1
|
Wei K, Tang C, Ma H, Fang X, Yang R. 3D-printed microrobots for biomedical applications. Biomater Sci 2024; 12:4301-4334. [PMID: 39041236 DOI: 10.1039/d4bm00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Microrobots, which can perform tasks in difficult-to-reach parts of the human body under their own or external power supply, are potential tools for biomedical applications, such as drug delivery, microsurgery, imaging and monitoring, tissue engineering, and sensors and actuators. Compared with traditional fabrication methods for microrobots, recent improvements in 3D printers enable them to print high-precision microrobots, breaking through the limitations of traditional micromanufacturing technologies that require high skills for operators and greatly shortening the design-to-production cycle. Here, this review first introduces typical 3D printing technologies used in microrobot manufacturing. Then, the structures of microrobots with different functions and application scenarios are discussed. Next, we summarize the materials (body materials, propulsion materials and intelligent materials) used in 3D microrobot manufacturing to complete body construction and realize biomedical applications (e.g., drug delivery, imaging and monitoring). Finally, the challenges and future prospects of 3D printed microrobots in biomedical applications are discussed in terms of materials, manufacturing and advancement.
Collapse
Affiliation(s)
- Kun Wei
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Chenlong Tang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Hui Ma
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Xingmiao Fang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Iványi GT, Nemes B, Gróf I, Fekete T, Kubacková J, Tomori Z, Bánó G, Vizsnyiczai G, Kelemen L. Optically Actuated Soft Microrobot Family for Single-Cell Manipulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401115. [PMID: 38814436 DOI: 10.1002/adma.202401115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/17/2024] [Indexed: 05/31/2024]
Abstract
Precisely controlled manipulation of nonadherent single cells is often a pre-requisite for their detailed investigation. Optical trapping provides a versatile means for positioning cells with submicrometer precision or measuring forces with femto-Newton resolution. A variant of the technique, called indirect optical trapping, enables single-cell manipulation with no photodamage and superior spatial control and stability by relying on optically trapped microtools biochemically bound to the cell. High-resolution 3D lithography enables to prepare such cell manipulators with any predefined shape, greatly extending the number of achievable manipulation tasks. Here, it is presented for the first time a novel family of cell manipulators that are deformable by optical tweezers and rely on their elasticity to hold cells. This provides a more straightforward approach to indirect optical trapping by avoiding biochemical functionalization for cell attachment, and consequently by enabling the manipulated cells to be released at any time. Using the photoresist Ormocomp, the deformations achievable with optical forces in the tens of pN range and present three modes of single-cell manipulation as examples to showcase the possible applications such soft microrobotic tools can offer are characterized. The applications describe here include cell collection, 3D cell imaging, and spatially and temporally controlled cell-cell interaction.
Collapse
Affiliation(s)
- Gergely T Iványi
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, 6720, Hungary
| | - Botond Nemes
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Ilona Gróf
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Tamás Fekete
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| | - Jana Kubacková
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, Košice, 04001, Slovakia
| | - Zoltán Tomori
- Department of Biophysics, Institute of Experimental Physics SAS, Watsonova 47, Košice, 04001, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Faculty of Science, P. J. Šafárik University in Košice, Jesenná 5, Košice, 04154, Slovakia
| | - Gaszton Vizsnyiczai
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
- Department of Biotechnology, University of Szeged, Szeged, 6720, Hungary
| | - Lóránd Kelemen
- HUN-REN Biological Research Centre, Szeged Institute of Biophysics, Temesvári krt. 62, Szeged, 6726, Hungary
| |
Collapse
|
3
|
Xia B, Huang J, Li H, Luo Z, Zeng G. Nanoradian-scale precision in light rotation measurement via indefinite quantum dynamics. SCIENCE ADVANCES 2024; 10:eadm8524. [PMID: 38985867 DOI: 10.1126/sciadv.adm8524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/05/2024] [Indexed: 07/12/2024]
Abstract
The manipulation and metrology of light beams are pivotal for optical science and applications. In particular, achieving ultrahigh precision in the measurement of light beam rotations has been a long-standing challenge. Instead of using quantum probes like entangled photons, we address this challenge by incorporating a quantum strategy called "indefinite time direction" into the parameterizing process of quantum parameter estimation. Leveraging this quantum property of the parameterizing dynamics allows us to maximize the utilization of orbital angular momentum resources for measuring ultrasmall angular rotations of beam profile. Notably, a nanoradian-scale precision of light rotation measurement is lastly achieved in the experiment, which is the highest precision by far to our best knowledge. Furthermore, this scheme holds promise in various optical applications due to the diverse range of manipulable resources offered by photons.
Collapse
Affiliation(s)
- Binke Xia
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute for Quantum Sensing and Information Processing, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingzheng Huang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute for Quantum Sensing and Information Processing, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Hongjing Li
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute for Quantum Sensing and Information Processing, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Zhongyuan Luo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute for Quantum Sensing and Information Processing, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guihua Zeng
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Institute for Quantum Sensing and Information Processing, School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hefei National Laboratory, Hefei 230088, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
4
|
Būtaitė UG, Sharp C, Horodynski M, Gibson GM, Padgett MJ, Rotter S, Taylor JM, Phillips DB. Photon-efficient optical tweezers via wavefront shaping. SCIENCE ADVANCES 2024; 10:eadi7792. [PMID: 38968347 PMCID: PMC11225778 DOI: 10.1126/sciadv.adi7792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
Optical tweezers enable noncontact trapping of microscale objects using light. It is not known how tightly it is possible to three-dimensionally (3D) trap microparticles with a given photon budget. Reaching this elusive limit would enable maximally stiff particle trapping for precision measurements on the nanoscale and photon-efficient tweezing of light-sensitive objects. Here, we customize the shape of light fields to suit specific particles, with the aim of optimizing trapping stiffness in 3D. We show, theoretically, that the confinement volume of microspheres held in sculpted optical traps can be reduced by one to two orders of magnitude. Experimentally, we use a wavefront shaping-inspired strategy to passively suppress the Brownian fluctuations of microspheres in every direction concurrently, demonstrating order-of-magnitude reductions in their confinement volumes. Our work paves the way toward the fundamental limits of optical control over the mesoscopic realm.
Collapse
Affiliation(s)
- Unė G. Būtaitė
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Christina Sharp
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| | - Michael Horodynski
- Institute for Theoretical Physics, Vienna University of Technology (TU Wien), A-1040 Vienna, Austria, EU
| | - Graham M. Gibson
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Miles J. Padgett
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stefan Rotter
- Institute for Theoretical Physics, Vienna University of Technology (TU Wien), A-1040 Vienna, Austria, EU
| | - Jonathan M. Taylor
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
| | - David B. Phillips
- School of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|
5
|
Hong X, Xu B, Li G, Nan F, Wang X, Liang Q, Dong W, Dong W, Sun H, Zhang Y, Li C, Fu R, Wang Z, Shen G, Wang Y, Yao Y, Zhang S, Li J. Optoelectronically navigated nano-kirigami microrotors. SCIENCE ADVANCES 2024; 10:eadn7582. [PMID: 38657056 PMCID: PMC11042735 DOI: 10.1126/sciadv.adn7582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024]
Abstract
With the rapid development of micro/nanofabrication technologies, the concept of transformable kirigami has been applied for device fabrication in the microscopic world. However, most nano-kirigami structures and devices were typically fabricated or transformed at fixed positions and restricted to limited mechanical motion along a single axis due to their small sizes, which significantly limits their functionalities and applications. Here, we demonstrate the precise shaping and position control of nano-kirigami microrotors. Metallic microrotors with size of ~10 micrometers were deliberately released from the substrates and readily manipulated through the multimode actuation with controllable speed and direction using an advanced optoelectronic tweezers technique. The underlying mechanisms of versatile interactions between the microrotors and electric field are uncovered by theoretical modeling and systematic analysis. This work reports a novel methodology to fabricate and manipulate micro/nanorotors with well-designed and sophisticated kirigami morphologies, providing new solutions for future advanced optoelectronic micro/nanomachinery.
Collapse
Affiliation(s)
- Xiaorong Hong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Bingrui Xu
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Gong Li
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Fan Nan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Xian Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Wenbo Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weikang Dong
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yongyue Zhang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Chongrui Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zhuoran Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Shuailong Zhang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Integrated Circuits and Electronics, Engineering Research Center of Integrated Acousto-opto-electronic Microsystems (Ministry of Education of China), Beijing Institute of Technology, Beijing 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Wang D, Xin C, Yang L, Wang L, Liu B, Wu H, Wang C, Pan D, Ren Z, Hu Y, Li J, Chu J, Wu D. Femtosecond Laser Fabrication of Three-Dimensional Bubble-Propelled Microrotors for Multicomponent Mechanical Transmission. NANO LETTERS 2024; 24:3176-3185. [PMID: 38436575 DOI: 10.1021/acs.nanolett.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Inspired by the reverse thrust generated by fuel injection, micromachines that are self-propelled by bubble ejection are developed, such as microrods, microtubes, and microspheres. However, controlling bubble ejection sites to build micromachines with programmable actuation and further enabling mechanical transmission remain challenging. Here, bubble-propelled mechanical microsystems are constructed by proposing a multimaterial femtosecond laser processing method, consisting of direct laser writing and selective laser metal reduction. The polymer frame of the microsystems is first printed, followed by the deposition of catalytic platinum into the desired local site of the microsystems by laser reduction. With this method, a variety of designable microrotors with selective bubble ejection sites are realized, which enable excellent mechanical transmission systems composed of single and multiple mechanical components, including a coupler, a crank slider, and a crank rocker system. We believe the presented bubble-propelled mechanical microsystems could be extended to applications in microrobotics, microfluidics, and microsensors.
