1
|
Zhang J, Wang P, Xie W, Wang H, Zhang Y, Zhou H. Cephalopod-Inspired Nanomaterials for Optical and Thermal Regulation: Mechanisms, Applications and Perspectives. ACS NANO 2024; 18:24741-24769. [PMID: 39177374 DOI: 10.1021/acsnano.4c08338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The manipulation of interactions between light and matter plays a crucial role in the evolution of organisms and a better life for humans. As a result of natural selection, precise light-regulatory systems of biology have been engineered that provide many powerful and promising bioinspired strategies. As the "king of disguise", cephalopods, which can perfectly control the propagation of light and thus achieve excellent surrounding-matching via their delicate skin structure, have made themselves an exciting source of inspiration for developing optical and thermal regulation nanomaterials. This review presents cutting-edge advancements in cephalopod-inspired optical and thermal regulation nanomaterials, highlighting the key milestones and breakthroughs achieved thus far. We begin with the underlying mechanisms of the adaptive color-changing ability of cephalopods, as well as their special hierarchical skin structure. Then, different types of bioinspired nanomaterials and devices are comprehensively summarized. Furthermore, some advanced and emerging applications of these nanomaterials and devices, including camouflage, thermal management, pixelation, medical health, sensing and wireless communication, are addressed. Finally, some remaining but significant challenges and potential directions for future work are discussed. We anticipate that this comprehensive review will promote the further development of cephalopod-inspired nanomaterials for optical and thermal regulation and trigger ideas for bioinspired design of nanomaterials in multidisciplinary applications.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Pan Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Weirong Xie
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Haoyu Wang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Yifan Zhang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| | - Han Zhou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
- Future Materials Innovation Center, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 201203 Shanghai, China
| |
Collapse
|
2
|
Qian N, Hu J, Huang S, Liu Z, Wang M, Keller P, Yang H. Patterned Photonic Actuators with Dynamic Shape-Morphing and Color-Changing Capabilities Fabricated by Athermal Embossing Technology. Angew Chem Int Ed Engl 2024; 63:e202406534. [PMID: 38693606 DOI: 10.1002/anie.202406534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/03/2024]
Abstract
Stimuli-responsive patterned photonic actuators, characterized by their patterned nano/microscale structures and capacity to demonstrate synergistic color changes and shape morphing in response to external stimuli, have attracted intense scientific attention. However, traditional patterned photonic actuator systems still face limitations such as cumbersome and time-consuming preparation processes and small-scale deformations. Herein, we introduce a facile approach involving an athermal embossing technique to rapidly fabricate patterned photonic actuators based on near-infrared (NIR) light-responsive liquid crystal elastomers. The resulting patterned photonic actuators demonstrate remarkable features, including brilliant angle-dependent structural color, complex three-dimensional actuation, and good color durability under NIR light stimulation. As illustrative demonstrations of the proof-of-concept, we fabricate two light-fuelled patterned photonic soft actuators: a butterfly-inspired actuator that can produce wing-flapping dynamic changes in structural color, and an origami crane-shaped actuator with shape memory, structural color information storage, and dynamic display properties. This strategy provides distinct insights into the design and fabrication of various patterned photonic soft robotic devices and intelligent actuators.
Collapse
Affiliation(s)
- Nina Qian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Jun Hu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Shuai Huang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Zhiyang Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Meng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| | - Patrick Keller
- Institut Curie, Centre De Recherche, CNRS UMR 168, Université Pierre et Marie Curie, 26 rue d'Ulm, 75248, Paris Cedex 05, France
| | - Hong Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, Jiangsu Province, 211189, China
| |
Collapse
|
3
|
Zhang J, Zhang Y, Yang J, Wang X. Beyond Color Boundaries: Pioneering Developments in Cholesteric Liquid Crystal Photonic Actuators. MICROMACHINES 2024; 15:808. [PMID: 38930778 PMCID: PMC11205596 DOI: 10.3390/mi15060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Creatures in nature make extensive use of structural color adaptive camouflage to survive. Cholesteric liquid crystals, with nanostructures similar to those of natural organisms, can be combined with actuators to produce bright structural colors in response to a wide range of stimuli. Structural colors modulated by nano-helical structures can continuously and selectively reflect specific wavelengths of light, breaking the limit of colors recognizable by the human eye. In this review, the current state of research on cholesteric liquid crystal photonic actuators and their technological applications is presented. First, the basic concepts of cholesteric liquid crystals and their nanostructural modulation are outlined. Then, the cholesteric liquid crystal photonic actuators responding to different stimuli (mechanical, thermal, electrical, light, humidity, magnetic, pneumatic) are presented. This review describes the practical applications of cholesteric liquid crystal photonic actuators and summarizes the prospects for the development of these advanced structures as well as the challenges and their promising applications.
Collapse
Affiliation(s)
- Jinying Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314001, China
| | - Yexiaotong Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| | - Jiaxing Yang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| | - Xinye Wang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (Y.Z.); (J.Y.); (X.W.)
| |
Collapse
|
4
|
Shook EN, Barlow GT, Garcia-Rosales D, Gibbons CJ, Montague TG. Dynamic skin behaviors in cephalopods. Curr Opin Neurobiol 2024; 86:102876. [PMID: 38652980 DOI: 10.1016/j.conb.2024.102876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The coleoid cephalopods (cuttlefish, octopus, and squid) are a group of soft-bodied mollusks that exhibit a wealth of complex behaviors, including dynamic camouflage, object mimicry, skin-based visual communication, and dynamic body patterns during sleep. Many of these behaviors are visually driven and engage the animals' color changing skin, a pixelated display that is directly controlled by neurons projecting from the brain. Thus, cephalopod skin provides a direct readout of neural activity in the brain. During camouflage, cephalopods recreate on their skin an approximation of what they see, providing a window into perceptual processes in the brain. Additionally, cephalopods communicate their internal state during social encounters using innate skin patterns, and create waves of pigmentation on their skin during periods of arousal. Thus, by leveraging the visual displays of cephalopods, we can gain insight into how the external world is represented in the brain and how this representation is transformed into a recapitulation of the world on the skin. Here, we describe the rich skin behaviors of the coleoid cephalopods, what is known about cephalopod neuroanatomy, and how advancements in gene editing, machine learning, optical imaging, and electrophysiological tools may provide an opportunity to explore the neural bases of these fascinating behaviors.
Collapse
Affiliation(s)
- Erica N Shook
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - George Thomas Barlow
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Daniella Garcia-Rosales
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Connor J Gibbons
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| | - Tessa G Montague
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA; Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
5
|
Gao H, Cai W, Li A, Du Y, Zhu JL, Ye Z. Ultrasensitive Biomimetic Skin with Multimodal and Photoelectric Dual-Signal Sensing. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38593088 DOI: 10.1021/acsami.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mimicking biological skin enabling direct, intelligent interaction between users and devices, multimodal sensing with optical/electrical (OE) output signals is urgently required. Owing to this, this work aims to logically design a stretchable OE biomimetic skin (OE skin), which can sensitively sense complex external stimuli of pressure, strain, temperature, and localization. The OE skin consists of elastic thin polymer-stabilized cholesteric liquid crystal films, an ion-conductive hydrogel layer, and an elastic protective membrane formed with thin polydimethylsiloxane. The as-designed OE skin exhibits customizable structural color on demand, good thermochromism, and excellent mechanochromism, with the ability to extend the full visible spectrum, a good linearity of over 0.99, fast response speed of 93 ms, and wide temperature range of 119 °C. In addition, the conduction resistance variation of ion-conductive hydrogel exhibits excellent sensing capabilities under pressure, stretch, and temperature, endowing a good linearity of 0.99998 (stretching from 0 to 150%) and high thermal sensitivity of 0.86% per °C. Such an outstanding OE skin provides design concepts for the development of multifunctional biomimetic skin used in human-machine interaction and can find wide applications in intelligent wearable devices and human-machine interactions.
Collapse
Affiliation(s)
- Han Gao
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Wenshan Cai
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Aotian Li
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Yike Du
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
| | - Ji-Liang Zhu
- Department of Applied Physics, Hebei University of Technology, Tianjin 300401, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| | - Zhicheng Ye
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P. R. China
| |
Collapse
|
6
|
Wang L, Li Z, Shen S, Wong TS. Geometric design of antireflective leafhopper brochosomes. Proc Natl Acad Sci U S A 2024; 121:e2312700121. [PMID: 38498725 PMCID: PMC10998617 DOI: 10.1073/pnas.2312700121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/09/2024] [Indexed: 03/20/2024] Open
Abstract
In nature, leafhoppers cover their body surfaces with brochosomes as a protective coating. These leafhopper-produced brochosomes are hollow, buckyball-shaped, nanoscopic spheroids with through-holes distributed across their surfaces, representing a class of deployable optical materials that are rare in nature. Despite their discovery in the 1950s, it remains unknown why the sizes of brochosomes and their through-holes consistently fall within the range of hundreds of nanometers across different leafhopper species. Here, we demonstrate that the hierarchical geometries of brochosomes are engineered within a narrow size range with through-hole architecture to significantly reduce light reflection. By utilizing two-photon polymerization three-dimensional printing to fabricate high-fidelity synthetic brochosomes, we investigated the optical form-to-function relationship of brochosomes. Our results show that the diameters of brochosomes are engineered within a specific size range to maximize broadband light scattering, while the secondary through-holes are designed to function as short-wavelength, low-pass filters, further reducing light reflection. These synergistic effects enable brochosomes to achieve a substantial reduction in specular reflection, by up to approximately 80 to 94%, across a broadband wavelength range. Importantly, brochosomes represent a biological example demonstrating short-wavelength, low-pass filter functionality. Furthermore, our results indicate that the geometries of natural brochosomes may have evolved to effectively reduce reflection from ultraviolet to visible light, thereby enabling leafhoppers to evade predators whose vision spectrum encompasses both ultraviolet and visible light. Our findings offer key design insights into a class of deployable bioinspired optical materials with potential applications in omnidirectional antireflection coatings, optical encryption, and multispectral camouflage.
