, I290M, and T475M mutations. Our findings, consistent with the existing literature, reveal heightened ligand-independent transcriptional activity in the I290M and T475M mutants. Both mutants showed enhanced stabilization of the active state compared to the wild-type receptor, with the I290M mutation promoting a specific transition route, making it a prime candidate for further study. Electrostatic analysis identified residues K303 and E488 as pivotal in the I290M activation cascade. Biophysical assays confirmed that disrupting the K303-E488 interaction reduced the thermal stabilization characteristic of the I290M mutation. Our study demonstrates the predictive capabilities of combining simulation and cheminformatics methods, validated by biochemical experiments, to gain insights into molecular activation mechanisms and identify target residues for protein modulation.
Collapse
Affiliation(s)
- Vinícius M de Oliveira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Caique C Malospirito
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | | | - Natália B Videira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Marieli M G Dias
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| | - Murilo N Sanches
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities, and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities, and Exact Sciences, São José do Rio Preto, SP, Brazil
| | - Ana Carolina M Figueira
- Brazilian Biosciences National Laboratory, National Center for Research in Energy and Materials, LNBio/CNPEM, Campinas, SP, Brazil
| |
Collapse
|
2
|
Meng XY, Zhou XH, Li S, Shi MJ, Li XH, Yang BY, Liu M, Yi KZ, Wang YZ, Zhang HY, Song J, Wang FB, Wang XH. Machine Learning-Based Detection of Bladder Cancer by Urine cfDNA Fragmentation Hotspots that Capture Cancer-Associated Molecular Features. Clin Chem 2024:hvae156. [PMID: 39431962 DOI: 10.1093/clinchem/hvae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 10/22/2024]
Abstract
BACKGROUND cfDNA fragmentomics-based liquid biopsy is a potential option for noninvasive bladder cancer (BLCA) detection that remains an unmet clinical need. METHODS We assessed the diagnostic performance of cfDNA hotspot-driven machine-learning models in a cohort of 55 BLCA patients, 51 subjects with benign conditions, and 11 healthy volunteers. We further performed functional bioinformatics analysis for biological understanding and interpretation of the tool's diagnostic capability. RESULTS Urinary cfDNA hotspots-based machine-learning model enabled effective BLCA detection, achieving high performance (area under curve 0.96) and an 87% sensitivity at 100% specificity. It outperformed models using other cfDNA-derived features. In stage-stratified analysis, the sensitivity at 100% specificity of the urine hotspots-based model was 71% and 92% for early (low-grade Ta and T1) and advanced (high-grade T1 and muscle-invasive) disease, respectively. Biologically, cfDNA hotspots effectively retrieved regulatory elements and were correlated with the cell of origin. Urine cfDNA hotspots specifically captured BLCA-related molecular features, including key functional pathways, chromosome loci associated with BLCA risk as identified in genome-wide association studies, or presenting frequent somatic alterations in BLCA tumors, and the transcription factor regulatory landscape. CONCLUSIONS Our findings support the applicability of urine cfDNA fragmentation hotspots for noninvasive BLCA diagnosis, as well as for future translational study regarding its molecular pathology and heterogeneity.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Medical Research Center for Nephropathy, Hubei Minzu University, Enshi, China
| | - Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Shuo Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming-Jun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xuan-Hao Li
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo-Yu Yang
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Min Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ke-Zhen Yi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Center for Single-cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yun-Ze Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Jian Song
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Fu-Bing Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xing-Huan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
3
|
Plumber SA, Tate T, Al-Ahmadie H, Chen X, Choi W, Basar M, Lu C, Viny A, Batourina E, Li J, Gretarsson K, Alija B, Molotkov A, Wiessner G, Lee BHL, McKiernan J, McConkey DJ, Dinney C, Czerniak B, Mendelsohn CL. Rosiglitazone and trametinib exhibit potent anti-tumor activity in a mouse model of muscle invasive bladder cancer. Nat Commun 2024; 15:6538. [PMID: 39095358 PMCID: PMC11297265 DOI: 10.1038/s41467-024-50678-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/18/2024] [Indexed: 08/04/2024] Open
Abstract
Muscle invasive bladder cancers (BCs) can be divided into 2 major subgroups-basal/squamous (BASQ) tumors and luminal tumors. Since Pparg has low or undetectable expression in BASQ tumors, we tested the effects of rosiglitazone, Pparg agonist, in a mouse model of BASQ BC. We find that rosiglitazone reduces proliferation while treatment with rosiglitazone plus trametinib, a MEK inhibitor, induces apoptosis and reduces tumor volume by 91% after 1 month. Rosiglitazone and trametinib also induce a shift from BASQ to luminal differentiation in tumors, which our analysis suggests is mediated by retinoid signaling, a pathway known to drive the luminal differentiation program. Our data suggest that rosiglitazone, trametinib, and retinoids, which are all FDA approved, may be clinically active in BASQ tumors in patients.
Collapse
Affiliation(s)
- Sakina A Plumber
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tiffany Tate
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
- Generation Bio, Cambridge, MA, USA
| | | | - Xiao Chen
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Marine College, Shandong University, Weihai, China
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
| | - Merve Basar
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Chao Lu
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Aaron Viny
- Department of Medicine, Division of Hematology & Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ekatherina Batourina
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Jiaqi Li
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kristjan Gretarsson
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Besmira Alija
- Department of Medicine, Division of Hematology & Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Andrei Molotkov
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Gregory Wiessner
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Byron Hing Lung Lee
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James McKiernan
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Baltimore, MD, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cathy Lee Mendelsohn
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Fan J, Chen B, Luo Q, Li J, Huang Y, Zhu M, Chen Z, Li J, Wang J, Liu L, Wei Q, Cao D. Potential molecular biomarkers for the diagnosis and prognosis of bladder cancer. Biomed Pharmacother 2024; 173:116312. [PMID: 38417288 DOI: 10.1016/j.biopha.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
Bladder cancer (BC) is a common malignant tumor of urinary system, which can be divided into muscle-invasive BC (MIBC) and nonmuscle-invasive BC (NMIBC). The number of BC patients has been gradually increasing currently. At present, bladder tumours are diagnosed and followed-up using a combination of cystoscopic examination, cytology and histology. However, the detection of early grade tumors, which is much easier to treat effectively than advanced stage disease, is still insufficient. It frequently recurs and can progress when not expeditiously diagnosed and monitored following initial therapy for NMIBC. Treatment strategies are totally different for different stage diseases. Therefore, it is of great practical significance to study new biomarkers for diagnosis and prognosis. In this review, we summarize the current state of biomarker development in BC diagnosis and prognosis prediction. We retrospectively analyse eight diagnostic biomarkers and eight prognostic biomarkers, in which CK, P53, PPARγ, PTEN and ncRNA are emphasized for discussion. Eight molecular subtype systems are also identified. Clinical translation of biomarkers for diagnosis, prognosis, monitoring and treatment will hopefully improve outcomes for patients. These potential biomarkers provide an opportunity to diagnose tumors earlier and with greater accuracy, and help identify those patients most at risk of disease recurrence.
Collapse
Affiliation(s)
- Junping Fan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiuping Luo
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
An WX, Gupta R, Zhai K, Wang YR, Xu WH, Cui Y. Current and Potential Roles of Ferroptosis in Bladder Cancer. Curr Med Sci 2024; 44:51-63. [PMID: 38057536 DOI: 10.1007/s11596-023-2814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Ferroptosis, a type of regulated cell death driven by iron-dependent lipid peroxidation, is mainly initiated by extramitochondrial lipid peroxidation due to the accumulation of iron-dependent reactive oxygen species. Ferroptosis is a prevalent and primitive form of cell death. Numerous cellular metabolic processes regulate ferroptosis, including redox homeostasis, iron regulation, mitochondrial activity, amino acid metabolism, lipid metabolism, and various disease-related signaling pathways. Ferroptosis plays a pivotal role in cancer therapy, particularly in the eradication of aggressive malignancies resistant to conventional treatments. Multiple studies have explored the connection between ferroptosis and bladder cancer, focusing on its incidence and treatment outcomes. Several biomolecules and tumor-associated signaling pathways, such as p53, heat shock protein 1, nuclear receptor coactivator 4, RAS-RAF-MEK, phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin, and the Hippo-tafazzin signaling system, exert a moderating influence on ferroptosis in bladder cancer. Ferroptosis inducers, including erastin, artemisinin, conjugated polymer nanoparticles, and quinazolinyl-arylurea derivatives, hold promise for enhancing the effectiveness of conventional anticancer medications in bladder cancer treatment. Combining conventional therapeutic drugs and treatment methods related to ferroptosis offers a promising approach for the treatment of bladder cancer. In this review, we analyze the research on ferroptosis to augment the efficacy of bladder cancer treatment.
Collapse
Affiliation(s)
- Wen-Xin An
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Radheshyam Gupta
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Kun Zhai
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ya-Ru Wang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Wan-Hai Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Yan Cui
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
6
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Xia Y, Yu Y, Zhao Y, Deng Z, Zhang L, Liang G. Insight into the Interaction Mechanism of Vitamin D against Metabolic Syndrome: A Meta-Analysis and In Silico Study. Foods 2023; 12:3973. [PMID: 37959091 PMCID: PMC10649035 DOI: 10.3390/foods12213973] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
As a dietary supplement or functional food additive, vitamin D (VD) deficiency may impact extra-skeletal functions associated with metabolic syndrome (MetS) risk factors. However, the precise effects and mechanisms of VD supplementation on dyslipidemia and insulin resistance in MetS subjects remain controversial. Here, we investigate potential therapeutic targets, pathways and mechanisms of VD against MetS through a comprehensive strategy including meta-analysis, network pharmacology analysis, molecular docking, dynamics simulations, and quantum chemical calculations. Our results reveal that VD supplementation significantly reduces triglyceride levels, fasting glucose, and insulin concentrations in subjects, thereby improving insulin homeostasis to some extent. We theoretically identify 14 core MetS-associated targets. Notably, VD exhibits substantial interactions with three targets (PPARγ, FABP4, and HMGCR) in the PPAR signaling pathway, indicating that VD can modulate this pathway. Van der Waals forces predominantly stabilize the complexes formed between VD and the three targets. Nonetheless, to provide valuable insights for personalized MetS management, further research is necessary to confirm our findings, emphasizing the importance of exploring genetic variability in VD response. In conclusion, our study contributes insights into the mechanisms of VD in preventing and treating MetS through dietary supplementation, promoting the development of VD-based functional foods or nutritious diets.