Collapse
Affiliation(s)
- Dawei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chen Xin
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Liang Yang
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Liu Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bingrui Liu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Deng Pan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Zhongguo Ren
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Erben E, Liao W, Minopoli A, Maghelli N, Lauga E, Kreysing M. Opto-fluidically multiplexed assembly and micro-robotics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:59. [PMID: 38409110 PMCID: PMC10897173 DOI: 10.1038/s41377-024-01406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Techniques for high-definition micromanipulations, such as optical tweezers, hold substantial interest across a wide range of disciplines. However, their applicability remains constrained by material properties and laser exposure. And while microfluidic manipulations have been suggested as an alternative, their inherent capabilities are limited and further hindered by practical challenges of implementation and control. Here we show that the iterative application of laser-induced, localized flow fields can be used for the relative positioning of multiple micro-particles, irrespectively of their material properties. Compared to the standing theoretical proposal, our method keeps particles mobile, and we show that their precision manipulation is non-linearly accelerated via the multiplexing of temperature stimuli below the heat diffusion limit. The resulting flow fields are topologically rich and mathematically predictable. They represent unprecedented microfluidic control capabilities that are illustrated by the actuation of humanoid micro-robots with up to 30 degrees of freedom, whose motions are sufficiently well-defined to reliably communicate personal characteristics such as gender, happiness and nervousness. Our results constitute high-definition micro-fluidic manipulations with transformative potential for assembly, micro-manufacturing, the life sciences, robotics and opto-hydraulically actuated micro-factories.
Collapse
Affiliation(s)
- Elena Erben
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- Center for Systems Biology, Dresden, 01307, Germany
- Institute of Biological and Chemical Systems - Biological Information Processing. Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany
| | - Weida Liao
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
| | - Antonio Minopoli
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- Center for Systems Biology, Dresden, 01307, Germany
| | - Nicola Maghelli
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
- Center for Systems Biology, Dresden, 01307, Germany
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
| | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany.
- Center for Systems Biology, Dresden, 01307, Germany.
- Institute of Biological and Chemical Systems - Biological Information Processing. Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, 76344, Germany.
| |
Collapse
|
8
|
Zhang K, Xiang W, Jia N, Yu M, Liu J, Xie Z. A portable microfluidic device for thermally controlled granular sample manipulation. LAB ON A CHIP 2024; 24:549-560. [PMID: 38168724 DOI: 10.1039/d3lc00888f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Effective granular sample manipulation with a portable and visualizable microfluidic device is significant for lots of applications, such as point-of-care testing and cargo delivery. Herein, we report a portable microfluidic device for controlled particle focusing, migration and double-emulsion droplet release via thermal fields. The device mainly contains a microfluidic chip, a microcontroller with a DC voltage control unit, a built-in microscope with a video transmission unit and a smartphone. Five microheaters located at the bottom of the microfluidic chip are used to unevenly heat fluids and then induce thermal buoyancy flow and a thermocapillary effect, and the experiments can be conveniently visualized through a smartphone, which provides convenient sample detection in outdoor environments. To demonstrate the feasibility and multifunctionality of this device, the focusing manipulation of multiple particles is first analyzed by using silica particles and yeast cells as experimental samples. We can directly observe the particle focusing states on the screen of a smartphone, and the particle focusing efficiency can be flexibly tuned by changing the control voltage of the microheater. Then the study focus is transferred to single-particle migration. By changing the voltage combinations applied on four strip microheaters, the single particle can migrate at predetermined trajectory and speed, showing attractiveness for those applications needing sample transportation. Finally, we manipulate the special three-phase flow system of double-emulsion drops in thermal fields. Under the combined effect of the thermocapillary effect and increased instability, the shell of double-emulsion droplets gradually thins and finally breaks, resulting in the release of samples in inner cores. The core release speed can also be flexibly adjusted by changing the control voltage of the microheater. These three experiments successfully demonstrate the effectiveness and multifunctionality of this thermally actuated microfluidic device on granular manipulation. Therefore, this portable microfluidic device will be promising for lots of applications, such as analytical detection, microrobot actuation and cargo release.
Collapse
Affiliation(s)
- Kailiang Zhang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Wei Xiang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Na Jia
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Mingyu Yu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Jiuqing Liu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| | - Zhijie Xie
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Hexing Road 26, Harbin, Heilongjiang, PR China 150040.
| |
Collapse
|
9
|
Liu X, Wu S, Wu H, Zhang T, Qin H, Lin Y, Li B, Jiang X, Zheng X. Fully Active Delivery of Nanodrugs In Vivo via Remote Optical Manipulation. SMALL METHODS 2024; 8:e2301112. [PMID: 37880897 DOI: 10.1002/smtd.202301112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/29/2023] [Indexed: 10/27/2023]
Abstract
The active delivery of nanodrugs has been a bottleneck problem in nanomedicine. While modification of nanodrugs with targeting agents can enhance their retention at the lesion location, the transportation of nanodrugs in the circulation system is still a passive process. The navigation of nanodrugs with external forces such as magnetic field has been shown to be effective for active delivery, but the existing techniques are limited to specific materials like magnetic nanoparticles. In this study, an alternative actuation method is proposed based on optical manipulation for remote navigation of nanodrugs in vivo, which is compatible with most of the common drug carriers and exhibits significantly higher manipulation precision. By the programmable scanning of the laser beam, the motion trajectory and velocity of the nanodrugs can be precisely controlled in real time, making it possible for intelligent drug delivery, such as inverse-flow transportation, selective entry into specific vascular branch, and dynamic circumvention across obstacles. In addition, the controlled mass delivery of nanodrugs can be realized through indirect actuation by the microflow field. The developed optical manipulation method provides a new solution for the active delivery of nanodrugs, with promising potential for the treatment of blood diseases such as leukemia and thrombosis.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Shuai Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Huaying Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Tiange Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yufeng Lin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Xiqun Jiang
- College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| |
Collapse
|
10
|
Liu X, Wu H, Wu S, Qin H, Zhang T, Lin Y, Zheng X, Li B. Optically Programmable Living Microrouter in Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304103. [PMID: 37749869 PMCID: PMC10646234 DOI: 10.1002/advs.202304103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Indexed: 09/27/2023]
Abstract
With high reconfigurability and swarming intelligence, programmable medical micromachines (PMMs) represent a revolution in microrobots for executing complex coordinated tasks, especially for dynamic routing of various targets along their respective routes. However, it is difficult to achieve a biocompatible implantation into the body due to their exogenous building blocks. Herein, a living microrouter based on an organic integration of endogenous red blood cells (RBCs), programmable scanning optical tweezers and flexible optofluidic strategy is reported. By harvesting energy from a designed optical force landscape, five RBCs are optically rotated in a controlled velocity and direction, under which, a specific actuation flow is achieved to exert the well-defined hydrodynamic forces on various biological targets, thus enabling a selective routing by integrating three successive functions, i.e., dynamic input, inner processing, and controlled output. Benefited from the optofluidic manipulation, various blood cells, such as the platelets and white blood cells, are transported toward the damaged vessel and cell debris for the dynamic hemostasis and targeted clearance, respectively. Moreover, the microrouter enables a precise transport of nanodrugs for active and targeted delivery in a large quantity. The proposed RBC microrouter might provide a biocompatible medical platform for cell separation, drug delivery, and immunotherapy.