Collapse
Affiliation(s)
- Lin Wang
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
- Materials Research Institute, The Pennsylvania State University, University Park, PA16802
| | - Zhuo Li
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Sheng Shen
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA15213
| | - Tak-Sing Wong
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
- Materials Research Institute, The Pennsylvania State University, University Park, PA16802
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
7
|
de Castro LC, Engels TAP, Oliveira ON, Schenning APHJ. Sticky Multicolor Mechanochromic Labels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14144-14151. [PMID: 38448425 PMCID: PMC10958449 DOI: 10.1021/acsami.3c19420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/14/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024]
Abstract
Sticky-colored labels are an efficient way to communicate visual information. However, most labels are static. Here, we propose a new category of dynamic sticky labels that change structural colors when stretched. The sticky mechanochromic labels can be pasted on flexible surfaces such as fabric and rubber or even on brittle materials. To enhance their applicability, we demonstrate a simple method for imprinting structural color patterns that are either always visible or reversibly revealed or concealed upon mechanical deformation. The mechanochromic patterns are imprinted with a photomask during the ultraviolet (UV) cross-linking of acrylate-terminated cholesteric liquid crystal oligomers in a single step at room temperature. The photomask locally controls the cross-linking degree and volumetric response of the cholesteric liquid crystal elastomers (CLCEs). A nonuniform thickness change induced by the Poisson's ratio contrast between the pattern and the surrounding background might lead to a color-separation effect. Our sticky multicolor mechanochromic labels may be utilized in stress-strain sensing, building environments, smart clothing, security labels, and decoration.
Collapse
Affiliation(s)
- Lucas
D. C. de Castro
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos 13566-590, SP, Brazil
- Laboratory
of Stimuli-responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, Eindhoven5612 MB, The Netherlands
| | - Tom A. P. Engels
- Processing
and Performance of Materials, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos 13566-590, SP, Brazil
| | - Albert P. H. J. Schenning
- Laboratory
of Stimuli-responsive Functional Materials and Devices (SFD), Department
of Chemical Engineering and Chemistry, Eindhoven
University of Technology, Eindhoven5612 MB, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 MB, The Netherlands
| |
Collapse
|
8
|
Liu P, Leung EM, Badshah MA, Moore CS, Gorodetsky AA. Structure-function relationships for squid skin-inspired wearable thermoregulatory materials. APL Bioeng 2023; 7:046111. [PMID: 37941766 PMCID: PMC10629970 DOI: 10.1063/5.0149289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/14/2023] [Indexed: 11/10/2023] Open
Abstract
Wearable thermoregulatory technologies have attracted widespread attention because of their potential for impacting individual physiological comfort and for reducing building energy consumption. Within this context, the study of materials and systems that can merge the advantageous characteristics of both active and passive operating modes has proven particularly attractive. Accordingly, our laboratory has drawn inspiration from the appearance-changing skin of Loliginidae (inshore squids) for the introduction of a unique class of dynamic thermoregulatory composite materials with outstanding figures of merit. Herein, we demonstrate a straightforward approach for experimentally controlling and computationally predicting the adaptive infrared properties of such bioinspired composites, thereby enabling the development and validation of robust structure-function relationships for the composites. Our findings may help unlock the potential of not only the described materials but also comparable systems for applications as varied as thermoregulatory wearables, food packaging, infrared camouflage, soft robotics, and biomedical sensing.
Collapse
Affiliation(s)
- Panyiming Liu
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA
| | - Erica M. Leung
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Mohsin Ali Badshah
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Christopher S. Moore
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | | |
Collapse
|
9
|
Duan J, Cui L, Li M, Fan W, Sui K. Biomimetic 3D Color-Changing Hydrogel Actuators Constructed Based on Soft Permeable Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54018-54026. [PMID: 37957821 DOI: 10.1021/acsami.3c14488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The integration of photonic crystals and self-shaping actuators is a promising method for constructing powerful biomimetic color-changing actuators. The major barrier is that common photonic crystals generally block the transfer/orientation of monomers/fillers and hence hinder the formation of heterogeneous structures for programmed 3D deformations as well as degrade the deformation capacity and mechanical properties of actuators. Herein, we present the construction of complex and strong 3D color-changing hydrogel actuators by asymmetric photolithography based on soft, permeable photonic crystals. The soft permeable photonic crystals are assembled by hydrogel microspheres with an ultralow volume fraction. During the asymmetric photolithography, the monomers in precursor solutions can thus transfer freely to generate heterogeneous microstructures, spatially patterned internal stresses, and interpenetrating networks for programming the deformation trajectories and initial 3D configurations and enhancing mechanical properties of actuators. Various 3D color-changing hydrogel actuators (e.g., flower and scroll painting) are constructed for applications such as information encryption and display.
Collapse
Affiliation(s)
- Jinghua Duan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| | - Lu Cui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| | - Mingyang Li
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| | - Wenxin Fan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, P.R. China
| |
Collapse
|
10
|
Alessio BM, Gupta A. Diffusiophoresis-enhanced Turing patterns. SCIENCE ADVANCES 2023; 9:eadj2457. [PMID: 37939177 PMCID: PMC10631721 DOI: 10.1126/sciadv.adj2457] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Turing patterns are fundamental in biophysics, emerging from short-range activation and long-range inhibition processes. However, their paradigm is based on diffusive transport processes that yield patterns with shallower gradients than those observed in nature. A complete physical description of this discrepancy remains unknown. We propose a solution to this phenomenon by investigating the role of diffusiophoresis, which is the propulsion of colloids by a chemical gradient, in Turing patterns. Diffusiophoresis enables robust patterning of colloidal particles with substantially finer length scales than the accompanying chemical Turing patterns. A scaling analysis and a comparison to recent experiments indicate that chromatophores, ubiquitous in biological pattern formation, are likely diffusiophoretic and the colloidal Péclet number controls the pattern enhancement. This discovery suggests that important features of biological pattern formation can be explained with a universal mechanism that is quantified straightforwardly from the fundamental physics of colloids.
Collapse
Affiliation(s)
- Benjamin M. Alessio
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
11
|
Martin CL, Flynn KR, Kim T, Nikolic SK, Deravi LF, Wilson DJ. Color-Changing Paints Enabled by Photoresponsive Combinations of Bio-Inspired Colorants and Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302652. [PMID: 37787152 PMCID: PMC10646264 DOI: 10.1002/advs.202302652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/01/2023] [Indexed: 10/04/2023]
Abstract
Modern paints and coatings are designed for a variety of applications, ranging from fine art to extraterrestrial thermal control. These systems can be engineered to provide lasting color, but there are a limited number of materials that can undergo transient changes in their visual appearance in response to external stimuli without requirements for advanced fabrication strategies. The authors describe color-changing paint formulations that leverage the redox-dependent absorption profile of xanthommatin, a small-molecule colorant found throughout biology, and the electronic properties of titanium dioxide, a ubiquitous whitening agent in commercial coatings. This combination yields reversible photoreduction upon exposure to sunlight, shifting from the oxidized (yellow) form of xanthommatin, to the reduced (red) state. The extent of photoreduction is dependent on the loading density and size of titanium dioxide particles, generating changes in hue angle as large as 77% upon irradiation. These coatings can be blended with non-responsive supplemental colorants to expand the accessible color palette, and irradiated through masks to create transient, disappearing artwork. These formulations demonstrate energy-efficient photochromism using a simple combination of a redox-active dye and metal oxide semiconductor, highlighting the utility of these materials for the development of optically dynamic light-harvesting materials.
Collapse
Affiliation(s)
| | - Kaitlyn R. Flynn
- Kostas Research Institute at Northeastern UniversityBurlingtonMA01803USA
| | - Taehwan Kim
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMA02115USA
| | - Skyler K. Nikolic
- Kostas Research Institute at Northeastern UniversityBurlingtonMA01803USA
| | - Leila F. Deravi
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMA02115USA
| | - Daniel J. Wilson
- Kostas Research Institute at Northeastern UniversityBurlingtonMA01803USA
- Department of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| |
Collapse
|
12
|
Vanthournout B, Janssens F, Debruyn G, Mertens J, Clerck KD, D’Alba L, Shawkey M. Rapid and reversible humidity-dependent colour change by water film formation in a scaled springtail. J R Soc Interface 2023; 20:20230228. [PMID: 37788712 PMCID: PMC10547546 DOI: 10.1098/rsif.2023.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/11/2023] [Indexed: 10/05/2023] Open
Abstract
Colour is often not a static trait but can change over time either through biotic or abiotic factors. Humidity-dependent colour change can occur through either morphological change (e.g. to feather barbules in birds) or by the replacement of air by water causing a shift in refractive index, as seen in arthropod multi-layer cuticles or scales. The scaled springtail Lepidocyrtus cyaneus has scales that produce colour largely via thin film interference from their lamina. We observed a marked colour change from golden to violet/purple coloration in humid conditions. Light microscopy, micro-spectrophotometry, contact angle goniometry and optical modelling indicate that the formation of a thin film of water on top of the hydrophilic scales increases their laminar thin film thickness, causing a shift towards violet/purple colour. Evaporation of the water film causes the metallic golden colour to return. This constitutes a remarkably rapid colour change (in the order of seconds), only limited by the speed of water film condensation and evaporation, that may serve as inspiration for new dynamically coloured materials and sensors.
