1
|
An J, Wang H, Wei M, Yu X, Liao Y, Tan X, Hu C, Li S, Luo Y, Gui Y, Lin K, Wang Y, Huang L, Wang D. Identification of chemical inhibitors targeting long noncoding RNA through gene signature-based high throughput screening. Int J Biol Macromol 2024; 292:139119. [PMID: 39722392 DOI: 10.1016/j.ijbiomac.2024.139119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Scalable methods for functionally high-throughput screening of RNA-targeting small molecules are currently limited. Here, an RNA knockdown gene signature and high-throughput sequencing-based high-throughput screening (HTS2) were integrated to identify RNA-targeting compounds. We first generated a gene signature characterizing the knockdown of the long non-coding RNA LINC00973. Then, screening of 8199 compounds by HTS2 assay identified that treatments of Hesperadin and GSK1070916 significantly mimic the expression pattern of the LINC00973 knockdown gene signature. Functionally, cell phenotype changes after treatments of these two compounds also mimic the losing function of LINC00973 in multiple types of cancer cells. Mechanistically, the inhibitory action of these two compounds on LINC00973 primarily operates via the AURKB-mediated MAPK signaling pathway, resulting in reduced expression of the transcription factor c-Jun. Consequently, this leads to the suppression of LINC00973 transcription. Moreover, these two compounds significantly inhibit xenograft tumor growth in vivo. Clinically, we further found that breast tumors with high expression of LINC00973 also show relatively high expression of AURKB or JUN, and vice versa. In summary, we established a novel high-throughput screening strategy to identify small molecules capable of targeting RNA, provided two promising compounds targeting LINC00973 and further shed light on the underlying transcriptional upregulation mechanism of LINC00973 within cancer cells.
Collapse
Affiliation(s)
- Jun An
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huili Wang
- School of Medicine, Tsinghua University, Beijing, China
| | - Mingming Wei
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiankuo Yu
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yile Liao
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue Tan
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Hu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengrong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Luo
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Gui
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kequan Lin
- Department of Cardiology of The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yumei Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijun Huang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Dong Wang
- School of Basic Medical Sciences, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
2
|
Sidharthan V, Sibley CD, Dunne-Dombrink K, Yang M, Zahurancik WJ, Balaratnam S, Wilburn DB, Schneekloth JS, Gopalan V. Use of a small molecule microarray screen to identify inhibitors of the catalytic RNA subunit of Methanobrevibacter smithii RNase P. Nucleic Acids Res 2024:gkae1190. [PMID: 39676671 DOI: 10.1093/nar/gkae1190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
Despite interest in developing therapeutics that leverage binding pockets in structured RNAs-whose dysregulation leads to diseases-such drug discovery efforts are limited. Here, we have used a small molecule microarray (SMM) screen to find inhibitors of a large ribozyme: the Methanobrevibacter smithii RNase P RNA (Msm RPR, ∼300 nt). The ribonucleoprotein form of RNase P, which catalyzes the 5'-maturation of precursor tRNAs, is a suitable drug target as it is essential, structurally diverse across life domains, and present in low copy. From an SMM screen of 7,300 compounds followed by selectivity profiling, we identified 48 hits that bound specifically to the Msm RPR-the catalytic subunit in Msm (archaeal) RNase P. When we tested these hits in precursor-tRNA cleavage assays, we discovered that the drug-like M1, a diaryl-piperidine, inhibits Msm RPR (KI, 17 ± 1 μM) but not a structurally related archaeal RPR, and binds to Msm RPR with a KD(app) of 8 ± 3 μM. Structure-activity relationship analyses performed with synthesized analogs pinpointed groups in M1 that are important for its ability to inhibit Msm RPR. Overall, the SMM method offers prospects for advancing RNA druggability by identifying new privileged scaffolds/chemotypes that bind large, structured RNAs.
Collapse
Affiliation(s)
- Vaishnavi Sidharthan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Christopher D Sibley
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Kara Dunne-Dombrink
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mo Yang
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Walter J Zahurancik
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Sumirtha Balaratnam
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Damien B Wilburn
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
3
|
Srivastava Y, Akinyemi O, Rohe T, Pritchett E, Baker C, Sharma A, Jenkins J, Mathews D, Wedekind J. Two riboswitch classes that share a common ligand-binding fold show major differences in the ability to accommodate mutations. Nucleic Acids Res 2024; 52:13152-13173. [PMID: 39413212 PMCID: PMC11602147 DOI: 10.1093/nar/gkae886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Riboswitches are structured RNAs that sense small molecules to control expression. Prequeuosine1 (preQ1)-sensing riboswitches comprise three classes (I, II and III) that adopt distinct folds. Despite this difference, class II and III riboswitches each use 10 identical nucleotides to bind the preQ1 metabolite. Previous class II studies showed high sensitivity to binding-pocket mutations, which reduced preQ1 affinity and impaired function. Here, we introduced four equivalent mutations into a class III riboswitch, which maintained remarkably tight preQ1 binding. Co-crystal structures of each class III mutant showed compensatory interactions that preserve the fold. Chemical modification analysis revealed localized RNA flexibility changes for each mutant, but molecular dynamics (MD) simulations suggested that each mutation was not overtly destabilizing. Although impaired, class III mutants retained tangible gene-regulatory activity in bacteria compared to equivalent preQ1-II variants; mutations in the preQ1-pocket floor were tolerated better than wall mutations. Principal component analysis of MD trajectories suggested that the most functionally deleterious wall mutation samples different motions compared to wildtype. Overall, the results reveal that formation of compensatory interactions depends on the context of mutations within the overall fold and that functionally deleterious mutations can alter long-range correlated motions that link the riboswitch binding pocket with distal gene-regulatory sequences.
Collapse
Affiliation(s)
- Yoshita Srivastava
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
| | - Olayinka Akinyemi
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
- Department of Physics, University of Rochester, 500 Wilson Blvd, Rochester, NY 14627, USA
| | - Tiana C Rohe
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
| | - Elizabeth M Pritchett
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 704, Rochester, NY 14642, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 704, Rochester, NY 14642, USA
| | - Akshara Sharma
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave MC 712, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Kiliushik D, Goenner C, Law M, Schroeder GM, Srivastava Y, Jenkins JL, Wedekind JE. Knotty is nice: Metabolite binding and RNA-mediated gene regulation by the preQ 1 riboswitch family. J Biol Chem 2024; 300:107951. [PMID: 39486689 PMCID: PMC11625349 DOI: 10.1016/j.jbc.2024.107951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024] Open
Abstract
Riboswitches sense specific cellular metabolites, leading to messenger RNA conformational changes that regulate downstream genes. Here, we review the three known prequeosine1 (preQ1) riboswitch classes, which encompass five gene-regulatory motifs derived from distinct consensus models of folded RNA pseudoknots. Structural and functional analyses reveal multiple gene-regulation strategies ranging from partial occlusion of the ribosome-binding Shine-Dalgarno sequence (SDS), SDS sequestration driven by kinetic or thermodynamic folding pathways, direct preQ1 recognition by the SDS, and complete SDS burial with in the riboswitch architecture. Family members can also induce elemental transcriptional pausing, which depends on ligand-mediated pseudoknot formation. Accordingly, preQ1 family members provide insight into a wide range of gene-regulatory tactics as well as a diverse repertoire of chemical approaches used to recognize the preQ1 metabolite. From a broader perspective, future challenges for the field will include the identification of new riboswitches in mRNAs that do not possess an SDS or those that induce ligand-dependent transcriptional pausing. When choosing an antibacterial target, the field must also consider how well a riboswitch accommodates mutations. Investigation of riboswitches in their natural context will also be critical to elucidate how RNA-mediated gene regulation influences organism fitness, thus providing a firm foundation for antibiotic development.
Collapse
Affiliation(s)
- Daniil Kiliushik
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Coleman Goenner
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Matthew Law
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Griffin M Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Yoshita Srivastava
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
5
|
Badilla Lobo A, Soutourina O, Peltier J. The current riboswitch landscape in Clostridioides difficile. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001508. [PMID: 39405103 PMCID: PMC11477304 DOI: 10.1099/mic.0.001508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Riboswitches are 5' RNA regulatory elements that are capable of binding to various ligands, such as small metabolites, ions and tRNAs, leading to conformational changes and affecting gene transcription or translation. They are widespread in bacteria and frequently control genes that are essential for the survival or virulence of major pathogens. As a result, they represent promising targets for the development of new antimicrobial treatments. Clostridioides difficile, a leading cause of antibiotic-associated nosocomial diarrhoea in adults, possesses numerous riboswitches in its genome. Accumulating knowledge of riboswitch-based regulatory mechanisms provides insights into the potential therapeutic targets for treating C. difficile infections. This review offers an in-depth examination of the current state of knowledge regarding riboswitch-mediated regulation in C. difficile, highlighting their importance in bacterial adaptability and pathogenicity. Particular attention is given to the ligand specificity and function of known riboswitches in this bacterium. The review also discusses the recent progress that has been made in the development of riboswitch-targeting compounds as potential treatments for C. difficile infections. Future research directions are proposed, emphasizing the need for detailed structural and functional analyses of riboswitches to fully harness their regulatory capabilities for developing new antimicrobial strategies.