Collapse
Affiliation(s)
- Yuting Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Yuandong Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Yi Zhao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Zhifen Deng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| | - Lei Zhang
- College of Life Science, Chongqing Normal University, Chongqing 401331, China
| | - Guizhao Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China; (Y.X.); (Y.Y.); (Y.Z.); (Z.D.)
| |
Collapse
|
8
|
Caron V, Chassaing N, Ragge N, Boschann F, Ngu AMH, Meloche E, Chorfi S, Lakhani SA, Ji W, Steiner L, Marcadier J, Jansen PR, van de Pol LA, van Hagen JM, Russi AS, Le Guyader G, Nordenskjöld M, Nordgren A, Anderlid BM, Plaisancié J, Stoltenburg C, Horn D, Drenckhahn A, Hamdan FF, Lefebvre M, Attie-Bitach T, Forey P, Smirnov V, Ernould F, Jacquemont ML, Grotto S, Alcantud A, Coret A, Ferrer-Avargues R, Srivastava S, Vincent-Delorme C, Romoser S, Safina N, Saade D, Lupski JR, Calame DG, Geneviève D, Chatron N, Schluth-Bolard C, Myers KA, Dobyns WB, Calvas P, Salmon C, Holt R, Elmslie F, Allaire M, Prigozhin DM, Tremblay A, Michaud JL. Clinical and functional heterogeneity associated with the disruption of retinoic acid receptor beta. Genet Med 2023; 25:100856. [PMID: 37092537 PMCID: PMC10757562 DOI: 10.1016/j.gim.2023.100856] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/25/2023] Open
Abstract
PURPOSE Dominant variants in the retinoic acid receptor beta (RARB) gene underlie a syndromic form of microphthalmia, known as MCOPS12, which is associated with other birth anomalies and global developmental delay with spasticity and/or dystonia. Here, we report 25 affected individuals with 17 novel pathogenic or likely pathogenic variants in RARB. This study aims to characterize the functional impact of these variants and describe the clinical spectrum of MCOPS12. METHODS We used in vitro transcriptional assays and in silico structural analysis to assess the functional relevance of RARB variants in affecting the normal response to retinoids. RESULTS We found that all RARB variants tested in our assays exhibited either a gain-of-function or a loss-of-function activity. Loss-of-function variants disrupted RARB function through a dominant-negative effect, possibly by disrupting ligand binding and/or coactivators' recruitment. By reviewing clinical data from 52 affected individuals, we found that disruption of RARB is associated with a more variable phenotype than initially suspected, with the absence in some individuals of cardinal features of MCOPS12, such as developmental eye anomaly or motor impairment. CONCLUSION Our study indicates that pathogenic variants in RARB are functionally heterogeneous and associated with extensive clinical heterogeneity.
Collapse
Affiliation(s)
| | - Nicolas Chassaing
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Nicola Ragge
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom; West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, United Kingdom
| | - Felix Boschann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Genetics and Human Genetics, Berlin, Germany
| | | | | | - Sarah Chorfi
- CHU Sainte-Justine Research Center, Montréal, QC, Canada
| | - Saquib A Lakhani
- Pediatric Genomic Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Weizhen Ji
- Pediatric Genomic Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT
| | - Laurie Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY
| | - Julien Marcadier
- Department of Medical Genetics, Alberta Children's Hospital, Calgary, AB, Canada
| | - Philip R Jansen
- Department of Human Genetics, Amsterdam UMC, Amsterdam, The Netherlands
| | - Laura A van de Pol
- Department of Pediatric Neurology, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Department of Clinical genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Julie Plaisancié
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Corinna Stoltenburg
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Denise Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Medical Genetics and Human Genetics, Berlin, Germany
| | - Anne Drenckhahn
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Fadi F Hamdan
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| | | | - Tania Attie-Bitach
- Service de médecine génomique des maladies rares, Hôpital Universitaire Necker-Enfants malade, Paris, France
| | - Peggy Forey
- Centre Hospitalier d'Angoulême, Angoulême, France
| | - Vasily Smirnov
- Exploration de la Vision et Neuro-Ophtalmologie, Hôpital Roger-Salengro, CHU de Lille, Lille, France
| | - Françoise Ernould
- Service d'ophtalmologie, Hôpital Claude Huriez, CHU de Lille, Lille, France
| | | | - Sarah Grotto
- Unité de Génétique Clinique, Hôpital Robert Debré, Paris, France
| | | | - Alicia Coret
- Servicio de Pediatría, Hospital de Sagunto, Valencia, Spain
| | | | - Siddharth Srivastava
- Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, MA
| | | | - Shelby Romoser
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Nicole Safina
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Dimah Saade
- Division of Child Neurology, Stead Family Department of Pediatrics, Department of Neurology, UI Carver College of Medicine, Iowa City, IA
| | - James R Lupski
- Department of Pediatrics and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Daniel G Calame
- Department of Pediatrics and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - David Geneviève
- Université Montpellier, INSERM U1183, Génétique clinique, CHU de Montpellier, Montpellier, France
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon, Lyon, France; Institut Neuromyogène, CNRS UMR 5310 - INSERM U1217, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Kenneth A Myers
- Division of Neurology, Department of Pediatrics, McGill University Health Centre, Montreal, QC, Canada
| | - William B Dobyns
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Patrick Calvas
- Service de Génétique Médicale, Hôpital Purpan CHU Toulouse, Toulouse, France; Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, CHU Toulouse, Toulouse, France
| | - Caroline Salmon
- Children's & Adolescent Services, Royal Surrey County Hospital, Guildford, Surrey, United Kingdom
| | - Richard Holt
- Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Frances Elmslie
- St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Marc Allaire
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Daniil M Prigozhin
- Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - André Tremblay
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Obstetrics & Gynecology, Université de Montréal, Montréal, QC, Canada; Department of Biochemistry and Molecular Medecine, Université de Montréal, Montréal, QC, Canada.
| | - Jacques L Michaud
- CHU Sainte-Justine Research Center, Montréal, QC, Canada; Department of Pediatrics, Université de Montréal, Montréal, QC, Canada; Department of Neurosciences, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
9
|
Gencel-Augusto J, Su X, Qi Y, Whitley EM, Pant V, Xiong S, Shah V, Lin J, Perez E, Fiorotto ML, Mahmud I, Jain AK, Lorenzi PL, Navin NE, Richie ER, Lozano G. Dimeric p53 Mutant Elicits Unique Tumor-Suppressive Activities through an Altered Metabolic Program. Cancer Discov 2023; 13:1230-1249. [PMID: 37067911 PMCID: PMC10164062 DOI: 10.1158/2159-8290.cd-22-0872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/20/2022] [Accepted: 02/27/2023] [Indexed: 04/18/2023]
Abstract
Cancer-related alterations of the p53 tetramerization domain (TD) abrogate wild-type (WT) p53 function. They result in a protein that preferentially forms monomers or dimers, which are also normal p53 states under basal cellular conditions. However, their physiologic relevance is not well understood. We have established in vivo models for monomeric and dimeric p53, which model Li-Fraumeni syndrome patients with germline p53 TD alterations. p53 monomers are inactive forms of the protein. Unexpectedly, p53 dimers conferred some tumor suppression that is not mediated by canonical WT p53 activities. p53 dimers upregulate the PPAR pathway. These activities are associated with lower prevalence of thymic lymphomas and increased CD8+ T-cell differentiation. Lymphomas derived from dimeric p53 mice show cooperating alterations in the PPAR pathway, further implicating a role for these activities in tumor suppression. Our data reveal novel functions for p53 dimers and support the exploration of PPAR agonists as therapies. SIGNIFICANCE New mouse models with TP53R342P (monomer) or TP53A347D (dimer) mutations mimic Li-Fraumeni syndrome. Although p53 monomers lack function, p53 dimers conferred noncanonical tumor-suppressive activities. We describe novel activities for p53 dimers facilitated by PPARs and propose these are "basal" p53 activities. See related commentary by Stieg et al., p. 1046. See related article by Choe et al., p. 1250. This article is highlighted in the In This Issue feature, p. 1027.