Collapse
Affiliation(s)
- Xiaoshuai Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Huaying Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Shuai Wu
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Haifeng Qin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Tiange Zhang
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yufeng Lin
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xianchuang Zheng
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of NanophotonicsJinan UniversityGuangzhou511443China
| |
Collapse
|
11
|
Bronte Ciriza D, Callegari A, Donato MG, Çiçek B, Magazzù A, Kasianiuk I, Kasyanyuk D, Schmidt F, Foti A, Gucciardi PG, Volpe G, Lanza M, Biancofiore L, Maragò OM. Optically Driven Janus Microengine with Full Orbital Motion Control. ACS PHOTONICS 2023; 10:3223-3232. [PMID: 37743937 PMCID: PMC10515694 DOI: 10.1021/acsphotonics.3c00630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 09/26/2023]
Abstract
Microengines have shown promise for a variety of applications in nanotechnology, microfluidics, and nanomedicine, including targeted drug delivery, microscale pumping, and environmental remediation. However, achieving precise control over their dynamics remains a significant challenge. In this study, we introduce a microengine that exploits both optical and thermal effects to achieve a high degree of controllability. We find that in the presence of a strongly focused light beam, a gold-silica Janus particle becomes confined at the stationary point where the optical and thermal forces balance. By using circularly polarized light, we can transfer angular momentum to the particle, breaking the symmetry between the two forces and resulting in a tangential force that drives directed orbital motion. We can simultaneously control the velocity and direction of rotation of the particle changing the ellipticity of the incoming light beam while tuning the radius of the orbit with laser power. Our experimental results are validated using a geometrical optics phenomenological model that considers the optical force, the absorption of optical power, and the resulting heating of the particle. The demonstrated enhanced flexibility in the control of microengines opens up new possibilities for their utilization in a wide range of applications, including microscale transport, sensing, and actuation.
Collapse
Affiliation(s)
| | - Agnese Callegari
- Department
of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | | | - Berk Çiçek
- Department
of Mechanical Engineering, Bilkent University, TR-06800, Ankara, Turkey
| | - Alessandro Magazzù
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158, Messina, Italy
| | - Iryna Kasianiuk
- Department
of Mechanical Engineering, Bilkent University, TR-06800, Ankara, Turkey
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science & Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Denis Kasyanyuk
- Department
of Mechanical Engineering, Bilkent University, TR-06800, Ankara, Turkey
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science & Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Falko Schmidt
- Nanophotonic
Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Antonino Foti
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158, Messina, Italy
| | | | - Giovanni Volpe
- Department
of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
| | - Maurizio Lanza
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158, Messina, Italy
| | - Luca Biancofiore
- Department
of Mechanical Engineering, Bilkent University, TR-06800, Ankara, Turkey
- UNAM
- National Nanotechnology Research Center and Institute of Materials
Science & Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Onofrio M. Maragò
- CNR-IPCF,
Istituto per i Processi Chimico-Fisici, I-98158, Messina, Italy
| |
Collapse
|
12
|
Nalupurackal G, Panja K, Chakraborty S, Roy S, Goswami J, Roy B, Singh R. Controlled roll rotation of a microparticle in a hydro-thermophoretic trap. PHYSICAL REVIEW RESEARCH 2023; 5:033005. [PMID: 37675386 PMCID: PMC7615027 DOI: 10.1103/physrevresearch.5.033005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
In recent years, there has been a growing interest in controlling the motion of microparticles inside and outside a focused laser beam. A hydro-thermophoretic trap was recently reported [Nalupurackal et al., Soft Matter 18, 6825 (2022)], which can trap and manipulate microparticles and living cells outside a laser beam. Briefly, a hydro-thermophoretic trap works by the competition between thermoplasmonic flows due to laser heating of a substrate and thermophoresis away from the hotspot of the laser. Here, we extend that work to demonstrate the controlled roll rotation of a microparticle in a hydro-thermophoretic trap using experiments and theory. We experimentally measure the roll angular velocity of the trapped particle. We predict this roll rotation from theoretical computation of the fluid flow. The expression for the angular velocity fits the experimental data. Our method has potential applications in microrheology by employing a different mode of rotation.
Collapse
Affiliation(s)
- Gokul Nalupurackal
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Kingshuk Panja
- Department of Physics, IIT Madras, Chennai 600036, India
| | - Snigdhadev Chakraborty
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Srestha Roy
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Jayesh Goswami
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Basudev Roy
- Department of Physics, Quantum Centre of Excellence for Diamond and Emergent Materials (QuCenDiEM), IIT Madras, Chennai 600036, India
| | - Rajesh Singh
- Department of Physics, IIT Madras, Chennai 600036, India
| |
Collapse
|
13
|
Yang Y, Wu Y, Zheng X, Shi J, Luo Y, Huang J, Deng D. Particle manipulation with twisted circle Pearcey vortex beams. OPTICS LETTERS 2023; 48:3535-3538. [PMID: 37390174 DOI: 10.1364/ol.494791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023]
Abstract
In this Letter, we present an approach for particle manipulation utilizing twisted circle Pearcey vortex beams. These beams are modulated by a noncanonical spiral phase, which allows for flexible adjustment of rotation characteristics and spiral patterns. Consequently, particles can be rotated around the beam's axis and trapped with a protective barrier to avoid perturbation. Our proposed system can quickly de-gather and re-gather multiple particles, enabling a swift and thorough cleaning of small areas. This innovation opens up new possibilities in particle cleaning and creates a new platform for further study.
Collapse
|
14
|
Šimić M, Neuper C, Hohenester U, Hill C. Optofluidic force induction as a process analytical technology. Anal Bioanal Chem 2023:10.1007/s00216-023-04796-3. [PMID: 37392213 PMCID: PMC10404209 DOI: 10.1007/s00216-023-04796-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 07/03/2023]
Abstract
Manufacturers of nanoparticle-based products rely on detailed information about critical process parameters, such as particle size and size distributions, concentration, and material composition, which directly reflect the quality of the final product. These process parameters are often obtained using offline characterization techniques that cannot provide the temporal resolution to detect dynamic changes in particle ensembles during a production process. To overcome this deficiency, we have recently introduced Optofluidic Force Induction (OF2i) for optical real-time counting with single particle sensitivity and high throughput. In this paper, we apply OF2i to highly polydisperse and multi modal particle systems, where we also monitor evolutionary processes over large time scales. For oil-in-water emulsions we detect in real time the transition between high-pressure homogenization states. For silicon carbide nanoparticles, we exploit the dynamic OF2i measurement capabilities to introduce a novel process feedback parameter based on the dissociation of particle agglomerates. Our results demonstrate that OF2i provides a versatile workbench for process feedback in a wide range of applications.
Collapse
Affiliation(s)
- Marko Šimić
- Brave Analytics GmbH, Stiftingtalstraße 14, Graz, 8010, Styria, Austria.
- Institute of Physics, University of Graz, Universitätsplatz 5, Graz, 8010, Styria, Austria.
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 2, Graz, 8010, Styria, Austria.
| | - Christian Neuper
- Brave Analytics GmbH, Stiftingtalstraße 14, Graz, 8010, Styria, Austria
- Graz Centre for Electron Microscopy, Steyrergasse 17, Graz, 8010, Styria, Austria
| | - Ulrich Hohenester
- Institute of Physics, University of Graz, Universitätsplatz 5, Graz, 8010, Styria, Austria
| | - Christian Hill
- Brave Analytics GmbH, Stiftingtalstraße 14, Graz, 8010, Styria, Austria
- Gottfried Schatz Research Center, Division of Medical Physics and Biophysics, Medical University of Graz, Neue Stiftingtalstraße 2, Graz, 8010, Styria, Austria
| |
Collapse
|
15
|
Liang X, Chen Z, Deng Y, Liu D, Liu X, Huang Q, Arai T. Field-Controlled Microrobots Fabricated by Photopolymerization. CYBORG AND BIONIC SYSTEMS 2023; 4:0009. [PMID: 37287461 PMCID: PMC10243896 DOI: 10.34133/cbsystems.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/11/2022] [Indexed: 01/19/2024] Open
Abstract
Field-controlled microrobots have attracted extensive research in the biological and medical fields due to the prominent characteristics including high flexibility, small size, strong controllability, remote manipulation, and minimal damage to living organisms. However, the fabrication of these field-controlled microrobots with complex and high-precision 2- or 3-dimensional structures remains challenging. The photopolymerization technology is often chosen to fabricate field-controlled microrobots due to its fast-printing velocity, high accuracy, and high surface quality. This review categorizes the photopolymerization technologies utilized in the fabrication of field-controlled microrobots into stereolithography, digital light processing, and 2-photon polymerization. Furthermore, the photopolymerized microrobots actuated by different field forces and their functions are introduced. Finally, we conclude the future development and potential applications of photopolymerization for the fabrication of field-controlled microrobots.