Collapse
Affiliation(s)
- Adriana Badilla Lobo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
6
|
Parmar S, Bume DD, Connelly CM, Boer RE, Prestwood PR, Wang Z, Labuhn H, Sinnadurai K, Feri A, Ouellet J, Homan P, Numata T, Schneekloth JS. Mechanistic analysis of Riboswitch Ligand interactions provides insights into pharmacological control over gene expression. Nat Commun 2024; 15:8173. [PMID: 39289353 PMCID: PMC11408619 DOI: 10.1038/s41467-024-52235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ1 riboswitches. Multiple X-ray co-crystal structures of synthetic ligands with the Thermoanaerobacter tengcongensis (Tte)-PreQ1 riboswitch confirm a common binding site with the cognate ligand, despite considerable chemical differences among the ligands. Structure probing assays demonstrate that one ligand causes conformational changes similar to PreQ1 in six structurally and mechanistically diverse PreQ1 riboswitch aptamers. Single-molecule force spectroscopy is used to demonstrate differential modes of riboswitch stabilization by the ligands. Binding of the natural ligand brings about the formation of a persistent, folded pseudoknot structure, whereas a synthetic ligand decreases the rate of unfolding through a kinetic mechanism. Single round transcription termination assays show the biochemical activity of the ligands, while a GFP reporter system reveals compound activity in regulating gene expression in live cells without toxicity. Taken together, this study reveals that diverse small molecules can impact gene expression in live cells by altering conformational changes in RNA structures through distinct mechanisms.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Desta Doro Bume
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Colleen M Connelly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert E Boer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Peri R Prestwood
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | | | | | | | | | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
7
|
Fullenkamp CR, Mehdi S, Jones CP, Tenney L, Pichling P, Prestwood PR, Ferré-D’Amaré AR, Tiwary P, Schneekloth JS. Machine learning-augmented molecular dynamics simulations (MD) reveal insights into the disconnect between affinity and activation of ZTP riboswitch ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612887. [PMID: 39314358 PMCID: PMC11419147 DOI: 10.1101/2024.09.13.612887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The challenge of targeting RNA with small molecules necessitates a better understanding of RNA-ligand interaction mechanisms. However, the dynamic nature of nucleic acids, their ligand-induced stabilization, and how conformational changes influence gene expression pose significant difficulties for experimental investigation. This work employs a combination of computational and experimental methods to address these challenges. By integrating structure-informed design, crystallography, and machine learning-augmented all-atom molecular dynamics simulations (MD) we synthesized, biophysically and biochemically characterized, and studied the dissociation of a library of small molecule activators of the ZTP riboswitch, a ligand-binding RNA motif that regulates bacterial gene expression. We uncovered key interaction mechanisms, revealing valuable insights into the role of ligand binding kinetics on riboswitch activation. Further, we established that ligand on-rates determine activation potency as opposed to binding affinity and elucidated RNA structural differences, which provide mechanistic insights into the interplay of RNA structure on riboswitch activation.
Collapse
Affiliation(s)
| | - Shams Mehdi
- Biophysics Program and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
| | - Christopher P. Jones
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Logan Tenney
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Patricio Pichling
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peri R. Prestwood
- Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Adrian R. Ferré-D’Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pratyush Tiwary
- Department of Chemistry and Biochemistry and Institute for Physical Science and Technology, University of Maryland, College Park 20742, USA
- University of Maryland Institute for Health Computing, Bethesda, Maryland 20852, USA
| | | |
Collapse
|
8
|
Song Y, Cui J, Zhu J, Kim B, Kuo ML, Potts PR. RNATACs: Multispecific small molecules targeting RNA by induced proximity. Cell Chem Biol 2024; 31:1101-1117. [PMID: 38876100 DOI: 10.1016/j.chembiol.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
RNA-targeting small molecules (rSMs) have become an attractive modality to tackle traditionally undruggable proteins and expand the druggable space. Among many innovative concepts, RNA-targeting chimeras (RNATACs) represent a new class of multispecific, induced proximity small molecules that act by chemically bringing RNA targets into proximity with an endogenous RNA effector, such as a ribonuclease (RNase). Depending on the RNA effector, RNATACs can alter the stability, localization, translation, or splicing of the target RNA. Although still in its infancy, this new modality has the potential for broad applications in the future to treat diseases with high unmet need. In this review, we discuss potential advantages of RNATACs, recent progress in the field, and challenges to this cutting-edge technology.
Collapse
Affiliation(s)
- Yan Song
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| | - Jia Cui
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Jiaqiang Zhu
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Boseon Kim
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Mei-Ling Kuo
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA
| | - Patrick Ryan Potts
- Induced Proximity Platform, Amgen Research, Thousand Oaks, CA 91320, USA.
| |
Collapse
|
9
|
Prestwood PR, Yang M, Lewis GV, Balaratnam S, Yazdani K, Schneekloth JS. Competitive Microarray Screening Reveals Functional Ligands for the DHX15 RNA G-Quadruplex. ACS Med Chem Lett 2024; 15:814-821. [PMID: 38894923 PMCID: PMC11181508 DOI: 10.1021/acsmedchemlett.3c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 06/21/2024] Open
Abstract
RNAs are increasingly considered valuable therapeutic targets, and the development of methods to identify and validate both RNA targets and ligands is more important than ever. Here, we utilized a bioinformatic approach to identify a hairpin-containing RNA G-quadruplex (rG4) in the 5' untranslated region (5' UTR) of DHX15 mRNA. By using a novel competitive small molecule microarray (SMM) approach, we identified a compound that specifically binds to the DHX15 rG4 (K D = 12.6 ± 1.0 μM). This rG4 directly impacts translation of a DHX15 reporter mRNA in vitro, and binding of our compound (F1) to the structure inhibits translation up to 57% (IC50 = 22.9 ± 3.8 μM). This methodology allowed us to identify and target the mRNA of a cancer-relevant helicase with no known inhibitors. Our target identification method and the novelty of our screening approach make our work informative for future development of novel small molecule cancer therapeutics for RNA targets.
Collapse
Affiliation(s)
- Peri R. Prestwood
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Mo Yang
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Grace V. Lewis
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Sumirtha Balaratnam
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - Kamyar Yazdani
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory,
Center for Cancer Research, National Cancer
Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
10
|
Bosio S, Bernetti M, Rocchia W, Masetti M. Similarities and Differences in Ligand Binding to Protein and RNA Targets: The Case of Riboflavin. J Chem Inf Model 2024; 64:4570-4586. [PMID: 38800845 DOI: 10.1021/acs.jcim.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
It is nowadays clear that RNA molecules can play active roles in several biological processes. As a result, an increasing number of RNAs are gradually being identified as potentially druggable targets. In particular, noncoding RNAs can adopt highly organized conformations that are suitable for drug binding. However, RNAs are still considered challenging targets due to their complex structural dynamics and high charge density. Thus, elucidating relevant features of drug-RNA binding is fundamental for advancing drug discovery. Here, by using Molecular Dynamics simulations, we compare key features of ligand binding to proteins with those observed in RNA. Specifically, we explore similarities and differences in terms of (i) conformational flexibility of the target, (ii) electrostatic contribution to binding free energy, and (iii) water and ligand dynamics. As a test case, we examine binding of the same ligand, namely riboflavin, to protein and RNA targets, specifically the riboflavin (RF) kinase and flavin mononucleotide (FMN) riboswitch. The FMN riboswitch exhibited enhanced fluctuations and explored a wider conformational space, compared to the protein target, underscoring the importance of RNA flexibility in ligand binding. Conversely, a similar electrostatic contribution to the binding free energy of riboflavin was found. Finally, greater stability of water molecules was observed in the FMN riboswitch compared to the RF kinase, possibly due to the different shape and polarity of the pockets.
Collapse
Affiliation(s)
- Stefano Bosio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Mattia Bernetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
- Computational and Chemical Biology, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Walter Rocchia
- Computational mOdelling of NanosCalE and bioPhysical sysTems (CONCEPT) Lab, Istituto Italiano di Tecnologia, Via Melen - 83, B Block, 16152 Genova, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
11
|
Kersten C, Archambault P, Köhler LP. Assessment of Nucleobase Protomeric and Tautomeric States in Nucleic Acid Structures for Interaction Analysis and Structure-Based Ligand Design. J Chem Inf Model 2024; 64:4485-4499. [PMID: 38766733 DOI: 10.1021/acs.jcim.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
With increasing interest in RNA as a therapeutic and a potential target, the role of RNA structures has become more important. Even slight changes in nucleobases, such as modifications or protomeric and tautomeric states, can have a large impact on RNA structure and function, while local environments in turn affect protonation and tautomerization. In this work, the application of empirical tools for pKa and tautomer prediction for RNA modifications was elucidated and compared with ab initio quantum mechanics (QM) methods and expanded toward macromolecular RNA structures, where QM is no longer feasible. In this regard, the Protonate3D functionality within the molecular operating environment (MOE) was expanded for nucleobase protomer and tautomer predictions and applied to reported examples of altered protonation states depending on the local environment. Overall, observations of nonstandard protomers and tautomers were well reproduced, including structural C+G:C(A) and A+GG motifs, several mismatches, and protonation of adenosine or cytidine as the general acid in nucleolytic ribozymes. Special cases, such as cobalt hexamine-soaked complexes or the deprotonation of guanosine as the general base in nucleolytic ribozymes, proved to be challenging. The collected set of examples shall serve as a starting point for the development of further RNA protonation prediction tools, while the presented Protonate3D implementation already delivers reasonable protonation predictions for RNA and DNA macromolecules. For cases where higher accuracy is needed, like following catalytic pathways of ribozymes, incorporation of QM-based methods can build upon the Protonate3D-generated starting structures. Likewise, this protonation prediction can be used for structure-based RNA-ligand design approaches.
