1
|
Arokiasamy S, Balderstone MJM, Shaik F, Cristante E, Moseley TC, Madoo A, Rizzi M, Bainbridge JW, Tsoyi K, Rosas IO, Whiteford JR, De Rossi G. QM107, a novel CD148 (RTP Type J) activating peptide therapy for treating neovascular age-related macular degeneration. Br J Pharmacol 2024. [PMID: 39428594 DOI: 10.1111/bph.17362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND AND PURPOSE Angiogenesis is a pathological component of neovascular age-related macular degeneration. Current therapies, although successful, are prone to high levels of patient non-response and a loss of efficacy over time, indicating the need to explore other therapeutic avenues. We have shown that an interaction between syndecan-2 and the tyrosine phosphatase receptor CD148 (RTP Type J) results in the ablation of angiogenesis. Here we exploit this pathway to develop a peptide activator of CD148 as a therapy for neovascular age-related macular degeneration. EXPERIMENTAL APPROACH We tested a peptide (QM107) derived from syndecan-2 in a variety of angiogenesis models and a pre-clinical model of neovascular age-related macular degeneration. We assessed the toxicological and inflammatory profiles of QM107 and its stability in vitreous humour. KEY RESULTS QM107 inhibits angiogenesis in ex vivo sprouting assays and disrupts endothelial microcapillary formation via inhibition of cell migration. QM107 acts through CD148, leading to changes in GSK3A phosphorylation and β1 integrin activation. QM107 elicits a negligible inflammatory response and exhibits limited toxicity in cultured cells, and is stable in vitreous humour. Finally, we show proof of concept that QM107 blocks angiogenesis in vivo using a model of neovascular age-related macular degeneration. CONCLUSION AND IMPLICATIONS We have developed a CD148 activating peptide which shows promise in inhibiting angiogenesis in models of neovascular age-related macular degeneration. This treatment could either represent an alternative or augment existing therapies, and owing to its distinct mode of action be used in patients who do not respond to existing treatments.
Collapse
Affiliation(s)
- Samantha Arokiasamy
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michaela J M Balderstone
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Faheem Shaik
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Enrico Cristante
- Institute of Ophthalmology, University College London, London, UK
| | - Thomas C Moseley
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Akshay Madoo
- Institute of Ophthalmology, University College London, London, UK
| | - Matteo Rizzi
- Institute of Ophthalmology, University College London, London, UK
| | - James W Bainbridge
- Institute of Ophthalmology, University College London, London, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Konstantin Tsoyi
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - James R Whiteford
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giulia De Rossi
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
2
|
Li J, Wang K, Starodubtseva MN, Nadyrov E, Kapron CM, Hoh J, Liu J. Complement factor H in molecular regulation of angiogenesis. MEDICAL REVIEW (2021) 2024; 4:452-466. [PMID: 39444793 PMCID: PMC11495524 DOI: 10.1515/mr-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/07/2024] [Indexed: 10/25/2024]
Abstract
Angiogenesis, the process of formation of new capillaries from existing blood vessels, is required for multiple physiological and pathological processes. Complement factor H (CFH) is a plasma protein that inhibits the alternative pathway of the complement system. Loss of CFH enhances the alternative pathway and increases complement activation fragments with pro-angiogenic capacity, including complement 3a, complement 5a, and membrane attack complex. CFH protein contains binding sites for C-reactive protein, malondialdehyde, and endothelial heparan sulfates. Dysfunction of CFH prevents its interaction with these molecules and initiates pro-angiogenic events. Mutations in the CFH gene have been found in patients with age-related macular degeneration characterized by choroidal neovascularization. The Cfh-deficient mice show an increase in angiogenesis, which is decreased by administration of recombinant CFH protein. In this review, we summarize the molecular mechanisms of the anti-angiogenic effects of CFH and the regulatory mechanisms of CFH expression. The therapeutic potential of recombinant CFH protein in angiogenesis-related diseases has also been discussed.
Collapse
Affiliation(s)
- Jiang Li
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Kaili Wang
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| | - Maria N. Starodubtseva
- Gomel State Medical University, Gomel, Belarus
- Institute of Radiobiology of NAS of Belarus, Gomel, Belarus
| | | | | | - Josephine Hoh
- Department of Ophthalmology, Yale School of Medicine, New Haven, CT, USA
| | - Ju Liu
- Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong Province, China
- Gomel State Medical University, Gomel, Belarus
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Jinan, Shandong Province, China
| |
Collapse
|
3
|
Hagen MW, Setiawan NJ, Woodruff KA, Termini CM. Syndecans in hematopoietic cells and their niches. Am J Physiol Cell Physiol 2024; 327:C372-C378. [PMID: 38912739 PMCID: PMC11427021 DOI: 10.1152/ajpcell.00326.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/25/2024]
Abstract
Heparan sulfate proteoglycans are a family of glycoproteins that modulate cell signaling by binding growth factors and changing their bioavailability. Syndecans are a specific family of transmembrane heparan sulfate proteoglycans that regulate cell adhesion, migration, and signaling. In this review, we will summarize emerging evidence for the functions of syndecans in the normal and malignant blood systems and their microenvironments. More specifically, we detail the known functions of syndecans within normal hematopoietic stem cells. Furthermore, we discuss the functions of syndecans in hematological malignancies, including myeloid malignancies, lymphomas, and bleeding disorders. As normal and malignant hematopoietic cells require cues from their microenvironments to function, we also summarize the roles of syndecans in cells of the stromal, endothelial, and osteolineage compartments. Syndecan biology is a rapidly evolving field; a comprehensive understanding of these molecules and their place in the hematopoietic system promises to improve our grasp on disease processes and better predict the efficacies of growth factor-targeting therapies.
Collapse
Affiliation(s)
- Matthew W Hagen
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Nicollette J Setiawan
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Kelsey A Woodruff
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
| | - Christina M Termini
- Translational Science & Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, United States
| |
Collapse
|
4
|
Farhangniya M, Mohamadi Farsani F, Salehi N, Samadikuchaksaraei A. Integrated Bioinformatic Analysis of Differentially Expressed Genes Associated with Wound Healing. CELL JOURNAL 2023; 25:874-882. [PMID: 38192258 PMCID: PMC10777322 DOI: 10.22074/cellj.2023.2007217.1368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE Wound healing is a complex process involving the coordinated interaction of various genes and molecular pathways. The study aimed to uncover novel therapeutic targets, biomarkers and candidate genes for drug development to improve successful wound repair interventions. Materials and Methods: This study is a network-meta analysis study. Nine wound healing microarray datasets obtained from the Gene Expression Omnibus (GEO) database were used for this study. Differentially expressed genes (DEGs) were described using the Limma package and shared genes were used as input for weighted gene co-expression network analysis. The Gene Ontology analysis was performed using the EnrichR web server, and construction of a protein-protein interaction (PPI) network was achieved by the STRING and Cytoscape. Results: A total of 424 DEGs were determined. A co-expression network was constructed using 7692 shared genes between nine data sets, resulting in the identification of seven modules. Among these modules, those with the top 20 genes of up and down-regulation were selected. The top down-regulated genes, including TJP1, SEC61A1, PLEK, ATP5B, PDIA6, PIK3R1, SRGN, SDC2, and RBBP7, and the top up-regulated genes including RPS27A, EEF1A1, HNRNPA1, CTNNB1, POLR2A, CFL1, CSNk1E, HSPD1, FN1, and AURKB, which can potentially serve as therapeutic targets were identified. The KEGG pathway analysis found that the majority of the genes are enriched in the "Wnt signaling pathway". Conclusion: In our study of nine wound healing microarray datasets, we identified DEGs and co-expressed modules using WGCNA. These genes are involved in important cellular processes such as transcription, translation, and posttranslational modifications. We found nine down-regulated genes and ten up-regulated genes, which could serve as potential therapeutic targets for further experimental validation. Targeting pathways related to protein synthesis and cell adhesion and migration may enhance wound healing, but additional experimental validation is needed to confirm the effectiveness and safety of targeted interventions.