Collapse
Affiliation(s)
- Xiyue Liang
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Zhuo Chen
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yan Deng
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Dan Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoming Liu
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Qiang Huang
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Tatsuo Arai
- School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
- Center for Neuroscience and Biomedical Engineering,
The University of Electro-Communications, Tokyo 182-8585, Japan
| |
Collapse
|
16
|
Xiong J, Shi Y, Pan T, Lu D, He Z, Wang D, Li X, Zhu G, Li B, Xin H. Wake-Riding Effect-Inspired Opto-Hydrodynamic Diatombot for Non-Invasive Trapping and Removal of Nano-Biothreats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301365. [PMID: 37012610 PMCID: PMC10288256 DOI: 10.1002/advs.202301365] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Contamination of nano-biothreats, such as viruses, mycoplasmas, and pathogenic bacteria, is widespread in cell cultures and greatly threatens many cell-based bio-analysis and biomanufacturing. However, non-invasive trapping and removal of such biothreats during cell culturing, particularly many precious cells, is of great challenge. Here, inspired by the wake-riding effect, a biocompatible opto-hydrodynamic diatombot (OHD) based on optical trapping navigated rotational diatom (Phaeodactylum tricornutum Bohlin) for non-invasive trapping and removal of nano-biothreats is reported. Combining the opto-hydrodynamic effect and optical trapping, this rotational OHD enables the trapping of bio-targets down to sub-100 nm. Different nano-biothreats, such as adenoviruses, pathogenic bacteria, and mycoplasmas, are first demonstrated to be effectively trapped and removed by the OHD, without affecting culturing cells including precious cells such as hippocampal neurons. The removal efficiency is greatly enhanced via reconfigurable OHD array construction. Importantly, these OHDs show remarkable antibacterial capability, and further facilitate targeted gene delivery. This OHD serves as a smart micro-robotic platform for effective trapping and active removal of nano-biothreats in bio-microenvironments, and especially for cell culturing of many precious cells, with great promises for benefiting cell-based bio-analysis and biomanufacturing.
Collapse
Affiliation(s)
- Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Dengyun Lu
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Danning Wang
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443P. R. China
| |
Collapse
|
17
|
Hou Y, Wang H, Fu R, Wang X, Yu J, Zhang S, Huang Q, Sun Y, Fukuda T. A review on microrobots driven by optical and magnetic fields. LAB ON A CHIP 2023; 23:848-868. [PMID: 36629004 DOI: 10.1039/d2lc00573e] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to their small sizes, microrobots are advantageous for accessing hard-to-reach spaces for delivery and measurement. However, their small sizes also bring challenges in on-board powering, thus usually requiring actuation by external energy. Microrobots actuated by external energy have been applied to the fields of physics, biology, medical science, and engineering. Among these actuation sources, light and magnetic fields show advantages in high precision and high biocompatibility. This paper reviews the recent advances in the design, actuation, and applications of microrobots driven by light and magnetic fields. For light-driven microrobots, we summarized the uses of optical tweezers, optoelectronic tweezers, and heat-mediated optical manipulation techniques. For magnetically driven microrobots, we summarized the uses of torque-driven microrobots, force-driven microrobots, and shape-deformable microrobots. Then, we compared the two types of field-driven microrobots and reviewed their advantages and disadvantages. The paper concludes with an outlook for the joint use of optical and magnetic field actuation in microrobots.
Collapse
Affiliation(s)
- Yaozhen Hou
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Huaping Wang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Rongxin Fu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xian Wang
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ONT, M5G 1X8, Canada
| | - Jiangfan Yu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Qiang Huang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
18
|
Lee M, Hugonnet H, Lee MJ, Cho Y, Park Y. Optical trapping with holographically structured light for single-cell studies. BIOPHYSICS REVIEWS 2023; 4:011302. [PMID: 38505814 PMCID: PMC10903426 DOI: 10.1063/5.0111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/25/2022] [Indexed: 03/21/2024]
Abstract
A groundbreaking work in 1970 by Arthur Ashkin paved the way for developing various optical trapping techniques. Optical tweezers have become an established method for the manipulation of biological objects, due to their noninvasiveness and precise controllability. Recent innovations are accelerating and now enable single-cell manipulation through holographic light structuring. In this review, we provide an overview of recent advances in optical tweezer techniques for studies at the individual cell level. Our review focuses on holographic optical tweezers that utilize active spatial light modulators to noninvasively manipulate live cells. The versatility of the technology has led to valuable integrations with microscopy, microfluidics, and biotechnological techniques for various single-cell studies. We aim to recapitulate the basic principles of holographic optical tweezers, highlight trends in their biophysical applications, and discuss challenges and future prospects.
Collapse
|
19
|
Ding H, Chen Z, Ponce C, Zheng Y. Optothermal rotation of micro-/nano-objects. Chem Commun (Camb) 2023; 59:2208-2221. [PMID: 36723196 PMCID: PMC10189788 DOI: 10.1039/d2cc06955e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023]
Abstract
Due to its contactless and fuel-free operation, optical rotation of micro-/nano-objects provides tremendous opportunities for cellular biology, three-dimensional (3D) imaging, and micro/nanorobotics. However, complex optics, extremely high operational power, and the applicability to limited objects restrict the broader use of optical rotation techniques. This Feature Article focuses on a rapidly emerging class of optical rotation techniques, termed optothermal rotation. Based on light-mediated thermal phenomena, optothermal rotation techniques overcome the bottlenecks of conventional optical rotation by enabling versatile rotary control of arbitrary objects with simpler optics using lower powers. We start with the fundamental thermal phenomena and concepts: thermophoresis, thermoelectricity, thermo-electrokinetics, thermo-osmosis, thermal convection, thermo-capillarity, and photophoresis. Then, we highlight various optothermal rotation techniques, categorizing them based on their rotation modes (i.e., in-plane and out-of-plane rotation) and the thermal phenomena involved. Next, we explore the potential applications of these optothermal manipulation techniques in areas such as single-cell mechanics, 3D bio-imaging, and micro/nanomotors. We conclude the Feature Article with our insights on the operating guidelines, existing challenges, and future directions of optothermal rotation.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Carolina Ponce
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
20
|
Ding H, Chen Z, Ponce C, Zheng Y. Optothermal rotation of micro-/nano-objects in liquids. ARXIV 2023:arXiv:2301.04297v2. [PMID: 36713256 PMCID: PMC9882580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Controllable rotation of micro-/nano-objects provides tremendous opportunities for cellular biology, three-dimensional (3D) imaging, and micro/nanorobotics. Among different rotation techniques, optical rotation is particularly attractive due to its contactless and fuel-free operation. However, optical rotation precision is typically impaired by the intrinsic optical heating of the target objects. Optothermal rotation, which harnesses light-modulated thermal effects, features simpler optics, lower operational power, and higher applicability to various objects. In this Feature Article, we discuss the recent progress of optothermal rotation with a focus on work from our research group. We categorize the various rotation techniques based on distinct physical mechanisms, including thermophoresis, thermoelectricity, thermo-electrokinetics, thermo-osmosis, thermal convection, and thermo-capillarity. Benefiting from the different rotation modes (i.e., in-plane and out-of-plane rotation), diverse applications in single-cell mechanics, 3D bio-imaging, and micro/nanomotors are demonstrated. We conclude the article with our perspectives on the operating guidelines, existing challenges, and future directions of optothermal rotation.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Carolina Ponce
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
21
|
Feng L, Ma J, Lu W, Chen H, Zheng H. Anomalously enhanced transverse optical torque on a dipolar plasmonic nanoparticle in two-wave interference. OPTICS LETTERS 2022; 47:6241-6244. [PMID: 37219217 DOI: 10.1364/ol.476994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/30/2022] [Indexed: 05/24/2023]
Abstract
Based on the multipole expansion theory, we show that a transverse optical torque acting on a dipolar plasmonic spherical nanoparticle can be anomalously enhanced in two plane waves with linear polarization. Compared with a homogeneous Au nanoparticle, the transverse optical torque acting on an Au-Ag core-shell nanoparticle with an ultra-thin shell thickness can be dramatically enhanced by more than two orders of magnitude. Such enhanced transverse optical torque is dominated by the interaction between the incident optical field and the electric quadrupole excited in the dipolar core-shell nanoparticle. It is thus noted that the torque expression based on the dipole approximation usually used for dipolar particles is not available even in our dipolar case. These findings deepen the physical understanding of the optical torque (OT) and may have applications in optically driven rotation of plasmonic microparticles.
Collapse
|
22
|
Nan F, Li X, Zhang S, Ng J, Yan Z. Creating stable trapping force and switchable optical torque with tunable phase of light. SCIENCE ADVANCES 2022; 8:eadd6664. [PMID: 36399578 PMCID: PMC9674277 DOI: 10.1126/sciadv.add6664] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/24/2022] [Indexed: 06/03/2023]
Abstract
Light-induced rotation of microscopic objects is of general interest as the objects may serve as micromotors. Such rotation can be driven by the angular momentum of light or recoil forces arising from special light-matter interactions. However, in the absence of intensity gradient, simultaneously controlling the position and switching the rotation direction is challenging. Here, we report stable optical trapping and switchable optical rotation of nanoparticle (NP)-assembled micromotors with programmed phase of light. We imprint customized phase gradients into a circularly polarized flat-top (i.e., no intensity gradient) laser beam to trap and assemble metal NPs into reconfigurable clusters. Modulating the phase gradients allows direction-switchable and magnitude-tunable optical torque in the same cluster under fixed laser wavelength and handedness. This work provides a valuable method to achieve reversible optical torque in micro/nanomotors, and new insights for optical trapping and manipulation using the phase gradient of a spatially extended light field.