Collapse
Affiliation(s)
- Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University, BioZentrum I, Hanns-Dieter-Hüsch.Weg 15, 55128 Mainz, Germany
| | - Philippe Archambault
- Chemical Computing Group, 910-1010 Sherbrooke W., Montreal, Quebec, Canada H3A 2R7
| | - Luca P Köhler
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, Staudingerweg 5, 55128 Mainz, Germany
| |
Collapse
|
12
|
Kallert E, Almena Rodriguez L, Husmann JÅ, Blatt K, Kersten C. Structure-based virtual screening of unbiased and RNA-focused libraries to identify new ligands for the HCV IRES model system. RSC Med Chem 2024; 15:1527-1538. [PMID: 38784459 PMCID: PMC11110755 DOI: 10.1039/d3md00696d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
Targeting RNA including viral RNAs with small molecules is an emerging field. The hepatitis C virus internal ribosome entry site (HCV IRES) is a potential target for translation inhibitor development to raise drug resistance mutation preparedness. Using RNA-focused and unbiased molecule libraries, a structure-based virtual screening (VS) by molecular docking and pharmacophore analysis was performed against the HCV IRES subdomain IIa. VS hits were validated by a microscale thermophoresis (MST) binding assay and a Förster resonance energy transfer (FRET) assay elucidating ligand-induced conformational changes. Ten hit molecules were identified with potencies in the high to medium micromolar range proving the suitability of structure-based virtual screenings against RNA-targets. Hit compounds from a 2-guanidino-quinazoline series, like the strongest binder, compound 8b with an EC50 of 61 μM, show low molecular weight, moderate lipophilicity and reduced basicity compared to previously reported IRES ligands. Therefore, it can be considered as a potential starting point for further optimization by chemical derivatization.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Laura Almena Rodriguez
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Jan-Åke Husmann
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Kathrin Blatt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Staudingerweg 5 55128 Mainz Germany
- Institute for Quantitative and Computational Biosciences, Johannes Gutenberg-University BioZentrum I, Hanns-Dieter-Hüsch-Weg 15 55128 Mainz Germany
| |
Collapse
|
13
|
Rivera M, Ayon OS, Diaconescu-Grabari S, Pottel J, Moitessier N, Mittermaier A, McKeague M. A sensitive and scalable fluorescence anisotropy single stranded RNA targeting approach for monitoring riboswitch conformational states. Nucleic Acids Res 2024; 52:3164-3179. [PMID: 38375901 PMCID: PMC11014391 DOI: 10.1093/nar/gkae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/02/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
The capacity of riboswitches to undergo conformational changes in response to binding their native ligands is closely tied to their functional roles and is an attractive target for antimicrobial drug design. Here, we established a probe-based fluorescence anisotropy assay to monitor riboswitch conformational switching with high sensitivity and throughput. Using the Bacillus subtillis yitJ S-Box (SAM-I), Fusobacterium nucleatum impX RFN element of (FMN) and class-I cyclic-di-GMP from Vibrio cholerae riboswitches as model systems, we developed short fluorescent DNA probes that specifically recognize either ligand-free or -bound riboswitch conformational states. We showed that increasing concentrations of native ligands cause measurable and reproducible changes in fluorescence anisotropy that correlate with riboswitch conformational changes observed by native gel analysis. Furthermore, we applied our assay to several ligand analogues and confirmed that it can discriminate between ligands that bind, triggering the native conformational change, from those that bind without causing the conformational change. This new platform opens the possibility of high-throughput screening compound libraries to identify potential new antibiotics that specifically target functional conformational changes in riboswitches.
Collapse
Affiliation(s)
- Maira Rivera
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | - Omma S Ayon
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | | | - Joshua Pottel
- Molecular Forecaster Inc. 910-2075 Robert Bourassa, Montreal, QC H3A 2L1, Canada
| | - Nicolas Moitessier
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Molecular Forecaster Inc. 910-2075 Robert Bourassa, Montreal, QC H3A 2L1, Canada
| | - Anthony Mittermaier
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
| | - Maureen McKeague
- Department of Chemistry, Faculty of Science, McGill University, Montreal, QC H3A 0B8, Canada
- Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
14
|
Morishita EC, Nakamura S. Recent applications of artificial intelligence in RNA-targeted small molecule drug discovery. Expert Opin Drug Discov 2024; 19:415-431. [PMID: 38321848 DOI: 10.1080/17460441.2024.2313455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Targeting RNAs with small molecules offers an alternative to the conventional protein-targeted drug discovery and can potentially address unmet and emerging medical needs. The recent rise of interest in the strategy has already resulted in large amounts of data on disease associated RNAs, as well as on small molecules that bind to such RNAs. Artificial intelligence (AI) approaches, including machine learning and deep learning, present an opportunity to speed up the discovery of RNA-targeted small molecules by improving decision-making efficiency and quality. AREAS COVERED The topics described in this review include the recent applications of AI in the identification of RNA targets, RNA structure determination, screening of chemical compound libraries, and hit-to-lead optimization. The impact and limitations of the recent AI applications are discussed, along with an outlook on the possible applications of next-generation AI tools for the discovery of novel RNA-targeted small molecule drugs. EXPERT OPINION Key areas for improvement include developing AI tools for understanding RNA dynamics and RNA - small molecule interactions. High-quality and comprehensive data still need to be generated especially on the biological activity of small molecules that target RNAs.
Collapse
|
15
|
de Crécy-Lagard V, Hutinet G, Cediel-Becerra JDD, Yuan Y, Zallot R, Chevrette MG, Ratnayake RMMN, Jaroch M, Quaiyum S, Bruner S. Biosynthesis and function of 7-deazaguanine derivatives in bacteria and phages. Microbiol Mol Biol Rev 2024; 88:e0019923. [PMID: 38421302 PMCID: PMC10966956 DOI: 10.1128/mmbr.00199-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
SUMMARYDeazaguanine modifications play multifaceted roles in the molecular biology of DNA and tRNA, shaping diverse yet essential biological processes, including the nuanced fine-tuning of translation efficiency and the intricate modulation of codon-anticodon interactions. Beyond their roles in translation, deazaguanine modifications contribute to cellular stress resistance, self-nonself discrimination mechanisms, and host evasion defenses, directly modulating the adaptability of living organisms. Deazaguanine moieties extend beyond nucleic acid modifications, manifesting in the structural diversity of biologically active natural products. Their roles in fundamental cellular processes and their presence in biologically active natural products underscore their versatility and pivotal contributions to the intricate web of molecular interactions within living organisms. Here, we discuss the current understanding of the biosynthesis and multifaceted functions of deazaguanines, shedding light on their diverse and dynamic roles in the molecular landscape of life.
Collapse
Affiliation(s)
- Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, Gainesville, Florida, USA
| | - Geoffrey Hutinet
- Department of Biology, Haverford College, Haverford, Pennsylvania, USA
| | | | - Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Rémi Zallot
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Marc G. Chevrette
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | | | - Marshall Jaroch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Samia Quaiyum
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Steven Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
16
|
Kaur J, Sharma A, Mundlia P, Sood V, Pandey A, Singh G, Barnwal RP. RNA-Small-Molecule Interaction: Challenging the "Undruggable" Tag. J Med Chem 2024. [PMID: 38498010 DOI: 10.1021/acs.jmedchem.3c01354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
RNA targeting, specifically with small molecules, is a relatively new and rapidly emerging avenue with the promise to expand the target space in the drug discovery field. From being "disregarded" as an "undruggable" messenger molecule to FDA approval of an RNA-targeting small-molecule drug Risdiplam, a radical change in perspective toward RNA has been observed in the past decade. RNAs serve important regulatory functions beyond canonical protein synthesis, and their dysregulation has been reported in many diseases. A deeper understanding of RNA biology reveals that RNA molecules can adopt a variety of structures, carrying defined binding pockets that can accommodate small-molecule drugs. Due to its functional diversity and structural complexity, RNA can be perceived as a prospective target for therapeutic intervention. This perspective highlights the proof of concept of RNA-small-molecule interactions, exemplified by targeting of various transcripts with functional modulators. The advent of RNA-oriented knowledge would help expedite drug discovery.
