1
|
Kappel D, Tetzlaff C. Synapses learn to utilize stochastic pre-synaptic release for the prediction of postsynaptic dynamics. PLoS Comput Biol 2024; 20:e1012531. [PMID: 39495714 PMCID: PMC11534197 DOI: 10.1371/journal.pcbi.1012531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/01/2024] [Indexed: 11/06/2024] Open
Abstract
Synapses in the brain are highly noisy, which leads to a large trial-by-trial variability. Given how costly synapses are in terms of energy consumption these high levels of noise are surprising. Here we propose that synapses use noise to represent uncertainties about the somatic activity of the postsynaptic neuron. To show this, we developed a mathematical framework, in which the synapse as a whole interacts with the soma of the postsynaptic neuron in a similar way to an agent that is situated and behaves in an uncertain, dynamic environment. This framework suggests that synapses use an implicit internal model of the somatic membrane dynamics that is being updated by a synaptic learning rule, which resembles experimentally well-established LTP/LTD mechanisms. In addition, this approach entails that a synapse utilizes its inherently noisy synaptic release to also encode its uncertainty about the state of the somatic potential. Although each synapse strives for predicting the somatic dynamics of its postsynaptic neuron, we show that the emergent dynamics of many synapses in a neuronal network resolve different learning problems such as pattern classification or closed-loop control in a dynamic environment. Hereby, synapses coordinate themselves to represent and utilize uncertainties on the network level in behaviorally ambiguous situations.
Collapse
Affiliation(s)
- David Kappel
- III. Physikalisches Institut – Biophysik, Georg-August Universität, Göttingen, Germany
- Institut für Neuroinformatik, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Tetzlaff
- III. Physikalisches Institut – Biophysik, Georg-August Universität, Göttingen, Germany
- Group of Computational Synaptic Physiology, Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
3
|
Savtchenko LP, Rusakov DA. Equal levels of pre- and postsynaptic potentiation produce unequal outcomes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230235. [PMID: 38853561 PMCID: PMC11343314 DOI: 10.1098/rstb.2023.0235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 01/05/2024] [Indexed: 06/11/2024] Open
Abstract
Which proportion of the long-term potentiation (LTP) expressed in the bulk of excitatory synapses is postsynaptic and which presynaptic remains debatable. To understand better the possible impact of either LTP form, we explored a realistic model of a CA1 pyramidal cell equipped with known membrane mechanisms and multiple, stochastic excitatory axo-spinous synapses. Our simulations were designed to establish an input-output transfer function, the dependence between the frequency of presynaptic action potentials triggering probabilistic synaptic discharges and the average frequency of postsynaptic spiking. We found that, within the typical physiological range, potentiation of the postsynaptic current results in a greater overall output than an equivalent increase in presynaptic release probability. This difference grows stronger at lower input frequencies and lower release probabilities. Simulations with a non-hierarchical circular network of principal neurons indicated that equal increases in either synaptic fidelity or synaptic strength of individual connections also produce distinct changes in network activity, although the network phenomenology is likely to be complex. These observations should help to interpret the machinery of LTP phenomena documented in situ. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Leonid P. Savtchenko
- UCL Queen Square Institute of Neurology, University College London, LondonWC1N 3BG, UK
| | - Dmitri A. Rusakov
- UCL Queen Square Institute of Neurology, University College London, LondonWC1N 3BG, UK
| |
Collapse
|
4
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-β-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.23.554428. [PMID: 37662316 PMCID: PMC10473684 DOI: 10.1101/2023.08.23.554428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-β-hydroxybutyrate (D-βHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-βHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential (AP) properties, while D-βHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, Le Puy Ste Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque - Basque Foundation for Science, Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington D.C., USA
- George Washington University School of Medicine and Health Sciences, Washington D.C., USA
| |
Collapse
|
5
|
Kula B, Antal B, Weistuch C, Gackière F, Barre A, Velado V, Hubbard JM, Kukley M, Mujica-Parodi LR, Smith NA. D-ꞵ-hydroxybutyrate stabilizes hippocampal CA3-CA1 circuit during acute insulin resistance. PNAS NEXUS 2024; 3:pgae196. [PMID: 38818236 PMCID: PMC11138115 DOI: 10.1093/pnasnexus/pgae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
The brain primarily relies on glycolysis for mitochondrial respiration but switches to alternative fuels such as ketone bodies (KBs) when less glucose is available. Neuronal KB uptake, which does not rely on glucose transporter 4 (GLUT4) or insulin, has shown promising clinical applicability in alleviating the neurological and cognitive effects of disorders with hypometabolic components. However, the specific mechanisms by which such interventions affect neuronal functions are poorly understood. In this study, we pharmacologically blocked GLUT4 to investigate the effects of exogenous KB D-ꞵ-hydroxybutyrate (D-ꞵHb) on mouse brain metabolism during acute insulin resistance (AIR). We found that both AIR and D-ꞵHb had distinct impacts across neuronal compartments: AIR decreased synaptic activity and long-term potentiation (LTP) and impaired axonal conduction, synchronization, and action potential properties, while D-ꞵHb rescued neuronal functions associated with axonal conduction, synchronization, and LTP.
Collapse
Affiliation(s)
- Bartosz Kula
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Botond Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Florian Gackière
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Alexander Barre
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Victor Velado
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
| | - Jeffrey M Hubbard
- Neuroservices Alliance, Les Jardins de l’Entreprise, Quartier de le Confrérie, 13610 Le Puy-Sainte-Réparade, France
| | - Maria Kukley
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Bizkaia, Spain
- Ikerbasque—Basque Foundation for Science, 48009 Bilbao, Spain
| | - Lilianne R Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Nathan A Smith
- Del Monte Institute for Neuroscience, Department of Neuroscience, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for Neuroscience Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC 20012, USA
- School of Medicine and Health Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
6
|
de Ceglia R, Ledonne A, Litvin DG, Lind BL, Carriero G, Latagliata EC, Bindocci E, Di Castro MA, Savtchouk I, Vitali I, Ranjak A, Congiu M, Canonica T, Wisden W, Harris K, Mameli M, Mercuri N, Telley L, Volterra A. Specialized astrocytes mediate glutamatergic gliotransmission in the CNS. Nature 2023; 622:120-129. [PMID: 37674083 PMCID: PMC10550825 DOI: 10.1038/s41586-023-06502-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/31/2023] [Indexed: 09/08/2023]
Abstract
Multimodal astrocyte-neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4-7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8-10. However, the existence of this mechanism has been questioned11-13 owing to inconsistent data14-17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18-21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target.
Collapse
Affiliation(s)
- Roberta de Ceglia
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Ada Ledonne
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
| | - David Gregory Litvin
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland
| | - Barbara Lykke Lind
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Giovanni Carriero
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Erika Bindocci
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | | | - Iaroslav Savtchouk
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Ilaria Vitali
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Anurag Ranjak
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Mauro Congiu
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Tara Canonica
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - William Wisden
- Department of Life Sciences and UK Dementia Research Institute, Imperial College London, London, UK
| | - Kenneth Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - Nicola Mercuri
- Department of Experimental Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ludovic Telley
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
| | - Andrea Volterra
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.
- Wyss Center for Bio and Neuro Engineering, Campus Biotech, Geneva, Switzerland.
| |
Collapse
|
7
|
Lumeij LB, van Huijstee AN, Cappaert NLM, Kessels HW. Variance analysis as a method to predict the locus of plasticity at populations of non-uniform synapses. Front Cell Neurosci 2023; 17:1232541. [PMID: 37528963 PMCID: PMC10388551 DOI: 10.3389/fncel.2023.1232541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Our knowledge on synaptic transmission in the central nervous system has often been obtained by evoking synaptic responses to populations of synapses. Analysis of the variance in synaptic responses can be applied as a method to predict whether a change in synaptic responses is a consequence of altered presynaptic neurotransmitter release or postsynaptic receptors. However, variance analysis is based on binomial statistics, which assumes that synapses are uniform. In reality, synapses are far from uniform, which questions the reliability of variance analysis when applying this method to populations of synapses. To address this, we used an in silico model for evoked synaptic responses and compared variance analysis outcomes between populations of uniform versus non-uniform synapses. This simulation revealed that variance analysis produces similar results irrespectively of the grade of uniformity of synapses. We put this variance analysis to the test with an electrophysiology experiment using a model system for which the loci of plasticity are well established: the effect of amyloid-β on synapses. Variance analysis correctly predicted that postsynaptically produced amyloid-β triggered predominantly a loss of synapses and a minor reduction of postsynaptic currents in remaining synapses with little effect on presynaptic release probability. We propose that variance analysis can be reliably used to predict the locus of synaptic changes for populations of non-uniform synapses.
Collapse
|
8
|
Savtchenko LP, Rusakov DA. Glutamate-Transporter Unbinding in Probabilistic Synaptic Environment Facilitates Activation of Distant NMDA Receptors. Cells 2023; 12:1610. [PMID: 37371080 DOI: 10.3390/cells12121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Once outside the synaptic cleft, the excitatory neurotransmitter glutamate is rapidly bound by its high-affinity transporters, which are expressed in abundance on the surface of perisynaptic astroglia. While this binding and the subsequent uptake of glutamate constrain excitatory transmission mainly within individual synapses, there is growing evidence for the physiologically important extrasynaptic actions of glutamate. However, the mechanistic explanation and the scope of such actions remain obscure. Furthermore, a significant proportion of glutamate molecules initially bound by transporters could be released back into the extracellular space before being translocated into astrocytes. To understand the implications of such effects, we simulated the release, diffusion, and transporter and receptor interactions of glutamate molecules in the synaptic environment. The latter was represented via trial-by-trial stochastic generation of astroglial and neuronal elements in the brain neuropil (overlapping spheroids of varied sizes), rather than using the 'average' morphology, thus reflecting the probabilistic nature of neuropil architectonics. Our simulations predict significant activation of high-affinity receptors, such as receptors of the NMDA type, at distances beyond half-micron from the glutamate release site, with glutamate-transporter unbinding playing an important role. These theoretical predictions are consistent with recent glutamate imaging data, thus lending support to the concept of significant volume-transmitted actions of glutamate in the brain.