Collapse
Affiliation(s)
- Jovanka Gencel-Augusto
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, MDACC
| | - Yuan Qi
- Department of Bioinformatics and Computational Biology, MDACC
| | | | - Vinod Pant
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Vrutant Shah
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Jerome Lin
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | | | - Marta L. Fiorotto
- USDA/Agricultural Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, MDACC
- Metabolomics Core Facility, MDACC
| | - Abhinav K. Jain
- Department of Epigenetics and Molecular Carcinogenesis, MDACC
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, MDACC
- Metabolomics Core Facility, MDACC
| | - Nicholas E. Navin
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| | - Ellen R. Richie
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Department of Epigenetics and Molecular Carcinogenesis, MDACC
| | - Guillermina Lozano
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Department of Genetics, The University of Texas MD Anderson Cancer Center (MDACC)
| |
Collapse
|
10
|
Ruan R, Li L, Li X, Huang C, Zhang Z, Zhong H, Zeng S, Shi Q, Xia Y, Zeng Q, Wen Q, Chen J, Dai X, Xiong J, Xiang X, Lei W, Deng J. Unleashing the potential of combining FGFR inhibitor and immune checkpoint blockade for FGF/FGFR signaling in tumor microenvironment. Mol Cancer 2023; 22:60. [PMID: 36966334 PMCID: PMC10039534 DOI: 10.1186/s12943-023-01761-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Fibroblast growth factors (FGFs) and their receptors (FGFRs) play a crucial role in cell fate and angiogenesis, with dysregulation of the signaling axis driving tumorigenesis. Therefore, many studies have targeted FGF/FGFR signaling for cancer therapy and several FGFR inhibitors have promising results in different tumors but treatment efficiency may still be improved. The clinical use of immune checkpoint blockade (ICB) has resulted in sustained remission for patients. MAIN: Although there is limited data linking FGFR inhibitors and immunotherapy, preclinical research suggest that FGF/FGFR signaling is involved in regulating the tumor microenvironment (TME) including immune cells, vasculogenesis, and epithelial-mesenchymal transition (EMT). This raises the possibility that ICB in combination with FGFR-tyrosine kinase inhibitors (FGFR-TKIs) may be feasible for treatment option for patients with dysregulated FGF/FGFR signaling. CONCLUSION Here, we review the role of FGF/FGFR signaling in TME regulation and the potential mechanisms of FGFR-TKI in combination with ICB. In addition, we review clinical data surrounding ICB alone or in combination with FGFR-TKI for the treatment of FGFR-dysregulated tumors, highlighting that FGFR inhibitors may sensitize the response to ICB by impacting various stages of the "cancer-immune cycle".
Collapse
Affiliation(s)
- Ruiwen Ruan
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Li Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xuan Li
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Chunye Huang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Zhanmin Zhang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Hongguang Zhong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Shaocheng Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qianqian Shi
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Yang Xia
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qinru Zeng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Qin Wen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jingyi Chen
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaofeng Dai
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Jianping Xiong
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China
| | - Xiaojun Xiang
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Wan Lei
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| | - Jun Deng
- Department of Oncology, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Jiangxi Key Laboratory for lndividualized Cancer Therapy, 17 YongwaiStreet, Donghu District, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
11
|
Orsi DL, Ferrara SJ, Siegel S, Friberg A, Bouché L, Pook E, Lienau P, Bluck JP, Lemke CT, Akcay G, Stellfeld T, Meyer H, Pütter V, Holton SJ, Korr D, Jerchel-Furau I, Pantelidou C, Strathdee CA, Meyerson M, Eis K, Goldstein JT. Discovery and characterization of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists. Bioorg Med Chem 2023; 78:117130. [PMID: 36542958 DOI: 10.1016/j.bmc.2022.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
PPAR gamma (PPARG) is a ligand activated transcription factor that regulates genes involved in inflammation, bone biology, lipid homeostasis, as well as a master regulator of adipogenesis and a potential lineage driver of luminal bladder cancer. While PPARG agonists lead to transcriptional activation of canonical target genes, inverse agonists have the opposite effect through inducing a transcriptionally repressive complex leading to repression of canonical target gene expression. While many agonists have been described and tested clinically, inverse agonists offer an underexplored avenue to modulate PPARG biology in vivo. Current inverse agonists lack favorable in vivo properties; herein we describe the discovery and characterization of a series of orally bioavailable 4-chloro-6-fluoroisophthalamides as covalent PPARG inverse-agonists, BAY-5516, BAY-5094, and BAY-9683. Structural studies of this series revealed distinct pre- and post-covalent binding positions, which led to the hypothesis that interactions in the pre-covalent conformation are primarily responsible for driving affinity, while interactions in the post-covalent conformation are more responsible for cellular functional effects by enhancing PPARG interactions with its corepressors. The need to simultaneously optimize for two distinct states may partially explain the steep SAR observed. Exquisite selectivity was achieved over related nuclear receptors in the subfamily due in part to a covalent warhead with low reactivity through an SNAr mechanism in addition to the specificity gained through covalent binding to a reactive cysteine uniquely positioned within the PPARG LBD. BAY-5516, BAY-5094, and BAY-9683 lead to pharmacodynamic regulation of PPARG target gene expression in vivo comparable to known inverse agonist SR10221 and represent new tools for future in vivo studies to explore their potential utility for treatment of disorders of hyperactivated PPARG including luminal bladder cancer and other disorders.
Collapse
Affiliation(s)
- Douglas L Orsi
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Steven J Ferrara
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Stephan Siegel
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | | | - Léa Bouché
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Elisabeth Pook
- Research and Development, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Philip Lienau
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Joseph P Bluck
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Christopher T Lemke
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gizem Akcay
- Bayer US LLC, Research and Development Precision Molecular Oncology, Cambridge, MA 02142, USA
| | | | | | | | | | | | - Isabel Jerchel-Furau
- Bayer US LLC, Research and Development Precision Molecular Oncology, Cambridge, MA 02142, USA
| | - Constantia Pantelidou
- Bayer US LLC, Research and Development Precision Molecular Oncology, Cambridge, MA 02142, USA
| | - Craig A Strathdee
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew Meyerson
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics and Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Knut Eis
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | | |
Collapse
|
12
|
Irwin S, Karr C, Furman C, Tsai J, Gee P, Banka D, Wibowo AS, Dementiev AA, O'Shea M, Yang J, Lowe J, Mitchell L, Ruppel S, Fekkes P, Zhu P, Korpal M, Larsen NA. Biochemical and structural basis for the pharmacological inhibition of nuclear hormone receptor PPARγ by inverse agonists. J Biol Chem 2022; 298:102539. [PMID: 36179791 PMCID: PMC9626935 DOI: 10.1016/j.jbc.2022.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/15/2022] Open
Abstract
Recent studies have reported that the peroxisome proliferator–activated receptor gamma (PPARγ) pathway is activated in approximately 40% of patients with muscle-invasive bladder cancer. This led us to investigate pharmacological repression of PPARγ as a possible intervention strategy. Here, we characterize PPARγ antagonists and inverse agonists and find that the former behave as silent ligands, whereas inverse agonists (T0070907 and SR10221) repress downstream PPARγ target genes leading to growth inhibition in bladder cancer cell lines. To understand the mechanism, we determined the ternary crystal structure of PPARγ bound to T0070907 and the corepressor (co-R) peptide NCOR1. The structure shows that the AF-2 helix 12 (H12) rearranges to bind inside the ligand-binding domain, where it forms stabilizing interactions with the compound. This dramatic movement in H12 unveils a large interface for co-R binding. In contrast, the crystal structure of PPARγ bound to a SR10221 analog shows more subtle structural differences, where the compound binds and pushes H12 away from the ligand-binding domain to allow co-R binding. Interestingly, we found that both classes of compound promote recruitment of co-R proteins in biochemical assays but with distinct conformational changes in H12. We validate our structural models using both site-directed mutagenesis and chemical probes. Our findings offer new mechanistic insights into pharmacological modulation of PPARγ signaling.
Collapse
Affiliation(s)
- Sean Irwin
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Craig Karr
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Craig Furman
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Jennifer Tsai
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Monta Rosa Therapeutics, Boston MA (present affiliation)
| | - Patricia Gee
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Deepti Banka
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Ardian S Wibowo
- Shamrock Structure, Woodridge IL (where work was performed); Helix Biostructures, Indianapolis IN (present affiliation)
| | - Alexey A Dementiev
- Shamrock Structure, Woodridge IL (where work was performed); Schrodinger Inc., Natick MA (present affiliation)
| | - Morgan O'Shea
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); C4 Therapeutics, Watertown MA (present affiliation)
| | - Joyce Yang
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Blueprint Medicines, Cambridge MA (present affiliation)
| | - Jason Lowe
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Foghorn Therapeutics, Cambridge MA (present affiliation)
| | - Lorna Mitchell
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Certa Therapeutics, Melbourne VIC, Australia (present affiliation)
| | - Sabine Ruppel
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); Ikena Oncology, Boston MA (present affiliation)
| | - Peter Fekkes
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed); 54 Gene, Washington DC (present affiliation)
| | - Ping Zhu
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Manav Korpal
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed)
| | - Nicholas A Larsen
- H3 Biomedicine, 300 Technology Sq #5, Cambridge MA 02139 (where work was performed).
| |
Collapse
|
13
|
Liu S, Shi J, Wang L, Huang Y, Zhao B, Ding H, Liu Y, Wang W, Chen Z, Yang J. Loss of EMP1 promotes the metastasis of human bladder cancer cells by promoting migration and conferring resistance to ferroptosis through activation of PPAR gamma signaling. Free Radic Biol Med 2022; 189:42-57. [PMID: 35850179 DOI: 10.1016/j.freeradbiomed.2022.06.247] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/25/2022] [Accepted: 06/30/2022] [Indexed: 12/21/2022]
Abstract
Metastasis, in which cancer cells detach from the original site and colonise other organs, is the primary cause of death induced by bladder cancer (BCa). Epithelial Membrane Protein 1 (EMP1) is dysregulated in many human cancers, and its clinical significance and biological function in diseases, including BCa, are largely unclear. Here, we demonstrated that EMP1 was downregulated in BCa cells. The deficiency of EMP1 promotes migration and confers resistance to ferroptosis/oxidative stress in BCa cells, favouring tumour cell metastasis. Mechanistically, we demonstrated that EMP1 deficiency enhanced tumour metastasis by increasing PPARG expression and promoting its activation, leading to upregulation of pFAK(Y397) and SLC7A11, which promoted cell migration and anti-ferroptotic cell death respectively. Moreover, we found EMP1-deficient sensitized cells to PPARG's ligand, which effect are metastatic phenotype promoted and could be mitigated by FABP4 knockdown. In conclusion, our study, for the first time, reveals that EMP1 deficiency promotes BCa cell migration and confers resistance to ferroptosis/oxidative stress, thus promoting metastasis of BCa via PPARG. These results revealed a novel role of EMP1-mediated PPARG in bladder cancer metastasis.