Collapse
Affiliation(s)
- Jaskirat Kaur
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Poonam Mundlia
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Vikas Sood
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Ankur Pandey
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | | |
Collapse
|
17
|
Parmar S, Bume DD, Conelly C, Boer R, Prestwood PR, Wang Z, Labuhn H, Sinnadurai K, Feri A, Ouellet J, Homan P, Numata T, Schneekloth JS. Mechanistic Analysis of Riboswitch Ligand Interactions Provides Insights into Pharmacological Control over Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.23.581746. [PMID: 38903087 PMCID: PMC11188086 DOI: 10.1101/2024.02.23.581746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Riboswitches are structured RNA elements that regulate gene expression upon binding to small molecule ligands. Understanding the mechanisms by which small molecules impact riboswitch activity is key to developing potent, selective ligands for these and other RNA targets. We report the structure-informed design of chemically diverse synthetic ligands for PreQ1 riboswitches. Multiple X-ray co-crystal structures of synthetic ligands with the Thermoanaerobacter tengcongensis (Tte)-PreQ1 riboswitch confirm a common binding site with the cognate ligand, despite considerable chemical differences among the ligands. Structure probing assays demonstrate that one ligand causes conformational changes similar to PreQ1 in six structurally and mechanistically diverse PreQ1 riboswitch aptamers. Single-molecule force spectroscopy is used to demonstrate differential modes of riboswitch stabilization by the ligands. Binding of the natural ligand brings about the formation of a persistent, folded pseudoknot structure, whereas a synthetic ligand decreases the rate of unfolding through a kinetic mechanism. Single round transcription termination assays show the biochemical activity of the ligands, while a GFP reporter system reveals compound activity in regulating gene expression in live cells without toxicity. Taken together, this study reveals that diverse small molecules can impact gene expression in live cells by altering conformational changes in RNA structures through distinct mechanisms.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Desta Doro Bume
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Colleen Conelly
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert Boer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Peri R. Prestwood
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Zhen Wang
- Depixus SAS, 3-5 Impasse Reille, 75014 Paris, France
| | | | | | - Adeline Feri
- Depixus SAS, 3-5 Impasse Reille, 75014 Paris, France
| | - Jimmy Ouellet
- Depixus SAS, 3-5 Impasse Reille, 75014 Paris, France
| | - Philip Homan
- Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tomoyuki Numata
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
18
|
Dodaro A, Pavan M, Menin S, Salmaso V, Sturlese M, Moro S. Thermal titration molecular dynamics (TTMD): shedding light on the stability of RNA-small molecule complexes. Front Mol Biosci 2023; 10:1294543. [PMID: 38028536 PMCID: PMC10679717 DOI: 10.3389/fmolb.2023.1294543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Ribonucleic acids are gradually becoming relevant players among putative drug targets, thanks to the increasing amount of structural data exploitable for the rational design of selective and potent binders that can modulate their activity. Mainly, this information allows employing different computational techniques for predicting how well would a ribonucleic-targeting agent fit within the active site of its target macromolecule. Due to some intrinsic peculiarities of complexes involving nucleic acids, such as structural plasticity, surface charge distribution, and solvent-mediated interactions, the application of routinely adopted methodologies like molecular docking is challenged by scoring inaccuracies, while more physically rigorous methods such as molecular dynamics require long simulation times which hamper their conformational sampling capabilities. In the present work, we present the first application of Thermal Titration Molecular Dynamics (TTMD), a recently developed method for the qualitative estimation of unbinding kinetics, to characterize RNA-ligand complexes. In this article, we explored its applicability as a post-docking refinement tool on RNA in complex with small molecules, highlighting the capability of this method to identify the native binding mode among a set of decoys across various pharmaceutically relevant test cases.
Collapse
Affiliation(s)
| | | | | | | | | | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
19
|
Schroeder GM, Kiliushik D, Jenkins JL, Wedekind JE. Structure and function analysis of a type III preQ 1-I riboswitch from Escherichia coli reveals direct metabolite sensing by the Shine-Dalgarno sequence. J Biol Chem 2023; 299:105208. [PMID: 37660906 PMCID: PMC10622847 DOI: 10.1016/j.jbc.2023.105208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Riboswitches are small noncoding RNAs found primarily in the 5' leader regions of bacterial messenger RNAs where they regulate expression of downstream genes in response to binding one or more cellular metabolites. Such noncoding RNAs are often regulated at the translation level, which is thought to be mediated by the accessibility of the Shine-Dalgarno sequence (SDS) ribosome-binding site. Three classes (I-III) of prequeuosine1 (preQ1)-sensing riboswitches are known that control translation. Class I is divided into three subtypes (types I-III) that have diverse mechanisms of sensing preQ1, which is involved in queuosine biosynthesis. To provide insight into translation control, we determined a 2.30 Å-resolution cocrystal structure of a class I type III preQ1-sensing riboswitch identified in Escherichia coli (Eco) by bioinformatic searches. The Eco riboswitch structure differs from previous preQ1 riboswitch structures because it has the smallest naturally occurring aptamer and the SDS directly contacts the preQ1 metabolite. We validated structural observations using surface plasmon resonance and in vivo gene-expression assays, which showed strong switching in live E. coli. Our results demonstrate that the Eco riboswitch is relatively sensitive to mutations that disrupt noncanonical interactions that form the pseudoknot. In contrast to type II preQ1 riboswitches, a kinetic analysis showed that the type III Eco riboswitch strongly prefers preQ1 over the chemically similar metabolic precursor preQ0. Our results reveal the importance of noncanonical interactions in riboswitch-driven gene regulation and the versatility of the class I preQ1 riboswitch pseudoknot as a metabolite-sensing platform that supports SDS sequestration.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Daniil Kiliushik
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
20
|
Kallert E, Behrendt M, Frey A, Kersten C, Barthels F. Non-covalent dyes in microscale thermophoresis for studying RNA ligand interactions and modifications. Chem Sci 2023; 14:9827-9837. [PMID: 37736627 PMCID: PMC10510756 DOI: 10.1039/d3sc02993j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/27/2023] [Indexed: 09/23/2023] Open
Abstract
Microscale Thermophoresis (MST) is a powerful biophysical technique that measures the mobility of biomolecules in response to a temperature gradient, making it useful for investigating the interactions between biological molecules. This study presents a novel methodology for studying RNA-containing samples using non-covalent nucleic acid-sensitive dyes in MST. This "mix-and-measure" protocol uses non-covalent dyes, such as those from the Syto or Sybr series, which lead to the statistical binding of one fluorophore per RNA oligo showing key advantages over traditional covalent labelling approaches. This new approach has been successfully used to study the binding of ligands to RNA molecules (e.g., SAM- and PreQ1 riboswitches) and the identification of modifications (e.g., m6A) in short RNA oligos which can be written by the RNA methyltransferase METTL3/14.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Malte Behrendt
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Ariane Frey
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| | - Fabian Barthels
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University of Mainz Staudingerweg 5 55128 Mainz Germany
| |
Collapse
|
21
|
Hu G, Zhang Y, Yu Z, Cui T, Cui W. Dynamical characterization and multiple unbinding paths of two PreQ 1 ligands in one pocket. Phys Chem Chem Phys 2023; 25:24004-24015. [PMID: 37646322 DOI: 10.1039/d3cp03142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Riboswitches naturally regulate gene expression in bacteria by binding to specific small molecules. Class 1 preQ1 riboswitch aptamer is an important model not only for RNA folding but also as a target for designing small molecule antibiotics due to its well-known minimal aptamer domain. Here, we ran a total of 62.4 μs conventional and enhanced-sampling molecular dynamics (MD) simulations to characterize the determinants underlying the binding of the preQ1-II riboswitch aptamer to two preQ1 ligands in one binding pocket. Decomposition of binding free energy suggested that preQ1 ligands at α and β sites interact with four nucleotides (G5, C17, C18, and A30) and two nucleotides (A12 and C31), respectively. Mg2+ ions play a crucial role in both stabilizing the binding pocket and facilitating ligand binding. The flexible preQ1 ligand at the β site leads to the top of the binding pocket loosening and thus pre-organizes the riboswitch for ligand entry. Enhanced sampling simulations further revealed that the preQ1 ligand at the α site unbinds through two orthogonal pathways, which are dependent on whether or not a β site preQ1 ligand is present. One of the two preQ1 ligands has been identified in the binding pocket, which will aid to identify the second preQ1 Ligand. Our work provides new information for designing robust ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| | | | - Zhiping Yu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
| | - Tiejun Cui
- Laoling People's Hospital, Dezhou 253600, China
| | - Wanling Cui
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou 253023, China.
- Laoling People's Hospital, Dezhou 253600, China
| |
Collapse
|
22
|
Olenginski LT, Attionu SK, Henninger EN, LeBlanc RM, Longhini AP, Dayie TK. Hepatitis B Virus Epsilon (ε) RNA Element: Dynamic Regulator of Viral Replication and Attractive Therapeutic Target. Viruses 2023; 15:1913. [PMID: 37766319 PMCID: PMC10534774 DOI: 10.3390/v15091913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects millions of people worldwide, which underscores the importance of discovering and designing novel anti-HBV therapeutics to complement current treatment strategies. An underexploited but attractive therapeutic target is ε, a cis-acting regulatory stem-loop RNA situated within the HBV pregenomic RNA (pgRNA). The binding of ε to the viral polymerase protein (P) is pivotal, as it triggers the packaging of pgRNA and P, as well as the reverse transcription of the viral genome. Consequently, small molecules capable of disrupting this interaction hold the potential to inhibit the early stages of HBV replication. The rational design of such ligands necessitates high-resolution structural information for the ε-P complex or its individual components. While these data are currently unavailable for P, our recent structural elucidation of ε through solution nuclear magnetic resonance spectroscopy marks a significant advancement in this area. In this review, we provide a brief overview of HBV replication and some of the therapeutic strategies to combat chronic HBV infection. These descriptions are intended to contextualize our recent experimental efforts to characterize ε and identify ε-targeting ligands, with the ultimate goal of developing novel anti-HBV therapeutics.
Collapse
Affiliation(s)
- Lukasz T. Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Department of Biochemistry, University of Colorado, Boulder, CO 80309, USA
| | - Solomon K. Attionu
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Erica N. Henninger
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Regan M. LeBlanc
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| | - Andrew P. Longhini
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Theodore K. Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA (R.M.L.)
| |
Collapse
|
23
|
Krawczyk H. Dibenzo[ b,f]oxepine Molecules Used in Biological Systems and Medicine. Int J Mol Sci 2023; 24:12066. [PMID: 37569442 PMCID: PMC10418896 DOI: 10.3390/ijms241512066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/09/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
In this short review, including 113 references, issues related to dibenzo[b,f]oxepine derivatives are presented. Dibenzo[b,f]oxepine scaffold is an important framework in medicinal chemistry, and its derivatives occur in several medicinally relevant plants. At the same time, the structure, production, and therapeutic effects of dibenzo[b,f]oxepines have not been extensively discussed thus far and are presented in this review. This manuscript addresses the following issues: extracting dibenzo[b,f]oxepines from plants and its significance in medicine, the biosynthesis of dibenzo[b,f]oxepines, the active synthetic dibenzo[b,f]oxepine derivatives, the potential of dibenzo[b,f]oxepines as microtubule inhibitors, and perspective for applications of dibenzo[b,f]oxepine derivatives. In conclusion, this review describes studies on various structural features and pharmacological actions of dibenzo[b,f]oxepine derivatives.
