1
|
Lou W, Li X, Jin R, Peng W. Time-varying phase synchronization of resting-state functional magnetic resonance imaging reveals a shift toward self-referential processes during sustained pain. Pain 2024; 165:1493-1504. [PMID: 38193830 DOI: 10.1097/j.pain.0000000000003152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
ABSTRACT Growing evidence has suggested that time-varying functional connectivity between different brain regions might underlie the dynamic experience of pain. This study used a novel, data-driven framework to characterize the dynamic interactions of large-scale brain networks during sustained pain by estimating recurrent patterns of phase-synchronization. Resting-state functional magnetic resonance imaging signals were collected from 50 healthy participants before (once) and after (twice) the onset of sustained pain that was induced by topical application of capsaicin cream. We first decoded the instantaneous phase of neural activity and then applied leading eigenvector dynamic analysis on the time-varying phase-synchronization. We identified 3 recurrent brain states that show distinctive phase-synchronization. The presence of state 1, characterized by phase-synchronization between the default mode network and auditory, visual, and sensorimotor networks, together with transitions towards this brain state, increased during sustained pain. These changes can account for the perceived pain intensity and reported unpleasantness induced by capsaicin application. In contrast, state 3, characterized by phase-synchronization between the cognitive control network and sensory networks, decreased after the onset of sustained pain. These results are indicative of a shift toward internally directed self-referential processes (state 1) and away from externally directed cognitive control processes (state 3) during sustained pain.
Collapse
Affiliation(s)
- Wutao Lou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| | - Richu Jin
- Research Institute of Trustworthy Autonomous Systems, Southern University of Science and Technology, Shenzhen, China
- Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Kaptan M, Pfyffer D, Konstantopoulos CG, Law CS, Weber II KA, Glover GH, Mackey S. Recent developments and future avenues for human corticospinal neuroimaging. Front Hum Neurosci 2024; 18:1339881. [PMID: 38332933 PMCID: PMC10850311 DOI: 10.3389/fnhum.2024.1339881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Non-invasive neuroimaging serves as a valuable tool for investigating the mechanisms within the central nervous system (CNS) related to somatosensory and motor processing, emotions, memory, cognition, and other functions. Despite the extensive use of brain imaging, spinal cord imaging has received relatively less attention, regardless of its potential to study peripheral communications with the brain and the descending corticospinal systems. To comprehensively understand the neural mechanisms underlying human sensory and motor functions, particularly in pathological conditions, simultaneous examination of neuronal activity in both the brain and spinal cord becomes imperative. Although technically demanding in terms of data acquisition and analysis, a growing but limited number of studies have successfully utilized specialized acquisition protocols for corticospinal imaging. These studies have effectively assessed sensorimotor, autonomic, and interneuronal signaling within the spinal cord, revealing interactions with cortical processes in the brain. In this mini-review, we aim to examine the expanding body of literature that employs cutting-edge corticospinal imaging to investigate the flow of sensorimotor information between the brain and spinal cord. Additionally, we will provide a concise overview of recent advancements in functional magnetic resonance imaging (fMRI) techniques. Furthermore, we will discuss potential future perspectives aimed at enhancing our comprehension of large-scale neuronal networks in the CNS and their disruptions in clinical disorders. This collective knowledge will aid in refining combined corticospinal fMRI methodologies, leading to the development of clinically relevant biomarkers for conditions affecting sensorimotor processing in the CNS.
Collapse
Affiliation(s)
- Merve Kaptan
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Dario Pfyffer
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Christiane G. Konstantopoulos
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Christine S.W. Law
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kenneth A. Weber II
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gary H. Glover
- Radiological Sciences Laboratory, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Sean Mackey
- Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
3
|
Kinany N, Pirondini E, Micera S, Van De Ville D. Spinal Cord fMRI: A New Window into the Central Nervous System. Neuroscientist 2023; 29:715-731. [PMID: 35822665 PMCID: PMC10623605 DOI: 10.1177/10738584221101827] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
With the brain, the spinal cord forms the central nervous system. Initially considered a passive relay between the brain and the periphery, the spinal cord is now recognized as being active and plastic. Yet, it remains largely overlooked by the human neuroscience community, in stark contrast with the wealth of research investigating the brain. In this review, we argue that fMRI, traditionally used to image cerebral function, can be extended beyond the brain to help unravel spinal mechanisms involved in human behaviors. To this end, we first outline strategies that have been proposed to tackle the challenges inherent to spinal cord fMRI. Then, we discuss how they have been utilized to provide insights into the functional organization of spinal sensorimotor circuits, highlighting their potential to address fundamental and clinical questions. By summarizing guidelines and applications of spinal cord fMRI, we hope to stimulate and support further research into this promising yet underexplored field.