Collapse
Affiliation(s)
- Sha Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| | - Jiazhong Shi
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| | - Liwei Wang
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Yaqin Huang
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| | - Baixiong Zhao
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Hua Ding
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Yuting Liu
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Wuxing Wang
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| | - Zhiwen Chen
- Department of Urology, The First Affiliated Hospital of the Third Military Medical University, Chongqing, China.
| | - Jin Yang
- Department of Cell Biology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
14
|
Lang H, Béraud C, Cabel L, Fontugne J, Lassalle M, Krucker C, Dufour F, Groeneveld CS, Dixon V, Meng X, Kamoun A, Chapeaublanc E, De Reynies A, Gamé X, Rischmann P, Bieche I, Masliah-Planchon J, Beaurepere R, Allory Y, Lindner V, Misseri Y, Radvanyi F, Lluel P, Bernard-Pierrot I, Massfelder T. Integrated molecular and pharmacological characterization of patient-derived xenografts from bladder and ureteral cancers identifies new potential therapies. Front Oncol 2022; 12:930731. [PMID: 36033544 PMCID: PMC9405192 DOI: 10.3389/fonc.2022.930731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background Muscle-invasive bladder cancer (MIBC) and upper urinary tract urothelial carcinoma (UTUC) are molecularly heterogeneous. Despite chemotherapies, immunotherapies, or anti-fibroblast growth factor receptor (FGFR) treatments, these tumors are still of a poor outcome. Our objective was to develop a bank of patient-derived xenografts (PDXs) recapitulating the molecular heterogeneity of MIBC and UTUC, to facilitate the preclinical identification of therapies. Methods Fresh tumors were obtained from patients and subcutaneously engrafted into immune-compromised mice. Patient tumors and matched PDXs were compared regarding histopathology, transcriptomic (microarrays), and genomic profiles [targeted Next-Generation Sequencing (NGS)]. Several PDXs were treated with chemotherapy (cisplatin/gemcitabine) or targeted therapies [FGFR and epidermal growth factor (EGFR) inhibitors]. Results A total of 31 PDXs were established from 1 non-MIBC, 25 MIBC, and 5 upper urinary tract tumors, including 28 urothelial (UC) and 3 squamous cell carcinomas (SCCs). Integrated genomic and transcriptomic profiling identified the PDXs of three different consensus molecular subtypes [basal/squamous (Ba/Sq), luminal papillary, and luminal unstable] and included FGFR3-mutated PDXs. High histological and genomic concordance was found between matched patient tumor/PDX. Discordance in molecular subtypes, such as a Ba/Sq patient tumor giving rise to a luminal papillary PDX, was observed (n=5) at molecular and histological levels. Ten models were treated with cisplatin-based chemotherapy, and we did not observe any association between subtypes and the response. Of the three Ba/Sq models treated with anti-EGFR therapy, two models were sensitive, and one model, of the sarcomatoid variant, was resistant. The treatment of three FGFR3-mutant PDXs with combined FGFR/EGFR inhibitors was more efficient than anti-FGFR3 treatment alone. Conclusions We developed preclinical PDX models that recapitulate the molecular heterogeneity of MIBCs and UTUC, including actionable mutations, which will represent an essential tool in therapy development. The pharmacological characterization of the PDXs suggested that the upper urinary tract and MIBCs, not only UC but also SCC, with similar molecular characteristics could benefit from the same treatments including anti-FGFR for FGFR3-mutated tumors and anti-EGFR for basal ones and showed a benefit for combined FGFR/EGFR inhibition in FGFR3-mutant PDXs, compared to FGFR inhibition alone.
Collapse
Affiliation(s)
- Hervé Lang
- Department of Urology, New Civil Hospital and Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | | | - Luc Cabel
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | - Jacqueline Fontugne
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
- Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Versailles, France
| | | | - Clémentine Krucker
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Florent Dufour
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Inovarion, Paris, France
| | - Clarice S. Groeneveld
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- La Ligue Contre Le Cancer, Paris, France
| | - Victoria Dixon
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
| | - Xiangyu Meng
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | | | - Elodie Chapeaublanc
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | | | - Xavier Gamé
- Department of Urology, Rangueil Hospital, Toulouse, France
| | | | - Ivan Bieche
- Department of Genetics, Institut Curie, Paris, France
| | | | | | - Yves Allory
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Department of Pathology, Institut Curie, Saint-Cloud, France
- Université de Versailles-Saint-Quentin-en-Yvelines (UVSQ), Paris-Saclay University, Versailles, France
| | | | | | - François Radvanyi
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
| | - Philippe Lluel
- Urosphere, Toulouse, France
- *Correspondence: Isabelle Bernard-Pierrot, ; Philippe Lluel,
| | - Isabelle Bernard-Pierrot
- Institut Curie, Centre National de la Recherche Scientifique (CNRS), UMR144, Molecular Oncology team, PSL Research University, Paris, France
- Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC), Univ Paris, Paris, France
- *Correspondence: Isabelle Bernard-Pierrot, ; Philippe Lluel,
| | - Thierry Massfelder
- INSERM (French National Institute of Health and Medical Research) UMR_S1260, Université de Strasbourg, Regenerative Nanomedicine, Centre de Recherche en Biomédecine de Strasbourg, Strasbourg, France
| |
Collapse
|
15
|
Wiessner GB, Plumber SA, Xiang T, Mendelsohn CL. Development, regeneration and tumorigenesis of the urothelium. Development 2022; 149:dev198184. [PMID: 35521701 PMCID: PMC10656457 DOI: 10.1242/dev.198184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The urothelium of the bladder functions as a waterproof barrier between tissue and outflowing urine. Largely quiescent during homeostasis, this unique epithelium rapidly regenerates in response to bacterial or chemical injury. The specification of the proper cell types during development and injury repair is crucial for tissue function. This Review surveys the current understanding of urothelial progenitor populations in the contexts of organogenesis, regeneration and tumorigenesis. Furthermore, we discuss pathways and signaling mechanisms involved in urothelial differentiation, and consider the relevance of this knowledge to stem cell biology and tissue regeneration.
Collapse
Affiliation(s)
- Gregory B. Wiessner
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Sakina A. Plumber
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Tina Xiang
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| | - Cathy L. Mendelsohn
- Departments of Urology, Genetics and Development, Pathology and Cell Biology, Columbia Stem Cell Initiative and Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
- Institute of Human Nutrition, Columbia University, New York, NY 10032, USA
| |
Collapse
|
16
|
Papaetis GS. Pioglitazone, Bladder Cancer and the Presumption of Innocence. Curr Drug Saf 2022; 17:294-318. [PMID: 35249505 DOI: 10.2174/1574886317666220304124756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Thiazolidinediones are potent exogenous agonists of PPAR-γ, which augment the effects of insulin to its cellular targets and mainly at the level of adipose tissue. Pioglitazone, the main thiazolidinedione in clinical practice, has shown cardiovascular and renal benefits in patients with type 2 diabetes, durable reduction of glycated hemoglobulin levels, important improvements of several components of the metabolic syndrome and beneficial effects of non-alcoholic fatty liver disease. OBJECTIVE Despite all of its established advantages, the controversy for an increased risk of developing bladder cancer, combined with the advent of newer drug classes that achieved major cardiorenal effects have significantly limited its use spreading a persistent shadow of doubt for its future role. METHODS Pubmed, Google and Scope databases have been thoroughly searched and relevant studies were selected. RESULTS This paper explores thoroughly both in vitro and in vivo (animal models and humans) studies that investigated the possible association of pioglitazone with bladder cancer. CONCLUSION Currently the association of pioglitazone with bladder cancer cannot be based on solid evidence. This evidence cannot justify its low clinical administration, especially in the present era of individualised treatment strategies. Definite clarification of this issue is imperative and urgently anticipated from future high quality and rigorous pharmacoepidemiologic research, keeping in mind its unique mechanism of action and its significant pleiotropic effects.
Collapse
Affiliation(s)
- Georgios S Papaetis
- Internal Medicine and Diabetes Clinic, Eleftherios Venizelos Avenue 62, Paphos, Cyprus.
- CDA College, 73 Democratias Avenue, Paphos, Cyprus
| |
Collapse
|
17
|
Zhu B, Kang Z, Zhu S, Zhang Y, Lai X, Zhou L, Huang H, Gao X, Jiang C, Zeng J. Multi-Omics Characterization of Circular RNA-Encoded Novel Proteins Associated With Bladder Outlet Obstruction. Front Cell Dev Biol 2022; 9:772534. [PMID: 35071227 PMCID: PMC8777291 DOI: 10.3389/fcell.2021.772534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Bladder outlet obstruction (BOO) is a common urologic disease associated with poorly understood molecular mechanisms. This study aimed to investigate the possible involvements of circRNAs (circular RNAs) and circRNA-encoded proteins in BOO development. The rat BOO model was established by the partial bladder outlet obstruction surgery. Differential expression of circRNA and protein profiles were characterized by deep RNA sequencing and iTRAQ quantitative proteomics respectively. Novel proteins encoded by circRNAs were predicted through ORF (open reading frame) selection using the GETORF software and verified by the mass spectrometry in proteomics, combined with the validation of their expressional alterations by quantitative RT-PCR. Totally 3,051 circRNAs were differentially expressed in bladder tissues of rat BOO model with widespread genomic distributions, including 1,414 up-regulated, and 1,637 down-regulated circRNAs. Our following quantitative proteomics revealed significant changes of 85 proteins in rat BOO model, which were enriched in multiple biological processes and signaling pathways such as the PPAR and Wnt pathways. Among them, 21 differentially expressed proteins were predicted to be encoded by circRNAs and showed consistent circRNA and protein levels in rat BOO model. The expression levels of five protein-encoding circRNAs were further validated by quantitative RT-PCR and mass spectrometry. The circRNA and protein profiles were substantially altered in rat BOO model, with great expressional changes of circRNA-encoded novel proteins.