Collapse
Affiliation(s)
- Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
24
|
Lennon SR, Wierzba AJ, Siwik SH, Gryko D, Palmer AE, Batey RT. Targeting Riboswitches with Beta-Axial-Substituted Cobalamins. ACS Chem Biol 2023; 18:1136-1147. [PMID: 37094176 PMCID: PMC10395008 DOI: 10.1021/acschembio.2c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
RNA-targeting small-molecule therapeutics is an emerging field hindered by an incomplete understanding of the basic principles governing RNA-ligand interactions. One way to advance our knowledge in this area is to study model systems where these interactions are better understood, such as riboswitches. Riboswitches bind a wide array of small molecules with high affinity and selectivity, providing a wealth of information on how RNA recognizes ligands through diverse structures. The cobalamin-sensing riboswitch is a particularly useful model system, as similar sequences show highly specialized binding preferences for different biological forms of cobalamin. This riboswitch is also widely dispersed across bacteria and therefore holds strong potential as an antibiotic target. Many synthetic cobalamin forms have been developed for various purposes including therapeutics, but their interaction with cobalamin riboswitches is yet to be explored. In this study, we characterize the interactions of 11 cobalamin derivatives with three representative cobalamin riboswitches using in vitro binding experiments (both chemical footprinting and a fluorescence-based assay) and a cell-based reporter assay. The derivatives show productive interactions with two of the three riboswitches, demonstrating simultaneous plasticity and selectivity within these RNAs. The observed plasticity is partially achieved through a novel structural rearrangement within the ligand binding pocket, providing insight into how similar RNA structures can be targeted. As the derivatives also show in vivo functionality, they serve as several potential lead compounds for further drug development.
Collapse
Affiliation(s)
- Shelby R. Lennon
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Aleksandra J. Wierzba
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303 – 0596, USA
| | - Shea H. Siwik
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Amy E. Palmer
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
- BioFrontiers Institute, University of Colorado, Boulder, CO 80303 – 0596, USA
| | - Robert T. Batey
- Department of Biochemistry, University of Colorado, Boulder, CO 80309-0596, USA
| |
Collapse
|
25
|
Koehn JT, Felder S, Weeks KM. Innovations in targeting RNA by fragment-based ligand discovery. Curr Opin Struct Biol 2023; 79:102550. [PMID: 36863268 PMCID: PMC10023403 DOI: 10.1016/j.sbi.2023.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 03/04/2023]
Abstract
A subset of functional regions within large RNAs fold into complex structures able to bind small-molecule ligands with high affinity and specificity. Fragment-based ligand discovery (FBLD) offers notable opportunities for discovery and design of potent small molecules that bind pockets in RNA. Here we share an integrated analysis of recent innovations in FBLD, emphasizing opportunities resulting from fragment elaboration via both linking and growing. Analysis of elaborated fragments emphasizes that high-quality interactions form with complex tertiary structures in RNA. FBLD-inspired small molecules have been shown to modulate RNA functions by competitively inhibiting protein binding and by selectively stabilizing dynamic RNA states. FBLD is creating a foundation to interrogate the relatively unknown structural space for RNA ligands and for discovery of RNA-targeted therapeutics.
Collapse
Affiliation(s)
- Jordan T Koehn
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290, USA
| | - Simon Felder
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290, USA
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill NC 27599-3290, USA.
| |
Collapse
|
26
|
Schroeder GM, Akinyemi O, Malik J, Focht CM, Pritchett E, Baker C, McSally JP, Jenkins JL, Mathews D, Wedekind J. A riboswitch separated from its ribosome-binding site still regulates translation. Nucleic Acids Res 2023; 51:2464-2484. [PMID: 36762498 PMCID: PMC10018353 DOI: 10.1093/nar/gkad056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10-G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch-akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.
Collapse
Affiliation(s)
- Griffin M Schroeder
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Olayinka Akinyemi
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Department of Physics, University of Rochester, Rochester, NY 14642, USA
| | - Jeffrey Malik
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Caroline M Focht
- Department of Molecular Biophysics and Biochemistry and the Institute of Biomolecular Design and Discovery, Yale University, New Haven, CT 06516, USA
| | - Elizabeth M Pritchett
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - James P McSally
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - David H Mathews
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
27
|
Garner AL. Contemporary Progress and Opportunities in RNA-Targeted Drug Discovery. ACS Med Chem Lett 2023; 14:251-259. [PMID: 36923915 PMCID: PMC10009794 DOI: 10.1021/acsmedchemlett.3c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The surprising discovery that RNAs are the predominant gene products to emerge from the human genome catalyzed a renaissance in RNA biology. It is now well-understood that RNAs act as more than just a messenger and comprise a large and diverse family of ribonucleic acids of differing sizes, structures, and functions. RNAs play expansive roles in the cell, contributing to the regulation and fine-tuning of nearly all aspects of gene expression and genome architecture. In line with the significance of these functions, we have witnessed an explosion in discoveries connecting RNAs with a variety of human diseases. Consequently, the targeting of RNAs, and more broadly RNA biology, has emerged as an untapped area of drug discovery, making the search for RNA-targeted therapeutics of great interest. In this Microperspective, I highlight contemporary learnings in the field and present my views on how to catapult us toward the systematic discovery of RNA-targeted medicines.
Collapse
Affiliation(s)
- Amanda L. Garner
- Department of Medicinal Chemistry,
College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
28
|
Yazdani K, Jordan D, Yang M, Fullenkamp CR, Calabrese DR, Boer R, Hilimire T, Allen TEH, Khan RT, Schneekloth JS. Machine Learning Informs RNA-Binding Chemical Space. Angew Chem Int Ed Engl 2023; 62:e202211358. [PMID: 36584293 PMCID: PMC9992102 DOI: 10.1002/anie.202211358] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
Small molecule targeting of RNA has emerged as a new frontier in medicinal chemistry, but compared to the protein targeting literature our understanding of chemical matter that binds to RNA is limited. In this study, we reported Repository Of BInders to Nucleic acids (ROBIN), a new library of nucleic acid binders identified by small molecule microarray (SMM) screening. The complete results of 36 individual nucleic acid SMM screens against a library of 24 572 small molecules were reported (including a total of 1 627 072 interactions assayed). A set of 2 003 RNA-binding small molecules was identified, representing the largest fully public, experimentally derived library of its kind to date. Machine learning was used to develop highly predictive and interpretable models to characterize RNA-binding molecules. This work demonstrates that machine learning algorithms applied to experimentally derived sets of RNA binders are a powerful method to inform RNA-targeted chemical space.
Collapse
Affiliation(s)
- Kamyar Yazdani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Deondre Jordan
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Mo Yang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Christopher R. Fullenkamp
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - David R. Calabrese
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Robert Boer
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Thomas Hilimire
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
29
|
Wang K, Zhou R, Wu Y, Li M. RLBind: a deep learning method to predict RNA-ligand binding sites. Brief Bioinform 2023; 24:6832814. [PMID: 36398911 DOI: 10.1093/bib/bbac486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 11/19/2022] Open
Abstract
Identification of RNA-small molecule binding sites plays an essential role in RNA-targeted drug discovery and development. These small molecules are expected to be leading compounds to guide the development of new types of RNA-targeted therapeutics compared with regular therapeutics targeting proteins. RNAs can provide many potential drug targets with diverse structures and functions. However, up to now, only a few methods have been proposed. Predicting RNA-small molecule binding sites still remains a big challenge. New computational model is required to better extract the features and predict RNA-small molecule binding sites more accurately. In this paper, a deep learning model, RLBind, was proposed to predict RNA-small molecule binding sites from sequence-dependent and structure-dependent properties by combining global RNA sequence channel and local neighbor nucleotides channel. To our best knowledge, this research was the first to develop a convolutional neural network for RNA-small molecule binding sites prediction. Furthermore, RLBind also can be used as a potential tool when the RNA experimental tertiary structure is not available. The experimental results show that RLBind outperforms other state-of-the-art methods in predicting binding sites. Therefore, our study demonstrates that the combination of global information for full-length sequences and local information for limited local neighbor nucleotides in RNAs can improve the model's predictive performance for binding sites prediction. All datasets and resource codes are available at https://github.com/KailiWang1/RLBind.
Collapse
Affiliation(s)
- Kaili Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Renyi Zhou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Yifan Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
30
|
Suresh BM, Akahori Y, Taghavi A, Crynen G, Gibaut QMR, Li Y, Disney MD. Low-Molecular Weight Small Molecules Can Potently Bind RNA and Affect Oncogenic Pathways in Cells. J Am Chem Soc 2022; 144:20815-20824. [PMID: 36322830 PMCID: PMC9930674 DOI: 10.1021/jacs.2c08770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
RNA is challenging to target with bioactive small molecules, particularly those of low molecular weight that bind with sufficient affinity and specificity. In this report, we developed a platform to address this challenge, affording a novel bioactive interaction. An RNA-focused small-molecule fragment collection (n = 2500) was constructed by analyzing features in all publicly reported compounds that bind RNA, the largest collection of RNA-focused fragments to date. The RNA-binding landscape for each fragment was studied by using a library-versus-library selection with an RNA library displaying a discrete structural element, probing over 12.8 million interactions, the greatest number of interactions between fragments and biomolecules probed experimentally. Mining of this dataset across the human transcriptome defined a drug-like fragment that potently and specifically targeted the microRNA-372 hairpin precursor, inhibiting its processing into the mature, functional microRNA and alleviating invasive and proliferative oncogenic phenotypes in gastric cancer cells. Importantly, this fragment has favorable properties, including an affinity for the RNA target of 300 ± 130 nM, a molecular weight of 273 Da, and quantitative estimate of drug-likeness (QED) score of 0.8. (For comparison, the mean QED of oral medicines is 0.6 ± 0.2). Thus, these studies demonstrate that a low-molecular weight, fragment-like compound can specifically and potently modulate RNA targets.