Collapse
Affiliation(s)
- Bram Vanthournout
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Frans Janssens
- Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Gerben Debruyn
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Johan Mertens
- Terrestrial Ecology Unit, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Karen De Clerck
- Centre for Textile Science and Engineering (CTSE), Ghent University, Technologiepark 70a, 9052 Zwijnaarde, Belgium
| | - Liliana D’Alba
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Matthew Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| |
Collapse
|
13
|
Liang L, Yu R, Ong SJH, Yang Y, Zhang B, Ji G, Xu ZJ. An Adaptive Multispectral Mechano-Optical System for Multipurpose Applications. ACS NANO 2023. [PMID: 37377203 DOI: 10.1021/acsnano.3c01836] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Mechano-optical systems with on-demand adaptability and a broad spectrum from the visible to microwave are critical for complex multiband electromagnetic (EM) applications. Most existing material systems merely have dynamic optical or microwave tunability because their EM wave response is strongly wavelength-dependent. Inspired by cephalopod skin, we develop an adaptive multispectral mechano-optical system based on bilayer acrylic dielectric elastomer (ADE)/silver nanowire (AgNW) films, which reconfigures the surface morphology between wrinkles and cracks via mechanical contraction and stretching. Such morphological evolution regulates the direct transmission/reflection and scattering behavior of visible-infrared light and simultaneously alters the conductive network in a AgNW film to influence its microwave characteristics. The designed system features switching between visible-infrared-microwave transparency and opacity, continuous regulation, wide spectral window (0.38-15.5 μm and 24,200-36,600 μm), excellent recyclability (500 times), and rapid response time (<1 s). These grant the system great potential as platforms for various promising applications such as smart windows, switchable EM devices, dynamic thermal management, adaptive visual stealth, and human motion detection.
Collapse
Affiliation(s)
- Leilei Liang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Ruoling Yu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Samuel Jun Hoong Ong
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yi Yang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Baoshan Zhang
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China
| | - Zhichuan J Xu
- School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
14
|
Wu S, Shi H, Wei S, Shang H, Xie W, Chen X, Lu W, Chen T. Bio-Inspired Electro-Thermal-Hygro Responsive Rewritable Systems with Temporal/Spatial Control for Environment-Interactive Information Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300191. [PMID: 36919350 DOI: 10.1002/smll.202300191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Indexed: 06/15/2023]
Abstract
Utilization of rewritable luminescent materials for secure information storage and delivery has long been envisaged to reduce the cost and environmental wastes. However, it remains challenging to realize a temporally/spatially controlled display of the written information, which is crucial for secure information encryption. Here, inspired by bioelectricity-triggered skin pattern switching in cephalopods, an ideal rewritable system consisting of conductive graphene film and carbon dots (CDs) gel with blue-to-red fluorescence-color changes via water-triggered CDs aggregation and re-dispersion is presented. Its rewritability is guaranteed by using water ink to write on the CDs-gel and employing Joule heat of graphene film to evaporate water. Due to the highly controlled electrical stimulus, temporally/spatially controlled display is achieved, enabling on-demand delivery and duration time regulation of the written information. Furthermore, new-concept environment-interactive rewritable system is obtained by integrating sensitive acoustic/optical sensors and multichannel electronic time-delay devices. This work opens unprecedented avenues of rewritable systems and expands potential uses for information encryption/delivery.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Huihui Shi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiping Xie
- Technology Service Center, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xipao Chen
- Technology Service Center, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Zheng J, Chen J, Jin Y, Wen Y, Mu Y, Wu C, Wang Y, Tong P, Li Z, Hou X, Tang J. Photochromism from wavelength-selective colloidal phase segregation. Nature 2023; 617:499-506. [PMID: 37198311 PMCID: PMC10191859 DOI: 10.1038/s41586-023-05873-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/21/2023] [Indexed: 05/19/2023]
Abstract
Phase segregation is ubiquitously observed in immiscible mixtures, such as oil and water, in which the mixing entropy is overcome by the segregation enthalpy1-3. In monodispersed colloidal systems, however, the colloidal-colloidal interactions are usually non-specific and short-ranged, which leads to negligible segregation enthalpy4. The recently developed photoactive colloidal particles show long-range phoretic interactions, which can be readily tuned with incident light, suggesting an ideal model for studying phase behaviour and structure evolution kinetics5,6. In this work, we design a simple spectral selective active colloidal system, in which TiO2 colloidal species were coded with spectral distinctive dyes to form a photochromic colloidal swarm. In this system, the particle-particle interactions can be programmed by combining incident light with various wavelengths and intensities to enable controllable colloidal gelation and segregation. Furthermore, by mixing the cyan, magenta and yellow colloids, a dynamic photochromic colloidal swarm is formulated. On illumination of coloured light, the colloidal swarm adapts the appearance of incident light due to layered phase segregation, presenting a facile approach towards coloured electronic paper and self-powered optical camouflage.
Collapse
Affiliation(s)
- Jing Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yakang Jin
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- School of Physics, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Wen
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yijiang Mu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Penger Tong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zhigang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Xu Z, Chen Y, Zhou X, Liu S, Xie J, Dai W, Zhu S, Ding Y. Mechanisms of alkali pH-shifted colour changes in squid (Uroteuthis edulis) subjected to frozen storage. Food Chem 2023; 406:134977. [PMID: 36470083 DOI: 10.1016/j.foodchem.2022.134977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
The skin discoloration of squid subjected to frozen storage negatively affects market price. In this study, various alkali treatments were investigated for effects on red granules and yellow pigments of squid skin and corresponding mechanisms were investigated at the tissue, cellular and molecular level. A significant colour improvement was observed when subjected to a pH 12 treatment, supported by decreased Δb* and increased Δa* values. Neither lower nor harsher alkali treatments than pH 12 can not obtain such results. HE staining and the UV-vis spectrum suggest that the improved red colour in skin was ascribed to the release of red pigment granules from damaged chromatophores by alkaline treatment and the release of red pigments in alkaline aqueous solutions from granules. However, based on TEM and particle size analysis, an excessive alkali treatment of pH 13 would degrade granules into smaller particles. The degradation of yellowness pigments indicated high sensitivity to alkali environments according to HPLC results. This study provides a valuable reference for improving the colour appearance of squid skin subjected to frozen storage.
Collapse
Affiliation(s)
- Zheng Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Yunyun Chen
- China Aquatic Products Zhoushan Marine Fisheries Corporation, Zhoushan 316101, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shulai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wangli Dai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China
| | - Shichen Zhu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China; National R&D Branch Center for Pelagic Aquatic Products Processing (Hangzhou), Hangzhou, China.
| |
Collapse
|
17
|
Liao J, Ji C, Yuan L, Huang C, Wang Y, Peng J, Luo X. Polarization-Insensitive Metasurface Cloak for Dynamic Illusions with an Electromagnetic Transparent Window. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16953-16962. [PMID: 36867759 DOI: 10.1021/acsami.2c21565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Artificial camouflage has garnered long-standing interest in both academia and industry. The metasurface-based cloak has attracted much attention due to the powerful capability of manipulating the electromagnetic wave, convenient multifunctional integration design, and easy fabrication. However, existing metasurface-based cloaks tend to be passive and of single function and monopolarization, which cannot meet the requirement of applications in ever-changing environments. So far, it is still challenging to realize a reconfigurable full-polarization metasurface cloak with multifunctional integration. Herein, we proposed an innovative metasurface cloak, which can simultaneously realize dynamic illusion effects at lower frequencies (e.g., 4.35 GHz) and specific microwave transparency at higher frequencies (e.g., X band) for communication with the outside environment. These electromagnetic functionalities are demonstrated by both numerical simulations and experimental measurements. The simulation and measurement results agree well with each other, indicating that our metasurface cloak can generate various electromagnetic illusions for full polarizations as well as a polarization-insensitive transparent window for the signal transmission to enable the communication between the cloaked device and the outside environment. It is believed that our design can offer powerful camouflage tactics to address the stealth problem in ever-changing environments.
Collapse
Affiliation(s)
- Jianming Liao
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Ji
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
| | - Liming Yuan
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
| | - Cheng Huang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuetang Wang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
| | - Jinqiang Peng
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
| | - Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China
- School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Song J, Liu C, Li B, Liu L, Zeng L, Ye Z, Wu W, Zhu L, Hu B. Synthetic peptides for the precise transportation of proteins of interests to selectable subcellular areas. Front Bioeng Biotechnol 2023; 11:1062769. [PMID: 36890909 PMCID: PMC9986269 DOI: 10.3389/fbioe.2023.1062769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Proteins, as gifts from nature, provide structure, sequence, and function templates for designing biomaterials. As first reported here, one group of proteins called reflectins and derived peptides were found to present distinct intracellular distribution preferences. Taking their conserved motifs and flexible linkers as Lego bricks, a series of reflectin-derivates were designed and expressed in cells. The selective intracellular localization property leaned on an RMs (canonical conserved reflectin motifs)-replication-determined manner, suggesting that these linkers and motifs were constructional fragments and ready-to-use building blocks for synthetic design and construction. A precise spatiotemporal application demo was constructed in the work by integrating RLNto2 (as one representative of a synthetic peptide derived from RfA1) into the Tet-on system to effectively transport cargo peptides into nuclei at selective time points. Further, the intracellular localization of RfA1 derivatives was spatiotemporally controllable with a CRY2/CIB1 system. At last, the functional homogeneities of either motifs or linkers were verified, which made them standardized building blocks for synthetic biology. In summary, the work provides a modularized, orthotropic, and well-characterized synthetic-peptide warehouse for precisely regulating the nucleocytoplasmic localization of proteins.