Collapse
Affiliation(s)
- Fan Nan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiao Li
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuailong Zhang
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jack Ng
- Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Zhou LM, Shi Y, Zhu X, Hu G, Cao G, Hu J, Qiu CW. Recent Progress on Optical Micro/Nanomanipulations: Structured Forces, Structured Particles, and Synergetic Applications. ACS NANO 2022; 16:13264-13278. [PMID: 36053722 DOI: 10.1021/acsnano.2c05634] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation has achieved great success in the fields of biology, micro/nano robotics and physical sciences in the past few decades. To date, the optical manipulation is still witnessing substantial progress powered by the growing accessibility of the complex light field, advanced nanofabrication and developed understandings of light-matter interactions. In this perspective, we highlight recent advancements of optical micro/nanomanipulations in cutting-edge applications, which can be fostered by structured optical forces enabled with diverse auxiliary multiphysical field/forces and structured particles. We conclude with our vision of ongoing and futuristic directions, including heat-avoided and heat-utilized manipulation, nonlinearity-mediated trapping and manipulation, metasurface/two-dimensional material based optical manipulation, as well as interface-based optical manipulation.
Collapse
Affiliation(s)
- Lei-Ming Zhou
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
- MOE Key Laboratory of Advanced Micro-Structured Materials, Shanghai 200092, China
| | - Xiaoyu Zhu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Guangwei Hu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Guangtao Cao
- School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China
| | - Jigang Hu
- Department of Optical Engineering, School of Physics, Hefei University of Technology, Hefei 230601, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
24
|
Nalupurackal G, Gunaseelan M, Roy S, Lokesh M, Kumar S, Vaippully R, Singh R, Roy B. A hydro-thermophoretic trap for microparticles near a gold-coated substrate. SOFT MATTER 2022; 18:6825-6835. [PMID: 36040245 PMCID: PMC7613615 DOI: 10.1039/d2sm00627h] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Optical tweezers have revolutionised micromanipulation from physics and biology to material science. However, the high laser power involved in optical trapping can damage biological samples. In this context, indirect trapping of microparticles and objects using fluid flow fields has assumed great importance. It has recently been shown that cells and particles can be turned in the pitch sense by opto-plasmonic heating of a gold surface constituting one side of a sample chamber. We extend that work to place two such hotspots in close proximity to each other to form a very unique configuration of flow fields forming an effective quasi-three-dimensional 'trap', assisted by thermophoresis. This is effectively a harmonic trap confining particles in all three dimensions without relying on other factors to confine the particles close to the surface. We use this to show indirect trapping of different types of upconverting particles and cells, and also show that we can approach a trap stiffness of 40 fN μm-1 indicating a weak confinement regime without relying on feedback.
Collapse
Affiliation(s)
- Gokul Nalupurackal
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - M Gunaseelan
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Srestha Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Muruga Lokesh
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Sumeet Kumar
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Rahul Vaippully
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| | - Rajesh Singh
- Department of Physics, IIT Madras, Chennai 600036, India.
| | - Basudev Roy
- Department of Physics, Quantum Centres in Diamond and Emergent Materials (QuCenDiEM)-group, Micro Nano and Bio-Fluidics (MNBF)-Group, IIT Madras, Chennai 600036, India.
| |
Collapse
|
25
|
Debata S, Kherani NA, Panda SK, Singh DP. Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium. J Mater Chem B 2022; 10:8235-8243. [PMID: 36129102 DOI: 10.1039/d2tb01367c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of simple microrobotic systems with capabilities to address various applications like cargo transportation, as well as biological sample capture and manipulation in an individual unit, provides a novel route for designing advanced multifunctional microscale systems. Here, we demonstrate a facile approach to fabricate such multifunctional and fully controlled light-driven microrobots. The microrobots are titanium dioxide-silica Janus particles that are propelled in aqueous hydroquinone/benzoquinone fuel when illuminated by low-intensity UV light. The application of light provides control over the speed as well as activity of the microrobots. When modified with additional thin film coatings of nickel and gold, the microrobots exhibit the capturing and transportation of silica microparticles and E. coli bacteria. While transporting, they also show guided swimming under an external uniform magnetic field, which is interesting for deciding their moving path or the start/end positions. The fluorescent dye-based live/dead tests confirm that in the microrobot system almost no bacteria were harmed during the capturing or transportation. The simplistic design and steerable swimming with the ability to capture and transport are the important features of the microrobots. These features make them an ideal candidate for in vitro or lab-on-a-chip based studies, e.g., drug delivery, bacterial sensing, cell treatment, etc., where the capturing and transport of microscopic entities play a crucial role.
Collapse
Affiliation(s)
- Srikanta Debata
- Department of Physics, IIT Bhilai, GEC Campus, Sejbahar, Raipur, Chattisgarh, 492015, India.
| | - Nomaan Alam Kherani
- Department of EECS, IIT Bhilai, GEC Campus, Sejbahar, Raipur, Chattisgarh, 492015, India
| | - Suvendu Kumar Panda
- Department of Physics, IIT Bhilai, GEC Campus, Sejbahar, Raipur, Chattisgarh, 492015, India.
| | - Dhruv Pratap Singh
- Department of Physics, IIT Bhilai, GEC Campus, Sejbahar, Raipur, Chattisgarh, 492015, India.
| |
Collapse
|
26
|
Tsuji T, Doi K, Kawano S. Optical trapping in micro- and nanoconfinement systems: Role of thermo-fluid dynamics and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
27
|
Ding H, Chen Z, Kollipara PS, Liu Y, Kim Y, Huang S, Zheng Y. Programmable Multimodal Optothermal Manipulation of Synthetic Particles and Biological Cells. ACS NANO 2022; 16:10878-10889. [PMID: 35816157 PMCID: PMC9901196 DOI: 10.1021/acsnano.2c03111] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Optical manipulation of tiny objects has benefited many research areas ranging from physics to biology to micro/nanorobotics. However, limited manipulation modes, intense lasers with complex optics, and applicability to limited materials and geometries of objects restrict the broader uses of conventional optical tweezers. Herein, we develop an optothermal platform that enables the versatile manipulation of synthetic micro/nanoparticles and live cells using an ultralow-power laser beam and a simple optical setup. Five working modes (i.e., printing, tweezing, rotating, rolling, and shooting) have been achieved and can be switched on demand through computer programming. By incorporating a feedback control system into the platform, we realize programmable multimodal control of micro/nanoparticles, enabling autonomous micro/nanorobots in complex environments. Moreover, we demonstrate in situ three-dimensional single-cell surface characterizations through the multimodal optothermal manipulation of live cells. This programmable multimodal optothermal platform will contribute to diverse fundamental studies and applications in cellular biology, nanotechnology, robotics, and photonics.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhihan Chen
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Pavana Siddhartha Kollipara
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yaoran Liu
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Youngsun Kim
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Suichu Huang
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, 92 Xidazhijie St., Harbin 15001, China
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Materials Science & Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
28
|
Otic CJC, Yonemura S. Thermally Induced Knudsen Forces for Contactless Manipulation of a Micro-Object. MICROMACHINES 2022; 13:mi13071092. [PMID: 35888909 PMCID: PMC9323604 DOI: 10.3390/mi13071092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 12/29/2022]
Abstract
In this paper, we propose that thermally induced Knudsen forces in a rarefied gas can be exploited to achieve a tweezer-like mechanism that can be used to trap and grasp a micro-object without physical contact. Using the direct simulation Monte Carlo (DSMC) method, we showed that the proposed mechanism is achieved when a heated thin plate, mounted perpendicularly on a flat substrate, is placed close to a colder object; in this case, a beam. This mechanism is mainly due to the pressure differences induced by the thermal edge flows at the corners of the beam and the thermal edge flow at the tip of the thin plate. Specifically, the pressure on the top surface of the beam is smaller than that on its bottom surface when the thin plate is above the beam, while the pressure on the right side of the beam is smaller than that on its left side when the thin plate is located near the right side of the beam. These differences in pressure generate a force, which attracts the beam to the plate horizontally and vertically. Furthermore, this phenomenon is enhanced when the height of the beam is shorter, such that the horizontal and vertical net forces, which attract the beam to the plate, become stronger. The mechanism proposed here was also found to depend significantly on the height of the beam, the temperature difference between the thin plate and the beam, and the Knudsen number.
Collapse
Affiliation(s)
- Clint John Cortes Otic
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579, Japan
- Correspondence: (C.J.C.O.); (S.Y.)
| | - Shigeru Yonemura
- Department of Mechanical Engineering, College of Engineering, Chubu University, 1200 Matsumoto-cho, Kasugai 487-8501, Japan
- Correspondence: (C.J.C.O.); (S.Y.)
| |
Collapse
|
29
|
Zhang W, Lei H, Zhong L, Liu W, Li J, Qin Y. Manipulation of a Single Metal Nanowire by an Unpolarized Gaussian Beam. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29111-29119. [PMID: 35723431 DOI: 10.1021/acsami.2c05410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical manipulation of metal nanowires offers a promising route to building optoelectronic nanosystems, which remains a challenge because of their strong absorption or scattering properties. Here, precise optical manipulation of a single Ag nanowire, including capture, translation, rotation, immobilization, and release, was readily achieved within a large operation range of 100 μm by a single unpolarized Gaussian beam based on an optical scattering force. Besides, the optical forces and torques exerted on the Ag nanowires under different conditions were quantitatively analyzed and calculated by simulation to give insight into the manipulation mechanism. This proposed scattering-force-based optical manipulation method also has great position and orientation stability with a capture stiffness of 1.2 pN/μm and an orientation standard deviation of 0.3°. More surprisingly, it is independent of both laser polarization and the metal material, shape, and size and is a universal and promising strategy for the manipulation and assembly of nontransparent structures in mesoscopic/Mie sizes.