Collapse
Affiliation(s)
- Blessy M. Suresh
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yoshihiro Akahori
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Amirhossein Taghavi
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Quentin M. R. Gibaut
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yue Li
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute & UF Scripps Biomedical Research, 130 Scripps Way, Jupiter, FL 33458, United States
| |
Collapse
|
31
|
Childs-Disney JL, Yang X, Gibaut QMR, Tong Y, Batey RT, Disney MD. Targeting RNA structures with small molecules. Nat Rev Drug Discov 2022; 21:736-762. [PMID: 35941229 PMCID: PMC9360655 DOI: 10.1038/s41573-022-00521-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 01/07/2023]
Abstract
RNA adopts 3D structures that confer varied functional roles in human biology and dysfunction in disease. Approaches to therapeutically target RNA structures with small molecules are being actively pursued, aided by key advances in the field including the development of computational tools that predict evolutionarily conserved RNA structures, as well as strategies that expand mode of action and facilitate interactions with cellular machinery. Existing RNA-targeted small molecules use a range of mechanisms including directing splicing - by acting as molecular glues with cellular proteins (such as branaplam and the FDA-approved risdiplam), inhibition of translation of undruggable proteins and deactivation of functional structures in noncoding RNAs. Here, we describe strategies to identify, validate and optimize small molecules that target the functional transcriptome, laying out a roadmap to advance these agents into the next decade.
Collapse
Affiliation(s)
| | - Xueyi Yang
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | | | - Yuquan Tong
- Department of Chemistry, Scripps Research, Jupiter, FL, USA
| | - Robert T Batey
- Department of Biochemistry, University of Colorado, Boulder, CO, USA.
| | | |
Collapse
|
32
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
33
|
Krueger SB, Lanzendorf AN, Jeon HH, Zimmerman SC. Selective and Reversible Ligand Assembly on the DNA and RNA Repeat Sequences in Myotonic Dystrophy. Chembiochem 2022; 23:e202200260. [PMID: 35790065 PMCID: PMC9733911 DOI: 10.1002/cbic.202200260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/03/2022] [Indexed: 02/06/2023]
Abstract
Small molecule targeting of DNA and RNA sequences has come into focus as a therapeutic strategy for diseases such as myotonic dystrophy type 1 (DM1), a trinucleotide repeat disease characterized by RNA gain-of-function. Herein, we report a novel template-selected, reversible assembly of therapeutic agents in situ via aldehyde-amine condensation. Rationally designed small molecule targeting agents functionalized with either an aldehyde or an amine were synthesized and screened against the target nucleic acid sequence. The assembly of fragments was confirmed by MALDI-MS in the presence of DM1-relevant nucleic acid sequences. The resulting hit combinations of aldehyde and amine inhibited the formation of r(CUG)exp in vitro in a cooperative manner at low micromolar levels and rescued mis-splicing defects in DM1 model cells. This reversible template-selected assembly is a promising approach to achieve cell permeable and multivalent targeting via in situ synthesis and could be applied to other nucleic acid targets.
Collapse
Affiliation(s)
- Sarah B Krueger
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA
| | - Amie N Lanzendorf
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA
| | - Hyoeun Heather Jeon
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA
| | - Steven C Zimmerman
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S Mathews Ave, Urbana, IL 61801, USA
| |
Collapse
|
34
|
Pavlova N, Penchovsky R. Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. Antibiotics (Basel) 2022; 11:antibiotics11091177. [PMID: 36139956 PMCID: PMC9495176 DOI: 10.3390/antibiotics11091177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/23/2022] Open
Abstract
Antibiotic resistance (AR) is an acute problem that results in prolonged and debilitating illnesses. AR mortality worldwide is growing and causes a pressing need to research novel mechanisms of action and untested target molecules. This article presents in silico analyses of eight bacterial riboswitches for their suitability for antibacterial drug targets. Most bacterial riboswitches are located in the 5′-untranslated region of messenger RNAs, act as allosteric cis-acting gene control elements, and have not been found in humans before. Sensing metabolites, the riboswitches regulate the synthesis of vital cellular metabolites in various pathogenic bacteria. The analyses performed in this article represent a complete and informative genome-wide bioinformatics analysis of the adequacy of eight riboswitches as antibacterial drug targets in different pathogenic bacteria based on four criteria. Due to the ability of the riboswitch to control biosynthetic pathways and transport proteins of essential metabolites and the presence/absence of alternative biosynthetic pathways, we classified them into four groups based on their suitability for use as antibacterial drug targets guided by our in silico analyses. We concluded that some of them are promising targets for antibacterial drug discovery, such as the PreQ1, MoCo RNA, cyclic-di-GMP I, and cyclic-di-GMP II riboswitches.
Collapse
|
35
|
Kallert E, Fischer TR, Schneider S, Grimm M, Helm M, Kersten C. Protein-Based Virtual Screening Tools Applied for RNA-Ligand Docking Identify New Binders of the preQ 1-Riboswitch. J Chem Inf Model 2022; 62:4134-4148. [PMID: 35994617 DOI: 10.1021/acs.jcim.2c00751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeting RNA with small molecules is an emerging field. While several ligands for different RNA targets are reported, structure-based virtual screenings (VSs) against RNAs are still rare. Here, we elucidated the general capabilities of protein-based docking programs to reproduce native binding modes of small-molecule RNA ligands and to discriminate known binders from decoys by the scoring function. The programs were found to perform similar compared to the RNA-based docking tool rDOCK, and the challenges faced during docking, namely, protomer and tautomer selection, target dynamics, and explicit solvent, do not largely differ from challenges in conventional protein-ligand docking. A prospective VS with the Bacillus subtilis preQ1-riboswitch aptamer domain performed with FRED, HYBRID, and FlexX followed by microscale thermophoresis assays identified six active compounds out of 23 tested VS hits with potencies between 29.5 nM and 11.0 μM. The hits were selected not solely based on their docking score but for resembling key interactions of the native ligand. Therefore, this study demonstrates the general feasibility to perform structure-based VSs against RNA targets, while at the same time it highlights pitfalls and their potential solutions when executing RNA-ligand docking.
Collapse
Affiliation(s)
- Elisabeth Kallert
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Tim R Fischer
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Simon Schneider
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Maike Grimm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| | - Christian Kersten
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, Mainz 55128, Germany
| |
Collapse
|
36
|
Falco N, Garfio CM, Spitalny L, Spitale RC. A Fluorescent Reverse-Transcription Assay to Detect Chemical Adducts on RNA. Biochemistry 2022; 61:1665-1668. [PMID: 35876726 PMCID: PMC10010264 DOI: 10.1021/acs.biochem.2c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we detail a novel reverse-transcription (RT) assay to directly detect chemical adducts on RNA. We optimize a fluorescence quenching assay to detect RT polymerization and employ our approach to detect N1-alkylation of inosine, an important post-transcriptional modification, using a phenylacrylamide as a model compound. We anticipate our approach can be expanded to identify novel reagents that form adducts with RNA and further explored to understand the relationship between RT processivity and natural post-transcriptional modifications in RNA.
Collapse
|
37
|
Liu Y, Frank AT. Using Selectively Scaled Molecular Dynamics Simulations to Assess Ligand Poses in RNA Aptamers. J Chem Theory Comput 2022; 18:5703-5709. [PMID: 35926894 DOI: 10.1021/acs.jctc.2c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Predicting the structure (or pose) of RNA-ligand complexes is an important problem in RNA structural biology. Although one could use computational docking to rapidly sample putative poses of RNA-ligand complexes, accurately discriminating the native-like poses from non-native, decoy poses remains a formidable challenge. Here, we started from the assumption that native-like RNA-ligand poses are less likely to dissociate during molecular dynamics simulations, and then we used enhanced simulations to promote ligand unbinding for diverse poses of a handful of RNA aptamer-ligand complexes. By fitting unbinding profiles obtained from the simulations to a single exponential, we identified the characteristic decay time (τ) as particularly effective at resolving native poses from decoys. We also found that a simple regression model trained to predict the simulation-derived parameters directly from structure could also discriminate ligand poses for similar RNA aptamers. Characterizing the unbinding properties of individual poses may thus be an effective strategy for enhancing pose prediction for ligands interacting with RNA aptamers. A similar strategy might be applicable to other ligandable RNAs; however, further analysis will be required to confirm this hypothesis.