Collapse
Affiliation(s)
- Leonid P Savtchenko
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
9
|
Aggarwal A, Liu R, Chen Y, Ralowicz AJ, Bergerson SJ, Tomaska F, Mohar B, Hanson TL, Hasseman JP, Reep D, Tsegaye G, Yao P, Ji X, Kloos M, Walpita D, Patel R, Mohr MA, Tillberg PW, Looger LL, Marvin JS, Hoppa MB, Konnerth A, Kleinfeld D, Schreiter ER, Podgorski K. Glutamate indicators with improved activation kinetics and localization for imaging synaptic transmission. Nat Methods 2023; 20:925-934. [PMID: 37142767 PMCID: PMC10250197 DOI: 10.1038/s41592-023-01863-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/21/2023] [Indexed: 05/06/2023]
Abstract
The fluorescent glutamate indicator iGluSnFR enables imaging of neurotransmission with genetic and molecular specificity. However, existing iGluSnFR variants exhibit low in vivo signal-to-noise ratios, saturating activation kinetics and exclusion from postsynaptic densities. Using a multiassay screen in bacteria, soluble protein and cultured neurons, we generated variants with improved signal-to-noise ratios and kinetics. We developed surface display constructs that improve iGluSnFR's nanoscopic localization to postsynapses. The resulting indicator iGluSnFR3 exhibits rapid nonsaturating activation kinetics and reports synaptic glutamate release with decreased saturation and increased specificity versus extrasynaptic signals in cultured neurons. Simultaneous imaging and electrophysiology at individual boutons in mouse visual cortex showed that iGluSnFR3 transients report single action potentials with high specificity. In vibrissal sensory cortex layer 4, we used iGluSnFR3 to characterize distinct patterns of touch-evoked feedforward input from thalamocortical boutons and both feedforward and recurrent input onto L4 cortical neuron dendritic spines.
Collapse
Affiliation(s)
- Abhi Aggarwal
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Allen Institute for Neural Dynamics, Seattle, WA, USA
| | - Rui Liu
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Yang Chen
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - Amelia J Ralowicz
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | | | - Filip Tomaska
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Boaz Mohar
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy L Hanson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel Reep
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Getahun Tsegaye
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Pantong Yao
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Xiang Ji
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
| | - Marinus Kloos
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - Deepika Walpita
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Manuel A Mohr
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology (ETH) Zurich, Basel, Switzerland
| | - Paul W Tillberg
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Howard Hughes Medical Institute, Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Michael B Hoppa
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Arthur Konnerth
- Institute of Neuroscience and Cluster for Systems Neurology (SyNergy), Technical University of Munich (TUM), Munich, Germany
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA, USA
- Section of Neurobiology, University of California, San Diego, La Jolla, CA, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kaspar Podgorski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
- Allen Institute for Neural Dynamics, Seattle, WA, USA.
| |
Collapse
|
10
|
Hafner AS, Triesch J. Synaptic logistics: Competing over shared resources. Mol Cell Neurosci 2023; 125:103858. [PMID: 37172922 DOI: 10.1016/j.mcn.2023.103858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
High turnover rates of synaptic proteins imply that synapses constantly need to replace their constituent building blocks. This requires sophisticated supply chains and potentially exposes synapses to shortages as they compete for limited resources. Interestingly, competition in neurons has been observed at different scales. Whether it is competition of receptors for binding sites inside a single synapse or synapses fighting for resources to grow. Here we review the implications of such competition for synaptic function and plasticity. We identify multiple mechanisms that synapses use to safeguard themselves against supply shortages and identify a fundamental neurologistic trade-off governing the sizes of reserve pools of essential synaptic building blocks.
Collapse
Affiliation(s)
- Anne-Sophie Hafner
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands.
| | - Jochen Triesch
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany; Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Magloire V, Savtchenko LP, Jensen TP, Sylantyev S, Kopach O, Cole N, Tyurikova O, Kullmann DM, Walker MC, Marvin JS, Looger LL, Hasseman JP, Kolb I, Pavlov I, Rusakov DA. Volume-transmitted GABA waves pace epileptiform rhythms in the hippocampal network. Curr Biol 2023; 33:1249-1264.e7. [PMID: 36921605 PMCID: PMC10615848 DOI: 10.1016/j.cub.2023.02.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Mechanisms that entrain and pace rhythmic epileptiform discharges remain debated. Traditionally, the quest to understand them has focused on interneuronal networks driven by synaptic GABAergic connections. However, synchronized interneuronal discharges could also trigger the transient elevations of extracellular GABA across the tissue volume, thus raising tonic conductance (Gtonic) of synaptic and extrasynaptic GABA receptors in multiple cells. Here, we monitor extracellular GABA in hippocampal slices using patch-clamp GABA "sniffer" and a novel optical GABA sensor, showing that periodic epileptiform discharges are preceded by transient, region-wide waves of extracellular GABA. Neural network simulations that incorporate volume-transmitted GABA signals point to a cycle of GABA-driven network inhibition and disinhibition underpinning this relationship. We test and validate this hypothesis using simultaneous patch-clamp recordings from multiple neurons and selective optogenetic stimulation of fast-spiking interneurons. Critically, reducing GABA uptake in order to decelerate extracellular GABA fluctuations-without affecting synaptic GABAergic transmission or resting GABA levels-slows down rhythmic activity. Our findings thus unveil a key role of extrasynaptic, volume-transmitted GABA in pacing regenerative rhythmic activity in brain networks.
Collapse
Affiliation(s)
- Vincent Magloire
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Leonid P Savtchenko
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Sergyi Sylantyev
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK; Rowett Institute, University of Aberdeen, Ashgrove Road West, Aberdeen AB25 2ZD, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Nicholas Cole
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Olga Tyurikova
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dimitri M Kullmann
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jeremy P Hasseman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ilya Kolb
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA; GENIE Project Team, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Ivan Pavlov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
12
|
Astroglial CB1 receptors, energy metabolism, and gliotransmission: an integrated signaling system? Essays Biochem 2023; 67:49-61. [PMID: 36645029 DOI: 10.1042/ebc20220089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/17/2023]
Abstract
Astrocytes are key players in brain homeostasis and function. During the last years, several studies have cemented this notion by showing that these cells respond to neuronal signals and, via the release of molecules that modulate and support synaptic activity (gliotransmission) participates in the functions of the so-called tripartite synapse. Thus, besides their established control of brain metabolism, astrocytes can also actively control synaptic activity and behavior. Among the signaling pathways that shape the functions of astrocyte, the cannabinoid type-1 (CB1) receptor is emerging as a critical player in the control of both gliotransmission and the metabolic cooperation between astrocytes and neurons. In the present short review, we describe known and newly discovered properties of the astroglial CB1 receptors and their role in modulating brain function and behavior. Based on this evidence, we finally discuss how the functions and mode of actions of astrocyte CB1 receptors might represent a clear example of the inextricable relationship between energy metabolism and gliotransmission. These tight interactions will need to be taken into account for future research in astrocyte functions and call for a reinforcement of the theoretical and experimental bridges between studies on metabolic and synaptic functions of astrocytes.
Collapse
|
13
|
Hao Y, Toulmé E, König B, Rosenmund C, Plested AJR. Targeted sensors for glutamatergic neurotransmission. eLife 2023; 12:e84029. [PMID: 36622100 PMCID: PMC9917459 DOI: 10.7554/elife.84029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/06/2023] [Indexed: 01/10/2023] Open
Abstract
Optical report of neurotransmitter release allows visualisation of excitatory synaptic transmission. Sensitive genetically-encoded fluorescent glutamate reporters operating with a range of affinities and emission wavelengths are available. However, without targeting to synapses, the specificity of the fluorescent signal is uncertain, compared to sensors directed at vesicles or other synaptic markers. We fused the state-of-the-art reporter iGluSnFR to glutamate receptor auxiliary proteins in order to target it to postsynaptic sites. Chimeras of Stargazin and gamma-8 that we named SnFR-γ2 and SnFR-γ8, were enriched at synapses, retained function and reported spontaneous glutamate release in rat hippocampal cells, with apparently diffraction-limited spatial precision. In autaptic mouse neurons cultured on astrocytic microislands, evoked neurotransmitter release could be quantitatively detected at tens of synapses in a field of view whilst evoked currents were recorded simultaneously. These experiments revealed a specific postsynaptic deficit from Stargazin overexpression, resulting in synapses with normal neurotransmitter release but without postsynaptic responses. This defect was reverted by delaying overexpression. By working at different calcium concentrations, we determined that SnFR-γ2 is a linear reporter of the global quantal parameters and short-term synaptic plasticity, whereas iGluSnFR is not. On average, half of iGluSnFR regions of interest (ROIs) showing evoked fluorescence changes had intense rundown, whereas less than 5% of SnFR-γ2 ROIs did. We provide an open-source analysis suite for extracting quantal parameters including release probability from fluorescence time series of individual and grouped synaptic responses. Taken together, postsynaptic targeting improves several properties of iGluSnFR and further demonstrates the importance of subcellular targeting for optogenetic actuators and reporters.