Collapse
Affiliation(s)
- Mansoureh Farhangniya
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Najmeh Salehi
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Maldonado H, Savage BD, Barker HR, May U, Vähätupa M, Badiani RK, Wolanska KI, Turner CMJ, Pemmari T, Ketomäki T, Prince S, Humphries MJ, Ruoslahti E, Morgan MR, Järvinen TAH. Systemically administered wound-homing peptide accelerates wound healing by modulating syndecan-4 function. Nat Commun 2023; 14:8069. [PMID: 38057316 PMCID: PMC10700342 DOI: 10.1038/s41467-023-43848-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 11/19/2023] [Indexed: 12/08/2023] Open
Abstract
CAR (CARSKNKDC) is a wound-homing peptide that recognises angiogenic neovessels. Here we discover that systemically administered CAR peptide has inherent ability to promote wound healing: wounds close and re-epithelialise faster in CAR-treated male mice. CAR promotes keratinocyte migration in vitro. The heparan sulfate proteoglycan syndecan-4 regulates cell migration and is crucial for wound healing. We report that syndecan-4 expression is restricted to epidermis and blood vessels in mice skin wounds. Syndecan-4 regulates binding and internalisation of CAR peptide and CAR-mediated cytoskeletal remodelling. CAR induces syndecan-4-dependent activation of the small GTPase ARF6, via the guanine nucleotide exchange factor cytohesin-2, and promotes syndecan-4-, ARF6- and Cytohesin-2-mediated keratinocyte migration. Finally, we show that genetic ablation of syndecan-4 in male mice eliminates CAR-induced wound re-epithelialisation following systemic administration. We propose that CAR peptide activates syndecan-4 functions to selectively promote re-epithelialisation. Thus, CAR peptide provides a therapeutic approach to enhance wound healing in mice; systemic, yet target organ- and cell-specific.
Collapse
Affiliation(s)
- Horacio Maldonado
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Bryan D Savage
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Harlan R Barker
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Ulrike May
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Rahul K Badiani
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katarzyna I Wolanska
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig M J Turner
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Toini Pemmari
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Tuomo Ketomäki
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Stuart Prince
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Erkki Ruoslahti
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA
| | - Mark R Morgan
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, UK.
| | - Tero A H Järvinen
- Faculty of Medicine and Health Technology, Tampere University & Tampere University Hospital, Tampere, Finland.
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA and Center for Nanomedicine, University of California (UCSB), Santa Barbara, CA, USA.
| |
Collapse
|
6
|
Belvedere R, Novizio N, Palazzo M, Pessolano E, Petrella A. The pro-healing effects of heparan sulfate and growth factors are enhanced by the heparinase enzyme: New association for skin wound healing treatment. Eur J Pharmacol 2023; 960:176138. [PMID: 37923158 DOI: 10.1016/j.ejphar.2023.176138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Effective treatment strategies for skin wound repair are the focus of numerous studies. New pharmacological approaches appear necessary to guarantee a correct and healthy tissue regeneration. For these reasons, we purposed to investigate the effects of the combination between heparan sulfate and growth factors further adding the heparinase enzyme. Interestingly, for the first time, we have found that this whole association retains a marked pro-healing activity when topically administered to the wound. In detail, this combination significantly enhances the motility and activation of the main cell populations involved in tissue regeneration (keratinocytes, fibroblasts and endothelial cells), compared with single agents administered without heparinase. Notably, using an experimental C57BL/6 mouse model of skin wounding, we observed that the topical treatment of skin lesions with heparan sulfate + growth factors + heparinase promotes the highest closure of wounds compared to each substance mixed with the other ones in all the possible combinations. Eosin/hematoxylin staining of skin biopsies revealed that treatment with the whole combination allows the formation of a well-structured matrix with numerous new vessels. Confocal analyses for vimentin, FAP1α, CK10 and CD31 have highlighted the presence of activated fibroblasts, differentiated keratinocytes and endothelial cells at the closed region of wounds. Our results encourage defining this combined treatment as a new and appealing therapy expedient in skin wound healing, as it is able to activate cell components and promote a dynamic lesions closure.
Collapse
Affiliation(s)
| | - Nunzia Novizio
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | | | - Emanuela Pessolano
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | | |
Collapse
|
7
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience 2023; 26:108095. [PMID: 37867945 PMCID: PMC10589900 DOI: 10.1016/j.isci.2023.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
In this comprehensive review, we will dissect the impact of research on proteoglycans focusing on recent developments involved in their synthesis, degradation, and interactions, while critically assessing their usefulness in various biological processes. The emerging roles of proteoglycans in global infections, specifically the SARS-CoV-2 pandemic, and their rising functions in regenerative medicine and biomaterial science have significantly affected our current view of proteoglycans and related compounds. The roles of proteoglycans in cancer biology and their potential use as a next-generation protein-based adjuvant therapy to combat cancer is also emerging as a constructive and potentially beneficial therapeutic strategy. We will discuss the role of proteoglycans in selected and emerging areas of proteoglycan science, such as neurodegenerative diseases, autophagy, angiogenesis, cancer, infections and their impact on mammalian diseases.
Collapse
Affiliation(s)
- Christopher Xie
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Renato V. Iozzo
- Department of Pathology and Genomic Medicine, the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
9
|
Noborn F, Nilsson J, Sihlbom C, Nikpour M, Kjellén L, Larson G. Mapping the Human Chondroitin Sulfate Glycoproteome Reveals an Unexpected Correlation Between Glycan Sulfation and Attachment Site Characteristics. Mol Cell Proteomics 2023; 22:100617. [PMID: 37453717 PMCID: PMC10424144 DOI: 10.1016/j.mcpro.2023.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) control key events in human health and disease and are composed of chondroitin sulfate (CS) polysaccharide(s) attached to different core proteins. Detailed information on the biological effects of site-specific CS structures is scarce as the polysaccharides are typically released from their core proteins prior to analysis. Here we present a novel glycoproteomic approach for site-specific sequencing of CS modifications from human urine. Software-assisted and manual analysis revealed that certain core proteins carried CS with abundant sulfate modifications, while others carried CS with lower levels of sulfation. Inspection of the amino acid sequences surrounding the attachment sites indicated that the acidity of the attachment site motifs increased the levels of CS sulfation, and statistical analysis confirmed this relationship. However, not only the acidity but also the sequence and characteristics of specific amino acids in the proximity of the serine glycosylation site correlated with the degree of sulfation. These results demonstrate attachment site-specific characteristics of CS polysaccharides of CSPGs in human urine and indicate that this novel method may assist in elucidating the biosynthesis and functional roles of CSPGs in cellular physiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mahnaz Nikpour
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Laboratory of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
10
|
You L, Dou Y, Zhang Y, Xiao H, Lv H, Wei GH, Xu D. SDC2 Stabilization by USP14 Promotes Gastric Cancer Progression through Co-option of PDK1. Int J Biol Sci 2023; 19:3483-3498. [PMID: 37496999 PMCID: PMC10367555 DOI: 10.7150/ijbs.84331] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Gastric cancer (GC) is a common malignancy and remains the fourth-leading cause of cancer-related deaths worldwide. Oncogenic potential of SDC2 has been implicated in multiple types of cancers, yet its role and underlying molecular mechanisms in GC remain unknown. Here, we found that SDC2 was highly expressed in GC and its upregulation correlated with poor prognosis in GC patients. Depletion of SDC2 significantly suppressed the growth and invasive capability of GC cells, while overexpressing SDC2 exerts opposite effects. Combined bioinformatics and experimental analyses substantiated that overexpression of SDC2 activated the AKT signaling pathway in GC, mechanistically through the interaction between SDC2 and PDK1-PH domain, thereby facilitating PDK1 membrane translocation to promote AKT activation. Moreover, SDC2 could also function as a co-receptor for FGF2 and was profoundly involved in the FGF2-AKT signaling axis in GC. Lastly, we revealed a mechanism on the USP14-mediated stabilization of SDC2 that is likely to contribute to SDC2 upregulation in GC tissues. Furthermore, we showed that IU1, a potent USP14 inhibitor, decreased the abundance of SDC2 in GC cells. Our findings indicate that SDC2 functions as a novel GC oncogene and has potential utility as a diagnostic marker and therapeutic target for GC.