Collapse
Affiliation(s)
- Weina Zhang
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongxiang Lei
- School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjie Liu
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Juan Li
- Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Yuwen Qin
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
30
|
Ding H, Kollipara PS, Kim Y, Kotnala A, Li J, Chen Z, Zheng Y. Universal optothermal micro/nanoscale rotors. SCIENCE ADVANCES 2022; 8:eabn8498. [PMID: 35704582 PMCID: PMC9200276 DOI: 10.1126/sciadv.abn8498] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/02/2022] [Indexed: 05/29/2023]
Abstract
Rotation of micro/nano-objects is important for micro/nanorobotics, three-dimensional imaging, and lab-on-a-chip systems. Optical rotation techniques are especially attractive because of their fuel-free and remote operation. However, current techniques require laser beams with designed intensity profile and polarization or objects with sophisticated shapes or optical birefringence. These requirements make it challenging to use simple optical setups for light-driven rotation of many highly symmetric or isotropic objects, including biological cells. Here, we report a universal approach to the out-of-plane rotation of various objects, including spherically symmetric and isotropic particles, using an arbitrary low-power laser beam. Moreover, the laser beam is positioned away from the objects to reduce optical damage from direct illumination. The rotation mechanism based on opto-thermoelectrical coupling is elucidated by rigorous experiments combined with multiscale simulations. With its general applicability and excellent biocompatibility, our universal light-driven rotation platform is instrumental for various scientific research and engineering applications.
Collapse
Affiliation(s)
- Hongru Ding
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Youngsun Kim
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abhay Kotnala
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jingang Li
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Zhihan Chen
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
- Materials Science and Engineering Program and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
31
|
Abstract
Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.
Collapse
Affiliation(s)
- Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
32
|
Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat Commun 2021; 12:5349. [PMID: 34504081 PMCID: PMC8429428 DOI: 10.1038/s41467-021-25582-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
There is great interest in the development of micromotors which can convert energy to motion in sub-millimeter dimensions. Micromachines take the micromotor concept a step further, comprising complex systems in which multiple components work in concert to effectively realize complex mechanical tasks. Here we introduce light-driven micromotors and micromachines that rely on optoelectronic tweezers (OET). Using a circular micro-gear as a unit component, we demonstrate a range of new functionalities, including a touchless micro-feed-roller that allows the programming of precise three-dimensional particle trajectories, multi-component micro-gear trains that serve as torque- or velocity-amplifiers, and micro-rack-and-pinion systems that serve as microfluidic valves. These sophisticated systems suggest great potential for complex micromachines in the future, for application in microrobotics, micromanipulation, microfluidics, and beyond. Light-driven micromotors can convert energy to motion in sub-millimeter dimensions. Here, the authors extend this concept and introduce reconfigurable micromachines with multiple components, driven by optoelectronic tweezers, and demonstrate new functionalities.
Collapse
|
33
|
Liu Z, Zhang K, Jin W, Zhang Y, Zhang Y, Zhang J, Yang J, Yuan L. Light-induced micro-vibrator with controllable amplitude and frequency. OPTICS EXPRESS 2021; 29:27228-27236. [PMID: 34615143 DOI: 10.1364/oe.431380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
We propose and demonstrate a light-induced micro-vibrator that can perform an adjustable reciprocating vibration based on the Δα-typed photophoretic force. The vibration amplitudes and periods can be precisely controlled and modulated in real-time, and the maximum average restoring speed is as high as 23.26 μm/s. In addition, by using the self-healing properties of the Bessel-like beam, we achieve the simultaneous driving and modulating of three absorbing micro-vibrators. The proposed absorbing micro-vibrator can be used as a novel light-driven micromotor, which is considered to have potential application value in the field of targeted drug delivery, biosensing, and environmental detection.
Collapse
|
34
|
Li X, Zheng H, Yuen CH, Du J, Chen J, Lin Z, Ng J. Quantitative study of conservative gradient force and non-conservative scattering force exerted on a spherical particle in optical tweezers. OPTICS EXPRESS 2021; 29:25377-25387. [PMID: 34614870 DOI: 10.1364/oe.434208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
We rigorously calculate the conservative gradient force (GF) and the non-conservative scattering force (SF) associated with the optical tweezers (the single beam optical trap). A wide range of parameters are considered, with particle size ranging from the Rayleigh to Mie regime (radius ∼3 µm), dielectric constant ranging from metallic (large and negative) to high dielectrics (large and positive), numerical aperture (NA) ranging from 0.5 to 1.33, and different polarizations. The trap depth associated with GF can reach 123 and 168 kBT per mW for a 0.5 µm-radius polystyrene particle illuminated by a 1064 nm Gaussian beam with NA = 0.9 and 1.3, respectively. This indicates that unless at a low beam power or with a small NA, the Brownian fluctuations do not play a role in the stability. The transverse GF orthogonal to beam propagation always dominates over the transverse SF. While the longitudinal SF can be larger than the longitudinal GF when the scattering is strong, the NA is small, or when absorption is present, optical trapping under these conditions is difficult. Generally speaking, absorption reduces GF and enhances SF, while increasing a dielectric constant enhances GF slightly but boosts SF significantly owing to stronger scattering. These results verify previous experimental observations and explain why optical tweezers are so robust across such a wide range of conditions. Our quantitative calculations will also provide a guide to future studies.
Collapse
|
35
|
Kovacevich DA, Ma T, Gamboa AR, Nitzsche MP, Saro-Cortes V, Davis E, Singer JP. Thermocapillary dewetting-based dynamic spatial light modulator. OPTICS LETTERS 2021; 46:3721-3724. [PMID: 34329265 DOI: 10.1364/ol.429994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Dynamic spatial light modulators (SLMs) are capable of precisely modulating a beam of light by tuning the phase or intensity of an array of pixels in parallel. They can be utilized in applications ranging from image projection to beam front aberration and microscopic particle manipulation with optical tweezers. However, conventional dynamic SLMs are typically incompatible with high-power sources, as they contain easily damaged optically absorbing components. To address this, we present an SLM that utilizes a viscous film with a local thickness controlled via thermocapillary dewetting. The film is reflowable and can cycle through different patterns, representing, to the best of our knowledge, the first steps towards a dynamic optical device based on the thermocapillary dewetting mechanism.
Collapse
|
36
|
Cubic-Phase Metasurface for Three-Dimensional Optical Manipulation. NANOMATERIALS 2021; 11:nano11071730. [PMID: 34209225 PMCID: PMC8308168 DOI: 10.3390/nano11071730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
The optical tweezer is one of the important techniques for contactless manipulation in biological research to control the motion of tiny objects. For three-dimensional (3D) optical manipulation, shaped light beams have been widely used. Typically, spatial light modulators are used for shaping light fields. However, they suffer from bulky size, narrow operational bandwidth, and limitations of incident polarization states. Here, a cubic-phase dielectric metasurface, composed of GaN circular nanopillars, is designed and fabricated to generate a polarization-independent vertically accelerated two-dimensional (2D) Airy beam in the visible region. The distinctive propagation characteristics of a vertically accelerated 2D Airy beam, including non-diffraction, self-acceleration, and self-healing, are experimentally demonstrated. An optical manipulation system equipped with a cubic-phase metasurface is designed to perform 3D manipulation of microscale particles. Due to the high-intensity gradients and the reciprocal propagation trajectory of Airy beams, particles can be laterally shifted and guided along the axial direction. In addition, the performance of optical trapping is quantitatively evaluated by experimentally measured trapping stiffness. Our metasurface has great potential to shape light for compact systems in the field of physics and biological applications.
Collapse
|
37
|
Copeland CR, McGray CD, Ilic BR, Geist J, Stavis SM. Accurate localization microscopy by intrinsic aberration calibration. Nat Commun 2021; 12:3925. [PMID: 34168121 PMCID: PMC8225824 DOI: 10.1038/s41467-021-23419-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/28/2021] [Indexed: 02/02/2023] Open
Abstract
A standard paradigm of localization microscopy involves extension from two to three dimensions by engineering information into emitter images, and approximation of errors resulting from the field dependence of optical aberrations. We invert this standard paradigm, introducing the concept of fully exploiting the latent information of intrinsic aberrations by comprehensive calibration of an ordinary microscope, enabling accurate localization of single emitters in three dimensions throughout an ultrawide and deep field. To complete the extraction of spatial information from microscale bodies ranging from imaging substrates to microsystem technologies, we introduce a synergistic concept of the rigid transformation of the positions of multiple emitters in three dimensions, improving precision, testing accuracy, and yielding measurements in six degrees of freedom. Our study illuminates the challenge of aberration effects in localization microscopy, redefines the challenge as an opportunity for accurate, precise, and complete localization, and elucidates the performance and reliability of a complex microelectromechanical system.