Collapse
Affiliation(s)
- Yuchen Hao
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Estelle Toulmé
- Institute for Neurophysiology, Charité - Universitätsmedizin BerlinBerlinGermany
| | - Benjamin König
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
| | - Christian Rosenmund
- Institute for Neurophysiology, Charité - Universitätsmedizin BerlinBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Andrew JR Plested
- Institute of Biology, Cellular Biophysics, Humboldt-Universität zu BerlinBerlinGermany
- Leibniz-Forschungsinstitut für Molekulare PharmakologieBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| |
Collapse
|
14
|
Michaluk P, Rusakov DA. Monitoring cell membrane recycling dynamics of proteins using whole-cell fluorescence recovery after photobleaching of pH-sensitive genetic tags. Nat Protoc 2022; 17:3056-3079. [PMID: 36064755 DOI: 10.1038/s41596-022-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Population behavior of signaling molecules on the cell surface is key to their adaptive function. Live imaging of proteins tagged with fluorescent molecules has been an essential tool in understanding this behavior. Typically, genetic or chemical tags are used to target molecules present throughout the cell, whereas antibody-based tags label the externally exposed molecular domains only. Both approaches could potentially overlook the intricate process of in-out membrane recycling in which target molecules appear or disappear on the cell surface. This limitation is overcome by using a pH-sensitive fluorescent tag, such as Super-Ecliptic pHluorin (SEP), because its emission depends on whether it resides inside or outside the cell. Here we focus on the main glial glutamate transporter GLT1 and describe a genetic design that equips GLT1 molecules with SEP without interfering with the transporter's main function. Expressing GLT1-SEP in astroglia in cultures or in hippocampal slices enables monitoring of the real-time dynamics of the cell-surface and cytosolic fractions of the transporter in living cells. Whole-cell fluorescence recovery after photobleaching and quantitative image-kinetic analysis of the resulting time-lapse images enables assessment of the rate of GLT1-SEP recycling on the cell surface, a fundamental trafficking parameter unattainable previously. The present protocol takes 15-20 d to set up cell preparations, and 2-3 d to carry out live cell experiments and data analyses. The protocol can be adapted to study different membrane molecules of interest, particularly those proteins whose lifetime on the cell surface is critical to their adaptive function.
Collapse
Affiliation(s)
- Piotr Michaluk
- UCL Queen Square Institute of Neurology, University College London, London, UK.
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, Warsaw, Poland.
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
15
|
Abstract
The ability to develop effective new treatments for epilepsy may depend on improved understanding of seizure pathophysiology, about which many questions remain. Dynamic fluorescence imaging of activity at single-neuron resolution with fluorescent indicators in experimental model systems in vivo has revolutionized basic neuroscience and has the potential to do so for epilepsy research as well. Here, we review salient issues as they pertain to experimental imaging in basic epilepsy research, including commonly used imaging technologies, data processing and analysis, interpretation of results, and selected examples of how imaging-based approaches have revealed new insight into mechanisms of seizures and epilepsy.
Collapse
Affiliation(s)
- Patrick N. Lawlor
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Ethan M. Goldberg
- Division of Neurology, Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA
- The Epilepsy Neurogenetics Initiative, The Children’s Hospital of Philadelphia, Philadelphia
- Department of Neurology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Department of Neuroscience, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
16
|
Dürst CD, Wiegert JS, Schulze C, Helassa N, Török K, Oertner TG. Vesicular release probability sets the strength of individual Schaffer collateral synapses. Nat Commun 2022; 13:6126. [PMID: 36253353 PMCID: PMC9576736 DOI: 10.1038/s41467-022-33565-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Information processing in the brain is controlled by quantal release of neurotransmitters, a tightly regulated process. From ultrastructural analysis, it is known that presynaptic boutons along single axons differ in the number of vesicles docked at the active zone. It is not clear whether the probability of these vesicles to get released (pves) is homogenous or also varies between individual boutons. Here, we optically measure evoked transmitter release at individual Schaffer collateral synapses at different calcium concentrations, using the genetically encoded glutamate sensor iGluSnFR. Fitting a binomial model to measured response amplitude distributions allowed us to extract the quantal parameters N, pves, and q. We find that Schaffer collateral boutons typically release single vesicles under low pves conditions and switch to multivesicular release in high calcium saline. The potency of individual boutons is highly correlated with their vesicular release probability while the number of releasable vesicles affects synaptic output only under high pves conditions.
Collapse
Affiliation(s)
- Céline D Dürst
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
- Department of Basic Neurosciences, Center for Neurosciences (CMU), University of Geneva, 1211, Geneva, Switzerland
| | - J Simon Wiegert
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
- Research Group Synaptic Wiring and Information Processing, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
| | - Christian Schulze
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany
| | - Nordine Helassa
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L69 3BX, UK
| | - Katalin Török
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg (ZMNH), 20251, Hamburg, Germany.
| |
Collapse
|
17
|
Increased Extrasynaptic Glutamate Escape in Stochastically Shaped Probabilistic Synaptic Environment. Biomedicines 2022; 10:biomedicines10102406. [PMID: 36289667 PMCID: PMC9599130 DOI: 10.3390/biomedicines10102406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/30/2022] Open
Abstract
Excitatory synapses in the brain are often surrounded by nanoscopic astroglial processes that express high-affinity glutamate transporters at a high surface density. This ensures that the bulk of glutamate leaving the synaptic cleft is taken up for its subsequent metabolic conversion and replenishment in neurons. Furthermore, variations in the astroglial coverage of synapses can thus determine to what extent glutamate released into the synaptic cleft could activate its receptors outside the cleft. The biophysical determinants of extrasynaptic glutamate actions are complex because they involve a competition between transporters and target receptors of glutamate in the tortuous space of synaptic environment. To understand key spatiotemporal relationships between the extrasynaptic landscapes of bound and free glutamate, we explored a detailed Monte Carlo model for its release, diffusion, and uptake. We implemented a novel representation of brain neuropil in silico as a space filled with randomly scattered, overlapping spheres (spheroids) of distributed size. The parameters of perisynaptic space, astroglial presence, and glutamate transport were constrained by the empirical data obtained for the 'average' environment of common cortical synapses. Our simulations provide a glimpse of the perisynaptic concentration landscapes of free and transporter-bound glutamate relationship, suggesting a significant tail of space-average free glutamate within 3 ms post-release.
Collapse
|
18
|
Mendonça PRF, Tagliatti E, Langley H, Kotzadimitriou D, Zamora-Chimal CG, Timofeeva Y, Volynski KE. Asynchronous glutamate release is enhanced in low release efficacy synapses and dispersed across the active zone. Nat Commun 2022; 13:3497. [PMID: 35715404 PMCID: PMC9206079 DOI: 10.1038/s41467-022-31070-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
The balance between fast synchronous and delayed asynchronous release of neurotransmitters has a major role in defining computational properties of neuronal synapses and regulation of neuronal network activity. However, how it is tuned at the single synapse level remains poorly understood. Here, using the fluorescent glutamate sensor SF-iGluSnFR, we image quantal vesicular release in tens to hundreds of individual synaptic outputs from single pyramidal cells with 4 millisecond temporal and 75 nm spatial resolution. We find that the ratio between synchronous and asynchronous synaptic vesicle exocytosis varies extensively among synapses supplied by the same axon, and that the synchronicity of release is reduced at low release probability synapses. We further demonstrate that asynchronous exocytosis sites are more widely distributed within the release area than synchronous sites. Together, our results reveal a universal relationship between the two major functional properties of synapses - the timing and the overall efficacy of neurotransmitter release.
Collapse
Affiliation(s)
- Philipe R F Mendonça
- University College London Institute of Neurology, London, UK. .,Department of Physiology and Biophysics, Federal University of Minas Gerais, Gerais, Brazil.
| | - Erica Tagliatti
- University College London Institute of Neurology, London, UK
| | - Helen Langley
- University College London Institute of Neurology, London, UK
| | | | | | - Yulia Timofeeva
- University College London Institute of Neurology, London, UK. .,Department of Computer Science, University of Warwick, Coventry, UK.
| | | |
Collapse
|
19
|
Brondi M, Bruzzone M, Lodovichi C, dal Maschio M. Optogenetic Methods to Investigate Brain Alterations in Preclinical Models. Cells 2022; 11:1848. [PMID: 35681542 PMCID: PMC9180859 DOI: 10.3390/cells11111848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/05/2023] Open
Abstract
Investigating the neuronal dynamics supporting brain functions and understanding how the alterations in these mechanisms result in pathological conditions represents a fundamental challenge. Preclinical research on model organisms allows for a multiscale and multiparametric analysis in vivo of the neuronal mechanisms and holds the potential for better linking the symptoms of a neurological disorder to the underlying cellular and circuit alterations, eventually leading to the identification of therapeutic/rescue strategies. In recent years, brain research in model organisms has taken advantage, along with other techniques, of the development and continuous refinement of methods that use light and optical approaches to reconstruct the activity of brain circuits at the cellular and system levels, and to probe the impact of the different neuronal components in the observed dynamics. These tools, combining low-invasiveness of optical approaches with the power of genetic engineering, are currently revolutionizing the way, the scale and the perspective of investigating brain diseases. The aim of this review is to describe how brain functions can be investigated with optical approaches currently available and to illustrate how these techniques have been adopted to study pathological alterations of brain physiology.
Collapse
Affiliation(s)
- Marco Brondi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
| | - Matteo Bruzzone
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Claudia Lodovichi
- Institute of Neuroscience, National Research Council-CNR, Viale G. Colombo 3, 35121 Padova, Italy; (M.B.); (C.L.)