Collapse
Affiliation(s)
- Nawal Kinany
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Elvira Pirondini
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
- Department of BioEngineering, University of Pittsburgh, PA, USA
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Translational Neural Engineering Area, The Biorobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Dimitri Van De Ville
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| |
Collapse
|
4
|
Chen LM, Wang F, Mishra A, Yang PF, Sengupta A, Reed JL, Gore JC. Longitudinal multiparametric MRI of traumatic spinal cord injury in animal models. Magn Reson Imaging 2023; 102:184-200. [PMID: 37343904 PMCID: PMC10528214 DOI: 10.1016/j.mri.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Multi-parametric MRI (mpMRI) technology enables non-invasive and quantitative assessments of the structural, molecular, and functional characteristics of various neurological diseases. Despite the recognized importance of studying spinal cord pathology, mpMRI applications in spinal cord research have been somewhat limited, partly due to technical challenges associated with spine imaging. However, advances in imaging techniques and improved image quality now allow longitudinal investigations of a comprehensive range of spinal cord pathological features by exploiting different endogenous MRI contrasts. This review summarizes the use of mpMRI techniques including blood oxygenation level-dependent (BOLD) functional MRI (fMRI), diffusion tensor imaging (DTI), quantitative magnetization transfer (qMT), and chemical exchange saturation transfer (CEST) MRI in monitoring different aspects of spinal cord pathology. These aspects include cyst formation and axonal disruption, demyelination and remyelination, changes in the excitability of spinal grey matter and the integrity of intrinsic functional circuits, and non-specific molecular changes associated with secondary injury and neuroinflammation. These approaches are illustrated with reference to a nonhuman primate (NHP) model of traumatic cervical spinal cord injuries (SCI). We highlight the benefits of using NHP SCI models to guide future studies of human spinal cord pathology, and demonstrate how mpMRI can capture distinctive features of spinal cord pathology that were previously inaccessible. Furthermore, the development of mechanism-based MRI biomarkers from mpMRI studies can provide clinically useful imaging indices for understanding the mechanisms by which injured spinal cords progress and repair. These biomarkers can assist in the diagnosis, prognosis, and evaluation of therapies for SCI patients, potentially leading to improved outcomes.
Collapse
Affiliation(s)
- Li Min Chen
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Arabinda Mishra
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pai-Feng Yang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anirban Sengupta
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jamie L Reed
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Combes AJE, Clarke MA, O'Grady KP, Schilling KG, Smith SA. Advanced spinal cord MRI in multiple sclerosis: Current techniques and future directions. Neuroimage Clin 2022; 36:103244. [PMID: 36306717 PMCID: PMC9668663 DOI: 10.1016/j.nicl.2022.103244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022]
Abstract
Spinal cord magnetic resonance imaging (MRI) has a central role in multiple sclerosis (MS) clinical practice for diagnosis and disease monitoring. Advanced MRI sequences capable of visualizing and quantifying tissue macro- and microstructure and reflecting different pathological disease processes have been used in MS research; however, the spinal cord remains under-explored, partly due to technical obstacles inherent to imaging this structure. We propose that the study of the spinal cord merits equal ambition in overcoming technical challenges, and that there is much information to be exploited to make valuable contributions to our understanding of MS. We present a narrative review on the latest progress in advanced spinal cord MRI in MS, covering in the first part structural, functional, metabolic and vascular imaging methods. We focus on recent studies of MS and those making significant technical steps, noting the challenges that remain to be addressed and what stands to be gained from such advances. Throughout we also refer to other works that presend more in-depth review on specific themes. In the second part, we present several topics that, in our view, hold particular potential. The need for better imaging of gray matter is discussed. We stress the importance of developing imaging beyond the cervical spinal cord, and explore the use of ultra-high field MRI. Finally, some recommendations are given for future research, from study design to newer developments in analysis, and the need for harmonization of sequences and methods within the field. This review is aimed at researchers and clinicians with an interest in gaining an overview of the current state of advanced MRI research in this field and what is primed to be the future of spinal cord imaging in MS research.