Collapse
Affiliation(s)
- Junyi Song
- *Correspondence: Junyi Song, ; Lingyun Zhu, ; Biru Hu,
| | | | | | | | | | | | | | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Biru Hu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
19
|
Hou X, Vogelbacher F, Lai X, Li K, Song Y, Li M. Bioinspired multichannel colorful encryption through kirigami activating grating. Sci Bull (Beijing) 2023; 68:276-283. [PMID: 36702683 DOI: 10.1016/j.scib.2023.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Optical encryption, exploiting degrees of freedom of light as parameters to encode and decode information, plays an indispensable role in our daily life. Responsive structural color materials can give real-time visible feedback to external stimuli and provide ideal candidates for optical encryption. However, the development of existing responsive structural color materials is hindered by poor repeatability and long feedback time. Meanwhile, there are only few strategies to exploit structural colors in multichannel information encryption. Herein, bioinspired by the structural color variation due to a change in angle arising from the movement of animal's scales or feathers, we developed a general multichannel information encryption strategy using a two-dimensional deformable kirigami arranging orientations of the grating arrays by design. The kirigami grating sheet shows rapid, repeatable, and programmable color change. This strategy utilizes the topological space deformation to guide the change of optical property, which suggests new possibilities for spatial and spectral encryption as well as mechano-sensing and camouflage.
Collapse
Affiliation(s)
- Xiaoyu Hou
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Florian Vogelbacher
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xintao Lai
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaixuan Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhu Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Materials Processing and Mold of the Ministry of Education, Zhengzhou University, Zhengzhou 450002, China.
| |
Collapse
|
20
|
Chatterjee A, Pratakshya P, Kwansa AL, Kaimal N, Cannon AH, Sartori B, Marmiroli B, Orins H, Feng Z, Drake S, Couvrette J, Le L, Bernstorff S, Yingling YG, Gorodetsky AA. Squid Skin Cell-Inspired Refractive Index Mapping of Cells, Vesicles, and Nanostructures. ACS Biomater Sci Eng 2023; 9:978-990. [PMID: 36692450 DOI: 10.1021/acsbiomaterials.2c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The fascination with the optical properties of naturally occurring systems has been driven in part by nature's ability to produce a diverse palette of vibrant colors from a relatively small number of common structural motifs. Within this context, some cephalopod species have evolved skin cells called iridophores and leucophores whose constituent ultrastructures reflect light in different ways but are composed of the same high refractive index material─a protein called reflectin. Although such natural optical systems have attracted much research interest, measuring the refractive indices of biomaterial-based structures across multiple different environments and establishing theoretical frameworks for accurately describing the obtained refractive index values has proven challenging. Herein, we employ a synergistic combination of experimental and computational methodologies to systematically map the three-dimensional refractive index distributions of model self-assembled reflectin-based structures both in vivo and in vitro. When considered together, our findings may improve understanding of squid skin cell functionality, augment existing methods for characterizing protein-based optical materials, and expand the utility of emerging holotomographic microscopy techniques.
Collapse
Affiliation(s)
- Atrouli Chatterjee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Preeta Pratakshya
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Albert L Kwansa
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nikhil Kaimal
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Andrew H Cannon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Barbara Sartori
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Graz 8010, Austria
| | - Helen Orins
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Zhijing Feng
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Samantha Drake
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Justin Couvrette
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - LeAnn Le
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | | | - Yaroslava G Yingling
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alon A Gorodetsky
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States.,Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States.,Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
21
|
Rattenborg NC, Ungurean G. The evolution and diversification of sleep. Trends Ecol Evol 2023; 38:156-170. [PMID: 36411158 DOI: 10.1016/j.tree.2022.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/19/2022]
Abstract
The evolutionary origins of sleep and its sub-states, rapid eye movement (REM) and non-REM (NREM) sleep, found in mammals and birds, remain a mystery. Although the discovery of a single type of sleep in jellyfish suggests that sleep evolved much earlier than previously thought, it is unclear when and why sleep diversified into multiple types of sleep. Intriguingly, multiple types of sleep have recently been found in animals ranging from non-avian reptiles to arthropods to cephalopods. Although there are similarities between these states and those found in mammals and birds, notable differences also exist. The diversity in the way sleep is expressed confounds attempts to trace the evolution of sleep states, but also serves as a rich resource for exploring the functions of sleep.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany.
| | - Gianina Ungurean
- Max Planck Institute for Biological Intelligence (in foundation), Seewiesen, Germany
| |
Collapse
|
22
|
Song J, Li B, Zeng L, Ye Z, Wu W, Hu B. A Mini-Review on Reflectins, from Biochemical Properties to Bio-Inspired Applications. Int J Mol Sci 2022; 23:ijms232415679. [PMID: 36555320 PMCID: PMC9779258 DOI: 10.3390/ijms232415679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Some cephalopods (squids, octopuses, and cuttlefishes) produce dynamic structural colors, for camouflage or communication. The key to this remarkable capability is one group of specialized cells called iridocytes, which contain aligned membrane-enclosed platelets of high-reflective reflectins and work as intracellular Bragg reflectors. These reflectins have unusual amino acid compositions and sequential properties, which endows them with functional characteristics: an extremely high reflective index among natural proteins and the ability to answer various environmental stimuli. Based on their unique material composition and responsive self-organization properties, the material community has developed an impressive array of reflectin- or iridocyte-inspired optical systems with distinct tunable reflectance according to a series of internal and external factors. More recently, scientists have made creative attempts to engineer mammalian cells to explore the function potentials of reflectin proteins as well as their working mechanism in the cellular environment. Progress in wide scientific areas (biophysics, genomics, gene editing, etc.) brings in new opportunities to better understand reflectins and new approaches to fully utilize them. The work introduced the composition features, biochemical properties, the latest developments, future considerations of reflectins, and their inspiration applications to give newcomers a comprehensive understanding and mutually exchanged knowledge from different communities (e.g., biology and material).
Collapse
Affiliation(s)
- Junyi Song
- Correspondence: (J.S.); (B.H.); Tel.: +86-18969697729 (J.S.); +86-13308492461 (B.H.)
| | | | | | | | | | - Biru Hu
- Correspondence: (J.S.); (B.H.); Tel.: +86-18969697729 (J.S.); +86-13308492461 (B.H.)
| |
Collapse
|
23
|
Li Y, Teixeira Y, Parlato G, Grace J, Wang F, Huey BD, Wang X. Three-dimensional thermochromic liquid crystal elastomer structures with reversible shape-morphing and color-changing capabilities for soft robotics. SOFT MATTER 2022; 18:6857-6867. [PMID: 36043504 DOI: 10.1039/d2sm00876a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functional structures with reversible shape-morphing and color-changing capabilities are promising for applications including soft robotics and biomimetic camouflage devices. Despite extensive studies, there are few reports on achieving both reversible shape-switching and color-changing capabilities within one structure. Here, we report a facile and versatile strategy to realize such capabilities via spatially programmed liquid crystal elastomer (LCE) structures incorporated with thermochromic dyes. By coupling the shape-changing behavior of LCEs resulting from the nematic-to-isotropic transition of liquid crystals with the color-changing thermochromic dyes, 3D thermochromic LCE structures change their shapes and colors simultaneously, which are controlled by the nematic-isotropic transition temperature of LCEs and the critical color-changing temperature of dyes, respectively. Demonstrations, including the simulated blooming process of a resembled flower, the camouflage behavior of a "butterfly"/"chameleon" robot in response to environmental changes, and the underwater camouflage of an "octopus" robot, highlight the reliability of this strategy. Furthermore, integrating micro-ferromagnetic particles into the "octopus" thermochromic LCE robot allows it to respond to thermal-magnetic dual stimuli for "adaptive" motion and diverse biomimetic motion modes, including swimming, rolling, rotating, and crawling, accompanied by color-changing behaviors for camouflage. The reversibly reconfigurable and color-changing thermochromic LCE structures are promising for applications including soft camouflage robots and multifunctional biomimetic devices.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Yasmin Teixeira
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Gina Parlato
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jaclyn Grace
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Fei Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bryan D Huey
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Xueju Wang
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
24
|
Zhang X, Yang Y, Xue P, Valenzuela C, Chen Y, Yang X, Wang L, Feng W. Three‐Dimensional Electrochromic Soft Photonic Crystals Based on MXene‐Integrated Blue Phase Liquid Crystals for Bioinspired Visible and Infrared Camouflage. Angew Chem Int Ed Engl 2022; 61:e202211030. [DOI: 10.1002/anie.202211030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 12/16/2022]
Affiliation(s)
- Xuan Zhang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 P. R. China
| | - Yanzhao Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 P. R. China
| | - Pan Xue
- School of Materials Science and Engineering Tianjin University Tianjin 300350 P. R. China
| | - Cristian Valenzuela
- School of Materials Science and Engineering Tianjin University Tianjin 300350 P. R. China
| | - Yuanhao Chen
- School of Materials Science and Engineering Tianjin University Tianjin 300350 P. R. China
| | - Xiao Yang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 P. R. China
| | - Ling Wang
- School of Materials Science and Engineering Tianjin University Tianjin 300350 P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials Tianjin 300350 P. R. China
| | - Wei Feng
- School of Materials Science and Engineering Tianjin University Tianjin 300350 P. R. China
- Tianjin Key Laboratory of Composite and Functional Materials Tianjin 300350 P. R. China
| |
Collapse
|
25
|
Zhang ZL, Dong X, Zhao YY, Song F, Wang XL, Wang YZ. Bioinspired Optical Flexible Cellulose Nanocrystal Films with Strain-Adaptive Structural Coloration. Biomacromolecules 2022; 23:4110-4117. [PMID: 36070358 DOI: 10.1021/acs.biomac.2c00491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances of photonic crystals are driven to mechanical sensors and smart wearable devices; however, for chiral photonic cellulose nanocrystal (CNC) materials, vivid structural coloration and reversible mechanochromism like chameleon skin remain a big challenge. Here, we report a ternary co-assembly and post-UV-irradiation polymerization strategy to develop flexible and elastic CNC composite films, which, notably, have naked-eye-visible brilliant structural colors and stretching-induced color change covering a broad wavelength region at a moderate deformation (like skin). By adjusting the stretching, the film is designed as a smart skin to adapt to surrounding environments for camouflage. This work offers a universal strategy for constructing biomimic optically functional cellulose skins.