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| | - Marco dal Maschio
- Department of Biomedical Sciences, Università degli Studi di Padova, Via U. Bassi 58B, 35121 Padova, Italy;
- Padova Neuroscience Center (PNC), Università degli Studi di Padova, Via Orus 2, 35129 Padova, Italy
| |
Collapse
|
20
|
Iovino L, Giusti V, Pischedda F, Giusto E, Plotegher N, Marte A, Battisti I, Di Iacovo A, Marku A, Piccoli G, Bandopadhyay R, Perego C, Bonifacino T, Bonanno G, Roseti C, Bossi E, Arrigoni G, Bubacco L, Greggio E, Hilfiker S, Civiero L. Trafficking of the glutamate transporter is impaired in LRRK2-related Parkinson's disease. Acta Neuropathol 2022; 144:81-106. [PMID: 35596783 PMCID: PMC9217889 DOI: 10.1007/s00401-022-02437-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022]
Abstract
The Excitatory Amino Acid Transporter 2 (EAAT2) accounts for 80% of brain glutamate clearance and is mainly expressed in astrocytic perisynaptic processes. EAAT2 function is finely regulated by endocytic events, recycling to the plasma membrane and degradation. Noteworthy, deficits in EAAT2 have been associated with neuronal excitotoxicity and neurodegeneration. In this study, we show that EAAT2 trafficking is impaired by the leucine-rich repeat kinase 2 (LRRK2) pathogenic variant G2019S, a common cause of late-onset familial Parkinson’s disease (PD). In LRRK2 G2019S human brains and experimental animal models, EAAT2 protein levels are significantly decreased, which is associated with elevated gliosis. The decreased expression of the transporter correlates with its reduced functionality in mouse LRRK2 G2019S purified astrocytic terminals and in Xenopus laevis oocytes expressing human LRRK2 G2019S. In LRRK2 G2019S knock-in mouse brain, the correct surface localization of the endogenous transporter is impaired, resulting in its interaction with a plethora of endo-vesicular proteins. Mechanistically, we report that pathogenic LRRK2 kinase activity delays the recycling of the transporter to the plasma membrane via Rabs inactivation, causing its intracellular re-localization and degradation. Taken together, our results demonstrate that pathogenic LRRK2 interferes with the physiology of EAAT2, pointing to extracellular glutamate overload as a possible contributor to neurodegeneration in PD.
Collapse
|
21
|
Tyurikova O, Shih P, Dembitskaya Y, Savtchenko LP, McHugh TJ, Rusakov DA, Semyanov A. K + efflux through postsynaptic NMDA receptors suppresses local astrocytic glutamate uptake. Glia 2022; 70:961-974. [PMID: 35084774 PMCID: PMC9132042 DOI: 10.1002/glia.24150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
Glutamatergic transmission prompts K+ efflux through postsynaptic NMDA receptors. The ensuing hotspot of extracellular K+ elevation depolarizes presynaptic terminal, boosting glutamate release, but whether this also affects glutamate uptake in local astroglia has remained an intriguing question. Here, we find that the pharmacological blockade, or conditional knockout, of postsynaptic NMDA receptors suppresses use-dependent increase in the amplitude and duration of the astrocytic glutamate transporter current (IGluT ), whereas blocking astrocytic K+ channels prevents the duration increase only. Glutamate spot-uncaging reveals that astrocyte depolarization, rather than extracellular K+ rises per se, is required to reduce the amplitude and duration of IGluT . Biophysical simulations confirm that local transient elevations of extracellular K+ can inhibit local glutamate uptake in fine astrocytic processes. Optical glutamate sensor imaging and a two-pathway test relate postsynaptic K+ efflux to enhanced extrasynaptic glutamate signaling. Thus, repetitive glutamatergic transmission triggers a feedback loop in which postsynaptic K+ efflux can transiently facilitate presynaptic release while reducing local glutamate uptake.
Collapse
Affiliation(s)
- Olga Tyurikova
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Pei‐Yu Shih
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Yulia Dembitskaya
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
| | - Leonid P. Savtchenko
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
| | - Thomas J. McHugh
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
- RIKEN Center for Brain Science, Wako‐shiSaitamaJapan
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental EpilepsyUCL Institute of Neurology, Queen SquareLondonUK
| | - Alexey Semyanov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Brain Science Institute (BSI)RIKENWako‐shiSaitamaJapan
- Department of Clinical Pharmacology, Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
22
|
Hao Y, Plested AJ. Seeing glutamate at central synapses. J Neurosci Methods 2022; 375:109531. [DOI: 10.1016/j.jneumeth.2022.109531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
|
23
|
Matthews EA, Sun W, McMahon SM, Doengi M, Halka L, Anders S, Müller JA, Steinlein P, Vana NS, van Dyk G, Pitsch J, Becker AJ, Pfeifer A, Kavalali ET, Lamprecht A, Henneberger C, Stein V, Schoch S, Dietrich D. Optical analysis of glutamate spread in the neuropil. Cereb Cortex 2022; 32:3669-3689. [PMID: 35059716 PMCID: PMC9433421 DOI: 10.1093/cercor/bhab440] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Fast synaptic communication uses diffusible transmitters whose spread is limited by uptake mechanisms. However, on the submicron-scale, the distance between two synapses, the extent of glutamate spread has so far remained difficult to measure. Here, we show that quantal glutamate release from individual hippocampal synapses activates extracellular iGluSnFr molecules at a distance of >1.5 μm. 2P-glutamate uncaging near spines further showed that alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-Rs and N-methyl-D-aspartate (NMDA)-Rs respond to distant uncaging spots at approximately 800 and 2000 nm, respectively, when releasing the amount of glutamate contained in approximately five synaptic vesicles. The uncaging-induced remote activation of AMPA-Rs was facilitated by blocking glutamate transporters but only modestly decreased by elevating the recording temperature. When mimicking release from neighboring synapses by three simultaneous uncaging spots in the microenvironment of a spine, AMPA-R-mediated responses increased supra-additively. Interfering with extracellular glutamate diffusion through a glutamate scavenger system weakly reduced field synaptic responses but not the quantal amplitude. Together, our data suggest that the neuropil is more permissive to short-range spread of transmitter than suggested by theory, that multivesicular release could regularly coactivate nearest neighbor synapses and that on this scale glutamate buffering by transporters primarily limits the spread of transmitter and allows for cooperative glutamate signaling in extracellular microdomains.
Collapse
Affiliation(s)
| | | | | | - M Doengi
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - L Halka
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - S Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - J A Müller
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany
| | - P Steinlein
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany,Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - N S Vana
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - G van Dyk
- Department of Neurosurgery, University Hospital Bonn, 53127 Bonn, Germany
| | - J Pitsch
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany,Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - A J Becker
- Section for Translational Epilepsy Research, Department of Neuropathology, University Hospital Bonn, 53127 Bonn, Germany,Department of Epileptology, University Hospital Bonn, 53127 Bonn, Germany
| | - A Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, 53127 Bonn, Germany
| | - E T Kavalali
- Department of Pharmacology, The Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - A Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - C Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany,German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany,Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - V Stein
- Institute of Physiology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - S Schoch
- Address correspondence to Prof. Dr Dirk Dietrich, Department of Neurosurgery, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany. ; and Prof. Dr Susanne Schoch, Institute of Neuropathology, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany.
| | - D Dietrich
- Address correspondence to Prof. Dr Dirk Dietrich, Department of Neurosurgery, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany. ; and Prof. Dr Susanne Schoch, Institute of Neuropathology, University Hospital Bonn, Venusberg Campus 1, Bonn 53127, Germany.
| |
Collapse
|
24
|
Abstract
Glutamatergic neurotransmission is a widespread form of synaptic excitation in the mammalian brain. The development of genetically encoded fluorescent glutamate sensors allows monitoring synaptic signaling in living brain tissue in real time. Here, we describe single- and two-photon imaging of synaptically evoked glutamatergic population signals in acute hippocampal slices expressing the fluorescent glutamate sensor SF-iGluSnFR.A184S in CA1 or CA3 pyramidal neurons. The protocol can be readily used to study defective synaptic glutamate signaling in mouse models of neuropsychiatric disorders, such as Alzheimer disease. For complete details on the use and execution of this protocol, please refer to Zott et al. (2019).
Collapse
|
25
|
Savtchenko LP, Zheng K, Rusakov DA. Buffering by Transporters Can Spare Geometric Hindrance in Controlling Glutamate Escape. Front Cell Neurosci 2021; 15:707813. [PMID: 34366791 PMCID: PMC8342858 DOI: 10.3389/fncel.2021.707813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
The surface of astrocyte processes that often surround excitatory synapses is packed with high-affinity glutamate transporters, largely preventing extrasynaptic glutamate escape. The shape and prevalence of perisynaptic astroglia vary among brain regions, in some cases providing a complete isolation of synaptic connections from the surrounding tissue. The perception has been that the geometry of perisynaptic environment is therefore essential to preventing extrasynaptic glutamate escape. To understand to what degree this notion holds, we modelled brain neuropil as a space filled with a scatter of randomly sized, overlapping spheres representing randomly shaped cellular elements and intercellular lumen. Simulating release and diffusion of glutamate molecules inside the interstitial gaps in this medium showed that high-affinity transporters would efficiently constrain extrasynaptic spread of glutamate even when diffusion passages are relatively open. We thus estimate that, in the hippocampal or cerebellar neuropil, the bulk of glutamate released by a synaptic vesicle is rapidly bound by transporters (or high-affinity target receptors) mainly in close proximity of the synaptic cleft, whether or not certain physiological or pathological events change local tissue geometry.