Collapse
Affiliation(s)
- Anna J E Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States.
| | - Margareta A Clarke
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States
| | - Kristin P O'Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Avenue South, Medical Center North, AA-1105, Nashville, TN 37232-2310, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, United States; Department of Biomedical Engineering, Vanderbilt University, 2301 Vanderbilt Place, PMB 351826, Nashville, TN 37235-1826, United States
| |
Collapse
|
6
|
Girão AF, Serrano MC, Completo A, Marques PAAP. Is Graphene Shortening the Path toward Spinal Cord Regeneration? ACS NANO 2022; 16:13430-13467. [PMID: 36000717 PMCID: PMC9776589 DOI: 10.1021/acsnano.2c04756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Along with the development of the next generation of biomedical platforms, the inclusion of graphene-based materials (GBMs) into therapeutics for spinal cord injury (SCI) has potential to nourish topmost neuroprotective and neuroregenerative strategies for enhancing neural structural and physiological recovery. In the context of SCI, contemplated as one of the most convoluted challenges of modern medicine, this review first provides an overview of its characteristics and pathophysiological features. Then, the most relevant ongoing clinical trials targeting SCI, including pharmaceutical, robotics/neuromodulation, and scaffolding approaches, are introduced and discussed in sequence with the most important insights brought by GBMs into each particular topic. The current role of these nanomaterials on restoring the spinal cord microenvironment after injury is critically contextualized, while proposing future concepts and desirable outputs for graphene-based technologies aiming to reach clinical significance for SCI.
Collapse
Affiliation(s)
- André F. Girão
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (A.F.G.)
| | - María Concepcion Serrano
- Instituto
de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), Calle Sor Juana Inés de la
Cruz 3, Madrid, 28049, Spain
- (M.C.S.)
| | - António Completo
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
| | - Paula A. A. P. Marques
- Centre
for Mechanical Technology and Automation (TEMA), Department of Mechanical
Engineering, University of Aveiro (UA), Aveiro, 3810-193, Portugal
- (P.A.A.P.M.)
| |
Collapse
|
7
|
Zhang H, Zhu L, Gao DS, Liu Y, Zhang J, Yan M, Qian J, Xi W. Imaging the Deep Spinal Cord Microvascular Structure and Function with High-Speed NIR-II Fluorescence Microscopy. SMALL METHODS 2022; 6:e2200155. [PMID: 35599368 DOI: 10.1002/smtd.202200155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
The spinal cord (SC) is crucial for a myriad of somatosensory, autonomic signal processing, and transductions. Understanding the SC vascular structure and function thus plays an integral part in neuroscience and clinical research. However, the dense layers of myelinated ascending axons on the dorsal side inconveniently grant the SC tissue with high optical scattering property, which significantly hinders the imaging depth of the SC vasculature in vivo. Commonly used antiscattering techniques such as multiphoton fluorescence microscopy have low imaging speed and cannot capture the rapid vascular particle flow without significant motion blur. Here, advantage of the high penetration of near-infrared (NIR)-II fluorescence is taken to demonstrate a deep SC vascular structural image stack up to 350 µm, comparable to two-photon microscopy. Furthermore, the red blood cells are labelled with the clinically approved NIR dye indocyanine. The combination of a fast NIR camera and indocyanine green-red blood cells (RBCs) makes it possible to attain high-speed 100 frame-per-second NIR-II imaging to identify the corresponding changes in RBC velocity during the external hind leg stimulus. For the first time, it is established that the NIR-II region would be a promising spectral window for SC imaging. NIR-II fluorescence microscopy has excellent potential for clinical and basic science research on SC.
Collapse
Affiliation(s)
- Hequn Zhang
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
| | - Liang Zhu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Dave Schwinn Gao
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yin Liu
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
| | - Jun Zhang
- Department of Spine Surgery, Zhejiang Provincial People's Hospital, Hangzhou Medical School People's Hospital, Shangtang Road 158th, Hangzhou, Zhejiang Province, 310014, China
| | - Min Yan
- Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wang Xi
- Interdisciplinary Institute of Neuroscience and Technology (ZIINT), Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310020, China
- MOE Frontier Science Center for Brain Research and Brain Machine Integration, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and instrument Science, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Landelle C, Lungu O, Vahdat S, Kavounoudias A, Marchand-Pauvert V, De Leener B, Doyon J. Investigating the human spinal sensorimotor pathways through functional magnetic resonance imaging. Neuroimage 2021; 245:118684. [PMID: 34732324 DOI: 10.1016/j.neuroimage.2021.118684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023] Open
Abstract
Most of our knowledge about the human spinal ascending (sensory) and descending (motor) pathways comes from non-invasive electrophysiological investigations. However, recent methodological advances in acquisition and analyses of functional magnetic resonance imaging (fMRI) data from the spinal cord, either alone or in combination with the brain, have allowed us to gain further insights into the organization of this structure. In the current review, we conducted a systematic search to produced somatotopic maps of the spinal fMRI activity observed through different somatosensory, motor and resting-state paradigms. By cross-referencing these human neuroimaging findings with knowledge acquired through neurophysiological recordings, our review demonstrates that spinal fMRI is a powerful tool for exploring, in vivo, the human spinal cord pathways. We report strong cross-validation between task-related and resting-state fMRI in accordance with well-known hemicord, postero-anterior and rostro-caudal organization of these pathways. We also highlight the specific advantages of using spinal fMRI in clinical settings to characterize better spinal-related impairments, predict disease progression, and guide the implementation of therapeutic interventions.