Collapse
Affiliation(s)
- Yichen Liu
- Chemistry Department, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Aaron T Frank
- Biophysics Program, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Wang Y, Parmar S, Schneekloth JS, Tiwary P. Interrogating RNA-Small Molecule Interactions with Structure Probing and Artificial Intelligence-Augmented Molecular Simulations. ACS CENTRAL SCIENCE 2022; 8:741-748. [PMID: 35756372 PMCID: PMC9228567 DOI: 10.1021/acscentsci.2c00149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 05/10/2023]
Abstract
While there is increasing interest in the study of RNA as a therapeutic target, efforts to understand RNA-ligand recognition at the molecular level lag far behind our understanding of protein-ligand recognition. This problem is complicated due to the more than 10 orders of magnitude in time scales involved in RNA dynamics and ligand binding events, making it not straightforward to design experiments or simulations. Here, we make use of artificial intelligence (AI)-augmented molecular dynamics simulations to directly observe ligand dissociation for cognate and synthetic ligands from a riboswitch system. The site-specific flexibility profiles from our simulations are compared with in vitro measurements of flexibility using selective 2' hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP). Our simulations reproduce known relative binding affinity profiles for the cognate and synthetic ligands, and pinpoint how both ligands make use of different aspects of riboswitch flexibility. On the basis of our dissociation trajectories, we also make and validate predictions of pairs of mutations for both the ligand systems that would show differing binding affinities. These mutations are distal to the binding site and could not have been predicted solely on the basis of structure. The methodology demonstrated here shows how molecular dynamics simulations with all-atom force-fields have now come of age in making predictions that complement existing experimental techniques and illuminate aspects of systems otherwise not trivial to understand.
Collapse
Affiliation(s)
- Yihang Wang
- Biophysics
Program and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Shaifaly Parmar
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - John S. Schneekloth
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Pratyush Tiwary
- Department
of Chemistry and Biochemistry and Institute for Physical Science and
Technology, University of Maryland, College Park 20742, United States
| |
Collapse
|
39
|
A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control. Nat Commun 2022; 13:199. [PMID: 35017488 PMCID: PMC8752633 DOI: 10.1038/s41467-021-27790-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
Riboswitches are structured non-coding RNAs often located upstream of essential genes in bacterial messenger RNAs. Such RNAs regulate expression of downstream genes by recognizing a specific cellular effector. Although nearly 50 riboswitch classes are known, only a handful recognize multiple effectors. Here, we report the 2.60-Å resolution co-crystal structure of a class I type I preQ1-sensing riboswitch that reveals two effectors stacked atop one another in a single binding pocket. These effectors bind with positive cooperativity in vitro and both molecules are necessary for gene regulation in bacterial cells. Stacked effector recognition appears to be a hallmark of the largest subgroup of preQ1 riboswitches, including those from pathogens such as Neisseria gonorrhoeae. We postulate that binding to stacked effectors arose in the RNA World to closely position two substrates for RNA-mediated catalysis. These findings expand known effector recognition capabilities of riboswitches and have implications for antimicrobial development. Riboswitches contain an aptamer domain that recognizes a metabolite and an expression platform that regulates gene expression. Here the authors report the crystal structure of a preQ1-sensing riboswitch from Carnobacterium antarcticus that shows two metabolites in a single binding pocket.
Collapse
|
40
|
Nguyen LD, Chau RK, Krichevsky AM. Small Molecule Drugs Targeting Non-Coding RNAs as Treatments for Alzheimer's Disease and Related Dementias. Genes (Basel) 2021; 12:2005. [PMID: 34946953 PMCID: PMC8701955 DOI: 10.3390/genes12122005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the enormous burden of Alzheimer's disease and related dementias (ADRD) on patients, caregivers, and society, only a few treatments with limited efficacy are currently available. While drug development conventionally focuses on disease-associated proteins, RNA has recently been shown to be druggable for therapeutic purposes as well. Approximately 70% of the human genome is transcribed into non-protein-coding RNAs (ncRNAs) such as microRNAs, long ncRNAs, and circular RNAs, which can adopt diverse structures and cellular functions. Many ncRNAs are specifically enriched in the central nervous system, and their dysregulation is implicated in ADRD pathogenesis, making them attractive therapeutic targets. In this review, we first detail why targeting ncRNAs with small molecules is a promising therapeutic strategy for ADRD. We then outline the process from discovery to validation of small molecules targeting ncRNAs in preclinical studies, with special emphasis on primary high-throughput screens for identifying lead compounds. Screening strategies for specific ncRNAs will also be included as examples. Key challenges-including selecting appropriate ncRNA targets, lack of specificity of small molecules, and general low success rate of neurological drugs and how they may be overcome-will be discussed throughout the review.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel K Chau
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
41
|
Hu G, Zhou HX. Binding free energy decomposition and multiple unbinding paths of buried ligands in a PreQ1 riboswitch. PLoS Comput Biol 2021; 17:e1009603. [PMID: 34767553 PMCID: PMC8612554 DOI: 10.1371/journal.pcbi.1009603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/24/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022] Open
Abstract
Riboswitches are naturally occurring RNA elements that control bacterial gene expression by binding to specific small molecules. They serve as important models for RNA-small molecule recognition and have also become a novel class of targets for developing antibiotics. Here, we carried out conventional and enhanced-sampling molecular dynamics (MD) simulations, totaling 153.5 μs, to characterize the determinants of binding free energies and unbinding paths for the cognate and synthetic ligands of a PreQ1 riboswitch. Binding free energy analysis showed that two triplets of nucleotides, U6-C15-A29 and G5-G11-C16, contribute the most to the binding of the cognate ligands, by hydrogen bonding and by base stacking, respectively. Mg2+ ions are essential in stabilizing the binding pocket. For the synthetic ligands, the hydrogen-bonding contributions of the U6-C15-A29 triplet are significantly compromised, and the bound state resembles the apo state in several respects, including the disengagement of the C15-A14-A13 and A32-G33 base stacks. The bulkier synthetic ligands lead to significantly loosening of the binding pocket, including extrusion of the C15 nucleobase and a widening of the C15-C30 groove. Enhanced-sampling simulations further revealed that the cognate and synthetic ligands unbind in almost opposite directions. Our work offers new insight for designing riboswitch ligands. Riboswitches are bacterial RNA elements that change structures upon binding a cognate ligand. They are of great interest not only for understanding gene regulation but also as targets for designing small-molecule antibiotics and chemical tools. Understanding the molecular determinants for ligand affinity and selectivity is thus crucial for designing synthetic ligands. Here we carried out extensive molecular dynamics simulations of a PreQ1 riboswitch bound to either cognate or synthetic ligands. By comparing and contrasting these two groups of ligands, we learn how the chemical (e.g., number of hydrogen bond donors and acceptors) and physical (e.g., molecular size) features of ligands affect binding affinity and ligand exit paths. While the number of hydrogen bond donors and acceptors is a key determinant for RNA binding affinity, the ligand size affects the rigidity of the binding pocket and thereby regulates the unbinding of the ligand. These lessons provide guidance for designing riboswitch ligands.
Collapse
Affiliation(s)
- Guodong Hu
- Shandong Key Laboratory of Biophysics, Dezhou University, Dezhou, China
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Huan-Xiang Zhou
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Physics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
42
|
Chavali SS, Mali SM, Bonn R, Saseendran A, Bennett RP, Smith HC, Fasan R, Wedekind JE. Cyclic peptides with a distinct arginine-fork motif recognize the HIV trans-activation response RNA in vitro and in cells. J Biol Chem 2021; 297:101390. [PMID: 34767799 DOI: 10.1016/j.jbc.2021.101390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
RNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by the cyclic peptide TB-CP-6.9a. This peptide was derived from a TAR-binding loop that emerged during lab-evolution of a TAR-binding protein (TBP) family. Here we synthesized and characterized a next-generation, cyclic-peptide library based on the TBP scaffold. We sought to identify conserved RNA-binding interactions, and the influence of cyclization linkers on RNA binding and antiviral activity. A diverse group of cyclization linkers, encompassing disulfide bonds to bicyclic aromatic staples, was used to restrain the cyclic peptide geometry. Thermodynamic profiling revealed specific arginine-rich sequences with low to sub-micromolar affinity driven by enthalpic and entropic contributions. The best compounds exhibited no appreciable off-target binding to related molecules, such as BIV TAR and human 7SK RNAs. A specific arginine-to-lysine change in the highest affinity cyclic peptide reduced TAR binding by 10-fold, suggesting that TBP-derived cyclic peptides use an arginine-fork motif to recognize the TAR major-groove while differentiating the mode of binding from other TAR-targeting molecules. Finally, we showed that HIV infectivity in cell culture was reduced in the presence of cyclic peptides constrained by methylene or naphthalene-based linkers. Our findings provide insight into the molecular determinants required for HIV-1 TAR recognition and antiviral activity. These findings are broadly relevant to the development of antivirals that target RNA molecules.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA
| | - Sachitanand M Mali
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA
| | - Rachel Bonn
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA
| | | | | | - Harold C Smith
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA; OyaGen, Inc., Rochester NY 14623, USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester NY 14627, USA
| | - Joseph E Wedekind
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester School of Medicine & Dentistry, Rochester NY 14642, USA.
| |
Collapse
|
43
|
Manigrasso J, Marcia M, De Vivo M. Computer-aided design of RNA-targeted small molecules: A growing need in drug discovery. Chem 2021. [DOI: 10.1016/j.chempr.2021.05.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Balaratnam S, Rhodes C, Bume DD, Connelly C, Lai CC, Kelley JA, Yazdani K, Homan PJ, Incarnato D, Numata T, Schneekloth Jr JS. A chemical probe based on the PreQ 1 metabolite enables transcriptome-wide mapping of binding sites. Nat Commun 2021; 12:5856. [PMID: 34615874 PMCID: PMC8494917 DOI: 10.1038/s41467-021-25973-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/26/2021] [Indexed: 02/08/2023] Open
Abstract
The role of metabolite-responsive riboswitches in regulating gene expression in bacteria is well known and makes them useful systems for the study of RNA-small molecule interactions. Here, we study the PreQ1 riboswitch system, assessing sixteen diverse PreQ1-derived probes for their ability to selectively modify the class-I PreQ1 riboswitch aptamer covalently. For the most active probe (11), a diazirine-based photocrosslinking analog of PreQ1, X-ray crystallography and gel-based competition assays demonstrated the mode of binding of the ligand to the aptamer, and functional assays demonstrated that the probe retains activity against the full riboswitch. Transcriptome-wide mapping using Chem-CLIP revealed a highly selective interaction between the bacterial aptamer and the probe. In addition, a small number of RNA targets in endogenous human transcripts were found to bind specifically to 11, providing evidence for candidate PreQ1 aptamers in human RNA. This work demonstrates a stark influence of linker chemistry and structure on the ability of molecules to crosslink RNA, reveals that the PreQ1 aptamer/ligand pair are broadly useful for chemical biology applications, and provides insights into how PreQ1, which is similar in structure to guanine, interacts with human RNAs.