Collapse
Affiliation(s)
- Leonid P. Savtchenko
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | | | - Dmitri A. Rusakov
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
26
|
Klatt O, Repetto D, Brockhaus J, Reissner C, El Khallouqi A, Rohlmann A, Heine M, Missler M. Endogenous β-neurexins on axons and within synapses show regulated dynamic behavior. Cell Rep 2021; 35:109266. [PMID: 34133920 DOI: 10.1016/j.celrep.2021.109266] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Neurexins are key organizer molecules that regulate synaptic function and are implicated in autism and schizophrenia. β-neurexins interact with numerous cell adhesion and receptor molecules, but their neuronal localization remains elusive. Using single-molecule tracking and high-resolution microscopy to detect neurexin1β and neurexin3β in primary hippocampal neurons from knockin mice, we demonstrate that endogenous β-neurexins are present in fewer than half of excitatory and inhibitory synapses. Moreover, we observe a large extrasynaptic pool of β-neurexins on axons and show that axonal β-neurexins diffuse with higher surface mobility than those transiently confined within synapses. Stimulation of neuronal activity further increases the mobility of synaptic and axonal β-neurexins, whereas inhibition causes the opposite. Blocking ectodomain cleavage by metalloproteases also reduces β-neurexin mobility and enhances glutamate release. These findings suggest that the surface mobility of endogenous β-neurexins inside and outside of synapses is dynamically regulated and linked to neuronal activity.
Collapse
Affiliation(s)
- Oliver Klatt
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany; Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Daniele Repetto
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Johannes Brockhaus
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Carsten Reissner
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Abderazzaq El Khallouqi
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany
| | - Martin Heine
- Functional Neurobiology Group, Institute for Developmental Biology and Neurobiology, Johannes Gutenberg University, 55128 Mainz, Germany.
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, Westfälische Wilhelms-University, 48149 Münster, Germany.
| |
Collapse
|
27
|
Adoff MD, Climer JR, Davoudi H, Marvin JS, Looger LL, Dombeck DA. The functional organization of excitatory synaptic input to place cells. Nat Commun 2021; 12:3558. [PMID: 34117238 PMCID: PMC8196201 DOI: 10.1038/s41467-021-23829-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022] Open
Abstract
Hippocampal place cells contribute to mammalian spatial navigation and memory formation. Numerous models have been proposed to explain the location-specific firing of this cognitive representation, but the pattern of excitatory synaptic input leading to place firing is unknown, leaving no synaptic-scale explanation of place coding. Here we used resonant scanning two-photon microscopy to establish the pattern of synaptic glutamate input received by CA1 place cells in behaving mice. During traversals of the somatic place field, we found increased excitatory dendritic input, mainly arising from inputs with spatial tuning overlapping the somatic field, and functional clustering of this input along the dendrites over ~10 µm. These results implicate increases in total excitatory input and co-activation of anatomically clustered synaptic input in place firing. Since they largely inherit their fields from upstream synaptic partners with similar fields, many CA1 place cells appear to be part of multi-brain-region cell assemblies forming representations of specific locations.
Collapse
Affiliation(s)
- Michael D Adoff
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Jason R Climer
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Heydar Davoudi
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Jonathan S Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
28
|
Dynamics of Glutamatergic Drive Underlie Diverse Responses of Olfactory Bulb Outputs In Vivo. eNeuro 2021; 8:ENEURO.0110-21.2021. [PMID: 33795414 PMCID: PMC8059884 DOI: 10.1523/eneuro.0110-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mitral/tufted (MT) cells of the olfactory bulb (OB) show diverse temporal responses to odorant stimulation that are thought to encode odor information. Much of this diversity is thought to arise from inhibitory OB circuits, but the dynamics of excitatory input to MT cells, which is driven in a feedforward manner by sensory afferents, may also be important. To examine the contribution of excitatory input dynamics to generating temporal diversity in MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized and awake mice. We found surprising diversity in the temporal dynamics of these signals. Inhalation-linked glutamate transients were variable in onset latency and duration, and in awake mice the degree of coupling to inhalation varied substantially with odorant identity and concentration. Successive inhalations of odorant produced nonlinear changes in glutamate signaling that included facilitating, adapting and suppressive responses and which varied with odorant identity and concentration. Dual-color imaging of glutamate and calcium signals from MT cells in the same glomerulus revealed highly correlated presynaptic and postsynaptic signals across these different response types. Suppressive calcium responses in MT cells were nearly always accompanied by suppression in the glutamate signal, providing little evidence for MT cell suppression by lateral or feedforward inhibition. These results indicate a high degree of diversity in the dynamics of excitatory input to MT cells, and suggest that these dynamics may account for much of the diversity in MT cell responses that underlies OB odor representations.
Collapse
|
29
|
Michaluk P, Heller JP, Rusakov DA. Rapid recycling of glutamate transporters on the astroglial surface. eLife 2021; 10:e64714. [PMID: 33860761 PMCID: PMC8079145 DOI: 10.7554/elife.64714] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
Glutamate uptake by astroglial transporters confines excitatory transmission to the synaptic cleft. The efficiency of this mechanism depends on the transporter dynamics in the astrocyte membrane, which remains poorly understood. Here, we visualise the main glial glutamate transporter GLT1 by generating its pH-sensitive fluorescent analogue, GLT1-SEP. Fluorescence recovery after photobleaching-based imaging shows that 70-75% of GLT1-SEP dwell on the surface of rat brain astroglia, recycling with a lifetime of ~22 s. Genetic deletion of the C-terminus accelerates GLT1-SEP membrane turnover while disrupting its surface pattern, as revealed by single-molecule localisation microscopy. Excitatory activity boosts surface mobility of GLT1-SEP, involving its C-terminus, metabotropic glutamate receptors, intracellular Ca2+, and calcineurin-phosphatase activity, but not the broad-range kinase activity. The results suggest that membrane turnover, rather than lateral diffusion, is the main 'redeployment' route for the immobile fraction (20-30%) of surface-expressed GLT1. This finding reveals an important mechanism helping to control extrasynaptic escape of glutamate.
Collapse
Affiliation(s)
- Piotr Michaluk
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- BRAINCITY, Laboratory of Neurobiology, Nencki Institute of Experimental Biology PASWarsawPoland
| | - Janosch Peter Heller
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- School of Biotechnology and National Institute for Cellular Biotechnology (NICB), Dublin City UniversityGlasnevinIreland
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
30
|
Chen J, Cho KE, Skwarzynska D, Clancy S, Conley NJ, Clinton SM, Li X, Lin L, Zhu JJ. The Property-Based Practical Applications and Solutions of Genetically Encoded Acetylcholine and Monoamine Sensors. J Neurosci 2021; 41:2318-2328. [PMID: 33627325 PMCID: PMC7984589 DOI: 10.1523/jneurosci.1062-19.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/26/2022] Open
Abstract
Neuromodulatory communication among various neurons and non-neuronal cells mediates myriad physiological and pathologic processes, yet defining regulatory and functional features of neuromodulatory transmission remains challenging because of limitations of available monitoring tools. Recently developed genetically encoded neuromodulatory transmitter sensors, when combined with superresolution and/or deconvolution microscopy, allow the first visualization of neuromodulatory transmission with nanoscale or microscale spatiotemporal resolution. In vitro and in vivo experiments have validated several high-performing sensors to have the qualities necessary for demarcating fundamental synaptic properties of neuromodulatory transmission, and initial analysis has unveiled unexpected fine control and precision of neuromodulation. These new findings underscore the importance of synaptic dynamics in synapse-, subcellular-, and circuit-specific neuromodulation, as well as the prospect of genetically encoded transmitter sensors in expanding our knowledge of various behaviors and diseases, including Alzheimer's disease, sleeping disorders, tumorigenesis, and many others.
Collapse
Affiliation(s)
- Jun Chen
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University
- Pharmaceutical Sciences Graduate Program, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Katriel E Cho
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Tools for Modern Neurobiology Class of 2020, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Daria Skwarzynska
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Tools for Modern Neurobiology Class of 2020, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Shaylyn Clancy
- Tools for Modern Neurobiology Class of 2020, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Cell and Developmental Biology Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Nicholas J Conley
- Neuroscience Graduate Program, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Tools for Modern Neurobiology Class of 2020, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Xiaokun Li
- Pharmaceutical Sciences Graduate Program, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Lin
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University
- Pharmaceutical Sciences Graduate Program, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - J Julius Zhu
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
31
|
Verisokin AY, Verveyko DV, Postnov DE, Brazhe AR. Modeling of Astrocyte Networks: Toward Realistic Topology and Dynamics. Front Cell Neurosci 2021; 15:645068. [PMID: 33746715 PMCID: PMC7973220 DOI: 10.3389/fncel.2021.645068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Neuronal firing and neuron-to-neuron synaptic wiring are currently widely described as orchestrated by astrocytes—elaborately ramified glial cells tiling the cortical and hippocampal space into non-overlapping domains, each covering hundreds of individual dendrites and hundreds thousands synapses. A key component to astrocytic signaling is the dynamics of cytosolic Ca2+ which displays multiscale spatiotemporal patterns from short confined elemental Ca2+ events (puffs) to Ca2+ waves expanding through many cells. Here, we synthesize the current understanding of astrocyte morphology, coupling local synaptic activity to astrocytic Ca2+ in perisynaptic astrocytic processes and morphology-defined mechanisms of Ca2+ regulation in a distributed model. To this end, we build simplified realistic data-driven spatial network templates and compile model equations as defined by local cell morphology. The input to the model is spatially uncorrelated stochastic synaptic activity. The proposed modeling approach is validated by statistics of simulated Ca2+ transients at a single cell level. In multicellular templates we observe regular sequences of cell entrainment in Ca2+ waves, as a result of interplay between stochastic input and morphology variability between individual astrocytes. Our approach adds spatial dimension to the existing astrocyte models by employment of realistic morphology while retaining enough flexibility and scalability to be embedded in multiscale heterocellular models of neural tissue. We conclude that the proposed approach provides a useful description of neuron-driven Ca2+-activity in the astrocyte syncytium.