Collapse
Affiliation(s)
- Caroline Landelle
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Ovidiu Lungu
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Anne Kavounoudias
- CNRS, UMR7291, Laboratory of Cognitive Neurosciences, Aix-Marseille University, Marseille, France
| | | | - Benjamin De Leener
- Department of Computer Engineering and Software Engineering, Polytechnique Montreal, Montreal, QC, Canada; CHU Sainte-Justine Research Centre, Montreal, QC, Canada
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Valenzuela F, Rana M, Sitaram R, Uribe S, Eblen-Zajjur A. Non-Invasive Functional Evaluation of the Human Spinal Cord by Assessing the Peri-Spinal Neurovascular Network With Near Infrared Spectroscopy. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2312-2321. [PMID: 34705650 DOI: 10.1109/tnsre.2021.3123587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Current medical care lacks an effective functional evaluation for the spinal cord. Magnetic resonance imaging and computed tomography mainly provide structural information of the spinal cord, while spinal somatosensory evoked potentials are limited by a low signal to noise ratio. We developed a non-invasive approach based on near-infrared spectroscopy in dual-wavelength (760 and 850 nm for deoxy- or oxyhemoglobin respectively) to record the neurovascular response (NVR) of the peri-spinal vascular network at the 7th cervical and 10th thoracic vertebral levels of the spinal cord, triggered by unilateral median nerve electrical stimulation (square pulse, 5-10 mA, 5 ms, 1 pulse every 4 minutes) at the wrist. Amplitude, rise-time, and duration of NVR were characterized in 20 healthy participants. A single, painless stimulus was able to elicit a high signal-to-noise ratio and multi-segmental NVR (mainly from Oxyhemoglobin) with a fast rise time of 6.18 [4.4-10.4] seconds (median [Percentile 25-75]) followed by a slow decay phase for about 30 seconds toward the baseline. Cervical NVR was earlier and larger than thoracic and no left/right asymmetry was detected. Stimulus intensity/NVR amplitude fitted to a 2nd order function. The characterization and feasibility of the peri-spinal NVR strongly support the potential clinical applications for a functional assessment of spinal cord lesions.
Collapse
|
10
|
Zhang L, Wang L, Xia H, Tan Y, Li C, Fang C. Connectomic mapping of brain-spinal cord neural networks: future directions in assessing spinal cord injury at rest. Neurosci Res 2021; 176:9-17. [PMID: 34699861 DOI: 10.1016/j.neures.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022]
Abstract
Following spinal cord injury (SCI), the central nervous system undergoes significant reconstruction. The dynamic change in the interaction of the brain-spinal cord axis as well as in structure-function relations plays a vital role in the determination of neurological functions, which might have important clinical implications for the treatment and its efficacy evaluation of patients with SCI. Brain connectomes based on neuroimaging data is a relatively new field of research that maps the brain's large-scale structural and functional networks at rest. Importantly, increasing evidence shows that such resting-state signals can also be seen in the spinal cord. In the present review, we focus on the reconstruction of multi-level neural circuits after SCI. We also describe how the connectome concept could further our understanding of neuroplasticity after SCI. We propose that mapping the cortical-subcortical-spinal cord networks can provide novel insights into the pathologies of SCI.
Collapse
Affiliation(s)
- Lijian Zhang
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China; Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, China
| | - Luxuan Wang
- Department of Neurology, Affiliated Hospital of Hebei University, Hebei University, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Medical University, China
| | - Yanli Tan
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, China; Department of Pathology, Affiliated Hospital of Hebei University, Hebei University, China.