Collapse
Affiliation(s)
- Ze-Lian Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu Dong
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Yao Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Fei Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
26
|
Zhang X, Yang Y, Xue P, Valenzuela C, Chen Y, Yang X, Wang L, Feng W. Three‐Dimensional Electrochromic Soft Photonic Crystals Based on MXene‐Integrated Blue Phase Liquid Crystals for Bioinspired Visible and Infrared Camouflage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xuan Zhang
- Tianjin University Materials Science and Engineering CHINA
| | - Yanzhao Yang
- Tianjin University Materials Science and Engineering CHINA
| | - Pan Xue
- Tianjin University Materials Science and Engineering CHINA
| | | | - Yuanhao Chen
- Tianjin University Materials Science and Engineering CHINA
| | - Xiao Yang
- Tianjin University Materials Science and Engineering CHINA
| | - Ling Wang
- Tianjin University Materials Science and Engineering School of Materials Science and Engineering, Tianjin University 300072 Tianjin CHINA
| | - Wei Feng
- Tianjin University Materials Science and Engineering CHINA
| |
Collapse
|
27
|
Lewis-Luján LM, Rosas-Burgos EC, Ezquerra-Brauer JM, Burboa-Zazueta MG, Assanga SBI, del Castillo-Castro T, Penton G, Plascencia-Jatomea M. Inhibition of Pathogenic Bacteria and Fungi by Natural Phenoxazinone from Octopus Ommochrome Pigments. J Microbiol Biotechnol 2022; 32:989-1002. [PMID: 35909165 PMCID: PMC9628961 DOI: 10.4014/jmb.2206.06043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 12/15/2022]
Abstract
Cephalopods, in particular octopus (Octopus vulgaris), have the ability to alter their appearance or body pattern by showing a wide range of camouflage by virtue of their chromatophores, which contain nanostructured granules of ommochrome pigments. Recently, the antioxidant and antimicrobial activities of ommochromes have become of great interest; therefore, in this study, the pH-dependent redox effect of the extraction solvent on the antioxidant potential and the structural characterization of the pigments were evaluated. Cell viability was determined by the microdilution method in broth by turbidity, MTT, resazurin, as well as fluorescence microscopy kit assays. A Live/Dead Double Staining Kit and an ROS Kit were used to elucidate the possible inhibitory mechanisms of ommochromes against bacterial and fungal strains. The results obtained revealed that the redox state alters the color changes of the ommochromes and is dependent on the pH in the extraction solvent. Natural phenoxazinone (ommochromes) is moderately toxic to the pathogens Staphylococcus aureus, Bacillus subtilis, Salmonella Typhimurium and Candida albicans, while the species Pseudomonas aeruginosa and Pseudomonas fluorescens, and the filamentous fungi Aspergillus parasiticus, Alternaria spp. and Fusarium verticillioides, were tolerant to these pigments. UV/visible spectral scanning and Fourier- transform infrared spectroscopy (FTIR) suggest the presence of reduced ommatin in methanol/ HCl extract with high intrinsic fluorescence.
Collapse
Affiliation(s)
- Lidianys María Lewis-Luján
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Ema Carina Rosas-Burgos
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - Josafat Marina Ezquerra-Brauer
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico
| | - María Guadalupe Burboa-Zazueta
- Departamento de Investigaciones Científicas y Tecnológicas, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, México
| | - Simon Bernard Iloki Assanga
- Department of Biological Chemical Sciences. Sonora University, Blvd. Luis Encinas y Rosales. Col. Centro, 83000 Hermosillo, Sonora, México
| | - Teresa del Castillo-Castro
- Department of Research on Polymers and Materials, Sonora University. Blvd. Luis Encinas y Rosales. Col. Centro, 83000 Hermosillo, Sonora, México
| | - Giselle Penton
- Centro de Ingeniería Genética y Biotecnología, Ave 31 entre 158 y 190, Cubanacán, Playa, Habana, CP 6162, Cuba
| | - Maribel Plascencia-Jatomea
- Laboratorio de Microbiología y Micotoxinas, Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales S/N, Col. Centro, 83000 Hermosillo, Sonora, Mexico,Corresponding author Phone/Fax: +52-662-259-2207 E-mail:
| |
Collapse
|
28
|
Zhang J, Qin Y, Ou Y, Shen Y, Tang B, Zhang X, Yu Z. Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural Colored Objects. Angew Chem Int Ed Engl 2022; 61:e202206339. [DOI: 10.1002/anie.202206339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Yipeng Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
- Cambridge University-Nanjing Centre of Technology and Innovation 126 Dingshan Street Nanjing 210046 P. R. China
| | - Yangteng Ou
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Yu Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Bao Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| | - Xiaoyun Zhang
- Yusuf Hamied Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University 30 Puzhu South Road Nanjing 211816 P. R. China
| |
Collapse
|
29
|
Bu X, Bai H. Recent Progress of Bio-inspired Camouflage Materials: From Visible to Infrared Range. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2170-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Kay R, Katrycz C, Nitièma K, Jakubiec JA, Hatton BD. Decapod-inspired pigment modulation for active building facades. Nat Commun 2022; 13:4120. [PMID: 35840559 PMCID: PMC9287369 DOI: 10.1038/s41467-022-31527-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 06/01/2022] [Indexed: 11/09/2022] Open
Abstract
Typical buildings are static structures, unable to adjust to dynamic temperature and daylight fluctuations. Adaptive facades that are responsive to these unsteady solar conditions can substantially reduce operational energy inefficiencies, indoor heating, cooling, and lighting costs, as well as greenhouse-gas emissions. Inspired by marine organisms that disperse pigments within their skin, we propose an adaptive building interface that uses reversible fluid injections to tune optical transmission. Pigmented fluids with tunable morphologies are reversibly injected and withdrawn from confined layers, achieving locally-adjustable shading and interior solar exposure. Multicell arrays tiled across large areas enable differential and dynamic building responses, demonstrated using both experimental and simulated approaches. Fluidic reconfigurations can find optimal states over time to reduce heating, cooling, and lighting energy in our models by over 30% compared to current available electrochromic technologies.
Collapse
Affiliation(s)
- Raphael Kay
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada. .,Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada. .,John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Toronto, ON, M5S 2J5, Canada.
| | - Charlie Katrycz
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada
| | - Kevin Nitièma
- John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Toronto, ON, M5S 2J5, Canada
| | - J Alstan Jakubiec
- John H. Daniels Faculty of Architecture, Landscape and Design, University of Toronto, Toronto, ON, M5S 2J5, Canada.,School of the Environment, University of Toronto, 149 College Street, Toronto, ON, M5T 1P5, Canada
| | - Benjamin D Hatton
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, M5S 3E4, Canada.
| |
Collapse
|
31
|
Yin F, Liu J, Hu J, Ju Y. Bioinspired Polyacrylamide/(polyvinyl alcohol-copper acetate) Hydrogel with Cooling-triggered Shape Memory, Color Changing, and Self-healing Behavior. Macromol Rapid Commun 2022; 43:e2200401. [PMID: 35836310 DOI: 10.1002/marc.202200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Indexed: 11/10/2022]
Abstract
Inspired by many living creatures with adjustment of shape and color in ever-changing environment, color changeable shape memory hydrogels are designed and expected to be potential candidates in the fields spanning from anti-counterfeiting to biomedical devices. However, they normally require complex synthesis, and more importantly, the cooling-induced shape recovery hydrogel is still rare and in its infancy so far. Herein, we have developed a unique color changeable shape memory hydrogel by simply incorporating polyvinyl alcohol and copper acetate into covalent polyacrylamide network. As core functional element, copper ions serve as reversible crosslinks after heating to achieve excellent cooling-triggered shape memory effect, color shifting and self-healing behavior, showing significant potential in diverse applications like grabbing, information encryption, and biomimetic designs. This work may guide the development of cooling-triggered smart hydrogels for practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Feng Yin
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jinguo Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yong Ju
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
32
|
Li C, Yu Y, Li H, Tian J, Guo W, Shen Y, Cui H, Pan Y, Song Y, Shum HC. One-Pot Self-Assembly of Dual-Color Domes Using Mono-Sized Silica Nanoparticles. NANO LETTERS 2022; 22:5236-5243. [PMID: 35731830 DOI: 10.1021/acs.nanolett.2c01090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spots with dual structural colors on the skin of some organisms in nature are of tremendous interest due to the unique function of their dye-free colors. However, imitation of them requires complicated manufacturing processes, expensive equipment, and multiple predesigned building blocks. In this work, a one-pot strategy based on the phase-separation-assisted nonuniform self-assembly of monosized silica nanoparticles is developed to construct domes with dual structural colors. In drying poly(ethylene glycol)-dextran-based (PEG-DEX) droplets, monosized nanoparticles distribute nonuniformly in two compartments due to the droplet inner flow and different nanoparticle compatibility with the two phases. The dome colors are derived from the self-assembled nanoparticles and are programmable by regulating the assembly conditions. The one-pot strategy enables the preparation of multicolor using only one type of building block. With the dual-color domes, encrypted patterns with a high volume of contents are designed, showing promising applications in information delivery.