Collapse
Affiliation(s)
| | - Darya V Verveyko
- Department of Theoretical Physics, Kursk State University, Kursk, Russia
| | - Dmitry E Postnov
- Department of Optics and Biophotonics, Saratov State University, Saratov, Russia
| | - Alexey R Brazhe
- Department of Biophysics, Biological Faculty, Lomonosov Moscow State University, Moscow, Russia.,Department of Molecular Neurobiology, Institute of Bioorganic Chemistry RAS, Russian Federation, Moscow, Russia
| |
Collapse
|
32
|
Presynaptic endoplasmic reticulum regulates short-term plasticity in hippocampal synapses. Commun Biol 2021; 4:241. [PMID: 33623091 PMCID: PMC7902852 DOI: 10.1038/s42003-021-01761-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/25/2021] [Indexed: 01/31/2023] Open
Abstract
Short-term plasticity preserves a brief history of synaptic activity that is communicated to the postsynaptic neuron. This is primarily regulated by a calcium signal initiated by voltage dependent calcium channels in the presynaptic terminal. Imaging studies of CA3-CA1 synapses reveal the presence of another source of calcium, the endoplasmic reticulum (ER) in all presynaptic terminals. However, the precise role of the ER in modifying STP remains unexplored. We performed in-silico experiments in synaptic geometries based on reconstructions of the rat CA3-CA1 synapses to investigate the contribution of ER. Our model predicts that presynaptic ER is critical in generating the observed short-term plasticity profile of CA3-CA1 synapses and allows synapses with low release probability to operate more reliably. Blocking the ER lowers facilitation in a manner similar to what has been previously characterized in animal models of Alzheimer's disease and underscores the important role played by presynaptic stores in normal function.
Collapse
|
33
|
Jensen TP, Kopach O, Reynolds JP, Savtchenko LP, Rusakov DA. Release probability increases towards distal dendrites boosting high-frequency signal transfer in the rodent hippocampus. eLife 2021; 10:e62588. [PMID: 33438578 PMCID: PMC7837677 DOI: 10.7554/elife.62588] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
Dendritic integration of synaptic inputs involves their increased electrotonic attenuation at distal dendrites, which can be counterbalanced by the increased synaptic receptor density. However, during network activity, the influence of individual synapses depends on their release fidelity, the dendritic distribution of which remains poorly understood. Here, we employed classical optical quantal analyses and a genetically encoded optical glutamate sensor in acute hippocampal slices of rats and mice to monitor glutamate release at CA3-CA1 synapses. We find that their release probability increases with greater distances from the soma. Similar-fidelity synapses tend to group together, whereas release probability shows no trends regarding the branch ends. Simulations with a realistic CA1 pyramidal cell hosting stochastic synapses suggest that the observed trends boost signal transfer fidelity, particularly at higher input frequencies. Because high-frequency bursting has been associated with learning, the release probability pattern we have found may play a key role in memory trace formation.
Collapse
Affiliation(s)
- Thomas P Jensen
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Olga Kopach
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| | - James P Reynolds
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Leonid P Savtchenko
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Dmitri A Rusakov
- Queen Square UCL Institute of Neurology, University College LondonLondonUnited Kingdom
| |
Collapse
|
34
|
Tyurikova O, Zheng K, Nicholson E, Timofeeva Y, Semyanov A, Volynski KE, Rusakov DA. Fluorescence lifetime imaging reveals regulation of presynaptic Ca 2+ by glutamate uptake and mGluRs, but not somatic voltage in cortical neurons. J Neurochem 2021; 156:48-58. [PMID: 32418206 PMCID: PMC8436763 DOI: 10.1111/jnc.15094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Brain function relies on vesicular release of neurotransmitters at chemical synapses. The release probability depends on action potential-evoked presynaptic Ca2+ entry, but also on the resting Ca2+ level. Whether these basic aspects of presynaptic calcium homeostasis show any consistent trend along the axonal path, and how they are controlled by local network activity, remains poorly understood. Here, we take advantage of the recently advanced FLIM-based method to monitor presynaptic Ca2+ with nanomolar sensitivity. We find that, in cortical pyramidal neurons, action potential-evoked calcium entry (range 10-300 nM), but not the resting Ca2+ level (range 10-100 nM), tends to increase with higher order of axonal branches. Blocking astroglial glutamate uptake reduces evoked Ca2+ entry but has little effect on resting Ca2+ whereas both appear boosted by the constitutive activation of group 1/2 metabotropic glutamate receptors. We find no consistent effect of transient somatic depolarization or hyperpolarization on presynaptic Ca2+ entry or its basal level. The results unveil some key aspects of presynaptic machinery in cortical circuits, shedding light on basic principles of synaptic connectivity in the brain.
Collapse
Affiliation(s)
- Olga Tyurikova
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
| | - Kaiyu Zheng
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | - Yulia Timofeeva
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
- Department of Computer Science, Centre for Complexity Science, University of WarwickCoventryUK
| | - Alexey Semyanov
- Shemyakin‐Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
- Sechenov First Moscow State Medical UniversityMoscowRussia
| | | | - Dmitri A. Rusakov
- Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
35
|
Lin L, Gupta S, Zheng WS, Si K, Zhu JJ. Genetically encoded sensors enable micro- and nano-scopic decoding of transmission in healthy and diseased brains. Mol Psychiatry 2021; 26:443-455. [PMID: 33277628 PMCID: PMC7850973 DOI: 10.1038/s41380-020-00960-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Neural communication orchestrates a variety of behaviors, yet despite impressive effort, delineating transmission properties of neuromodulatory communication remains a daunting task due to limitations of available monitoring tools. Recently developed genetically encoded neurotransmitter sensors, when combined with superresolution and deconvolution microscopic techniques, enable the first micro- and nano-scopic visualization of neuromodulatory transmission. Here we introduce this image analysis method by presenting its biophysical foundation, practical solutions, biological validation, and broad applicability. The presentation illustrates how the method resolves fundamental synaptic properties of neuromodulatory transmission, and the new data unveil unexpected fine control and precision of rodent and human neuromodulation. The findings raise the prospect of rapid advances in the understanding of neuromodulatory transmission essential for resolving the physiology or pathogenesis of various behaviors and diseases.
Collapse
Affiliation(s)
- Li Lin
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China. .,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Smriti Gupta
- grid.27755.320000 0000 9136 933XDepartment of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - W. Sharon Zheng
- grid.27755.320000 0000 9136 933XDepartment of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA ,grid.27755.320000 0000 9136 933XBiomedical Engineering Class of 2021, University of Virginia School of Medicine, Charlottesville, VA USA
| | - Ke Si
- grid.13402.340000 0004 1759 700XCollege of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027 China ,grid.13402.340000 0004 1759 700XSchool of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310027 China
| | - J. Julius Zhu
- grid.27755.320000 0000 9136 933XDepartment of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| |
Collapse
|
36
|
Kopach O, Pavlov AM, Sindeeva OA, Sukhorukov GB, Rusakov DA. Biodegradable Microcapsules Loaded with Nerve Growth Factor Enable Neurite Guidance and Synapse Formation. Pharmaceutics 2020; 13:E25. [PMID: 33375672 PMCID: PMC7823884 DOI: 10.3390/pharmaceutics13010025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Neurological disorders and traumas often involve loss of specific neuronal connections, which would require intervention with high spatial precision. We have previously demonstrated the biocompatibility and therapeutic potential of the layer-by-layer (LbL)-fabricated microcapsules aimed at the localized delivery of specific channel blockers to peripheral nerves. Here, we explore the potential of LbL-microcapsules to enable site-specific, directional action of neurotrophins to stimulate neuronal morphogenesis and synaptic circuit formation. We find that nanoengineered biodegradable microcapsules loaded with nerve growth factor (NGF) can guide the morphological development of hippocampal neurons in vitro. The presence of NGF-loaded microcapsules or their clusters increases the neurite outgrowth rate while boosting neurite branching. Microcapsule clusters appear to guide the trajectory of developing individual axons leading to the formation of functional synapses. Our observations highlight the potential of NGF-loaded, biodegradable LbL-microcapsules to help guide axonal development and possibly circuit regeneration in neuropathology.
Collapse
Affiliation(s)
- Olga Kopach
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Anton M. Pavlov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Remote Controlled Theranostic Systems Laboratory, Saratov State University, 83 Astrakhanskaya Street, 410012 Saratov, Russia
| | - Olga A. Sindeeva
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143005 Moscow, Russia
| | - Gleb B. Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK; (A.M.P.); (O.A.S.)
- Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 3 Nobel Street, 143005 Moscow, Russia
| | - Dmitri A. Rusakov
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
37
|
Henneberger C, Bard L, Panatier A, Reynolds JP, Kopach O, Medvedev NI, Minge D, Herde MK, Anders S, Kraev I, Heller JP, Rama S, Zheng K, Jensen TP, Sanchez-Romero I, Jackson CJ, Janovjak H, Ottersen OP, Nagelhus EA, Oliet SHR, Stewart MG, Nägerl UV, Rusakov DA. LTP Induction Boosts Glutamate Spillover by Driving Withdrawal of Perisynaptic Astroglia. Neuron 2020; 108:919-936.e11. [PMID: 32976770 PMCID: PMC7736499 DOI: 10.1016/j.neuron.2020.08.030] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 06/14/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Extrasynaptic actions of glutamate are limited by high-affinity transporters expressed by perisynaptic astroglial processes (PAPs): this helps maintain point-to-point transmission in excitatory circuits. Memory formation in the brain is associated with synaptic remodeling, but how this affects PAPs and therefore extrasynaptic glutamate actions is poorly understood. Here, we used advanced imaging methods, in situ and in vivo, to find that a classical synaptic memory mechanism, long-term potentiation (LTP), triggers withdrawal of PAPs from potentiated synapses. Optical glutamate sensors combined with patch-clamp and 3D molecular localization reveal that LTP induction thus prompts spatial retreat of astroglial glutamate transporters, boosting glutamate spillover and NMDA-receptor-mediated inter-synaptic cross-talk. The LTP-triggered PAP withdrawal involves NKCC1 transporters and the actin-controlling protein cofilin but does not depend on major Ca2+-dependent cascades in astrocytes. We have therefore uncovered a mechanism by which a memory trace at one synapse could alter signal handling by multiple neighboring connections.