Collapse
Affiliation(s)
- Baoyi Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Zhanfang Kang
- Department of Basic Medical Research, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Sihua Zhu
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Yuying Zhang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Xiangmao Lai
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Lilin Zhou
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Chonghe Jiang
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Jianwen Zeng
- Department of Urology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
18
|
Hurst CD, Cheng G, Platt FM, Castro MAA, Marzouka NADS, Eriksson P, Black EVI, Alder O, Lawson ARJ, Lindskrog SV, Burns JE, Jain S, Roulson JA, Brown JC, Koster J, Robertson AG, Martincorena I, Dyrskjøt L, Höglund M, Knowles MA. Stage-stratified molecular profiling of non-muscle-invasive bladder cancer enhances biological, clinical, and therapeutic insight. Cell Rep Med 2021; 2:100472. [PMID: 35028613 PMCID: PMC8714941 DOI: 10.1016/j.xcrm.2021.100472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/09/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022]
Abstract
Understanding the molecular determinants that underpin the clinical heterogeneity of non-muscle-invasive bladder cancer (NMIBC) is essential for prognostication and therapy development. Stage T1 disease in particular presents a high risk of progression and requires improved understanding. We present a detailed multi-omics study containing gene expression, copy number, and mutational profiles that show relationships to immune infiltration, disease recurrence, and progression to muscle invasion. We compare expression and genomic subtypes derived from all NMIBCs with those derived from the individual disease stages Ta and T1. We show that sufficient molecular heterogeneity exists within the separate stages to allow subclassification and that this is more clinically meaningful for stage T1 disease than that derived from all NMIBCs. This provides improved biological understanding and identifies subtypes of T1 tumors that may benefit from chemo- or immunotherapy.
Collapse
Affiliation(s)
- Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Guo Cheng
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Fiona M Platt
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba, Brazil
| | | | - Pontus Eriksson
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emma V I Black
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Olivia Alder
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Andrew R J Lawson
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Sia V Lindskrog
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julie E Burns
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Sunjay Jain
- Pyrah Department of Urology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jo-An Roulson
- Department of Histopathology, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Joanne C Brown
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - Jan Koster
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Cancer Center Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - A Gordon Robertson
- Canada's Michael Smith Genome Sciences Center, BC Cancer, Vancouver, BC V5Z 4S6, Canada
| | - Inigo Martincorena
- Cancer, Ageing and Somatic Mutation Programme, Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mattias Höglund
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| |
Collapse
|
19
|
Jiang J, Yuan J, Hu Z, Xu M, Zhang Y, Long M, Fan Y, Montone K, Tanyi JL, Tavana O, Chan HM, Zhang L, Hu X. Systematic pan-cancer characterization of nuclear receptors identifies potential cancer biomarkers and therapeutic targets. Cancer Res 2021; 82:46-59. [PMID: 34750098 DOI: 10.1158/0008-5472.can-20-3458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/15/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
The nuclear receptor (NR) superfamily is one of the major druggable gene families, representing targets of approximately 13.5% of approved drugs. Certain NRs, such as estrogen receptor and androgen receptor, have been well demonstrated to be functionally involved in cancer and serve as informative biomarkers and therapeutic targets in oncology. However, the spectrum of NR dysregulation across cancers remains to be comprehensively characterized. Through computational integration of genetic, genomic, and pharmacologic profiles, we characterized the expression, recurrent genomic alterations, and cancer dependency of NRs at a large scale across primary tumor specimens and cancer cell lines. Expression levels of NRs were highly cancer-type specific and globally downregulated in tumors compared to corresponding normal tissue. Although the majority of NRs showed copy number losses in cancer, both recurrent focal gains and losses were identified in select NRs. Recurrent mutations and transcript fusions of NRs were observed in a small portion of cancers, serving as actionable genomic alterations. Analysis of large-scale CRISPR and RNAi screening datasets identified 10 NRs as strongly selective essential genes for cancer cell growth. In a subpopulation of tumor cells, growth dependencies correlated significantly with expression or genomic alterations. Overall, our comprehensive characterization of NRs across cancers may facilitate the identification and prioritization of potential biomarkers and therapeutic targets, as well as the selection of patients for precision cancer treatment.
Collapse
Affiliation(s)
| | - Jiao Yuan
- Ob and Gyn, University of Pennsylvania
| | - Zhongyi Hu
- Department of Obstetrics and Gynecology, University of Pennsylvania
| | - Mu Xu
- Department of Obstetrics and Gynecology, University of Pennsylvania
| | | | - Meixiao Long
- Comprehensive Cancer Center, The Ohio State University
| | - Yi Fan
- Radiation Oncology, University of Pennsylvania
| | | | | | | | - Ho Man Chan
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca (United States)
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania
| | | |
Collapse
|
20
|
Tate T, Xiang T, Wobker SE, Zhou M, Chen X, Kim H, Batourina E, Lin CS, Kim WY, Lu C, Mckiernan JM, Mendelsohn CL. Pparg signaling controls bladder cancer subtype and immune exclusion. Nat Commun 2021; 12:6160. [PMID: 34697317 PMCID: PMC8545976 DOI: 10.1038/s41467-021-26421-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Pparg, a nuclear receptor, is downregulated in basal subtype bladder cancers that tend to be muscle invasive and amplified in luminal subtype bladder cancers that tend to be non-muscle invasive. Bladder cancers derive from the urothelium, one of the most quiescent epithelia in the body, which is composed of basal, intermediate, and superficial cells. We find that expression of an activated form of Pparg (VP16;Pparg) in basal progenitors induces formation of superficial cells in situ, that exit the cell cycle, and do not form tumors. Expression in basal progenitors that have been activated by mild injury however, results in luminal tumor formation. We find that these tumors are immune deserted, which may be linked to down-regulation of Nf-kb, a Pparg target. Interestingly, some luminal tumors begin to shift to basal subtype tumors with time, down-regulating Pparg and other luminal markers. Our findings have important implications for treatment and diagnosis of bladder cancer. PPARg is differentially expressed in bladder cancer subtypes. Here, the authors show in mice that when an activated form of PPARg is expressed in basal bladder cells tumours do not form, however in the presence of injury the basal cells differentiate into luminal cells.
Collapse
Affiliation(s)
- Tiffany Tate
- Department of Urology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Tina Xiang
- Department of Urology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Sarah E Wobker
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hyunwoo Kim
- Department of Urology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Ekatherina Batourina
- Department of Urology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Chyuan-Sheng Lin
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Transgenic Mouse Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Division of Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.,Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James M Mckiernan
- Department of Urology, Columbia University Irving Medical Center, New York, NY, 10032, USA.,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.,New York-Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Cathy Lee Mendelsohn
- Department of Urology, Columbia University Irving Medical Center, New York, NY, 10032, USA. .,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA. .,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA. .,Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA. .,Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Rose TL, Weir WH, Mayhew GM, Shibata Y, Eulitt P, Uronis JM, Zhou M, Nielsen M, Smith AB, Woods M, Hayward MC, Salazar AH, Milowsky MI, Wobker SE, McGinty K, Millburn MV, Eisner JR, Kim WY. Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience. Br J Cancer 2021; 125:1251-1260. [PMID: 34294892 DOI: 10.1038/s41416-021-01488-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/07/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND FGFR3-altered urothelial cancer (UC) correlates with a non-T cell-inflamed phenotype and has therefore been postulated to be less responsive to immune checkpoint blockade (ICB). Preclinical work suggests FGFR3 signalling may suppress pathways such as interferon signalling that alter immune microenvironment composition. However, correlative studies examining clinical trials have been conflicting as to whether FGFR altered tumours have equivalent response and survival to ICB in patients with metastatic UC. These findings have yet to be validated in real world data, therefore we evaluated clinical outcomes of patients with FGFR3-altered metastatic UC treated with ICB and investigate the underlying immunogenomic mechanisms of response and resistance. METHODS 103 patients with metastatic UC treated with ICB at a single academic medical center from 2014 to 2018 were identified. Clinical annotation for demographics and cancer outcomes, as well as somatic DNA and RNA sequencing, were performed. Objective response rate to ICB, progression-free survival, and overall survival was compared between patients with FGFR3-alterations and those without. RNA expression, including molecular subtyping and T cell receptor clonality, was also compared between FGFR3-altered and non-altered patients. RESULTS Our findings from this dataset confirm that FGFR3-altered (n = 17) and wild type (n = 86) bladder cancers are equally responsive to ICB (12 vs 19%, p = 0.73). Moreover, we demonstrate that despite being less inflamed, FGFR3-altered tumours have equivalent T cell receptor (TCR) diversity and that the balance of a CD8 T cell gene expression signature to immune suppressive features is an important determinant of ICB response. CONCLUSIONS Our work in a real world dataset validates prior observations from clinical trials but also extends this prior work to demonstrate that FGFR3-altered and wild type tumours have equivalent TCR diversity and that the balance of effector T cell to immune suppression signals are an important determinant of ICB response.
Collapse
Affiliation(s)
- Tracy L Rose
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William H Weir
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Patrick Eulitt
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Mi Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew Nielsen
- Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Angela B Smith
- Department of Urology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Woods
- Department of Urology, Loyola University, Chicago, IL, USA
| | - Michele C Hayward
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ashley H Salazar
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew I Milowsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara E Wobker
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Katrina McGinty
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Sanchez-Quiles V, Shi MJ, Dingli F, Krucker C, Loew D, Bernard-Pierrot I, Radvanyi F. Triple extraction method enables high quality mass spectrometry-based proteomics and phospho-proteomics for eventual multi-omics integration studies. Proteomics 2021; 21:e2000303. [PMID: 34240547 DOI: 10.1002/pmic.202000303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
Large-scale multi-omic analysis allows a thorough understanding of different physiological or pathological conditions, particularly cancer. Here, an extraction method simultaneously yielding DNA, RNA and protein (thereby referred to as "triple extraction", TEx) was tested for its suitability to unbiased, system-wide proteomic investigation. Largely proven efficient for transcriptomic and genomic studies, we aimed at exploring TEx compatibility with mass spectrometry-based proteomics and phospho-proteomics, as compared to a standard urea extraction. TEx is suitable for the shotgun investigation of proteomes, providing similar results as urea-based protocol both at the qualitative and quantitative levels. TEx is likewise compatible with the exploration of phosphorylation events, actually providing a higher number of correctly localized sites than urea, although the nature of extracted modifications appears somewhat distinct between both techniques. These results highlight that the presented protocol is well suited for the examination of the proteome and modified proteome of this bladder cancer cell model, as efficiently as other more widely used workflows for mass spectrometry-based analysis. Potentially applicable to other mammalian cell types and tissues, TEx represents an advantageous strategy for multi-omics on scarce and/or heterogenous samples.