Collapse
Affiliation(s)
- Chang Li
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yafeng Yu
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jingxuan Tian
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Wei Guo
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yanting Shen
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Huanqing Cui
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yi Pan
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (SAR), China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), China
| |
Collapse
|
33
|
Kong J, Li W, Zhao S, Zhang J, Yue T, Wang Y, Xia Y, Li Z. Color-Tunable Fluorescent Hierarchical Nanoassemblies with Concentration-Encoded Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201826. [PMID: 35670152 DOI: 10.1002/smll.202201826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Cephalopods possess a dynamic coloration behavior to change their iridescence due to the concentration-induced optical properties of chromatophores and hierarchical assembly of reflectin. However, cephalopods rarely have iridescence in the darkfield. It would be interesting to develop color-tunable fluorescent hierarchical nanoassemblies with concentration-encoded emission. Herein, to construct the bioavailable fluorophore with dynamic coloration properties, a histidine-rich peptide is designed, which can self-assemble into hierarchical nanoassemblies stabilized by hydrogen bonds and π-π stacking interactions. The peptidyl nanoassemblies emit fluorescent iridescence, encompassing the blue to orange region due to the assembly-induced emission. The fluorescence of histidine-rich peptides is color-tunable and reversible, which can be dynamically controlled in a concentration-encoded mode. Due to the coloration ability of histidine-rich peptides, fluorescent polychromatic human cells are developed, highlighting its potential role as a fluorescent candidate for future applications such as bioimaging, implantable light-emitting diodes, and photochromic camouflage.
Collapse
Affiliation(s)
- Jia Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Wenxin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Shixuan Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yinqiang Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Zhonghong Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
34
|
Zhang J, Qin Y, Ou Y, Shen Y, Tang B, Zhang X, Yu Z. Injectable Granular Hydrogels as Colloidal Assembly Microreactors for Customized Structural Colored Objects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing Zhang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yipeng Qin
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Yangteng Ou
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - Yu Shen
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Bao Tang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Xiaoyun Zhang
- University of Cambridge Yusuf Hamied Department of Chemistry UNITED KINGDOM
| | - Ziyi Yu
- University of Cambridge Department of Chemistry Lensfield road Cambridge UNITED KINGDOM
| |
Collapse
|
35
|
Song J, Liu C, Li B, Liu L, Zeng L, Ye Z, Mao T, Wu W, Hu B. Tunable Cellular Localization and Extensive Cytoskeleton-Interplay of Reflectins. Front Cell Dev Biol 2022; 10:862011. [PMID: 35813206 PMCID: PMC9259870 DOI: 10.3389/fcell.2022.862011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Reflectin proteins are natural copolymers consisting of repeated canonical domains. They are located in a biophotonic system called Bragg lamellae and manipulate the dynamic structural coloration of iridocytes. Their biological functions are intriguing, but the underlying mechanism is not fully understood. Reflectin A1, A2, B1, and C were found to present distinguished cyto-/nucleoplasmic localization preferences in the work. Comparable intracellular localization was reproduced by truncated reflectin variants, suggesting a conceivable evolutionary order among reflectin proteins. The size-dependent access of reflectin variants into the nucleus demonstrated a potential model of how reflectins get into Bragg lamellae. Moreover, RfA1 was found to extensively interact with the cytoskeleton, including its binding to actin and enrichment at the microtubule organizing center. This implied that the cytoskeleton system plays a fundamental role during the organization and transportation of reflectin proteins. The findings presented here provide evidence to get an in-depth insight into the evolutionary processes and working mechanisms of reflectins, as well as novel molecular tools to achieve tunable intracellular transportation.
Collapse
Affiliation(s)
- Junyi Song
- College of Liberal Arts Science, National University of Defense Technology, Changsha, China
| | - Chuanyang Liu
- College of Liberal Arts Science, National University of Defense Technology, Changsha, China
| | - Baoshan Li
- College of Liberal Arts Science, National University of Defense Technology, Changsha, China
| | - Liangcheng Liu
- College of Liberal Arts Science, National University of Defense Technology, Changsha, China
| | - Ling Zeng
- College of Liberal Arts Science, National University of Defense Technology, Changsha, China
| | - Zonghuang Ye
- College of Liberal Arts Science, National University of Defense Technology, Changsha, China
| | - Ting Mao
- Logistics Center, National University of Defense Technology, Changsha, China
| | - Wenjian Wu
- College of Liberal Arts Science, National University of Defense Technology, Changsha, China
| | - Biru Hu
- College of Liberal Arts Science, National University of Defense Technology, Changsha, China
| |
Collapse
|
36
|
At the Intersection of Natural Structural Coloration and Bioengineering. Biomimetics (Basel) 2022; 7:biomimetics7020066. [PMID: 35645193 PMCID: PMC9149877 DOI: 10.3390/biomimetics7020066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Most of us get inspired by and interact with the world around us based on visual cues such as the colors and patterns that we see. In nature, coloration takes three primary forms: pigmentary coloration, structural coloration, and bioluminescence. Typically, pigmentary and structural coloration are used by animals and plants for their survival; however, few organisms are able to capture the nearly instantaneous and visually astounding display that cephalopods (e.g., octopi, squid, and cuttlefish) exhibit. Notably, the structural coloration of these cephalopods critically relies on a unique family of proteins known as reflectins. As a result, there is growing interest in characterizing the structure and function of such optically-active proteins (e.g., reflectins) and to leverage these materials across a broad range of disciplines, including bioengineering. In this review, I begin by briefly introducing pigmentary and structural coloration in animals and plants as well as highlighting the extraordinary appearance-changing capabilities of cephalopods. Next, I outline recent advances in the characterization and utilization of reflectins for photonic technologies and and discuss general strategies and limitations for the structural and optical characterization of proteins. Finally, I explore future directions of study for optically-active proteins and their potential applications. Altogether, this review aims to bring together an interdisciplinary group of researchers who can resolve the fundamental questions regarding the structure, function, and self-assembly of optically-active protein-based materials.
Collapse
|
37
|
Loke JJ, Hoon S, Miserez A. Cephalopod-Mimetic Tunable Photonic Coatings Assembled from Quasi-Monodispersed Reflectin Protein Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21436-21452. [PMID: 35476418 DOI: 10.1021/acsami.2c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The remarkable dynamic camouflage ability of cephalopods arises from precisely orchestrated structural changes within their chromatophores and iridophores photonic cells. This mesmerizing color display remains unmatched in synthetic coatings and is regulated by swelling/deswelling of reflectin protein nanoparticles, which alters platelet dimensions in iridophores to control photonic patterns according to Bragg's law. Toward mimicking the photonic response of squid's skin, reflectin proteins from Sepioteuthis lessioniana were sequenced, recombinantly expressed, and self-assembled into spherical nanoparticles by conjugating reflectin B1 with a click chemistry ligand. These quasi-monodisperse nanoparticles can be tuned to any desired size in the 170-1000 nm range. Using Langmuir-Schaefer and drop-cast deposition methods, ligand-conjugated reflectin B1 nanoparticles were immobilized onto azide-functionalized substrates via click chemistry to produce monolayer amorphous photonic structures with tunable structural colors based on average particle size, paving the way for the fabrication of eco-friendly, bioinspired color-changing coatings that mimic cephalopods' dynamic camouflage.
Collapse
Affiliation(s)
- Jun Jie Loke
- Centre for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Shawn Hoon
- Molecular Engineering Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Ali Miserez
- Centre for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
- School of Biological Sciences, Nanyang Technological University (NTU), Singapore 637551, Singapore
| |
Collapse
|
38
|
Zhang P, Debije MG, de Haan LT, Schenning APHJ. Pigmented Structural Color Actuators Fueled by Near-Infrared Light. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20093-20100. [PMID: 35451302 PMCID: PMC9073939 DOI: 10.1021/acsami.2c03392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cuttlefish can modify their body shape and both their pigmentary and structural colors for protection. This adaptability has inspired the development of appearance-changing polymers such as structural color actuators, although in most cases, the original shape has been confined to being flat, and pigmented structural color actuators have not yet been reported. Here, we have successfully created a pigmented structural color actuator using a cholesteric liquid crystal elastomer with a lower actuation temperature where both actuation and coloration (structural and pigmental) are tunable with temperature and NIR light. The shape, structural color, and absorption of the NIR-absorbing dye pigment of the actuator all change with temperature. Light can be used to trigger local in-plane bending actuation in flat films and local shape changes in a variety of 3D-shaped objects. A cuttlefish mimic that can sense light and respond by locally changing its appearance was also made to demonstrate the potential of pigmented structural color actuators for signaling and camouflage in soft robotics.
Collapse
Affiliation(s)
- Pei Zhang
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Michael G. Debije
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Laurens T. de Haan
- SCNU-TUE
Joint Lab of Device Integrated Responsive Materials (DIRM), National
Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Albert P. H. J. Schenning
- Stimuli-Responsive
Functional Materials and Devices, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
39
|
Nakajima R, Lajbner Z, Kuba MJ, Gutnick T, Iglesias TL, Asada K, Nishibayashi T, Miller J. Squid adjust their body color according to substrate. Sci Rep 2022; 12:5227. [PMID: 35347207 PMCID: PMC8960755 DOI: 10.1038/s41598-022-09209-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/14/2022] [Indexed: 11/18/2022] Open
Abstract
Coleoid cephalopods camouflage on timescales of seconds to match their visual surroundings. To date, studies of cephalopod camouflage-to-substrate have been focused primarily on benthic cuttlefish and octopus, because they are readily found sitting on the substrate. In contrast to benthic cephalopods, oval squid (Sepioteuthis lessoniana species complex) are semi-pelagic animals that spend most of their time in the water column. In this study, we demonstrate that in captivity, S. lessoniana Sp.2 (Shiro-ika, white-squid) from the Okinawa archipelago, Japan, adapts the coloration of their skin using their chromatophores according to the background substrate. We show that if the animal moves between substrates of different reflectivity, the body patterning is changed to match. Chromatophore matching to substrate has not been reported in any loliginid cephalopod under laboratory conditions. Adaptation of the chromatophore system to the bottom substrate in the laboratory is a novel experimental finding that establishes oval squid as laboratory model animals for further research on camouflage.