Collapse
Affiliation(s)
- Li You
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yi Dou
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Zhang
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hongwei Xiao
- Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei province, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan 430064, China
| | - Hong Lv
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Gong-Hong Wei
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Fudan University Shanghai Cancer Center, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Dazhi Xu
- Department of Gastric Surgery, Fudan University Shanghai Cancer, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Kaur G, Harris NR. Endothelial glycocalyx in retina, hyperglycemia, and diabetic retinopathy. Am J Physiol Cell Physiol 2023; 324:C1061-C1077. [PMID: 36939202 PMCID: PMC10125029 DOI: 10.1152/ajpcell.00188.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 02/28/2023] [Accepted: 03/16/2023] [Indexed: 03/21/2023]
Abstract
The endothelial glycocalyx (EG) is a meshlike network present on the apical surface of the endothelium. Membrane-bound proteoglycans, the major backbone molecules of the EG, consist of glycosaminoglycans attached to core proteins. In addition to maintaining the integrity of the endothelial barrier, the EG regulates inflammation and perfusion and acts as a mechanosensor. The loss of the EG can cause endothelial dysfunction and drive the progression of vascular diseases including diabetic retinopathy. Therefore, the EG presents a novel therapeutic target for treatment of vascular complications. In this review article, we provide an overview of the structure and function of the EG in the retina. Our particular focus is on hyperglycemia-induced perturbations in the glycocalyx structure in the retina, potential underlying mechanisms, and clinical trials studying protective treatments against degradation of the EG.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States
| |
Collapse
|
12
|
Glycocalyx Acts as a Central Player in the Development of Tumor Microenvironment by Extracellular Vesicles for Angiogenesis and Metastasis. Cancers (Basel) 2022; 14:cancers14215415. [PMID: 36358833 PMCID: PMC9655334 DOI: 10.3390/cancers14215415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The glycocalyx is a fluffy sugar coat covering the surface of all mammalian cells. While glycocalyx at endothelial cells is a barrier to tumor cell adhesion and transmigration, glycocalyx at tumor cells promotes tumor metastasis. Angiogenesis at primary tumors and the growth of tumor cells at metastatic sites are all affected by the tumor microenvironment, including the blood vasculature, extracellular matrix (ECM), and fibroblasts. Extracellular vesicles (EVs) secreted by the tumor cells and tumor-associated endothelial cells are also considered to be the components of the tumor microenvironment. They can modify tumor vasculature, ECM, and fibroblasts. But how the EVs are generated, secreted, and up taken by the endothelial and tumor cells in the development of the tumor microenvironment are unclear, especially after anti-angiogenic therapy (AAT). The objective of this short review is to summarize the role of the glycocalyx in EV biogenesis, secretion, and uptake, as well as the modulation of the glycocalyx by the EVs. Abstract Angiogenesis in tumor growth and progression involves a series of complex changes in the tumor microenvironment. Extracellular vesicles (EVs) are important components of the tumor microenvironment, which can be classified as exosomes, apoptotic vesicles, and matrix vesicles according to their origins and properties. The EVs that share many common biological properties are important factors for the microenvironmental modification and play a vital role in tumor growth and progression. For example, vascular endothelial growth factor (VEGF) exosomes, which carry VEGF, participate in the tolerance of anti-angiogenic therapy (AAT). The glycocalyx is a mucopolysaccharide structure consisting of glycoproteins, proteoglycans, and glycosaminoglycans. Both endothelial and tumor cells have glycocalyx at their surfaces. Glycocalyx at both cells mediates the secretion and uptake of EVs. On the other hand, many components carried by EVs can modify the glycocalyx, which finally facilitates the development of the tumor microenvironment. In this short review, we first summarize the role of EVs in the development of the tumor microenvironment. Then we review how the glycocalyx is associated with the tumor microenvironment and how it is modulated by the EVs, and finally, we review the role of the glycocalyx in the synthesis, release, and uptake of EVs that affect tumor microenvironments. This review aims to provide a basis for the mechanistic study of AAT and new clues to address the challenges in AAT tolerance, tumor angiogenesis and metastasis.
Collapse
|
13
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Rinaldi C, D’Angelo R, Sidoti A. Epitranscriptome Analysis of Oxidative Stressed Retinal Epithelial Cells Depicted a Possible RNA Editing Landscape of Retinal Degeneration. Antioxidants (Basel) 2022; 11:antiox11101967. [PMID: 36290689 PMCID: PMC9598096 DOI: 10.3390/antiox11101967] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress represents one of the principal causes of inherited retinal dystrophies, with many related molecular mechanisms still unknown. We investigated the posttranscriptional RNA editing landscape of human retinal pigment epithelium cells (RPE) exposed to the oxidant agent N-retinylidene-N-retinyl ethanolamine (A2E) for 1 h, 2 h, 3 h and 6 h. Using a transcriptomic approach, refined with a specific multialgorithm pipeline, 62,880 already annotated and de novo RNA editing sites within about 3000 genes were identified among all samples. Approximately 19% of these RNA editing sites were found within 3' UTR, including sites common to all time points that were predicted to change the binding capacity of 359 miRNAs towards 9654 target genes. A2E exposure also determined significant gene expression differences in deaminase family ADAR, APOBEC and ADAT members, involved in canonical and tRNA editing events. On GO and KEGG enrichment analyses, genes that showed different RNA editing levels are mainly involved in pathways strongly linked to a possible neovascularization of retinal tissue, with induced apoptosis mediated by the ECM and surface protein altered signaling. Collectively, this work demonstrated dynamic RNA editome profiles in RPE cells for the first time and shed more light on new mechanisms at the basis of retinal degeneration.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, I.E.ME.S.T., 90139 Palermo, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98125 Messina, Italy
- Correspondence: ; Tel.: +39-090-221-3136
| | - Sergio Zaccaria Scalinci
- DIMEC (Department of Medical and Surgical Sciences), University of Bologna, 40121 Bologna, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Division of Medical Biotechnologies and Preventive Medicine, University of Messina, 98125 Messina, Italy
| |
Collapse
|
14
|
Marques C, Poças J, Gomes C, Faria-Ramos I, Reis CA, Vivès RR, Magalhães A. Glycosyltransferases EXTL2 and EXTL3 cellular balance dictates Heparan Sulfate biosynthesis and shapes gastric cancer cell motility and invasion. J Biol Chem 2022; 298:102546. [PMID: 36181793 DOI: 10.1016/j.jbc.2022.102546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are abundant glycoconjugates in cells' glycocalyx and Extracellular Matrix (ECM). By acting as scaffolds for protein-protein interactions, HSPGs modulate extracellular ligand gradients, cell signaling networks, and cell-ECM crosstalk. Aberrant expression of HSPGs and enzymes involved in HSPG biosynthesis and processing has been reported in tumors, with impact in cancer cell behavior and tumor microenvironment properties. However, the roles of specific glycosyltransferases in the deregulated biosynthesis of HSPGs are not fully understood. In this study, we established glycoengineered gastric cancer cell models lacking either Exostosin Like glycosyltransferase 2 (EXTL2) or EXTL3, and revealed their regulatory roles in both Heparan Sulfate (HS) and Chondroitin Sulfate (CS) biosynthesis and structural features. We showed that EXTL3 is key for initiating the synthesis of HS chains in detriment of CS biosynthesis, intervening in the fine-tuned balance of the HS/CS ratio in cells, while EXTL2 functions as a negative regulator of HS biosynthesis, with impact over the glycoproteome of gastric cancer cells. We demonstrated that knock-out of EXTL2 enhanced HS levels along with concomitant upregulation of Syndecan-4, which is a major cell-surface carrier of HS. This aberrant HS expression profile promoted a more aggressive phenotype, characterized by higher cellular motility and invasion, and impaired activation of Ephrin type-A 4 cell surface receptor tyrosine kinase. Our findings uncover the biosynthetic roles of EXTL2 and EXTL3 in the regulation of cancer cell GAGosylation and proteoglycans expression, and unravel the functional consequences of aberrant HS/CS balance in cellular malignant features.