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China.
| | - Chuan Fang
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China; Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, China.
| |
Collapse
|
11
|
Structural and resting state functional connectivity beyond the cortex. Neuroimage 2021; 240:118379. [PMID: 34252527 DOI: 10.1016/j.neuroimage.2021.118379] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Mapping the structural and functional connectivity of the central nervous system has become a key area within neuroimaging research. While detailed network structures across the entire brain have been probed using animal models, non-invasive neuroimaging in humans has thus far been dominated by cortical investigations. Beyond the cortex, subcortical nuclei have traditionally been less accessible due to their smaller size and greater distance from radio frequency coils. However, major neuroimaging developments now provide improved signal and the resolution required to study these structures. Here, we present an overview of the connectivity between the amygdala, brainstem, cerebellum, spinal cord and the rest of the brain. While limitations to their imaging and analyses remain, we also provide some recommendations and considerations for mapping brain connectivity beyond the cortex.
Collapse
|
12
|
Mächler P, Broggini T, Mateo C, Thunemann M, Fomin-Thunemann N, Doran PR, Sencan I, Kilic K, Desjardins M, Uhlirova H, Yaseen MA, Boas DA, Linninger AA, Vergassola M, Yu X, Lewis LD, Polimeni JR, Rosen BR, Sakadžić S, Buxton RB, Lauritzen M, Kleinfeld D, Devor A. A Suite of Neurophotonic Tools to Underpin the Contribution of Internal Brain States in fMRI. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18:100273. [PMID: 33959688 PMCID: PMC8095678 DOI: 10.1016/j.cobme.2021.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent developments in optical microscopy, applicable for large-scale and longitudinal imaging of cortical activity in behaving animals, open unprecedented opportunities to gain a deeper understanding of neurovascular and neurometabolic coupling during different brain states. Future studies will leverage these tools to deliver foundational knowledge about brain state-dependent regulation of cerebral blood flow and metabolism as well as regulation as a function of brain maturation and aging. This knowledge is of critical importance to interpret hemodynamic signals observed with functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Philipp Mächler
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas Broggini
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Celine Mateo
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Patrick R. Doran
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ikbal Sencan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Kivilcim Kilic
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Michèle Desjardins
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Hana Uhlirova
- Institute of Scientific Instruments of the Czech Academy of Science, Brno, Czech Republic
| | - Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Andreas A. Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Massimo Vergassola
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Département de Physique de l’Ecole Normale Supérieure, 75005 Paris, France
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Richard B. Buxton
- Department of Radiology, University of California San Diego, La Jolla, CA 92037, USA
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N 2200, Denmark
- Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup 2600, Denmark
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Section on Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
13
|
McPherson JG, Bandres MF. Spontaneous neural synchrony links intrinsic spinal sensory and motor networks during unconsciousness. eLife 2021; 10:e66308. [PMID: 34042587 PMCID: PMC8177891 DOI: 10.7554/elife.66308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
Non-random functional connectivity during unconsciousness is a defining feature of supraspinal networks. However, its generalizability to intrinsic spinal networks remains incompletely understood. Previously, Barry et al., 2014 used fMRI to reveal bilateral resting state functional connectivity within sensory-dominant and, separately, motor-dominant regions of the spinal cord. Here, we record spike trains from large populations of spinal interneurons in vivo in rats and demonstrate that spontaneous functional connectivity also links sensory- and motor-dominant regions during unconsciousness. The spatiotemporal patterns of connectivity could not be explained by latent afferent activity or by populations of interconnected neurons spiking randomly. We also document connection latencies compatible with mono- and disynaptic interactions and putative excitatory and inhibitory connections. The observed activity is consistent with the hypothesis that salient, experience-dependent patterns of neural transmission introduced during behavior or by injury/disease are reactivated during unconsciousness. Such a spinal replay mechanism could shape circuit-level connectivity and ultimately behavior.