Collapse
Affiliation(s)
- Craig R Copeland
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Craig D McGray
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - B Robert Ilic
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
- CNST NanoFab, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Jon Geist
- Quantum Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Samuel M Stavis
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| |
Collapse
|
38
|
Cell nucleus as endogenous biological micropump. Biosens Bioelectron 2021; 182:113166. [PMID: 33774431 DOI: 10.1016/j.bios.2021.113166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/28/2022]
Abstract
Micropumps can generate directional microflows in blood vessels or bio-capillaries for targeted transport of nanoparticles and cells in vivo, which is highly significant for biomedical applications from active drug delivery to precision clinical therapy. Meanwhile, they have been extensively used in the biosensing fields with their unique features of autonomous motion, easy surface functionalization, dynamic capture and effective isolation of analytes in complex biological media. However, synthetic devices for actuating microflows, including pumps and motors, generally exhibit poor or limited biocompatibility with living organisms as a result of the invasive implantation of exogenous materials into blood vessels. Here we demonstrate a method of constructing endogenous micropumps by extracting nuclei from red blood cells, thus making them intrinsically and completely biocompatible. The nuclei are extracted and then driven by a scanning optical tweezing system. By a precise actuation of the microflows, nanoparticles and cells are navigated to target destinations, and the transport velocity and direction is controlled by the multifunctional dynamics of the micropumps. With the targeted transport of functionalized micro/nanoparticles followed by a dynamic mixing in microliter blood samples, the micropumps provide considerable promises to enhance the target binding efficiency and improve the sensitivity and speed of biological assays in vivo. Furthermore, multiplexing by simultaneously driving an array of multiple nuclei is demonstrated, thus confirming that the micropumps could provide a bio-friendly high-throughput in vivo platform for the treatment of blood diseases, microenvironment monitoring, and biomedical analysis.
Collapse
|
39
|
Ticoş D, Scurtu A, Williams JD, Scott L, Thomas E, Sanford D, Ticoş CM. Rotation of a strongly coupled dust cluster in plasma by the torque of an electron beam. Phys Rev E 2021; 103:023210. [PMID: 33736094 DOI: 10.1103/physreve.103.023210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 01/29/2021] [Indexed: 11/07/2022]
Abstract
A 1-mm-size cluster composed of 10 dust particles immersed in plasma is rotated by the torque of a pulsed electron beam with energy in the range 8-12 keV. The dust particles are electrically charged spheres with radius 5.9 μm and are levitated in the plasma sheath, forming a round, planar, Coulomb-coupled cluster. The electron beam irradiates the dust cluster passing slightly off its center, and sets the particles in motion by the action of the electron drag force. The total torque at 12 keV is 4.9±0.2×10^{-11} Nm at an angular speed 1.41±0.05 rad s^{-1}. The main dynamical features of the cluster such as intershell rotation and itinerancy of the dust particles inside the cluster are simulated by using a molecular dynamics code.
Collapse
Affiliation(s)
- D Ticoş
- National Institute for Laser, Plasma and Radiation Physics, Măgurele 077125, Romania
| | - A Scurtu
- National Institute for Laser, Plasma and Radiation Physics, Măgurele 077125, Romania
| | - J D Williams
- Department of Physics, Wittenberg University, Springfield, Ohio 45501, USA
| | - L Scott
- Department of Physics, Auburn University, Auburn, Alabama 36849, USA
| | - E Thomas
- Department of Physics, Auburn University, Auburn, Alabama 36849, USA
| | - D Sanford
- Department of Physics, Baylor University, Waco, Texas 76706, USA
| | - C M Ticoş
- National Institute for Laser, Plasma and Radiation Physics, Măgurele 077125, Romania.,Extreme Light Infrastructure-Nuclear Physics (ELI-NP), Horia Hulubei National Institute for Physics and Nuclear Engineering, Măgurele 077125, Romania
| |
Collapse
|
40
|
Abstract
3D printing (also called "additive manufacturing" or "rapid prototyping") is able to translate computer-aided and designed virtual 3D models into 3D tangible constructs/objects through a layer-by-layer deposition approach. Since its introduction, 3D printing has aroused enormous interest among researchers and engineers to understand the fabrication process and composition-structure-property correlation of printed 3D objects and unleash its great potential for application in a variety of industrial sectors. Because of its unique technological advantages, 3D printing can definitely benefit the field of microrobotics and advance the design and development of functional microrobots in a customized manner. This review aims to present a generic overview of 3D printing for functional microrobots. The most applicable 3D printing techniques, with a focus on laser-based printing, are introduced for the 3D microfabrication of microrobots. 3D-printable materials for fabricating microrobots are reviewed in detail, including photopolymers, photo-crosslinkable hydrogels, and cell-laden hydrogels. The representative applications of 3D-printed microrobots with rational designs heretofore give evidence of how these printed microrobots are being exploited in the medical, environmental, and other relevant fields. A future outlook on the 3D printing of microrobots is also provided.
Collapse
Affiliation(s)
- Jinhua Li
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic.
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628, Czech Republic. and Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-61600, Czech Republic and Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00, Brno, Czech Republic and Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
41
|
Phummirat P, Mann N, Preece D. Applications of Optically Controlled Gold Nanostructures in Biomedical Engineering. Front Bioeng Biotechnol 2021; 8:602021. [PMID: 33553114 PMCID: PMC7856143 DOI: 10.3389/fbioe.2020.602021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Since their inception, optical tweezers have proven to be a useful tool for improving human understanding of the microscopic world with wide-ranging applications across science. In recent years, they have found many particularly appealing applications in the field of biomedical engineering which harnesses the knowledge and skills in engineering to tackle problems in biology and medicine. Notably, metallic nanostructures like gold nanoparticles have proven to be an excellent tool for OT-based micromanipulation due to their large polarizability and relatively low cytotoxicity. In this article, we review the progress made in the application of optically trapped gold nanomaterials to problems in bioengineering. After an introduction to the basic methods of optical trapping, we give an overview of potential applications to bioengineering specifically: nano/biomaterials, microfluidics, drug delivery, biosensing, biophotonics and imaging, and mechanobiology/single-molecule biophysics. We highlight the recent research progress, discuss challenges, and provide possible future directions in this field.
Collapse
Affiliation(s)
- Pisrut Phummirat
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States
| | - Nicholas Mann
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States
| | - Daryl Preece
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Beckman Laser Institute, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
42
|
Porfirev AP. Laser manipulation of airborne microparticles behind non-transparent obstacles with the help of circular Airy beams. APPLIED OPTICS 2021; 60:670-675. [PMID: 33690436 DOI: 10.1364/ao.409566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
An approach for the realization of three-dimensional laser manipulation of agglomerations of carbon nanoparticles behind non-transparent obstacles in the air is proposed and investigated. The approach is based on the use of circular Airy beams (CABs), which are structured laser beams with self-healing and autofocusing properties. The possibility to trap and guide both single and multiple microparticles in the case of a non-distorted CAB and a CAB distorted by an on-axis metal rod is demonstrated. We believe that these results open new possibilities for the control of trapped particles that are out of sight and hidden by different obstacles.
Collapse
|
43
|
Li T, Chan KH, Ding T, Wang XQ, Cheng Y, Zhang C, Lu W, Yilmaz G, Qiu CW, Ho GW. Dynamic thermal trapping enables cross-species smart nanoparticle swarms. SCIENCE ADVANCES 2021; 7:7/2/eabe3184. [PMID: 33523978 PMCID: PMC7787496 DOI: 10.1126/sciadv.abe3184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Bioinspired nano/microswarm enables fascinating collective controllability beyond the abilities of the constituent individuals, yet almost invariably, the composed units are of single species. Advancing such swarm technologies poses a grand challenge in synchronous mass manipulation of multimaterials that hold different physiochemical identities. Here, we present a dynamic thermal trapping strategy using thermoresponsive-based magnetic smart nanoparticles as host species to reversibly trap and couple given nonmagnetic entities in aqueous surroundings, enabling cross-species smart nanoparticle swarms (SMARS). Such trapping process endows unaddressable nonmagnetic species with efficient thermo-switchable magnetic response, which determines SMARS' cross-species synchronized maneuverability. Benefiting from collective merits of hybrid components, SMARS can be configured into specific smart modules spanning from chain, vesicle, droplet, to ionic module, which can implement localized or distributed functions that are single-species unachievable. Our methodology allows dynamic multimaterials integration despite the odds of their intrinsic identities to conceive distinctive structures and functions.