Collapse
Affiliation(s)
- Catarina Marques
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Juliana Poças
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Gomes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Isabel Faria-Ramos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal; FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | | | - Ana Magalhães
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; IPATIMUP - Instituto de Patologia e Imunologia Molecular da Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
15
|
Field CJ, Perez AM, Samet T, Ricles V, Iovine MK, Lowe-Krentz LJ. Involvement of transmembrane protein 184a during angiogenesis in zebrafish embryos. Front Physiol 2022; 13:845407. [PMID: 36117693 PMCID: PMC9478037 DOI: 10.3389/fphys.2022.845407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 08/09/2022] [Indexed: 11/13/2022] Open
Abstract
Angiogenesis, the outgrowth of new blood vessels from existing vasculature, is critical during development, tissue formation, and wound healing. In response to vascular endothelial growth factors (VEGFs), endothelial cells are activated to proliferate and move towards the signal, extending the vessel. These events are directed by VEGF-VEGF receptor (Vegfr2) signal transduction, which in turn is modulated by heparan sulfate proteoglycans (HSPGs). HSPGs are glycoproteins covalently attached to HS glycosaminoglycan chains. Transmembrane protein 184a (Tmem184a) has been recently identified as a heparin receptor, which is believed to bind heparan sulfate chains in vivo. Therefore, Tmem184a has the potential to fine-tune interactions between VEGF and HS, modulating Vegfr2-dependent angiogenesis. The function of Tmem184a has been investigated in the regenerating zebrafish caudal fin, but its role has yet to be evaluated during developmental angiogenesis. Here we provide insights into how Tmem184a contributes to the proper formation of the vasculature in zebrafish embryos. First, we find that knockdown of Tmem184a causes a reduction in the number of intact intersegmental vessels (ISVs) in the zebrafish embryo. This phenotype mimics that of vegfr2b knockout mutants, which have previously been shown to exhibit severe defects in ISV development. We then test the importance of HS interactions by removing the binding domain within the Tmem184a protein, which has a negative effect on angiogenesis. Tmem184a is found to act synergistically with Vegfr2b, indicating that the two gene products function in a common pathway to modulate angiogenesis. Moreover, we find that knockdown of Tmem184a leads to an increase in endothelial cell proliferation but a decrease in the amount of VE-cadherin present. Together, these findings suggest that Tmem184a is necessary for ISVs to organize into mature, complete vessels.
Collapse
|
16
|
Kaur G, Song Y, Xia K, McCarthy K, Zhang F, Linhardt RJ, Harris NR. Effect of high glucose on glycosaminoglycans in cultured retinal endothelial cells and rat retina. Glycobiology 2022; 32:720-734. [PMID: 35552402 PMCID: PMC9280546 DOI: 10.1093/glycob/cwac029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION The endothelial glycocalyx regulates vascular permeability, inflammation, and coagulation, and acts as a mechanosensor. The loss of glycocalyx can cause endothelial injury and contribute to several microvascular complications and, therefore, may promote diabetic retinopathy. Studies have shown a partial loss of retinal glycocalyx in diabetes, but with few molecular details of the changes in glycosaminoglycan (GAG) composition. Therefore, the purpose of our study was to investigate the effect of hyperglycemia on GAGs of the retinal endothelial glycocalyx. METHODS GAGs were isolated from rat retinal microvascular endothelial cells (RRMECs), media, and retinas, followed by liquid chromatography-mass spectrometry assays. Quantitative real-time polymerase chain reaction was used to study mRNA transcripts of the enzymes involved in GAG biosynthesis. RESULTS AND CONCLUSIONS Hyperglycemia significantly increased the shedding of heparan sulfate (HS), chondroitin sulfate (CS), and hyaluronic acid (HA). There were no changes to the levels of HS in RRMEC monolayers grown in high-glucose media, but the levels of CS and HA decreased dramatically. Similarly, while HA decreased in the retinas of diabetic rats, the total GAG and CS levels increased. Hyperglycemia in RRMECs caused a significant increase in the mRNA levels of the enzymes involved in GAG biosynthesis (including EXTL-1,2,3, EXT-1,2, ChSY-1,3, and HAS-2,3), with these increases potentially being compensatory responses to overall glycocalyx loss. Both RRMECs and retinas of diabetic rats exhibited glucose-induced alterations in the disaccharide compositions and sulfation of HS and CS, with the changes in sulfation including N,6-O-sulfation on HS and 4-O-sulfation on CS.
Collapse
Affiliation(s)
- Gaganpreet Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Yuefan Song
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ke Xia
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Kevin McCarthy
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| | - Fuming Zhang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Norman R Harris
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
17
|
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: a revisited frontier in proteoglycan research. Matrix Biol 2022; 111:289-306. [PMID: 35840015 DOI: 10.1016/j.matbio.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/11/2022] [Accepted: 07/11/2022] [Indexed: 11/29/2022]
Abstract
Proteoglycans (PGs), a class of carbohydrate-modified proteins, are present in essentially all metazoan organisms investigated to date. PGs are composed of glycosaminoglycan (GAG) chains attached to various core proteins and are important for embryogenesis and normal homeostasis. PGs exert many of their functions via their GAG chains and understanding the details of GAG-ligand interactions has been an essential part of PG research. Although PGs are also involved in many diseases, the number of GAG-related drugs used in the clinic is yet very limited, indicating a lack of detailed structure-function understanding. Structural analysis of PGs has traditionally been obtained by first separating the GAG chains from the core proteins, after which the two components are analyzed separately. While this strategy greatly facilitates the analysis, it precludes site-specific information and introduces either a "GAG" or a "core protein" perspective on the data interpretation. Mass-spectrometric (MS) glycoproteomic approaches have recently been introduced, providing site-specific information on PGs. Such methods have revealed a previously unknown structural complexity of the GAG linkage regions and resulted in identification of several novel CSPGs and HSPGs in humans and in model organisms, thereby expanding our view on PG complexity. In light of these findings, we discuss here if the use of such MS-based techniques, in combination with various functional assays, can also be used to expand our functional understanding of PGs. We have also summarized the site-specific information of all human PGs known to date, providing a theoretical framework for future studies on site-specific functional analysis of PGs in human pathophysiology.
Collapse
Affiliation(s)
- Fredrik Noborn
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Laboratory Medicine, Sundsvall County Hospital, Sweden.
| | - Jonas Nilsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Proteomics Core Facility, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Göran Larson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
18
|
Critcher M, Huang ML. Excavating proteoglycan structure-function relationships: Modern approaches to capture the interactions of ancient biomolecules. Am J Physiol Cell Physiol 2022; 323:C415-C422. [PMID: 35759439 PMCID: PMC9359657 DOI: 10.1152/ajpcell.00222.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Proteoglycans are now well regarded as key facilitators of cell biology. While a majority of their interactions and functions are attributed to the decorating glycosaminoglycan chains, there is a growing appreciation for the roles of the proteoglycan core protein and for considering proteoglycans as replete protein-glycan conjugates. This appreciation, seeded by early work in proteoglycan biology, is now being advanced and exalted by modern approaches in chemical glycobiology. In this review, we discuss up-and-coming methods to unearth the fine-scale architecture of proteoglycans that modulate their functions and interactions. Crucial to these efforts is the production of chemically defined materials, including semi-synthetic proteoglycans and the in situ capture of interacting proteins. Together, the integration of chemical biology approaches promises to expedite the dissection of the structural heterogeneity of proteoglycans and deliver refined insight into their functions.
Collapse
Affiliation(s)
- Meg Critcher
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA
| | - Mia L Huang
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, La Jolla, CA.,Department of Molecular Medicine, Scripps Research, La Jolla, CA.,Department of Chemistry, Scripps Research, La Jolla, CA
| |
Collapse
|
19
|
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 2022; 322:C849-C864. [PMID: 35294848 PMCID: PMC9037703 DOI: 10.1152/ajpcell.00085.2022] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.