Collapse
Affiliation(s)
- Jacob Graves McPherson
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
- Department of Anesthesiology, Washington University School of MedicineSt. LouisUnited States
- Washington University Pain Center, Washington University School of MedicineSt. LouisUnited States
- Program in Neurosciences, Washington University School of MedicineSt. LouisUnited States
| | - Maria F Bandres
- Program in Physical Therapy, Washington University School of MedicineSt. LouisUnited States
- Department of Biomedical Engineering, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
14
|
Liao C, Qi H, Reed JL, Jeoung H, Kaas JH. Corticocuneate projections are altered after spinal cord dorsal column lesions in New World monkeys. J Comp Neurol 2021; 529:1669-1702. [PMID: 33029803 PMCID: PMC7987845 DOI: 10.1002/cne.25050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 12/31/2022]
Abstract
Recovery of responses to cutaneous stimuli in the area 3b hand cortex of monkeys after dorsal column lesions (DCLs) in the cervical spinal cord relies on neural rewiring in the cuneate nucleus (Cu) over time. To examine whether the corticocuneate projections are modified during recoveries after the DCL, we injected cholera toxin subunit B into the hand representation in Cu to label the cortical neurons after various recovery times, and related results to the recovery of neural responses in the affected area 3b hand cortex. In normal New World monkeys, labeled neurons were predominately distributed in the hand regions of contralateral areas 3b, 3a, 1 and 2, parietal ventral (PV), secondary somatosensory cortex (S2), and primary motor cortex (M1), with similar distributions in the ipsilateral cortex in significantly smaller numbers. In monkeys with short-term recoveries, the area 3b hand neurons were unresponsive or responded weakly to touch on the hand, while the cortical labeling pattern was largely unchanged. After longer recoveries, the area 3b hand neurons remained unresponsive, or responded to touch on the hand or somatotopically abnormal parts, depending on the lesion extent. The distributions of cortical labeled neurons were much more widespread than the normal pattern in both hemispheres, especially when lesions were incomplete. The proportion of labeled neurons in the contralateral area 3b hand cortex was not correlated with the functional reactivation in the area 3b hand cortex. Overall, our findings indicated that corticocuneate inputs increase during the functional recovery, but their functional role is uncertain.
Collapse
Affiliation(s)
- Chia‐Chi Liao
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Hui‐Xin Qi
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jamie L. Reed
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Ha‐Seul Jeoung
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| | - Jon H. Kaas
- Department of Psychology Vanderbilt University Nashville Tennessee USA
| |
Collapse
|
15
|
Kinany N, Pirondini E, Micera S, Van De Ville D. Dynamic Functional Connectivity of Resting-State Spinal Cord fMRI Reveals Fine-Grained Intrinsic Architecture. Neuron 2020; 108:424-435.e4. [PMID: 32910894 DOI: 10.1016/j.neuron.2020.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 07/18/2020] [Indexed: 12/24/2022]
Abstract
The neuroimaging community has shown tremendous interest in exploring the brain's spontaneous activity using functional magnetic resonance imaging (fMRI). On the contrary, the spinal cord has been largely overlooked despite its pivotal role in processing sensorimotor signals. Only a handful of studies have probed the organization of spinal resting-state fluctuations, always using static measures of connectivity. Many innovative approaches have emerged for analyzing dynamics of brain fMRI, but they have not yet been applied to the spinal cord, although they could help disentangle its functional architecture. Here, we leverage a dynamic connectivity method based on the clustering of hemodynamic-informed transients to unravel the rich dynamic organization of spinal resting-state signals. We test this approach in 19 healthy subjects, uncovering fine-grained spinal components and highlighting their neuroanatomical and physiological nature. We provide a versatile tool, the spinal innovation-driven co-activation patterns (SpiCiCAP) framework, to characterize spinal circuits during rest and task, as well as their disruption in neurological disorders.
Collapse
Affiliation(s)
- Nawal Kinany
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland
| | - Elvira Pirondini
- Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland
| | - Silvestro Micera
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, 56025 Pontedera, Italy.
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Center for Neuroprosthetics, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland; Department of Radiology and Medical Informatics, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
16
|
Optimization of a transmit/receive surface coil for squirrel monkey spinal cord imaging. Magn Reson Imaging 2020; 68:197-202. [PMID: 32087231 DOI: 10.1016/j.mri.2020.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022]
Abstract
MR Imaging the spinal cord of non-human primates (NHP), such as squirrel monkey, is important since the injuries in NHP resemble those that afflict human spinal cords. Our previous studies have reported a multi-parametric MRI protocol, including functional MRI, diffusion tensor imaging, quantitative magnetization transfer and chemical exchange saturation transfer, which allows non-invasive detection and monitoring of injury-associated structural, functional and molecular changes over time. High signal-to-noise ratio (SNR) is critical for obtaining high-resolution images and robust estimates of MRI parameters. In this work, we describe our construction and use of a single channel coil designed to maximize the SNR for imaging the squirrel monkey cervical spinal cord in a 21 cm bore magnet at 9.4 T. We first numerically optimized the coil dimension of a single loop coil and then evaluated the benefits of a quadrature design. We then built an optimized coil based on the simulation results and compared its SNR performance with a non-optimized single coil in both phantoms and in vivo.
Collapse
|