Collapse
Affiliation(s)
- Virginia Sanchez-Quiles
- Institut Curie, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
| | - Ming-Jun Shi
- Institut Curie, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France.,Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Florent Dingli
- Institut Curie, Centre de Recherche, Mass Spectrometry and Proteomics Facility, PSL Research University, Paris, France
| | - Clémentine Krucker
- Institut Curie, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
| | - Damarys Loew
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Isabelle Bernard-Pierrot
- Institut Curie, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
| | - François Radvanyi
- Institut Curie, Equipe Labellisée Ligue contre le Cancer, PSL Research University, Paris, France
| |
Collapse
|
23
|
Mukha A, Kalkhoven E, van Mil SWC. Splice variants of metabolic nuclear receptors: Relevance for metabolic disease and therapeutic targeting. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166183. [PMID: 34058349 DOI: 10.1016/j.bbadis.2021.166183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/17/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Metabolic nuclear receptors are ligand-activated transcription factors which control a wide range of metabolic processes and signaling pathways in response to nutrients and xenobiotics. Targeting these NRs is at the forefront of our endeavours to generate novel treatment options for diabetes, metabolic syndrome and fatty liver disease. Numerous splice variants have been described for these metabolic receptors. Structural changes, as a result of alternative splicing, lead to functional differences among NR isoforms, resulting in the regulation of different metabolic pathways by these NR splice variants. In this review, we describe known splice variants of FXR, LXRs, PXR, RXR, LRH-1, CAR and PPARs. We discuss their structure and functions, and elaborate on the regulation of splice variant abundance by nutritional signals. We conclude that NR splice variants pose an intriguing new layer of complexity in metabolic signaling, which needs to be taken into account in the development of treatment strategies for metabolic diseases.
Collapse
Affiliation(s)
- Anna Mukha
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Saskia W C van Mil
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
24
|
Augimeri G, Bonofiglio D. PPARgamma: A Potential Intrinsic and Extrinsic Molecular Target for Breast Cancer Therapy. Biomedicines 2021; 9:biomedicines9050543. [PMID: 34067944 PMCID: PMC8152061 DOI: 10.3390/biomedicines9050543] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
Over the last decades, the breast tumor microenvironment (TME) has been increasingly recognized as a key player in tumor development and progression and as a promising prognostic and therapeutic target for breast cancer patients. The breast TME, representing a complex network of cellular signaling—deriving from different stromal cell types as well as extracellular matrix components, extracellular vesicles, and soluble growth factors—establishes a crosstalk with cancer cells sustaining tumor progression. A significant emphasis derives from the tumor surrounding inflammation responsible for the failure of the immune system to effectively restrain breast cancer growth. Thus, effective therapeutic strategies require a deeper understanding of the interplay between tumor and stroma, aimed at targeting both the intrinsic neoplastic cells and the extrinsic surrounding stroma. In this scenario, peroxisome proliferator-activated receptor (PPAR) γ, primarily known as a metabolic regulator, emerged as a potential target for breast cancer treatment since it functions in breast cancer cells and several components of the breast TME. In particular, the activation of PPARγ by natural and synthetic ligands inhibits breast cancer cell growth, motility, and invasiveness. Moreover, activated PPARγ may educate altered stromal cells, counteracting the pro-inflammatory milieu that drive breast cancer progression. Interestingly, using Kaplan–Meier survival curves, PPARγ also emerges as a prognostically favorable factor in breast cancer patients. In this perspective, we briefly discuss the mechanisms by which PPARγ is implicated in tumor biology as well as in the complex regulatory networks within the breast TME. This may help to profile approaches that provide a simultaneous inhibition of epithelial cells and TME components, offering a more efficient way to treat breast cancer.
Collapse
|
25
|
Scholtes MP, de Jong FC, Zuiverloon TCM, Theodorescu D. Role of Bladder Cancer Metabolic Reprogramming in the Effectiveness of Immunotherapy. Cancers (Basel) 2021; 13:288. [PMID: 33466735 PMCID: PMC7830378 DOI: 10.3390/cancers13020288] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/24/2022] Open
Abstract
Metabolic reprogramming (MR) is an upregulation of biosynthetic and bioenergetic pathways to satisfy increased energy and metabolic building block demands of tumors. This includes glycolytic activity, which deprives the tumor microenvironment (TME) of nutrients while increasing extracellular lactic acid. This inhibits cytotoxic immune activity either via direct metabolic competition between cancer cells and cytotoxic host cells or by the production of immune-suppressive metabolites such as lactate or kynurenine. Since immunotherapy is a major treatment option in patients with metastatic urothelial carcinoma (UC), MR may have profound implications for the success of such therapy. Here, we review how MR impacts host immune response to UC and the impact on immunotherapy response (including checkpoint inhibitors, adaptive T cell therapy, T cell activation, antigen presentation, and changes in the tumor microenvironment). Articles were identified by literature searches on the keywords or references to "UC" and "MR". We found several promising therapeutic approaches emerging from preclinical models that can circumvent suppressive MR effects on the immune system. A select summary of active clinical trials is provided with examples of possible options to enhance the effectiveness of immunotherapy. In conclusion, the literature suggests manipulating the MR is feasible and may improve immunotherapy effectiveness in UC.
Collapse
Affiliation(s)
- Mathijs P. Scholtes
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (M.P.S.); (F.C.d.J.); (T.C.M.Z.)
| | - Florus C. de Jong
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (M.P.S.); (F.C.d.J.); (T.C.M.Z.)
| | - Tahlita C. M. Zuiverloon
- Department of Urology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (M.P.S.); (F.C.d.J.); (T.C.M.Z.)
| | - Dan Theodorescu
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Department of Surgery (Urology), Los Angeles, CA 90048, USA
- Cedars-Sinai Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, CA 90048, USA
| |
Collapse
|
26
|
Sanchez DJ, Missiaen R, Skuli N, Steger DJ, Simon MC. Cell-Intrinsic Tumorigenic Functions of PPARγ in Bladder Urothelial Carcinoma. Mol Cancer Res 2021; 19:598-611. [PMID: 33431608 DOI: 10.1158/1541-7786.mcr-20-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
The role of PPAR gamma (PPARγ) has been well characterized in the developmental process of adipogenesis, yet its aberrant expression patterns and functions in cancer subtypes are less understood. Although PPARγ has been recently demonstrated to play non-cell-autonomous roles in promoting bladder urothelial carcinoma (UC) progression, underlying mechanisms of the cell-intrinsic oncogenic activity remain unknown. Here, we report robust expression and nuclear accumulation of PPARγ in 47% of samples of patients with UC, exceeding mRNA expression patterns published by The Cancer Genome Atlas. In vitro assays revealed for the first time that treatment of UC cells with PPARγ inverse agonist or PPARG knockout by CRISPR-Cas9 reduces proliferation, migration, and invasion of multiple established UC cell lines, most strongly in those characterized by PPARG genomic amplification or activating mutations of RXRA, the obligate heterodimer of PPARγ. Through genome-wide approaches including chromatin immunoprecipitation sequencing and RNA sequencing, we define a novel set of PPARγ-regulated genes in UC, including Sonic Hedgehog (SHH). Similar to PPARγ, genetic inhibition of SHH reduces proliferation and motility. Finally, we demonstrate the PPARγ dependency of UC tumors in vivo by genetic and pharmacologic PPARγ inhibition in subcutaneous xenografts. Collectively, our data indicate that PPARγ promotes UC progression in a subset of patients, at least in part, through cell-autonomous mechanisms linked to SHH signaling. IMPLICATIONS: Genome-wide analysis of DNA-binding sites for oncogenic factor PPARγ revealed SHH as a novel downstream target involved in UC progression, providing important insight into the tumorigenic nature and molecular mechanism of PPARγ signaling in UC.
Collapse
Affiliation(s)
- Danielle J Sanchez
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J Steger
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Hernandez-Quiles M, Broekema MF, Kalkhoven E. PPARgamma in Metabolism, Immunity, and Cancer: Unified and Diverse Mechanisms of Action. Front Endocrinol (Lausanne) 2021; 12:624112. [PMID: 33716977 PMCID: PMC7953066 DOI: 10.3389/fendo.2021.624112] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/08/2021] [Indexed: 12/20/2022] Open
Abstract
The proliferator-activated receptor γ (PPARγ), a member of the nuclear receptor superfamily, is one of the most extensively studied ligand-inducible transcription factors. Since its identification in the early 1990s, PPARγ is best known for its critical role in adipocyte differentiation, maintenance, and function. Emerging evidence indicates that PPARγ is also important for the maturation and function of various immune system-related cell types, such as monocytes/macrophages, dendritic cells, and lymphocytes. Furthermore, PPARγ controls cell proliferation in various other tissues and organs, including colon, breast, prostate, and bladder, and dysregulation of PPARγ signaling is linked to tumor development in these organs. Recent studies have shed new light on PPARγ (dys)function in these three biological settings, showing unified and diverse mechanisms of action. Classical transactivation-where PPARγ activates genes upon binding to PPAR response elements as a heterodimer with RXRα-is important in all three settings, as underscored by natural loss-of-function mutations in FPLD3 and loss- and gain-of-function mutations in tumors. Transrepression-where PPARγ alters gene expression independent of DNA binding-is particularly relevant in immune cells. Interestingly, gene translocations resulting in fusion of PPARγ with other gene products, which are unique to specific carcinomas, present a third mode of action, as they potentially alter PPARγ's target gene profile. Improved understanding of the molecular mechanism underlying PPARγ activity in the complex regulatory networks in metabolism, cancer, and inflammation may help to define novel potential therapeutic strategies for prevention and treatment of obesity, diabetes, or cancer.