Collapse
Affiliation(s)
- Amrita Basu
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Neil G. Patel
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Elijah D. Nicholson
- 2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Ryan J. Weiss
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
20
|
Shaik F, Balderstone MJM, Arokiasamy S, Whiteford JR. Roles of Syndecan-4 in cardiac injury and repair. Int J Biochem Cell Biol 2022; 146:106196. [PMID: 35331918 DOI: 10.1016/j.biocel.2022.106196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022]
Abstract
The heparan sulphate proteoglycan Syndecan-4 belongs to a 4-member family of transmembrane receptors. Genetic deletion of Syndecan-4 in mice causes negligible developmental abnormalities however when challenged these animals show distinct phenotypes. Synedcan-4 is expressed in many cell types in the heart and its expression is elevated in response to cardiac injury and recent studies have suggested roles for Syndecan-4 in repair mechanisms within the damaged heart. The purpose of this review is to explore these biological insights into the role of Syndecan-4 in both the injured heart and later during cardiac repair and remodeling.
Collapse
Affiliation(s)
- Faheem Shaik
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK
| | - Michaela J M Balderstone
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK
| | - Samantha Arokiasamy
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK.
| | - James R Whiteford
- William Harvey Research Institute, Centre for Microvascular Research, Faculty of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, EC1M 6BQ, UK.
| |
Collapse
|
21
|
Baqai U, Purwin TJ, Bechtel N, Chua V, Han A, Hartsough EJ, Kuznetsoff JN, Harbour JW, Aplin AE. Multi-omics profiling shows BAP1 loss is associated with upregulated cell adhesion molecules in uveal melanoma. Mol Cancer Res 2022; 20:1260-1271. [DOI: 10.1158/1541-7786.mcr-21-0657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/04/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Abstract
BRCA1-associated protein 1 (BAP1) is a tumor suppressor gene that is mutated in cancer, including uveal melanoma (UM). Loss-of-function BAP1 mutations are associated with UM metastasis and poor prognosis, but the mechanisms underlying these effects remain unclear. Upregulation of cell-cell adhesion proteins is involved with collective migration and metastatic seeding of cancer cells. Here, we show that BAP1 loss in UM patient samples is associated with upregulated gene expression of multiple cell adhesion molecules (CAMs), including E-cadherin (CDH1), cell adhesion molecule 1 (CADM1), and syndecan-2 (SDC2). Similar findings were observed in UM cell lines and scRNA seq data from UM patient samples. BAP1 re-expression in UM cells reduced E-cadherin and CADM1 levels. Functionally, knockdown of E-cadherin decreased spheroid cluster formation and knockdown of CADM1 decreased growth of BAP1 mutant UM cells. Together, our findings demonstrate that BAP1 regulates the expression of CAMs which may regulate metastatic traits. Implications: BAP1 mutations and increased metastasis may be due to upregulation of cell adhesion molecules.
Collapse
Affiliation(s)
- Usman Baqai
- Thomas Jefferson University, Philadelphia, PA, United States
| | | | - Nelisa Bechtel
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Vivian Chua
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Anna Han
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Edward J. Hartsough
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | | | | | - Andrew E. Aplin
- Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
22
|
Kakkassery V, Gemoll T, Kraemer MM, Sauer T, Tura A, Ranjbar M, Grisanti S, Joachim SC, Mergler S, Reinhard J. Protein Profiling of WERI-RB1 and Etoposide-Resistant WERI-ETOR Reveals New Insights into Topoisomerase Inhibitor Resistance in Retinoblastoma. Int J Mol Sci 2022; 23:4058. [PMID: 35409416 PMCID: PMC9000009 DOI: 10.3390/ijms23074058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy resistance is one of the reasons for eye loss in patients with retinoblastoma (RB). RB chemotherapy resistance has been studied in different cell culture models, such as WERI-RB1. In addition, chemotherapy-resistant RB subclones, such as the etoposide-resistant WERI-ETOR cell line have been established to improve the understanding of chemotherapy resistance in RB. The objective of this study was to characterize cell line models of an etoposide-sensitive WERI-RB1 and its etoposide-resistant subclone, WERI-ETOR, by proteomic analysis. Subsequently, quantitative proteomics data served for correlation analysis with known drug perturbation profiles. Methodically, WERI-RB1 and WERI-ETOR were cultured, and prepared for quantitative mass spectrometry (MS). This was carried out in a data-independent acquisition (DIA) mode. The raw SWATH (sequential window acquisition of all theoretical mass spectra) files were processed using neural networks in a library-free mode along with machine-learning algorithms. Pathway-enrichment analysis was performed using the REACTOME-pathway resource, and correlated to the molecular signature database (MSigDB) hallmark gene set collections for functional annotation. Furthermore, a drug-connectivity analysis using the L1000 database was carried out to associate the mechanism of action (MOA) for different anticancer reagents to WERI-RB1/WERI-ETOR signatures. A total of 4756 proteins were identified across all samples, showing a distinct clustering between the groups. Of these proteins, 64 were significantly altered (q < 0.05 & log2FC |>2|, 22 higher in WERI-ETOR). Pathway analysis revealed the “retinoid metabolism and transport” pathway as an enriched metabolic pathway in WERI-ETOR cells, while the “sphingolipid de novo biosynthesis” pathway was identified in the WERI-RB1 cell line. In addition, this study revealed similar protein signatures of topoisomerase inhibitors in WERI-ETOR cells as well as ATPase inhibitors, acetylcholine receptor antagonists, and vascular endothelial growth factor receptor (VEGFR) inhibitors in the WERI-RB1 cell line. In this study, WERI-RB1 and WERI-ETOR were analyzed as a cell line model for chemotherapy resistance in RB using data-independent MS. Analysis of the global proteome identified activation of “sphingolipid de novo biosynthesis” in WERI-RB1, and revealed future potential treatment options for etoposide resistance in RB.
Collapse
Affiliation(s)
- Vinodh Kakkassery
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (A.T.); (M.R.); (S.G.)
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Luebeck and University Hospital Clinic Schleswig-Holstein, Ratzeburger Allee 160, 23538 Luebeck, Germany; (T.G.); (T.S.)
| | - Miriam M. Kraemer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstraße 150, 44780 Bochum, Germany;
| | - Thorben Sauer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Luebeck and University Hospital Clinic Schleswig-Holstein, Ratzeburger Allee 160, 23538 Luebeck, Germany; (T.G.); (T.S.)
| | - Aysegül Tura
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (A.T.); (M.R.); (S.G.)
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (A.T.); (M.R.); (S.G.)
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (A.T.); (M.R.); (S.G.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany;
| | - Stefan Mergler
- Department of Ophthalmology, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Augustenberger Platz 1, 13353 Berlin, Germany;
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstraße 150, 44780 Bochum, Germany;
| |
Collapse
|
23
|
Critcher M, Hassan AA, Huang ML. Seeing the forest through the trees: characterizing the glycoproteome. Trends Biochem Sci 2022; 47:492-505. [DOI: 10.1016/j.tibs.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022]
|
24
|
Fujikawa K, Nonaka N, Wang X, Shibata S. An in situ hybridization study of syndecan family during the late stages of developing mouse molar tooth germ. Anat Sci Int 2022; 97:358-368. [PMID: 35119611 DOI: 10.1007/s12565-022-00647-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/01/2022] [Indexed: 11/27/2022]
Abstract
Expression of syndecan-1, 2, 3, and 4 mRNAs during the late stages of tooth germ formation was investigated by in situ hybridization, using [35S]-UTP-labeled cRNA probes. Syndecan-1 mRNA was mainly expressed in the stellate reticulum and stratum intermedium as well as at the cervical region of dental papilla/dental follicle during E18.5-P3.0. Expression in the dental epithelium was enhanced during the postnatal periods, which was supported by real-time RT-PCR analysis. These spatiotemporal expression patterns may suggest specific roles of syndecan-1 in tooth formation such as tooth eruption or root formation. Syndecan-3 mRNA expression became evident in odontoblasts at E18.5, but compared to collagen type I mRNA, which was strongly expressed at this stage, syndecan-3 expression in odontoblast was restricted in mature odontoblasts beneath the cusps during the postnatal periods. This result was also supported by real-time RT-PCR analysis, and indicated that syndecan-3 may be involved in the progress of dentinogenesis rather than in the initiation of it. Syndecan-4 mRNA roughly showed comparable expression patterns to those of syndecan-3. Syndecan-2 mRNA did not show significant expression during the experimental period, but real-time RT-PCR analysis suggested that syndecan-2 expression might be enhanced with hard tissue formation.