Collapse
Affiliation(s)
- Christian Henneberger
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany; German Center for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany.
| | - Lucie Bard
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Aude Panatier
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France
| | - James P Reynolds
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Olga Kopach
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Daniel Minge
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Michel K Herde
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Stefanie Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Igor Kraev
- Life Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Janosch P Heller
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Sylvain Rama
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Kaiyu Zheng
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Thomas P Jensen
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | | | - Colin J Jackson
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Harald Janovjak
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria; EMBL Australia, Australian Regenerative Medicine Institute, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, VIC 3800, Australia
| | - Ole Petter Ottersen
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Stephane H R Oliet
- INSERM U1215, Neurocentre Magendie, 33000 Bordeaux, France; Université de Bordeaux, 33000 Bordeaux, France
| | | | - U Valentin Nägerl
- Université de Bordeaux, 33000 Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33000 Bordeaux, France.
| | - Dmitri A Rusakov
- UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
| |
Collapse
|
38
|
Farsi Z, Walde M, Klementowicz AE, Paraskevopoulou F, Woehler A. Single synapse glutamate imaging reveals multiple levels of release mode regulation in mammalian synapses. iScience 2020; 24:101909. [PMID: 33392479 PMCID: PMC7773578 DOI: 10.1016/j.isci.2020.101909] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/17/2023] Open
Abstract
Mammalian central synapses exhibit vast heterogeneity in signaling strength. To understand the extent of this diversity, how it is achieved, and its functional implications, characterization of a large number of individual synapses is required. Using glutamate imaging, we characterized the evoked release probability and spontaneous release frequency of over 24,000 individual synapses. We found striking variability and no correlation between action potential-evoked and spontaneous synaptic release strength, suggesting distinct regulatory mechanisms. Subpixel localization of individual evoked and spontaneous release events reveals tight spatial regulation of evoked release and enhanced spontaneous release outside of evoked release region. Using on-stage post hoc immune-labeling of vesicle-associated proteins, Ca2+-sensing proteins, and soluble presynaptic proteins we were able to show that distinct molecular ensembles are associated with evoked and spontaneous modes of synaptic release.
Collapse
Affiliation(s)
- Zohreh Farsi
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Marie Walde
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Agnieszka E Klementowicz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| | - Foteini Paraskevopoulou
- Institute of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin, Berlin, 10115, Germany
| | - Andrew Woehler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, 10115, Germany
| |
Collapse
|
39
|
Gobbo F, Cattaneo A. Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience. Front Mol Neurosci 2020; 13:572312. [PMID: 33192296 PMCID: PMC7609880 DOI: 10.3389/fnmol.2020.572312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
The development of methods for the activity-dependent tagging of neurons enabled a new way to tackle the problem of engram identification at the cellular level, giving rise to groundbreaking findings in the field of memory studies. However, the resolution of activity-dependent tagging remains limited to the whole-cell level. Notably, events taking place at the synapse level play a critical role in the establishment of new memories, and strong experimental evidence shows that learning and synaptic plasticity are tightly linked. Here, we provide a comprehensive review of the currently available techniques that enable to identify and track the neuronal activity with synaptic spatial resolution. We also present recent technologies that allow to selectively interfere with specific subsets of synapses. Lastly, we discuss how these technologies can be applied to the study of learning and memory.
Collapse
Affiliation(s)
- Francesco Gobbo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
40
|
Synaptic vesicles transiently dock to refill release sites. Nat Neurosci 2020; 23:1329-1338. [PMID: 32989294 PMCID: PMC8054220 DOI: 10.1038/s41593-020-00716-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/01/2020] [Indexed: 11/18/2022]
Abstract
Synaptic vesicles fuse with the plasma membrane to release neurotransmitter following an action potential, after which new vesicles must ‘dock’ to refill vacated release sites. To capture synaptic vesicle exocytosis at cultured mouse hippocampal synapses, we induced single action potentials by electrical field stimulation then subjected neurons to high-pressure freezing to examine their morphology by electron microscopy. During synchronous release, multiple vesicles can fuse at a single active zone. Fusions during synchronous release are distributed throughout the active zone, whereas fusions during asynchronous release are biased toward the center of the active zone. After stimulation, the total number of docked vesicles across all synapses decreases by ~40%. Within 14 ms, new vesicles are recruited and fully replenish the docked pool, but this docking is transient and they either undock or fuse within 100 ms. These results demonstrate that recruitment of synaptic vesicles to release sites is rapid and reversible.
Collapse
|
41
|
Zhu PK, Zheng WS, Zhang P, Jing M, Borden PM, Ali F, Guo K, Feng J, Marvin JS, Wang Y, Wan J, Gan L, Kwan AC, Lin L, Looger LL, Li Y, Zhang Y. Nanoscopic Visualization of Restricted Nonvolume Cholinergic and Monoaminergic Transmission with Genetically Encoded Sensors. NANO LETTERS 2020; 20:4073-4083. [PMID: 32396366 PMCID: PMC7519949 DOI: 10.1021/acs.nanolett.9b04877] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
How neuromodulatory transmitters diffuse into the extracellular space remains an unsolved fundamental biological question, despite wide acceptance of the volume transmission model. Here, we report development of a method combining genetically encoded fluorescent sensors with high-resolution imaging and analysis algorithms which permits the first direct visualization of neuromodulatory transmitter diffusion at various neuronal and non-neuronal cells. Our analysis reveals that acetylcholine and monoamines diffuse at individual release sites with a spread length constant of ∼0.75 μm. These transmitters employ varied numbers of release sites, and when spatially close-packed release sites coactivate they can spillover into larger subcellular areas. Our data indicate spatially restricted (i.e., nonvolume) neuromodulatory transmission to be a prominent intercellular communication mode, reshaping current thinking of control and precision of neuromodulation crucial for understanding behaviors and diseases.
Collapse
Affiliation(s)
- Paula K. Zhu
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Math, Engineering & Science Academy Class of 2020, Albemarle High School, Charlottesville, VA 22901
- Summer Secondary School Neurobiology Class of 2019, Harvard University, Cambridge, MA 02138
- Current address: Undergraduate Class of 2024, Harvard College, Cambridge, MA 02138
| | - W. Sharon Zheng
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- Department of Biomedical Engineering Class of 2021, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Peng Zhang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Miao Jing
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Chinese Institute for Brain Research, Beijing 100871, China
| | - Philip M. Borden
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
- Current address: LifeEDIT, Research Triangle Park, NC 27709
| | - Farhan Ali
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Kaiming Guo
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jonathan S. Marvin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Yali Wang
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Li Gan
- Helen and Robert Appel Alzheimer’s Disease Research Institute, Weill Cornell Medicine College, New York, NY 10065
| | - Alex C. Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Loren L. Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Yulong Li
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yajun Zhang
- State Key Laboratory of Membrane Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908
| |
Collapse
|
42
|
Rusakov DA, Savtchenko LP, Latham PE. Noisy Synaptic Conductance: Bug or a Feature? Trends Neurosci 2020; 43:363-372. [PMID: 32459990 PMCID: PMC7902755 DOI: 10.1016/j.tins.2020.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/10/2020] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
More often than not, action potentials fail to trigger neurotransmitter release. And even when neurotransmitter is released, the resulting change in synaptic conductance is highly variable. Given the energetic cost of generating and propagating action potentials, and the importance of information transmission across synapses, this seems both wasteful and inefficient. However, synaptic noise arising from variable transmission can improve, in certain restricted conditions, information transmission. Under broader conditions, it can improve information transmission per release, a quantity that is relevant given the energetic constraints on computing in the brain. Here we discuss the role, both positive and negative, synaptic noise plays in information transmission and computation in the brain.
Collapse
Affiliation(s)
- Dmitri A Rusakov
- Queen Square UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Leonid P Savtchenko
- Queen Square UCL Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| | - Peter E Latham
- Gatsby Computational Neuroscience Unit, University College London, 25 Howland Street, London, W1T 4JG, UK.
| |
Collapse
|
43
|
Lemon WC, McDole K. Live-cell imaging in the era of too many microscopes. Curr Opin Cell Biol 2020; 66:34-42. [PMID: 32470820 DOI: 10.1016/j.ceb.2020.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023]
Abstract
At the time of this writing, searching Google Scholar for 'light-sheet microscopy' returns almost 8500 results; over three-quarters of which were published in the last 5 years alone. Searching for other advanced imaging methods in the last 5 years yields similar results: 'super-resolution microscopy' (>16 000), 'single-molecule imaging' (almost 10 000), SPIM (Single Plane Illumination Microscopy, 5000), and 'lattice light-sheet' (1300). The explosion of new imaging methods has also produced a dizzying menagerie of acronyms, with over 100 different species of 'light-sheet' alone, from SPIM to UM (Ultra microscopy) to SiMView (Simultaneous MultiView) to iSPIM (inclined SPIM, not to be confused with iSPIM, inverted SPIM). How then is the average biologist, without an advanced degree in physics, optics, or computer science supposed to make heads or tails of which method is best suited for their needs? Let us also not forget the plight of the optical physicist, who at best might need help with obtaining healthy samples and keeping them that way, or at worst may not realize the impact their newest technique could have for biologists. This review will not attempt to solve all these problems, but instead highlight some of the most recent, successful mergers between biology and advanced imaging technologies, as well as hopefully provide some guidance for anyone interested in journeying into the world of live-cell imaging.