Collapse
Affiliation(s)
- Miguel Hernandez-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjoleine F. Broekema
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Department of Clinical Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- *Correspondence: Eric Kalkhoven,
| |
Collapse
|
28
|
Differential Effects of Cancer-Associated Mutations Enriched in Helix H3 of PPARγ. Cancers (Basel) 2020; 12:cancers12123580. [PMID: 33266062 PMCID: PMC7761077 DOI: 10.3390/cancers12123580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 01/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been revealed to regulate tumor microenvironments. In particular, genetic alterations of PPARγ found in various cancers have been reported to play important roles in tumorigenesis by affecting PPARγ transactivation. In this study, we found that helix H3 of the PPARγ ligand-binding domain (LBD) has a number of sites that are mutated in cancers. To uncover underlying molecular mechanisms between helix H3 mutations and tumorigenesis, we performed structure‒function studies on the PPARγ LBDs containing helix H3 mutations found in cancers. Interestingly, PPARγ Q286E found in bladder cancer induces a constitutively active conformation of PPARγ LBD and thus abnormal activation of PPARγ/RXRα pathway, which suggests tumorigenic roles of PPARγ in bladder cancer. In contrast, other helix H3 mutations found in various cancers impair ligand binding essential for transcriptional activity of PPARγ. These data indicate that cancer-associated mutations clustered in helix H3 of PPARγ LBD exhibit differential effects in PPARγ-mediated tumorigenesis and provide a basis for the development of new biomarkers targeting tumor microenvironments.
Collapse
|
29
|
Shi MJ, Meng XY, Fontugne J, Chen CL, Radvanyi F, Bernard-Pierrot I. Identification of new driver and passenger mutations within APOBEC-induced hotspot mutations in bladder cancer. Genome Med 2020; 12:85. [PMID: 32988402 PMCID: PMC7646471 DOI: 10.1186/s13073-020-00781-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND APOBEC-driven mutagenesis and functional positive selection of mutated genes may synergistically drive the higher frequency of some hotspot driver mutations compared to other mutations within the same gene, as we reported for FGFR3 S249C. Only a few APOBEC-associated driver hotspot mutations have been identified in bladder cancer (BCa). Here, we systematically looked for and characterised APOBEC-associated hotspots in BCa. METHODS We analysed 602 published exome-sequenced BCas, for part of which gene expression data were also available. APOBEC-associated hotspots were identified by motif-mapping, mutation signature fitting and APOBEC-mediated mutagenesis comparison. Joint analysis of DNA hairpin stability and gene expression was performed to predict driver or passenger hotspots. Aryl hydrocarbon receptor (AhR) activity was calculated based on its target genes expression. Effects of AhR knockout/inhibition on BCa cell viability were analysed. RESULTS We established a panel of 44 APOBEC-associated hotspot mutations in BCa, which accounted for about half of the hotspot mutations. Fourteen of them overlapped with the hotspots found in other cancer types with high APOBEC activity. They mostly occurred in the DNA lagging-strand templates and the loop of DNA hairpins. APOBEC-associated hotspots presented systematically a higher prevalence than the other mutations within each APOBEC-target gene, independently of their functional impact. A combined analysis of DNA loop stability and gene expression allowed to distinguish known passenger from known driver hotspot mutations in BCa, including loss-of-function mutations affecting tumour suppressor genes, and to predict new candidate drivers, such as AHR Q383H. We further characterised AHR Q383H as an activating driver mutation associated with high AhR activity in luminal tumours. High AhR activity was also found in tumours presenting amplifications of AHR and its co-receptor ARNT. We finally showed that BCa cells presenting those different genetic alterations were sensitive to AhR inhibition. CONCLUSIONS Our study identified novel potential drivers within APOBEC-associated hotspot mutations in BCa reinforcing the importance of APOBEC mutagenesis in BCa. It could allow a better understanding of BCa biology and aetiology and have clinical implications such as AhR as a potential therapeutic target. Our results also challenge the dogma that all hotspot mutations are drivers and mostly gain-of-function mutations affecting oncogenes.
Collapse
Affiliation(s)
- Ming-Jun Shi
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France
- Paris-Saclay University, Paris, France
| | - Xiang-Yu Meng
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France.
- Paris-Saclay University, Paris, France.
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jacqueline Fontugne
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France
- Paris-Saclay University, Paris, France
| | - Chun-Long Chen
- Institut Curie, CNRS, UMR3244, PSL Research University, Paris, France
- Sorbonne Université, Paris, France
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France
| | - Isabelle Bernard-Pierrot
- Institut Curie, CNRS, UMR144, Molecular Oncology team, PSL Research University, 26 Rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
30
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
31
|
Costantini L, Molinari R, Farinon B, Lelli V, Timperio AM, Merendino N. Docosahexaenoic Acid Reverted the All- trans Retinoic Acid-Induced Cellular Proliferation of T24 Bladder Cancer Cell Line. J Clin Med 2020; 9:jcm9082494. [PMID: 32756427 PMCID: PMC7465316 DOI: 10.3390/jcm9082494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 11/16/2022] Open
Abstract
The treatment of solid cancers with pharmacological all-trans retinoic acid (ATRA) concentrations, even if it is a gold standard therapy for the acute promyelocytic leukaemia (APL), is not always effective due to some resistance mechanisms. Here the resistance to ATRA treatment of T24 cell line, bladder cancer, was investigated. T24 was not only resistant to cell death when treated at concentrations up to 20 µM of ATRA, but it was also able to stimulate the cellular proliferation. An over-expression of the fatty acid binding protein 5 (FABP5) in conjunction with the cellular retinol-binding protein-II (CRABP-II) down-expression was found. However, the direct inhibition of the peroxisome proliferator-activated receptor β/δ (PPARβ/δ) did not abolish T24 proliferation, but rather potentiated it. Moreover, considering the ability of the long-chain fatty acids (LCFAs) to displace ATRA from FABP5, the actions of the saturated palmitic acid (PA), unsaturated omega-6 linoleic acid (LA) and omega-3 docosahexaenoic acid (DHA) were evaluated to counteract ATRA-related proliferation. ATRA-PA co-treatment induces cellular growth inhibition, while ATRA-LA co-treatment induces cellular growth enhancement. However, even if DHA is unsaturated LCFA as LA, it was able to reverse the ATRA-induced cellular proliferation of T24, bringing the viability percentages at the levels of the control.
Collapse
|
32
|
van der Vos KE, Vis DJ, Nevedomskaya E, Kim Y, Choi W, McConkey D, Wessels LFA, van Rhijn BWG, Zwart W, van der Heijden MS. Epigenetic profiling demarcates molecular subtypes of muscle-invasive bladder cancer. Sci Rep 2020; 10:10952. [PMID: 32616859 PMCID: PMC7331601 DOI: 10.1038/s41598-020-67850-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) is a heterogeneous disease that often recurs despite aggressive treatment with neoadjuvant chemotherapy and (radical) cystectomy. Basal and luminal molecular subtypes have been identified that are linked to clinical characteristics and have differential sensitivities to chemotherapy. While it has been suggested that epigenetic mechanisms play a role in defining these subtypes, a thorough understanding of the biological mechanisms is lacking. This report details the first genome-wide analysis of histone methylation patterns of human primary bladder tumours by chromatin immunoprecipitations and next-generation sequencing (ChIP-seq). We profiled multiple histone marks: H3K27me3, a marker for repressed genes, and H3K4me1 and H3K4me3, which are indicators of active enhancers and active promoters. Integrated analysis of ChIP-seq data and RNA sequencing revealed that H3K4 mono-methylation demarcates MIBC subtypes, while no association was found for the other two histone modifications in relation to basal and luminal subtypes. Additionally, we identified differentially methylated H3K4me1 peaks in basal and luminal tumour samples, suggesting that active enhancers play a role in defining subtypes. Our study is the first analysis of histone modifications in primary bladder cancer tissue and provides an important resource for the bladder cancer community.
Collapse
Affiliation(s)
- K E van der Vos
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - D J Vis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E Nevedomskaya
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Y Kim
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - D McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, USA
| | - L F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Faculty of EEMCS, Delft University of Technology, Delft, The Netherlands
| | - B W G van Rhijn
- Department of Surgical Oncology (Urology), The Netherlands Cancer Institute, Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - W Zwart
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.,Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M S van der Heijden
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Peng T, Wang G, Cheng S, Xiong Y, Cao R, Qian K, Ju L, Wang X, Xiao Y. The role and function of PPARγ in bladder cancer. J Cancer 2020; 11:3965-3975. [PMID: 32328200 PMCID: PMC7171493 DOI: 10.7150/jca.42663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/08/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ), a member of the nuclear receptor superfamily, participates in multiple physiological and pathological processes. Extensive studies have revealed the relationship between PPARγ and various tumors. However, the expression and function of PPARγ in bladder cancer seem to be controversial. It has been demonstrated that PPARγ affects the occurrence and progression of bladder cancer by regulating proliferation, apoptosis, metastasis, and reactive oxygen species (ROS) and lipid metabolism, probably through PPARγ-SIRT1 feedback loops, the PI3K-Akt signaling pathway, and the WNT/β-catenin signaling pathway. Considering the frequent relapses after chemotherapy, some researchers have focused on the relationship between PPARγ and chemotherapy sensitivity in bladder cancer. Moreover, the feasibility of PPARγ ligands as potential therapeutic targets for bladder cancer has been uncovered. Taken together, this review summarizes the relevant literature and our findings to explore the complicated role and function of PPARγ in bladder cancer.