Collapse
Affiliation(s)
- Kaoru Fujikawa
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo, Japan
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry, Tokyo, Japan
| | - Xiaofang Wang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - Shunichi Shibata
- Department of Maxillofacial Anatomy, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan. .,Department of Anatomy, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Ishikari, Hokkaido, 061-0293, Japan.
| |
Collapse
|
25
|
Jang B, Song HK, Hwang J, Lee S, Park E, Oh A, Hwang ES, Sung JY, Kim YN, Park K, Lee YM, Oh ES. Shed syndecan-2 enhances colon cancer progression by increasing cooperative angiogenesis in the tumor microenvironment. Matrix Biol 2022; 107:40-58. [DOI: 10.1016/j.matbio.2022.02.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 02/02/2022] [Indexed: 12/24/2022]
|
26
|
Heumüller AW, Jones AN, Mourão A, Klangwart M, Shi C, Wittig I, Fischer A, Muhly-Reinholz M, Buchmann GK, Dieterich C, Potente M, Braun T, Grote P, Jaé N, Sattler M, Dimmeler S. Locus-Conserved Circular RNA cZNF292 Controls Endothelial Cell Flow Responses. Circ Res 2022; 130:67-79. [PMID: 34789007 DOI: 10.1161/circresaha.121.320029] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/17/2021] [Indexed: 01/30/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are generated by back splicing of mostly mRNAs and are gaining increasing attention as a novel class of regulatory RNAs that control various cellular functions. However, their physiological roles and functional conservation in vivo are rarely addressed, given the inherent challenges of their genetic inactivation. Here, we aimed to identify locus conserved circRNAs in mice and humans, which can be genetically deleted due to retained intronic elements not contained in the mRNA host gene to eventually address functional conservation. METHODS AND RESULTS Combining published endothelial RNA-sequencing data sets with circRNAs of the circATLAS databank, we identified locus-conserved circRNA retaining intronic elements between mice and humans. CRISPR/Cas9 mediated genetic depletion of the top expressed circRNA cZfp292 resulted in an altered endothelial morphology and aberrant flow alignment in the aorta in vivo. Consistently, depletion of cZNF292 in endothelial cells in vitro abolished laminar flow-induced alterations in cell orientation, paxillin localization and focal adhesion organization. Mechanistically, we identified the protein SDOS (syndesmos) to specifically interact with cZNF292 in endothelial cells by RNA-affinity purification and subsequent mass spectrometry analysis. Silencing of SDOS or its protein binding partner Syndecan-4, or mutation of the SDOS-cZNF292 binding site, prevented laminar flow-induced cytoskeletal reorganization thereby recapitulating cZfp292 knockout phenotypes. CONCLUSIONS Together, our data reveal a hitherto unknown role of cZNF292/cZfp292 in endothelial flow responses, which influences endothelial shape.
Collapse
Affiliation(s)
- Andreas W Heumüller
- Institute of Cardiovascular Regeneration (A.W.H., M.K., A.F., M.M.R., P.G., N.J., S.D.), Goethe University, Frankfurt, Germany
- Faculty for Biological Sciences (A.W.H.), Goethe University, Frankfurt, Germany
| | - Alisha N Jones
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany (A.N.J., A.M., M.S.)
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany (A.N.J., A.M., M.S.)
| | - André Mourão
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany (A.N.J., A.M., M.S.)
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany (A.N.J., A.M., M.S.)
| | - Marius Klangwart
- Institute of Cardiovascular Regeneration (A.W.H., M.K., A.F., M.M.R., P.G., N.J., S.D.), Goethe University, Frankfurt, Germany
| | - Chenyue Shi
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.S., M.P., T.B.)
| | - Ilka Wittig
- Functional Proteomics, Institute for Cardiovascular Physiology (I.W.), Goethe University, Frankfurt, Germany
- German Center for Cardiovascular Research (DZHK), Frankfurt, Germany (I.W., M.P., T.B., S.D.)
| | - Ariane Fischer
- Institute of Cardiovascular Regeneration (A.W.H., M.K., A.F., M.M.R., P.G., N.J., S.D.), Goethe University, Frankfurt, Germany
| | - Marion Muhly-Reinholz
- Institute of Cardiovascular Regeneration (A.W.H., M.K., A.F., M.M.R., P.G., N.J., S.D.), Goethe University, Frankfurt, Germany
| | - Giulia K Buchmann
- Institute for Cardiovascular Physiology (G.K.B.), Goethe University, Frankfurt, Germany
| | - Christoph Dieterich
- Institute of Cardiovascular Regeneration (A.W.H., M.K., A.F., M.M.R., P.G., N.J., S.D.), Goethe University, Frankfurt, Germany
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Germany (C.D.)
| | - Michael Potente
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.S., M.P., T.B.)
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany (M.P.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany (M.P.)
- German Center for Cardiovascular Research (DZHK), Frankfurt, Germany (I.W., M.P., T.B., S.D.)
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany (M.P., T.B., S.D.)
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.S., M.P., T.B.)
- German Center for Cardiovascular Research (DZHK), Frankfurt, Germany (I.W., M.P., T.B., S.D.)
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany (M.P., T.B., S.D.)
| | - Phillip Grote
- Institute of Cardiovascular Regeneration (A.W.H., M.K., A.F., M.M.R., P.G., N.J., S.D.), Goethe University, Frankfurt, Germany
| | - Nicolas Jaé
- Institute of Cardiovascular Regeneration (A.W.H., M.K., A.F., M.M.R., P.G., N.J., S.D.), Goethe University, Frankfurt, Germany
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany (A.N.J., A.M., M.S.)
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technical University of Munich, Garching, Germany (A.N.J., A.M., M.S.)
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration (A.W.H., M.K., A.F., M.M.R., P.G., N.J., S.D.), Goethe University, Frankfurt, Germany
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.S., M.P., T.B.)
- German Center for Cardiovascular Research (DZHK), Frankfurt, Germany (I.W., M.P., T.B., S.D.)
- Cardio-Pulmonary Institute (CPI), Frankfurt, Germany (M.P., T.B., S.D.)
| |
Collapse
|
27
|
Dagälv A, Lundequist A, Filipek-Górniok B, Dierker T, Eriksson I, Kjellén L. Heparan Sulfate Structure: Methods to Study N-Sulfation and NDST Action. Methods Mol Biol 2022; 2303:139-150. [PMID: 34626376 DOI: 10.1007/978-1-0716-1398-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Heparan sulfate proteoglycans are important modulators of cellular processes where the negatively charged polysaccharide chains interact with target proteins. The sulfation pattern of the heparan sulfate chains will determine which proteins will bind and the affinity of the interactions. The N-deacetylase/N-sulfotransferase (NDST) enzymes are of key importance during heparan sulfate biosynthesis when the sulfation pattern is determined. In this chapter, metabolic labeling of heparan sulfate with [35S]sulfate or [3H]glucosamine in cell cultures is described, in addition to characterization of polysaccharide chain length and degree of N-sulfation. Methods to measure NDST enzyme activity are also presented.
Collapse
Affiliation(s)
- Anders Dagälv
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anders Lundequist
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Beata Filipek-Górniok
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Inger Eriksson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
28
|
Abstract
Cell surface proteoglycans, such as syndecans and glypicans, regulate molecular interactions that mediate cell adhesion, migration, proliferation, and differentiation. Through these activities, surface proteoglycans modulate critical biological processes of development, inflammation, infection, tissue repair, and cancer metastasis. Proteoglycans are unique glycoproteins comprised of one or several glycosaminoglycans attached covalently to core proteins. Glycosaminoglycans mediate the majority of ligand-binding functions of proteoglycans. Accumulating evidence indicates that surface proteoglycans regulate the onset, progression, and outcome of lung diseases, including lung injury, infection, fibrosis, and cancer. This article will review key features of surface proteoglycan biology in lung health and disease.