Collapse
Affiliation(s)
- Ryuta Nakajima
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan.,Department of Art and Design, University of Minnesota Duluth, 1201 Ordean Ct., Duluth, MN, 55812, USA
| | - Zdeněk Lajbner
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan.
| | - Michael J Kuba
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan
| | - Tamar Gutnick
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan
| | - Teresa L Iglesias
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan.,Animal Resources Section, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan
| | - Keishu Asada
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan.,Animal Resources Section, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan
| | - Takahiro Nishibayashi
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan
| | - Jonathan Miller
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa, 904-0945, Japan
| |
Collapse
|
40
|
Wu K, Zhu T, Zhu L, Sun Y, Chen K, Chen J, Yuan H, Wang Y, Zhang J, Liu G, Chen X, Sun J. Reversible Mechanochromisms via Manipulating Surface Wrinkling. NANO LETTERS 2022; 22:2261-2269. [PMID: 35234042 DOI: 10.1021/acs.nanolett.1c04494] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechanochromic structural-colored materials have promising applications in various domains. In this Letter, we report three types of reversible mechanochromisms in simple material systems by harnessing mechano-responsive wrinkling dynamics including (i) brightness mechanochromism (BM), (ii) hue change mechanochromism (HCM), and (iii) viewable angle mechanochromism (VAM). Upon stretching, the BM device exhibits almost a constant hue but reduces light brightness due to the postbuckling mechanics-controlled deformation, while the HCM device can change the hue from blue to red with almost constant intensity because of the linear elastic mechanics-controlled deformation. The VAM device shows a constant hue because of the thin film interference effect. However, the viewable angles decrease with increasing applied strain owing to the light scattering of wrinkles. All of the mechanochromic behaviors exhibit good reversibility and durability. We clearly elucidated the underlying mechanisms for different mechanochromisms and demonstrated their potential applications in smart displays, stretchable strain sensors, and antipeeping/anticounterfeiting devices.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Ting Zhu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Liangliang Zhu
- School of Chemical Engineering, Northwest University, Xi'an 710069, P.R. China
| | - Yu Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Kai Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiaorui Chen
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Haozhi Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Xi Chen
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
41
|
Yang C, Su F, Xu Y, Ma Y, Tang L, Zhou N, Liang E, Wang G, Tang J. pH Oscillator-Driven Jellyfish-like Hydrogel Actuator with Dissipative Synergy between Deformation and Fluorescence Color Change. ACS Macro Lett 2022; 11:347-353. [PMID: 35575373 DOI: 10.1021/acsmacrolett.2c00002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Development of soft actuators with complex practical functions is significant for imitating the behaviors of living organisms. However, it is still a challenge to fabricate artificial soft actuators with jellyfish-like synergistic deformation and fluorescence color change (SDFC) and autonomous dynamic behavior, but such a system could obviously endow the classic soft actuators with more functions. Herein, we proposed to utilize tetra(4-pyridylphenyl)ethylene (TPE-4N) luminogen with pH-responsive aggregation-induced emission (AIE) to fabricate the AIE active hydrogel, which could be further employed to obtain an anisotropic bilayer soft actuator based on strong interfacial adhesion with acrylic acid (AA) gels. Furthermore, artificial flower-shape actuators showing SDFC behaviors were demonstrated. On the basis of these findings, jellyfish-inspired autonomous gel actuators driven by a pH oscillator have been fabricated, in which periodical SDFC behaviors completely regulated by the system itself without repetitive on/off switches of external stimuli were well synchronized with the pH oscillator. The described combination of nonlinear chemistry and responsive hydrogels actuator opens pathways toward out-of-equilibrium SDFC devices with autonomous behavior useful for biomimetic fields.
Collapse
Affiliation(s)
- Caixia Yang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
- College of Packaging and Material Engineering, Hunan University of Technology, Zhuzhou 412007, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Fang Su
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yixue Xu
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Yan Ma
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Ningbo Zhou
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
- Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Enxiang Liang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
- Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Guoxiang Wang
- College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, P. R. China
- Key Laboratory of Hunan Province for Advanced Carbon-Based Functional Materials, School of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Jianxin Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| |
Collapse
|
42
|
Poloni E, Rafsanjani A, Place V, Ferretti D, Studart AR. Stretchable Soft Composites with Strain-Induced Architectured Color. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104874. [PMID: 34632656 DOI: 10.1002/adma.202104874] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Colors enable interaction and communication between living species in a myriad of biological and artificial environments. While living organisms feature low-power mechanisms to dynamically control color in soft tissues, man-made color-changing devices remain predominantly rigid and energy intensive. Here, architectured composites that display striking color changes when stretched in selective directions under ambient light with minimum power input are reported. The orientation-dependent color change results from the rotation of reflective coated platelets that are embedded in a soft polymer matrix and pre-aligned in a well-defined architecture. The light reflected by the platelets generates structural color defined by the oxide coating on the platelet surface. By magnetically programming the initial orientation and spatial distribution of selected platelets within the soft matrix, composites with strain-modulated color-changing effects that cannot be achieved using state-of-the-art technologies are created. The proposed concept of strain-induced architectured color can be harnessed to develop low-power smart stretchable displays, tactile synthetic skins, and autonomous soft robotic devices that undergo fast and reversible color changes through the mechano-optic coupling programmed within their soft composite architecture.
Collapse
Affiliation(s)
- Erik Poloni
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Ahmad Rafsanjani
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - Vadim Place
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - David Ferretti
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| | - André R Studart
- Complex Materials, Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
43
|
Bashir MA, Wei J, Wang H, Zhong F, Zhai H. Recent advances in catalytic oxidative reactions of phenols and naphthalenols. Org Chem Front 2022. [DOI: 10.1039/d2qo00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review aims to provide an overview of oxidative phenol and naphthalenol transformations in nature and synthetic chemistry.
Collapse
Affiliation(s)
- Muhammad Adnan Bashir
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jian Wei
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
44
|
Liu Y, Feng Z, Xu C, Chatterjee A, Gorodetsky AA. Reconfigurable Micro- and Nano-Structured Camouflage Surfaces Inspired by Cephalopods. ACS NANO 2021; 15:17299-17309. [PMID: 34633175 DOI: 10.1021/acsnano.0c09990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wrinkled surfaces and materials are found throughout the natural world in various plants and animals and are known to improve the performance of emerging optical and electrical technologies. Despite much progress, the reversible post-fabrication tuning of wrinkle sizes and geometries across multiple length scales has remained relatively challenging for some materials, and the development of comprehensive structure-function relationships for optically active wrinkled surfaces has often proven difficult. Herein, by drawing inspiration from natural cephalopod skin and leveraging methodologies established for artificial adaptive infrared platforms, we engineer systems with hierarchically reconfigurable wrinkled surface morphologies and dynamically tunable visible-to-infrared spectroscopic properties. Specifically, we demonstrate architectures for which mechanical actuation changes the surface morphological characteristics; modulates the reflectance, transmittance, and absorptance across a broad spectral window; controls the specular-to-diffuse reflectance ratios; and alters the visible and thermal appearances. Moreover, we demonstrate the incorporation of these architectures into analogous electrically actuated appearance-changing devices that feature competitive figures of merit, such as reasonable maximum areal strains, rapid response times, and good stabilities upon repeated actuation. Overall, our findings constitute another step forward in the continued development of cephalopod-inspired light- and heat-manipulating systems and may facilitate advanced applications in the areas of sensing, electronics, optics, soft robotics, and thermal management.
Collapse
Affiliation(s)
- Yinuan Liu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Zhijing Feng
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Chengyi Xu
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Atrouli Chatterjee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Alon A Gorodetsky
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
45
|
Deravi LF, Cox NC, Martin CA. Evaluation of biologically-inspired ammonium xanthommatin as a multi-functional cosmetic ingredient. JID INNOVATIONS 2021; 2:100081. [PMID: 35601056 PMCID: PMC9121326 DOI: 10.1016/j.xjidi.2021.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
We describe the investigation of an organic natural product, ammonium xanthommatin (Xanthochrome), in a series of studies designed to not only assess its impact on endocrine receptor function in vitro but also interrogate its mutagenic potential using bacterial reverse mutation assays. As a multifunctional raw material, ammonium xanthommatin functions as an antioxidant with a broad absorption profile spanning the UV through the visible spectrum, making it an interesting target for cosmetic applications. In solution, ammonium xanthommatin contributes to <30% inhibition of hormonal activities, indicating that it is not an endocrine disruptor. Furthermore, the compound does not cause gene mutations in the bacterial strains used, indicating that it is nonmutagenic. Applications are also described, highlighting xanthommatin’s ability to boost the UVA and UVB absorptive properties of traditional chemical UV filters by >50% across all filters tested. In addition to these features, xanthommatin exhibited no phototoxic hazards in vitro when irradiated with UVA and visible light, demonstrating its utility as a multifunctional cosmetic ingredient. Although these findings encourage the use of xanthommatin in cosmetics, they represent only the beginning of the complete in vitro and in vivo data package needed to support safety and efficacy claims for future applications in skin health.