Collapse
Affiliation(s)
- Tongtao Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Kwok Hoe Chan
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Tianpeng Ding
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Xiao-Qiao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Yin Cheng
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Chen Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Wanheng Lu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Gamze Yilmaz
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Singapore
| |
Collapse
|
44
|
Hao Y, Cheng S, Tanaka Y, Hosokawa Y, Yalikun Y, Li M. Mechanical properties of single cells: Measurement methods and applications. Biotechnol Adv 2020; 45:107648. [DOI: 10.1016/j.biotechadv.2020.107648] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/11/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022]
|
45
|
Tanaka YY, Albella P, Rahmani M, Giannini V, Maier SA, Shimura T. Plasmonic linear nanomotor using lateral optical forces. SCIENCE ADVANCES 2020; 6:6/45/eabc3726. [PMID: 33148646 PMCID: PMC7673677 DOI: 10.1126/sciadv.abc3726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/17/2020] [Indexed: 05/22/2023]
Abstract
Optical force is a powerful tool to actuate micromachines. Conventional approaches often require focusing and steering an incident laser beam, resulting in a bottleneck for the integration of the optically actuated machines. Here, we propose a linear nanomotor based on a plasmonic particle that generates, even when illuminated with a plane wave, a lateral optical force due to its directional side scattering. This force direction is determined by the orientation of the nanoparticle rather than a field gradient or propagation direction of the incident light. We demonstrate the arrangements of the particles allow controlling the lateral force distributions with the resolution beyond the diffraction limit, which can produce movements, as designed, of microobjects in which they are embedded without shaping and steering the laser beam. Our nanomotor to engineer the experienced force can open the door to a new class of micro/nanomechanical devices that can be entirely operated by light.
Collapse
Affiliation(s)
- Yoshito Y Tanaka
- Institute of Industrial Science, University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | - Pablo Albella
- Department of Applied Physics, University of Cantabria, Santander, Spain
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Vincenzo Giannini
- Instituto de Estructura de la Materia (IEM), Consejo Superior de Investigaciones Científicas(CSIC), Serrano 121, 28006 Madrid, Spain
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539 München, Germany
- Department of Physics, Imperial College London, London SW7 2AZ, UK
| | - Tsutomu Shimura
- Institute of Industrial Science, University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
46
|
Xin H, Zhao N, Wang Y, Zhao X, Pan T, Shi Y, Li B. Optically Controlled Living Micromotors for the Manipulation and Disruption of Biological Targets. NANO LETTERS 2020; 20:7177-7185. [PMID: 32935992 DOI: 10.1021/acs.nanolett.0c02501] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Bioinspired and biohybrid micromotors represent a revolution in microrobotic research and are playing an increasingly important role in biomedical applications. In particular, biological micromotors that are multifunctional and can perform complex tasks are in great demand. Here, we report living and multifunctional micromotors based on single cells (green microalgae: Chlamydomonas reinhardtii) that are controlled by optical force. The micromotor's locomotion can be carefully controlled in a variety of biological media including cell culture medium, saliva, human serum, plasma, blood, and bone marrow fluid. It exhibits the capabilities to perform multiple tasks, in particular, indirect manipulation of biological targets and disruption of biological aggregates including in vitro blood clots. These micromotors can also act as elements in reconfigurable motor arrays where they efficiently work collaboratively and synchronously. This work provides new possibilities for many in vitro biomedical applications including target manipulation, cargo delivery and release, and biological aggregate removal.
Collapse
Affiliation(s)
- Hongbao Xin
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Nan Zhao
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yunuo Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaoting Zhao
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Ting Pan
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Yang Shi
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
| |
Collapse
|
47
|
Grexa I, Fekete T, Molnár J, Molnár K, Vizsnyiczai G, Ormos P, Kelemen L. Single-Cell Elasticity Measurement with an Optically Actuated Microrobot. MICROMACHINES 2020; 11:mi11090882. [PMID: 32972024 PMCID: PMC7570390 DOI: 10.3390/mi11090882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 02/07/2023]
Abstract
A cell elasticity measurement method is introduced that uses polymer microtools actuated by holographic optical tweezers. The microtools were prepared with two-photon polymerization. Their shape enables the approach of the cells in any lateral direction. In the presented case, endothelial cells grown on vertical polymer walls were probed by the tools in a lateral direction. The use of specially shaped microtools prevents the target cells from photodamage that may arise during optical trapping. The position of the tools was recorded simply with video microscopy and analyzed with image processing methods. We critically compare the resulting Young’s modulus values to those in the literature obtained by other methods. The application of optical tweezers extends the force range available for cell indentations measurements down to the fN regime. Our approach demonstrates a feasible alternative to the usual vertical indentation experiments.
Collapse
Affiliation(s)
- István Grexa
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary
| | - Tamás Fekete
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Multidisciplinary Medicine, Dóm tér 9, Hungary University of Szeged, 6720 Szeged, Hungary
| | - Judit Molnár
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Kinga Molnár
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Doctoral School of Theoretical Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary
| | - Gaszton Vizsnyiczai
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Pál Ormos
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
| | - Lóránd Kelemen
- Biological Research Centre, Temesvári krt. 62, 6726 Szeged, Hungary; (I.G.); (T.F.); (J.M.); (K.M.); (G.V.); (P.O.)
- Correspondence: ; Tel.: +36-62-599-600 (ext. 419)
| |
Collapse
|
48
|
Mass Spectrometry to Study Chromatin Compaction. BIOLOGY 2020; 9:biology9060140. [PMID: 32604817 PMCID: PMC7345930 DOI: 10.3390/biology9060140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Chromatin accessibility is a major regulator of gene expression. Histone writers/erasers have a critical role in chromatin compaction, as they “flag” chromatin regions by catalyzing/removing covalent post-translational modifications on histone proteins. Anomalous chromatin decondensation is a common phenomenon in cells experiencing aging and viral infection. Moreover, about 50% of cancers have mutations in enzymes regulating chromatin state. Numerous genomics methods have evolved to characterize chromatin state, but the analysis of (in)accessible chromatin from the protein perspective is not yet in the spotlight. We present an overview of the most used approaches to generate data on chromatin accessibility and then focus on emerging methods that utilize mass spectrometry to quantify the accessibility of histones and the rest of the chromatin bound proteome. Mass spectrometry is currently the method of choice to quantify entire proteomes in an unbiased large-scale manner; accessibility on chromatin of proteins and protein modifications adds an extra quantitative layer to proteomics dataset that assist more informed data-driven hypotheses in chromatin biology. We speculate that this emerging new set of methods will enhance predictive strength on which proteins and histone modifications are critical in gene regulation, and which proteins occupy different chromatin states in health and disease.
Collapse
|
49
|
Nan F, Yan Z. Optical Sorting at the Single-Particle Level with Single-Nanometer Precision Using Coordinated Intensity and Phase Gradient Forces. ACS NANO 2020; 14:7602-7609. [PMID: 32428394 DOI: 10.1021/acsnano.0c03478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Position-controlled sorting of colloidal nanoparticles (NPs) at the single-particle level is a challenge in nanoscience. Optofluidic potential wells can partially address this challenge, but they have limited flexibility, reconfigurability, and precision. Here we introduce a strategy by feedback-controlled manipulation of NPs using reconfigurable optical traps with designed intensity and phase gradient. Spatiotemporal patterns of these optical traps coordinatively manipulate the NPs based on machine vision of their positions and differentiated scattering intensities. The NPs are always kept inside the optical field during the manipulation and stably trapped once the sorting is accomplished. To substantiate the key advantages of our approach, we present position-controlled optical sorting of single Ag and Au NPs of the same size (150 nm diameter) and ordering of monodisperse Au NPs (80 ± 9 nm diameter) according to their sub-10 nm radius variation, which can hardly be done via other approaches.
Collapse
Affiliation(s)
- Fan Nan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
50
|
Nan F, Yan Z. Synergy of Intensity, Phase, and Polarization Enables Versatile Optical Nanomanipulation. NANO LETTERS 2020; 20:2778-2783. [PMID: 32134670 DOI: 10.1021/acs.nanolett.0c00443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Micromanipulation by optical tweezers mainly relies on the trapping force derived from the intensity gradient of light. Here we show that the synergy of intensity, phase, and polarization in structured light allows versatile optical manipulation of nanostructures. When a metal nanoparticle is confined by a linearly polarized laser field, the sign of optical force depends on the particle shape and the laser intensity, phase, and polarization profiles. By tuning these parameters in optical line traps, optical trapping, transporting, and sorting of silver nanostructures have been demonstrated. These findings inspired us to control the motion of nanostructures with designed intensity, phase, and polarization of light using holographic optical tweezers with advanced beam shaping techniques. This work provides a new perspective on active colloidal nanomanipulation in fully controlled optical landscapes, which largely expands the existing optical manipulation toolbox.
Collapse
Affiliation(s)
- Fan Nan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Zijie Yan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|