Collapse
Affiliation(s)
- William C Lemon
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA, USA
| | - Katie McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
44
|
Tong R, Emptage NJ, Padamsey Z. A two-compartment model of synaptic computation and plasticity. Mol Brain 2020; 13:79. [PMID: 32434549 PMCID: PMC7238589 DOI: 10.1186/s13041-020-00617-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/06/2020] [Indexed: 11/10/2022] Open
Abstract
The synapse is typically viewed as a single compartment, which acts as a linear gain controller on incoming input. Traditional plasticity rules enable this gain control to be dynamically optimized by Hebbian activity. Whilst this view nicely captures postsynaptic function, it neglects the non-linear dynamics of presynaptic function. Here we present a two-compartment model of the synapse in which the presynaptic terminal first acts to filter presynaptic input before the postsynaptic terminal, acting as a gain controller, amplifies or depresses transmission. We argue that both compartments are equipped with distinct plasticity rules to enable them to optimally adapt synaptic transmission to the statistics of pre- and postsynaptic activity. Specifically, we focus on how presynaptic plasticity enables presynaptic filtering to be optimally tuned to only transmit information relevant for postsynaptic firing. We end by discussing the advantages of having a presynaptic filter and propose future work to explore presynaptic function and plasticity in vivo.
Collapse
Affiliation(s)
- Rudi Tong
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK. .,Current address: McGill University, Montreal Neurological Institute, 3801 University Street, Montreal, H3A 2B4, Canada.
| | - Nigel J Emptage
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Zahid Padamsey
- Centre of Discovery Brain Sciences, University of Edinburgh, 9 George Square, Edinburgh, EH8 9XD, UK.
| |
Collapse
|
45
|
Sanderson TM, Georgiou J, Collingridge GL. Illuminating Relationships Between the Pre- and Post-synapse. Front Neural Circuits 2020; 14:9. [PMID: 32308573 PMCID: PMC7146027 DOI: 10.3389/fncir.2020.00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Excitatory synapses in the mammalian cortex are highly diverse, both in terms of their structure and function. However, relationships between synaptic features indicate they are highly coordinated entities. Imaging techniques, that enable physiology at the resolution of individual synapses to be investigated, have allowed the presynaptic activity level of the synapse to be related to postsynaptic function. This approach has revealed that neuronal activity induces the pre- and post-synapse to be functionally correlated and that subsets of synapses are more susceptible to certain forms of synaptic plasticity. As presynaptic function is often examined in isolation from postsynaptic properties, the effect it has on the post-synapse is not fully understood. However, since postsynaptic receptors at excitatory synapses respond to release of glutamate, it follows that they may be differentially regulated depending on the frequency of its release. Therefore, examining postsynaptic properties in the context of presynaptic function may be a useful way to approach a broad range of questions on synaptic physiology. In this review, we focus on how optophysiology tools have been utilized to study relationships between the pre- and the post-synapse. Multiple imaging techniques have revealed correlations in synaptic properties from the submicron to the dendritic level. Optical tools together with advanced imaging techniques are ideally suited to illuminate this area further, due to the spatial resolution and control they allow.
Collapse
Affiliation(s)
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, Department of Physiology, University of Toronto, Toronto, ON, Canada.,Glutamate Research Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
46
|
Brock JA, Thomazeau A, Watanabe A, Li SSY, Sjöström PJ. A Practical Guide to Using CV Analysis for Determining the Locus of Synaptic Plasticity. Front Synaptic Neurosci 2020; 12:11. [PMID: 32292337 PMCID: PMC7118219 DOI: 10.3389/fnsyn.2020.00011] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 01/17/2023] Open
Abstract
Long-term synaptic plasticity is widely believed to underlie learning and memory in the brain. Whether plasticity is primarily expressed pre- or postsynaptically has been the subject of considerable debate for many decades. More recently, it is generally agreed that the locus of plasticity depends on a number of factors, such as developmental stage, induction protocol, and synapse type. Since presynaptic expression alters not just the gain but also the short-term dynamics of a synapse, whereas postsynaptic expression only modifies the gain, the locus has fundamental implications for circuits dynamics and computations in the brain. It therefore remains crucial for our understanding of neuronal circuits to know the locus of expression of long-term plasticity. One classical method for elucidating whether plasticity is pre- or postsynaptically expressed is based on analysis of the coefficient of variation (CV), which serves as a measure of noise levels of synaptic neurotransmission. Here, we provide a practical guide to using CV analysis for the purposes of exploring the locus of expression of long-term plasticity, primarily aimed at beginners in the field. We provide relatively simple intuitive background to an otherwise theoretically complex approach as well as simple mathematical derivations for key parametric relationships. We list important pitfalls of the method, accompanied by accessible computer simulations to better illustrate the problems (downloadable from GitHub), and we provide straightforward solutions for these issues.
Collapse
Affiliation(s)
- Jennifer A Brock
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Aurore Thomazeau
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Sally Si Ying Li
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Brain Repair and Integrative Neuroscience Program, Department of Medicine, The Research Institute of the McGill University Health Centre, Montreal General Hospital, Montreal, QC, Canada
| |
Collapse
|
47
|
Kopach O, Zheng K, Rusakov DA. Optical monitoring of glutamate release at multiple synapses in situ detects changes following LTP induction. Mol Brain 2020; 13:39. [PMID: 32169106 PMCID: PMC7071671 DOI: 10.1186/s13041-020-00572-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/27/2020] [Indexed: 01/10/2023] Open
Abstract
Information processing and memory formation in the brain relies on release of the main excitatory neurotransmitter glutamate from presynaptic axonal specialisations. The classical Hebbian paradigm of synaptic memory, long-term potentiation (LTP) of transmission, has been widely associated with an increase in the postsynaptic receptor current. Whether and to what degree LTP induction also enhances presynaptic glutamate release has been the subject of debate. Here, we took advantage of the recently developed genetically encoded optical sensors of glutamate (iGluSnFR) to monitor its release at CA3-CA1 synapses in acute hippocampal slices, before and after the induction of LTP. We attempted to trace release events at multiple synapses simultaneously, by using two-photon excitation imaging in fast frame-scanning mode. We thus detected a significant increase in the average iGluSnFR signal during potentiation, which lasted for up to 90 min. This increase may reflect an increased amount of released glutamate or, alternatively, reduced glutamate binding to high-affinity glutamate transporters that compete with iGluSnFR.
Collapse
Affiliation(s)
- Olga Kopach
- Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Kaiyu Zheng
- Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK
| | - Dmitri A Rusakov
- Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
48
|
Heine M, Holcman D. Asymmetry Between Pre- and Postsynaptic Transient Nanodomains Shapes Neuronal Communication. Trends Neurosci 2020; 43:182-196. [DOI: 10.1016/j.tins.2020.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
|
49
|
Rethinking calcium profiles around single channels: the exponential and periodic calcium nanodomains. Sci Rep 2019; 9:17196. [PMID: 31748584 PMCID: PMC6868209 DOI: 10.1038/s41598-019-53095-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022] Open
Abstract
Many fundamental calcium-dependent physiological processes are triggered by high local calcium levels that are established around the sites of calcium entry into the cell (channels). They are dubbed as calcium nanodomains but their exact profiles are still elusive. The concept of calcium nanodomains stems from a linear model of calcium diffusion and is only valid when calcium increases are smaller than the concentration of cytoplasmic buffers. Recent data indicates that much higher calcium levels cause buffer saturation. Therefore, I sought explicit solutions of a nonlinear reaction-diffusion model and found a dichotomous solution. For small fluxes, the steady state calcium profile is quasi-exponential, and when calcium exceeds buffer concentration a spatial periodicity appears. Analytical results are supported by Monte-Carlo simulations. I also imaged 1D- and radial calcium distributions around single α-synuclein channels in cell-free conditions. Measured Ca profiles are consistent with theoretical predictions. I propose that the periodic calcium patterns may well arise under certain conditions and their specific functional role has to be established.
Collapse
|
50
|
Soares C, Trotter D, Longtin A, Béïque JC, Naud R. Parsing Out the Variability of Transmission at Central Synapses Using Optical Quantal Analysis. Front Synaptic Neurosci 2019; 11:22. [PMID: 31474847 PMCID: PMC6702664 DOI: 10.3389/fnsyn.2019.00022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022] Open
Abstract
Properties of synaptic release dictates the core of information transfer in neural circuits. Despite decades of technical and theoretical advances, distinguishing bona fide information content from the multiple sources of synaptic variability remains a challenging problem. Here, we employed a combination of computational approaches with cellular electrophysiology, two-photon uncaging of MNI-Glutamate and imaging at single synapses. We describe and calibrate the use of the fluorescent glutamate sensor iGluSnFR and found that its kinetic profile is close to that of AMPA receptors, therefore providing several distinct advantages over slower methods relying on NMDA receptor activation (i.e., chemical or genetically encoded calcium indicators). Using an array of statistical methods, we further developed, and validated on surrogate data, an expectation-maximization algorithm that, by biophysically constraining release variability, extracts the quantal parameters n (maximum number of released vesicles) and p (unitary probability of release) from single-synapse iGluSnFR-mediated transients. Together, we present a generalizable mathematical formalism which, when applied to optical recordings, paves the way to an increasingly precise investigation of information transfer at central synapses.
Collapse
Affiliation(s)
- Cary Soares
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Daniel Trotter
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - André Longtin
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Jean-Claude Béïque
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
| | - Richard Naud
- Department of Cellular and Molecular Medicine, uOttawa Brain and Mind Research Institute, Center for Neural Dynamics, University of Ottawa, Ottawa, ON, Canada
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|