Collapse
|
29
|
Marques C, Reis CA, Vivès RR, Magalhães A. Heparan Sulfate Biosynthesis and Sulfation Profiles as Modulators of Cancer Signalling and Progression. Front Oncol 2021; 11:778752. [PMID: 34858858 PMCID: PMC8632541 DOI: 10.3389/fonc.2021.778752] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Heparan Sulfate Proteoglycans (HSPGs) are important cell surface and Extracellular Matrix (ECM) maestros involved in the orchestration of multiple cellular events in physiology and pathology. These glycoconjugates bind to various bioactive proteins via their Heparan Sulfate (HS) chains, but also through the protein backbone, and function as scaffolds for protein-protein interactions, modulating extracellular ligand gradients, cell signalling networks and cell-cell/cell-ECM interactions. The structural features of HS chains, including length and sulfation patterns, are crucial for the biological roles displayed by HSPGs, as these features determine HS chains binding affinities and selectivity. The large HS structural diversity results from a tightly controlled biosynthetic pathway that is differently regulated in different organs, stages of development and pathologies, including cancer. This review addresses the regulatory mechanisms underlying HS biosynthesis, with a particular focus on the catalytic activity of the enzymes responsible for HS glycan sequences and sulfation motifs, namely D-Glucuronyl C5-Epimerase, N- and O-Sulfotransferases. Moreover, we provide insights on the impact of different HS structural epitopes over HSPG-protein interactions and cell signalling, as well as on the effects of deregulated expression of HS modifying enzymes in the development and progression of cancer. Finally, we discuss the clinical potential of HS biosynthetic enzymes as novel targets for therapy, and highlight the importance of developing new HS-based tools for better patients' stratification and cancer treatment.
Collapse
Affiliation(s)
- Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal.,Faculdade de Medicina da Universidade do Porto (FMUP), Porto, Portugal
| | | | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Vähätupa M, Salonen N, Uusitalo-Järvinen H, Järvinen TAH. Selective Targeting and Tissue Penetration to the Retina by a Systemically Administered Vascular Homing Peptide in Oxygen Induced Retinopathy (OIR). Pharmaceutics 2021; 13:pharmaceutics13111932. [PMID: 34834347 PMCID: PMC8618640 DOI: 10.3390/pharmaceutics13111932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/17/2022] Open
Abstract
Pathological angiogenesis is the hallmark of ischemic retinal diseases among them retinopathy of prematurity (ROP) and proliferative diabetic retinopathy (PDR). Oxygen-induced retinopathy (OIR) is a pure hypoxia-driven angiogenesis model and a widely used model for ischemic retinopathies. We explored whether the vascular homing peptide CAR (CARSKNKDC) which recognizes angiogenic blood vessels can be used to target the retina in OIR. We were able to demonstrate that the systemically administered CAR vascular homing peptide homed selectively to the preretinal neovessels in OIR. As a cell and tissue-penetrating peptide, CAR also penetrated into the retina. Hyperoxia used to induce OIR in the retina also causes bronchopulmonary dysplasia in the lungs. We showed that the CAR peptide is not targeted to the lungs in normal mice but is targeted to the lungs after hyperoxia-/hypoxia-treatment of the animals. The site-specific delivery of the CAR peptide to the pathologic retinal vasculature and the penetration of the retinal tissue may offer new opportunities for treating retinopathies more selectively and with less side effects.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.V.); (N.S.); (H.U.-J.)
| | - Niklas Salonen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.V.); (N.S.); (H.U.-J.)
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.V.); (N.S.); (H.U.-J.)
- Eye Centre & Department of Orthopedics & Traumatology, Tampere University Hospital, 33520 Tampere, Finland
| | - Tero A. H. Järvinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (M.V.); (N.S.); (H.U.-J.)
- Eye Centre & Department of Orthopedics & Traumatology, Tampere University Hospital, 33520 Tampere, Finland
- Correspondence:
| |
Collapse
|
31
|
Morbidelli L, Genah S, Cialdai F. Effect of Microgravity on Endothelial Cell Function, Angiogenesis, and Vessel Remodeling During Wound Healing. Front Bioeng Biotechnol 2021; 9:720091. [PMID: 34631676 PMCID: PMC8493071 DOI: 10.3389/fbioe.2021.720091] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Wound healing is a complex phenomenon that involves different cell types with various functions, i.e., keratinocytes, fibroblasts, and endothelial cells, all influenced by the action of soluble mediators and rearrangement of the extracellular matrix (ECM). Physiological angiogenesis occurs in the granulation tissue during wound healing to allow oxygen and nutrient supply and waste product removal. Angiogenesis output comes from a balance between pro- and antiangiogenic factors, which is finely regulated in a spatial and time-dependent manner, in order to avoid insufficient or excessive nonreparative neovascularization. The understanding of the factors and mechanisms that control angiogenesis and their change following unloading conditions (in a real or simulated space environment) will allow to optimize the tissue response in case of traumatic injury or medical intervention. The potential countermeasures under development to optimize the reparative angiogenesis that contributes to tissue healing on Earth will be discussed in relation to their exploitability in space.
Collapse
Affiliation(s)
| | - Shirley Genah
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesca Cialdai
- ASA Campus Joint Laboratory, ASA Research Division & Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
32
|
Role of HSPGs in Systemic Bacterial Infections. Methods Mol Biol 2021. [PMID: 34626410 DOI: 10.1007/978-1-0716-1398-6_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Heparan sulfate proteoglycans (HSPGs) are at the forefront of host-microbe interactions. Cell surface HSPGs are thought to promote infection as attachment and internalization receptors for many bacterial pathogens and as soluble inhibitors of host immunity when released from the cell surface by ectodomain shedding. However, the importance of HSPG-pathogen interactions in vivo has yet to be clearly established. Here we describe several representative methods to study the role of HSPGs in systemic bacterial infections, such as bacteremia and sepsis. The overall experimental strategy is to use mouse models to establish the physiological significance of HSPGs, to determine the identity of HSPGs that specifically promote infection, and to define key structural features of HSPGs that enhance bacterial virulence in systemic infections.
Collapse
|
33
|
PFKFB3 gene deletion in endothelial cells inhibits intraplaque angiogenesis and lesion formation in a murine model of venous bypass grafting. Angiogenesis 2021; 25:129-143. [PMID: 34432198 PMCID: PMC8813728 DOI: 10.1007/s10456-021-09816-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
Vein grafting is a frequently used surgical intervention for cardiac revascularization. However, vein grafts display regions with intraplaque (IP) angiogenesis, which promotes atherogenesis and formation of unstable plaques. Graft neovessels are mainly composed of endothelial cells (ECs) that largely depend on glycolysis for migration and proliferation. In the present study, we aimed to investigate whether loss of the glycolytic flux enzyme phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) in ECs inhibits IP angiogenesis and as such prevents unstable plaque formation. To this end, apolipoprotein E deficient (ApoE−/−) mice were backcrossed to a previously generated PFKFB3fl/fl Cdh5iCre mouse strain. Animals were injected with either corn oil (ApoE−/−PFKFB3fl/fl) or tamoxifen (ApoE−/−PFKFB3ECKO), and were fed a western-type diet for 4 weeks prior to vein grafting. Hereafter, mice received a western diet for an additional 28 days and were then sacrificed for graft assessment. Size and thickness of vein graft lesions decreased by 35 and 32%, respectively, in ApoE−/−PFKFB3ECKO mice compared to controls, while stenosis diminished by 23%. Moreover, vein graft lesions in ApoE−/−PFKFB3ECKO mice showed a significant reduction in macrophage infiltration (29%), number of neovessels (62%), and hemorrhages (86%). EC-specific PFKFB3 deletion did not show obvious adverse effects or changes in general metabolism. Interestingly, RT-PCR showed an increased M2 macrophage signature in vein grafts from ApoE−/−PFKFB3ECKO mice. Altogether, EC-specific PFKFB3 gene deletion leads to a significant reduction in lesion size, IP angiogenesis, and hemorrhagic complications in vein grafts. This study demonstrates that inhibition of endothelial glycolysis is a promising therapeutic strategy to slow down plaque progression.