Collapse
Affiliation(s)
- Sumirtha Balaratnam
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Curran Rhodes
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Desta Doro Bume
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Colleen Connelly
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Christopher C. Lai
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - James A. Kelley
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Kamyar Yazdani
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| | - Philip J. Homan
- grid.48336.3a0000 0004 1936 8075Center for Cancer Research Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 USA ,grid.418021.e0000 0004 0535 8394Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702 USA
| | - Danny Incarnato
- grid.4830.f0000 0004 0407 1981Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, The Netherlands
| | - Tomoyuki Numata
- grid.177174.30000 0001 2242 4849Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-shi Fukuoka, 812-8582 Japan ,grid.208504.b0000 0001 2230 7538Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba-shi, Ibaraki, 305-8566 Japan
| | - John S. Schneekloth Jr
- grid.48336.3a0000 0004 1936 8075Chemical Biology Laboratory, National Cancer Institute, Frederick, MD 21702 USA
| |
Collapse
|
45
|
Lundquist KP, Panchal V, Gotfredsen CH, Brenk R, Clausen MH. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021; 16:2588-2603. [PMID: 34101375 DOI: 10.1002/cmdc.202100324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.
Collapse
Affiliation(s)
- Kasper P Lundquist
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Charlotte H Gotfredsen
- NMR Center ⋅ DTU, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
46
|
Yang M, Carter S, Parmar S, Bume DD, Calabrese DR, Liang X, Yazdani K, Xu M, Liu Z, Thiele CJ, Schneekloth JS. Targeting a noncanonical, hairpin-containing G-quadruplex structure from the MYCN gene. Nucleic Acids Res 2021; 49:7856-7869. [PMID: 34289065 DOI: 10.1093/nar/gkab594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/10/2021] [Accepted: 07/20/2021] [Indexed: 11/12/2022] Open
Abstract
The MYCN gene encodes the transcription factor N-Myc, a driver of neuroblastoma (NB). Targeting G-quadruplexes (G4s) with small molecules is attractive strategy to control the expression of undruggable proteins such as N-Myc. However, selective binders to G4s are challenging to identify due to the structural similarity of many G4s. Here, we report the discovery of a small molecule ligand (4) that targets the noncanonical, hairpin containing G4 structure found in the MYCN gene using small molecule microarrays (SMMs). Unlike many G4 binders, the compound was found to bind to a pocket at the base of the hairpin region of the MYCN G4. This compound stabilizes the G4 and has affinity of 3.5 ± 1.6 μM. Moreover, an improved analog, MY-8, suppressed levels of both MYCN and MYCNOS (a lncRNA embedded within the MYCN gene) in NBEB neuroblastoma cells. This work indicates that the approach of targeting complex, hybrid G4 structures that exist throughout the human genome may be an applicable strategy to achieve selectivity for targeting disease-relevant genes including protein coding (MYCN) as well as non-coding (MYCNOS) gene products.
Collapse
Affiliation(s)
- Mo Yang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Sakereh Carter
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1928, USA
| | - Shaifaly Parmar
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Desta D Bume
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - David R Calabrese
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Xiao Liang
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Kamyar Yazdani
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| | - Man Xu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1928, USA
| | - Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1928, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1928, USA
| | - John S Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, USA
| |
Collapse
|
47
|
LeBlanc RM, Kasprzak WK, Longhini AP, Olenginski LT, Abulwerdi F, Ginocchio S, Shields B, Nyman J, Svirydava M, Del Vecchio C, Ivanic J, Schneekloth JS, Shapiro BA, Dayie TK, Le Grice SFJ. Structural insights of the conserved "priming loop" of hepatitis B virus pre-genomic RNA. J Biomol Struct Dyn 2021; 40:9761-9773. [PMID: 34155954 PMCID: PMC10167916 DOI: 10.1080/07391102.2021.1934544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022]
Abstract
Initiation of protein-primed (-) strand DNA synthesis in hepatitis B virus (HBV) requires interaction of the viral polymerase with a cis-acting regulatory signal, designated epsilon (ε), located at the 5'-end of its pre-genomic RNA (pgRNA). Binding of polymerase to ε is also necessary for pgRNA encapsidation. While the mechanistic basis of this interaction remains elusive, mutagenesis studies suggest its internal 6-nt "priming loop" provides an important structural contribution. ε might therefore be considered a promising target for small molecule interventions to complement current nucleoside-analog based anti-HBV therapies. An ideal prerequisite to any RNA-directed small molecule strategy would be a detailed structural description of this important element. Herein, we present a solution NMR structure for HBV ε which, in combination with molecular dynamics and docking simulations, reports on a flexible ligand "pocket", reminiscent of those observed in proteins. We also demonstrate the binding of the selective estrogen receptor modulators (SERMs) Raloxifene, Bazedoxifene, and a de novo derivative to the priming loop.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Regan M. LeBlanc
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
- Vertex Pharmaceuticals, Boston, MA, USA
| | - Wojciech K. Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Andrew P. Longhini
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Fardokht Abulwerdi
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Stefano Ginocchio
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Brigit Shields
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Julie Nyman
- Basic Research Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Maryia Svirydava
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | | - Joseph Ivanic
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Bruce A. Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, USA
| | - Theodore Kwaku Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
48
|
Zafferani M, Hargrove AE. Small molecule targeting of biologically relevant RNA tertiary and quaternary structures. Cell Chem Biol 2021; 28:594-609. [PMID: 33823146 DOI: 10.1016/j.chembiol.2021.03.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Initial successes in developing small molecule ligands for non-coding RNAs have underscored their potential as therapeutic targets. More recently, these successes have been aided by advances in biophysical and structural techniques for identification and characterization of more complex RNA structures; these higher-level folds present protein-like binding pockets that offer opportunities to design small molecules that could achieve a degree of selectivity often hard to obtain at the primary and secondary structure level. More specifically, identification and small molecule targeting of RNA tertiary and quaternary structures have allowed researchers to probe several human diseases and have resulted in promising clinical candidates. In this review we highlight a selection of diverse and exciting successes and the experimental approaches that led to their discovery. These studies include examples of recent developments in RNA-centric assays and ligands that provide insight into the features responsible for the affinity and biological outcome of RNA-targeted chemical probes. This report highlights the potential and emerging opportunities to selectively target RNA tertiary and quaternary structures as a route to better understand and, ultimately, treat many diseases.
Collapse
|
49
|
Panchal V, Brenk R. Riboswitches as Drug Targets for Antibiotics. Antibiotics (Basel) 2021; 10:45. [PMID: 33466288 PMCID: PMC7824784 DOI: 10.3390/antibiotics10010045] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Riboswitches reside in the untranslated region of RNA and regulate genes involved in the biosynthesis of essential metabolites through binding of small molecules. Since their discovery at the beginning of this century, riboswitches have been regarded as potential antibacterial targets. Using fragment screening, high-throughput screening and rational ligand design guided by X-ray crystallography, lead compounds against various riboswitches have been identified. Here, we review the current status and suitability of the thiamine pyrophosphate (TPP), flavin mononucleotide (FMN), glmS, guanine, and other riboswitches as antibacterial targets and discuss them in a biological context. Further, we highlight challenges in riboswitch drug discovery and emphasis the need to develop riboswitch specific high-throughput screening methods.
Collapse
Affiliation(s)
- Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway
| |
Collapse
|
50
|
Umuhire Juru A, Hargrove AE. Frameworks for targeting RNA with small molecules. J Biol Chem 2021; 296:100191. [PMID: 33334887 PMCID: PMC7948454 DOI: 10.1074/jbc.rev120.015203] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/31/2022] Open
Abstract
Since the characterization of mRNA in 1961, our understanding of the roles of RNA molecules has significantly grown. Beyond serving as a link between DNA and proteins, RNA molecules play direct effector roles by binding to various ligands, including proteins, DNA, other RNAs, and metabolites. Through these interactions, RNAs mediate cellular processes such as the regulation of gene transcription and the enhancement or inhibition of protein activity. As a result, the misregulation of RNA molecules is often associated with disease phenotypes, and RNA molecules have been increasingly recognized as potential targets for drug development efforts, which in the past had focused primarily on proteins. Although both small molecule-based and oligonucleotide-based therapies have been pursued in efforts to target RNA, small-molecule modalities are often favored owing to several advantages including greater oral bioavailability. In this review, we discuss three general frameworks (sets of premises and hypotheses) that, in our view, have so far dominated the discovery of small-molecule ligands for RNA. We highlight the unique merits of each framework as well as the pitfalls associated with exclusive focus of ligand discovery efforts within only one framework. Finally, we propose that RNA ligand discovery can benefit from using progress made within these three frameworks to move toward a paradigm that formulates RNA-targeting questions at the level of RNA structural subclasses.
Collapse
Affiliation(s)
| | - Amanda E Hargrove
- Department of Chemistry, Duke University, Durham, North Carolina, USA.
| |
Collapse
|