Collapse
Affiliation(s)
- Leila F. Deravi
- Seaspire Skincare, Cambridge, Massachusetts, USA
- Department of Chemistry and Chemical Biology, College of Science, Northeastern University, Boston, Massachusetts, USA
| | | | - Camille A. Martin
- Seaspire Skincare, Cambridge, Massachusetts, USA
- Correspondence: Camille A. Martin, Seaspire Skincare, 501 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
46
|
Hoffmann AA, Bridle J. The dangers of irreversibility in an age of increased uncertainty: revisiting plasticity in invertebrates. OIKOS 2021. [DOI: 10.1111/oik.08715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ary A. Hoffmann
- School of BioSciences, Bio21 Inst., The Univ. of Melbourne Vic Australia
| | - Jon Bridle
- Dept of Genetics, Evolution and Environment, Univ. College London UK
| |
Collapse
|
47
|
Tomihara K, Satta K, Matsuzaki S, Yoshitake K, Yamamoto K, Uchiyama H, Yajima S, Futahashi R, Katsuma S, Osanai-Futahashi M, Kiuchi T. Mutations in a β-group of solute carrier gene are responsible for egg and eye coloration of the brown egg 4 (b-4) mutant in the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 137:103624. [PMID: 34333110 DOI: 10.1016/j.ibmb.2021.103624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
The brown egg 4 (b-4) is a recessive mutant in the silkworm (Bombyx mori), whose egg and adult compound eyes exhibit a reddish-brown color instead of normal purple and black, respectively. By double digest restriction-site associated DNA sequencing (ddRAD-seq) analysis, we narrowed down a region linked to the b-4 phenotype to approximately 1.1 Mb that contains 69 predicted gene models. RNA-seq analysis in a b-4 strain indicated that one of the candidate genes had a different transcription start site, which generates a short open reading frame. We also found that exon skipping was induced in the same gene due to an insertion of a transposable element in other two b-4 mutant strains. This gene encoded a putative amino acid transporter that belongs to the β-group of solute carrier (SLC) family and is orthologous to Drosophila eye color mutant gene, mahogany (mah). Accordingly, we named this gene Bmmah. We performed CRISPR/Cas9-mediated gene knockout targeting Bmmah. Several adult moths in generation 0 (G0) had totally or partially reddish-brown compound eyes. We also established three Bmmah knockout strains, all of which exhibit reddish-brown eggs and adult compound eyes. Furthermore, eggs from complementation crosses between the b-4 mutants and the Bmmah knockout mutants also exhibited reddish-brown color, which was similar to the b-4 mutant eggs, indicating that Bmmah is responsible for the b-4 phenotypes.
Collapse
Affiliation(s)
- Kenta Tomihara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuya Satta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shohei Matsuzaki
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kimiko Yamamoto
- Insect Genome Research and Engineering Unit, Division of Applied Genetics, Institute of Agrobiological Science, National Agriculture and Food Research Organization, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | - Hironobu Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Shunsuke Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan; Department of Bioscience, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo 156-8502, Japan
| | - Ryo Futahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | - Susumu Katsuma
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mizuko Osanai-Futahashi
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan.
| | - Takashi Kiuchi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
48
|
Yamashita K, Kunitsu K, Hattori T, Kuwahara Y, Saito A. Demonstration of a diffraction-based optical diffuser inspired by the Morpho butterfly. OPTICS EXPRESS 2021; 29:30927-30936. [PMID: 34614808 DOI: 10.1364/oe.436193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Optical diffusers are widely used in a variety of light sources to create uniform illumination over a wide field of view. Inspired by the diffraction-based light diffusion of the Morpho butterfly, here we demonstrate a novel diffuser which fulfils (i) high transmittance, (ii) wide angular spread, and (iii) low color dispersion. Two-dimensional nanopatterns were designed using optical simulations to enable simple fabrication. By introducing anisotropy into the surface nanopatterns, we achieved control of anisotropic light diffusion, which has been challenging for conventional diffusers. Next, the designed diffuser was implemented over a large area (100 × 100 mm2) via nanoimprint lithography. The obtained diffuser demonstrated a high transmittance of ∼85% and full width at half maximum (FWHM) of >60° with low color dispersion, outperforming conventional diffusers. Since the presented diffuser has the controllable diffusion properties with low light loss, it has many applications including LED lighting, displays, and daylight harvesting systems.
Collapse
|
49
|
Figon F, Hurbain I, Heiligenstein X, Trépout S, Lanoue A, Medjoubi K, Somogyi A, Delevoye C, Raposo G, Casas J. Catabolism of lysosome-related organelles in color-changing spiders supports intracellular turnover of pigments. Proc Natl Acad Sci U S A 2021; 118:e2103020118. [PMID: 34433668 PMCID: PMC8536372 DOI: 10.1073/pnas.2103020118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pigment organelles of vertebrates belong to the lysosome-related organelle (LRO) family, of which melanin-producing melanosomes are the prototypes. While their anabolism has been extensively unraveled through the study of melanosomes in skin melanocytes, their catabolism remains poorly known. Here, we tap into the unique ability of crab spiders to reversibly change body coloration to examine the catabolism of their pigment organelles. By combining ultrastructural and metal analyses on high-pressure frozen integuments, we first assess whether pigment organelles of crab spiders belong to the LRO family and second, how their catabolism is intracellularly processed. Using scanning transmission electron microscopy, electron tomography, and nanoscale Synchrotron-based scanning X-ray fluorescence, we show that pigment organelles possess ultrastructural and chemical hallmarks of LROs, including intraluminal vesicles and metal deposits, similar to melanosomes. Monitoring ultrastructural changes during bleaching suggests that the catabolism of pigment organelles involves the degradation and removal of their intraluminal content, possibly through lysosomal mechanisms. In contrast to skin melanosomes, anabolism and catabolism of pigments proceed within the same cell without requiring either cell death or secretion/phagocytosis. Our work hence provides support for the hypothesis that the endolysosomal system is fully functionalized for within-cell turnover of pigments, leading to functional maintenance under adverse conditions and phenotypic plasticity. First formulated for eye melanosomes in the context of human vision, the hypothesis of intracellular turnover of pigments gets unprecedented strong support from pigment organelles of spiders.
Collapse
Affiliation(s)
- Florent Figon
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, 37200 Tours, France;
| | - Ilse Hurbain
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | | | - Sylvain Trépout
- Institut Curie, INSERM U1196, CNRS UMR 9187, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Arnaud Lanoue
- Biomolécules et Biotechnologies Végétales, Équipe d'Accueil 2106, Université de Tours, 37200 Tours, France
| | | | | | - Cédric Delevoye
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | - Graça Raposo
- Institut Curie, CNRS UMR 144, Structure and Membrane Compartments, Paris Sciences & Lettres (PSL) Research University, 75005 Paris, France
- Institut Curie, CNRS UMR 144, Cell and Tissue Imaging Facility (Plateforme d'Imagerie Cellulaire et Tissulaire, Infrastructures en Biologie, Santé et Agronomie [PICT-IBiSA]), PSL Research University, 75005 Paris, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université de Tours, 37200 Tours, France;
| |
Collapse
|
50
|
Rubenstein DR, Corvelo A, MacManes MD, Maia R, Narzisi G, Rousaki A, Vandenabeele P, Shawkey MD, Solomon J. Feather Gene Expression Elucidates the Developmental Basis of Plumage Iridescence in African Starlings. J Hered 2021; 112:417-429. [PMID: 33885791 PMCID: PMC11502951 DOI: 10.1093/jhered/esab014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/19/2021] [Indexed: 01/08/2023] Open
Abstract
Iridescence is widespread in the living world, occurring in organisms as diverse as bacteria, plants, and animals. Yet, compared to pigment-based forms of coloration, we know surprisingly little about the developmental and molecular bases of the structural colors that give rise to iridescence. Birds display a rich diversity of iridescent structural colors that are produced in feathers by the arrangement of melanin-containing organelles called melanosomes into nanoscale configurations, but how these often unusually shaped melanosomes form, or how they are arranged into highly organized nanostructures, remains largely unknown. Here, we use functional genomics to explore the developmental basis of iridescent plumage using superb starlings (Lamprotornis superbus), which produce both iridescent blue and non-iridescent red feathers. Through morphological and chemical analyses, we confirm that hollow, flattened melanosomes in iridescent feathers are eumelanin-based, whereas melanosomes in non-iridescent feathers are solid and amorphous, suggesting that high pheomelanin content underlies red coloration. Intriguingly, the nanoscale arrangement of melanosomes within the barbules was surprisingly similar between feather types. After creating a new genome assembly, we use transcriptomics to show that non-iridescent feather development is associated with genes related to pigmentation, metabolism, and mitochondrial function, suggesting non-iridescent feathers are more energetically expensive to produce than iridescent feathers. However, iridescent feather development is associated with genes related to structural and cellular organization, suggesting that, while nanostructures themselves may passively assemble, barbules and melanosomes may require active organization to give them their shape. Together, our analyses suggest that iridescent feathers form through a combination of passive self-assembly and active processes.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
- Center for Integrative Animal Behavior, Columbia University, New York, NY
| | | | - Matthew D MacManes
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | - Rafael Maia
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| | | | - Anastasia Rousaki
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
| | - Peter Vandenabeele
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, Krigslaan, Ghent, Belgium
- Archaeometry Research Group, Department of Archaeology, Ghent University, Sint-Pietersnieuwstraat, Ghent, Belgium
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ghent, Belgium
| | - Joseph Solomon
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY
| |
Collapse
|