Collapse
Affiliation(s)
- Tianchen Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Songtao Cheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Yaoyi Xiong
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| | - Rui Cao
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Kaiyu Qian
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Lingao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China.,Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China
| |
Collapse
|
34
|
Cooley LF, Glaser AP, Meeks JJ. Mutation signatures to Pan-Cancer Atlas: Investigation of the genomic landscape of muscle-invasive bladder cancer. Urol Oncol 2020; 40:279-286. [PMID: 32122728 DOI: 10.1016/j.urolonc.2020.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/25/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
Abstract
The Cancer Genome Atlas (TCGA) for bladder cancer was published in 2014 with updated annotation of over 400 patients with muscle-invasive bladder cancer (MIBC) in 2017. This tremendous work established the foundation of the genomic landscape of MIBC. The next steps to utilize information from The Cancer Genome Atlas is to (1) identify the causes of mutation, (2) determine the significant differences and sources of heterogeneity, and (3) apply these tools toward patient care. In this review, we discuss the full spectrum of the genomic landscape of MIBC toward the goal of therapeutic application.
Collapse
Affiliation(s)
- Lauren Folgosa Cooley
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Alexander P Glaser
- Division of Urology, Department of Surgery, North Shore University Health System, Evanston, IL
| | - Joshua J Meeks
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL; Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL.
| |
Collapse
|
35
|
Liu C, Tate T, Batourina E, Truschel ST, Potter S, Adam M, Xiang T, Picard M, Reiley M, Schneider K, Tamargo M, Lu C, Chen X, He J, Kim H, Mendelsohn CL. Pparg promotes differentiation and regulates mitochondrial gene expression in bladder epithelial cells. Nat Commun 2019; 10:4589. [PMID: 31597917 PMCID: PMC6785552 DOI: 10.1038/s41467-019-12332-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022] Open
Abstract
The urothelium is an epithelial barrier lining the bladder that protects against infection, fluid exchange and damage from toxins. The nuclear receptor Pparg promotes urothelial differentiation in vitro, and Pparg mutations are associated with bladder cancer. However, the function of Pparg in the healthy urothelium is unknown. Here we show that Pparg is critical in urothelial cells for mitochondrial biogenesis, cellular differentiation and regulation of inflammation in response to urinary tract infection (UTI). Superficial cells, which are critical for maintaining the urothelial barrier, fail to mature in Pparg mutants and basal cells undergo squamous-like differentiation. Pparg mutants display persistent inflammation after UTI, and Nf-KB, which is transiently activated in response to infection in the wild type urothelium, persists for months. Our observations suggest that in addition to its known roles in adipogegnesis and macrophage differentiation, that Pparg-dependent transcription plays a role in the urothelium controlling mitochondrial function development and regeneration.
Collapse
Affiliation(s)
- Chang Liu
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Tiffany Tate
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Ekatherina Batourina
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Steven T Truschel
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Steven Potter
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Mike Adam
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, OH, USA
| | - Tina Xiang
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Martin Picard
- Department of Psychiatry and Neurology, Columbia University, New York, NY, 10032, USA
| | - Maia Reiley
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
- Department of Surgery, Ascension/St. John Providence, 16001 West Nine Mile Road, Southfield, MI, 48075, USA
| | - Kerry Schneider
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
- College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Manuel Tamargo
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Xiao Chen
- Department of Genetics and Development, Columbia University, New York, NY, 10032, USA
| | - Jing He
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA
| | - Hyunwoo Kim
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA
| | - Cathy Lee Mendelsohn
- Department of Urology, Genetics, and Devlopment, Pathology and Cell Biology and CSCI, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
36
|
Quintão NLM, Santin JR, Stoeberl LC, Corrêa TP, Melato J, Costa R. Pharmacological Treatment of Chemotherapy-Induced Neuropathic Pain: PPARγ Agonists as a Promising Tool. Front Neurosci 2019; 13:907. [PMID: 31555078 PMCID: PMC6722212 DOI: 10.3389/fnins.2019.00907] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Chemotherapy-induced neuropathic pain (CINP) is one of the most severe side effects of anticancer agents, such as platinum- and taxanes-derived drugs (oxaliplatin, cisplatin, carboplatin and paclitaxel). CINP may even be a factor of interruption of treatment and consequently increasing the risk of death. Besides that, it is important to take into consideration that the incidence of cancer is increasing worldwide, including colorectal, gastric, lung, cervical, ovary and breast cancers, all treated with the aforementioned drugs, justifying the concern of the medical community about the patient’s quality of life. Several physiopathological mechanisms have already been described for CINP, such as changes in axonal transport, mitochondrial damage, increased ion channel activity and inflammation in the central nervous system (CNS). Another less frequent event that may occur after chemotherapy, particularly under oxaliplatin treatment, is the central neurotoxicity leading to disorders such as mental confusion, catatonia, hyporeflexia, etc. To date, no pharmacological therapy has shown satisfactory effect in these cases. In this scenario, duloxetine is the only drug currently in clinical use. Peroxisome proliferator-activated receptors (PPARs) belong to the class of nuclear receptors and are present in several tissues, mainly participating in lipid and glucose metabolism and inflammatory response. There are three PPAR isoforms: α, β/δ and γ. PPARγ, the protagonist of this review, is expressed in adipose tissue, large intestine, spleen and neutrophils. This subtype also plays important role in energy balance, lipid biosynthesis and adipogenesis. The effects of PPARγ agonists, known for their positive activity on type II diabetes mellitus, have been explored and present promising effects in the control of neuropathic pain, including CINP, and also cancer. This review focuses largely on the mechanisms involved in chemotherapy-induced neuropathy and the effects of the activation of PPARγ to treat CINP. It is the aim of this review to help understanding and developing novel CINP therapeutic strategies integrating PPARγ signalling.
Collapse
Affiliation(s)
| | | | | | | | - Jéssica Melato
- School of Heath Science, Universidade do Vale do Itajaí, Itajaí, Brazil
| | - Robson Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
37
|
Shi MJ, Meng XY, Wu QJ, Zhou XH. High CD3D/CD4 ratio predicts better survival in muscle-invasive bladder cancer. Cancer Manag Res 2019; 11:2987-2995. [PMID: 31114346 PMCID: PMC6489580 DOI: 10.2147/cmar.s191105] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/07/2019] [Indexed: 01/03/2023] Open
Abstract
Background: Bladder cancer is a common malignancy that affects the human urinary tract. Muscle-invasive bladder cancer (MIBC) is aggressive and has poor prognosis. Previous studies have reported that the tumor-infiltrating lymphocytes (TILs) were associated with MIBC outcome; however, inconsistency remains and mRNA level TIL markers’ prognostic significance in MIBC is unclear. Materials and methods: In the present study, we reanalyzed data from four public datasets (the Cancer Genome Atlas for investigation; and CIT, GSE5287, and GSE31684 for validation) to examine the prognostic significance of CD3D, CD4, CD8A, CD3D/CD4 and CD3D/CD8A in MIBC. Results: We found that the CD3D/CD4 ratio was a stable independent prognostic factor in MIBC (beta = −0.87, P = 0.025); high CD3D/CD4 ratio predicted better survival in MIBC, and the power of this association was much stronger in basal-squamous tumors (beta = −4.73, P = 2.67E-06). We also noted that the CD4 expression was significantly higher than CD3D (P < 0.05), indicating the presence of CD3−CD4+ cells which could be immune-suppressing. Conclusion: The CD3D/CD4 ratio can be viewed as a prognostic marker and a rough measurement for the interaction between immune-effecting CD3+ TILs and immune-suppressing CD3−CD4+ cells in MIBC, and this interaction may play a particularly important role in anti-cancer immunity in basal-squamous tumors as it has a very strong association with survival in this subtype, and may be used to select potential responders to immunotherapy.
Collapse
Affiliation(s)
- Ming-Jun Shi
- Institut Curie, PSL Research University, CNRS, UMR 144, Paris F-75005, France.,Department of Urology, Beijing Friendship Hospital, Capital Medical Univeristy , Beijing, 430071, People's Republic of China
| | - Xiang-Yu Meng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.,Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Qiu-Ji Wu
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, People's Republic of China
| | - Xiong-Hui Zhou
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
38
|
Molecular Cloning and Transient Expression of Recombinant Human PPARγ in HEK293T Cells Under an Inducible Tet-on System. Mol Biotechnol 2019; 61:427-431. [PMID: 30941576 DOI: 10.1007/s12033-019-00173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is involved in the regulation of lipid and glucose homeostasis and inflammation. PPARγ expression level has been widely studied in multiple tissues; however, there are few reports of preceding attempts to produce full-length human PPARγ (hPPARγ) in cellular models, and generally, expression level is not known or measurable. We propose an alternative strategy to express recombinant hPPARγ1, using a transient transfection with an inducible Tet-On 3G system where target and reporter gene were cloned in the same open reading frame. We transiently co-transfected human embryonic kidney 293T (HEK293T) cells with pTRE-ZsGreen1-IRES2-hPPARγ1 and pCMV-TET3G for inducible expression of hPPARγ1. Relative expression of the transcript was evaluated by RT-qPCR 48 h after transfection, obtaining a high expression level of hPPARγ (530-fold change, p < 0.002) in co-transfected HEK293T cells in the presence of doxycycline (1 μg/mL); also a significantly increased production of the reporter protein ZsGreen1 (3.6-fold change, p < 0.05) was determined by fluorescence analysis. These data indicated that HEK293T cells were successfully co-transfected and it could be an alternative model for hPPARγ expression in vitro. Additionally, this model will help to validate the quantification of inducible hPPARγ expression in vivo models for future research.
Collapse
|