Collapse
|
34
|
Hao W, Ma B, Li Z, Wang X, Gao X, Li Y, Qin B, Shang S, Cui S, Tan Z. Binding of the SARS-CoV-2 spike protein to glycans. Sci Bull (Beijing) 2021; 66:1205-1214. [PMID: 33495714 PMCID: PMC7816574 DOI: 10.1016/j.scib.2021.01.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/29/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
The pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a high number of deaths in the world. To combat it, it is necessary to develop a better understanding of how the virus infects host cells. Infection normally starts with the attachment of the virus to cell-surface glycans like heparan sulfate (HS) and sialic acid-containing glycolipids/glycoproteins. In this study, we examined and compared the binding of the subunits and spike (S) proteins of SARS-CoV-2, SARS-CoV, and Middle East respiratory disease (MERS)-CoV to these glycans. Our results revealed that the S proteins and subunits can bind to HS in a sulfation-dependent manner and no binding with sialic acid residues was detected. Overall, this work suggests that HS binding may be a general mechanism for the attachment of these coronaviruses to host cells, and supports the potential importance of HS in infection and in the development of antiviral agents against these viruses.
Collapse
Affiliation(s)
- Wei Hao
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ziheng Li
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoyu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yaohao Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder CO 80303, USA
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Shiying Shang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhongping Tan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
35
|
Souza PR, de Oliveira AC, Vilsinski BH, Kipper MJ, Martins AF. Polysaccharide-Based Materials Created by Physical Processes: From Preparation to Biomedical Applications. Pharmaceutics 2021; 13:621. [PMID: 33925380 PMCID: PMC8146878 DOI: 10.3390/pharmaceutics13050621] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharide-based materials created by physical processes have received considerable attention for biomedical applications. These structures are often made by associating charged polyelectrolytes in aqueous solutions, avoiding toxic chemistries (crosslinking agents). We review the principal polysaccharides (glycosaminoglycans, marine polysaccharides, and derivatives) containing ionizable groups in their structures and cellulose (neutral polysaccharide). Physical materials with high stability in aqueous media can be developed depending on the selected strategy. We review strategies, including coacervation, ionotropic gelation, electrospinning, layer-by-layer coating, gelation of polymer blends, solvent evaporation, and freezing-thawing methods, that create polysaccharide-based assemblies via in situ (one-step) methods for biomedical applications. We focus on materials used for growth factor (GFs) delivery, scaffolds, antimicrobial coatings, and wound dressings.
Collapse
Affiliation(s)
- Paulo R. Souza
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Ariel C. de Oliveira
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
| | - Bruno H. Vilsinski
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University (CSU), Fort Collins, CO 80523, USA
- School of Biomedical Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| | - Alessandro F. Martins
- Group of Polymeric Materials and Composites, Department of Chemistry, State University of Maringá (UEM), Maringá 87020-900, PR, Brazil; (P.R.S.); (A.C.d.O.); (B.H.V.)
- Laboratory of Materials, Macromolecules and Composites, Federal University of Technology—Paraná (UTFPR), Apucarana 86812-460, PR, Brazil
- Department of Chemical and Biological Engineering, Colorado State University (CSU), Fort Collins, CO 80523, USA
| |
Collapse
|
36
|
De Rossi G, Vähätupa M, Cristante E, Arokiasamy S, Liyanage SE, May U, Pellinen L, Uusitalo-Järvinen H, Bainbridge JW, Järvinen TA, Whiteford JR. Pathological Angiogenesis Requires Syndecan-4 for Efficient VEGFA-Induced VE-Cadherin Internalization. Arterioscler Thromb Vasc Biol 2021; 41:1374-1389. [PMID: 33596666 PMCID: PMC7613699 DOI: 10.1161/atvbaha.121.315941] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Giulia De Rossi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
- UCL Institute of Ophthalmology, Department of Cell Biology, 11-43 Bath Street, London EC1V 9EL, UK
| | - Maria Vähätupa
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Enrico Cristante
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Sidath E. Liyanage
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
| | - Ulrike May
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Laura Pellinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - James W. Bainbridge
- UCL Institute of Ophthalmology, Genetics department, 11-43 Bath Street, London EC1V 9EL, UK
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, City Road, London EC1V 2PD, UK
| | - Tero A.H. Järvinen
- Faculty of Medicine & Health Technology, Tampere University, 33014 Tampere, Finland & Departments of Orthopedics & Traumatology and Tampere Eye Centre, Tampere University Hospital, 33521 Tampere, Finland
| | - James R. Whiteford
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| |
Collapse
|
37
|
Gifre-Renom L, Jones EAV. Vessel Enlargement in Development and Pathophysiology. Front Physiol 2021; 12:639645. [PMID: 33716786 PMCID: PMC7947306 DOI: 10.3389/fphys.2021.639645] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
From developmental stages until adulthood, the circulatory system remodels in response to changes in blood flow in order to maintain vascular homeostasis. Remodeling processes can be driven by de novo formation of vessels or angiogenesis, and by the restructuration of already existing vessels, such as vessel enlargement and regression. Notably, vessel enlargement can occur as fast as in few hours in response to changes in flow and pressure. The high plasticity and responsiveness of blood vessels rely on endothelial cells. Changes within the bloodstream, such as increasing shear stress in a narrowing vessel or lowering blood flow in redundant vessels, are sensed by endothelial cells and activate downstream signaling cascades, promoting behavioral changes in the involved cells. This way, endothelial cells can reorganize themselves to restore normal circulation levels within the vessel. However, the dysregulation of such processes can entail severe pathological circumstances with disturbances affecting diverse organs, such as human hereditary telangiectasias. There are different pathways through which endothelial cells react to promote vessel enlargement and mechanisms may differ depending on whether remodeling occurs in the adult or in developmental models. Understanding the molecular mechanisms involved in the fast-adapting processes governing vessel enlargement can open the door to a new set of therapeutical approaches to be applied in occlusive vascular diseases. Therefore, we have outlined here the latest advances in the study of vessel enlargement in physiology and pathology, with a special insight in the pathways involved in its regulation.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Elizabeth A V Jones
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
38
|
Betriu N, Bertran-Mas J, Andreeva A, Semino CE. Syndecans and Pancreatic Ductal Adenocarcinoma. Biomolecules 2021; 11:biom11030349. [PMID: 33669066 PMCID: PMC7996579 DOI: 10.3390/biom11030349] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is a fatal disease with poor prognosis because patients rarely express symptoms in initial stages, which prevents early detection and diagnosis. Syndecans, a subfamily of proteoglycans, are involved in many physiological processes including cell proliferation, adhesion, and migration. Syndecans are physiologically found in many cell types and their interactions with other macromolecules enhance many pathways. In particular, extracellular matrix components, growth factors, and integrins collect the majority of syndecans associations acting as biochemical, physical, and mechanical transducers. Syndecans are transmembrane glycoproteins, but occasionally their extracellular domain can be released from the cell surface by the action of matrix metalloproteinases, converting them into soluble molecules that are capable of binding distant molecules such as extracellular matrix (ECM) components, growth factor receptors, and integrins from other cells. In this review, we explore the role of syndecans in tumorigenesis as well as their potential as therapeutic targets. Finally, this work reviews the contribution of syndecan-1 and syndecan-2 in PDAC progression and illustrates its potential to be targeted in future treatments for this devastating disease.
Collapse
|
39
|
Gopal S, Arokiasamy S, Pataki C, Whiteford JR, Couchman JR. Syndecan receptors: pericellular regulators in development and inflammatory disease. Open Biol 2021; 11:200377. [PMID: 33561383 PMCID: PMC8061687 DOI: 10.1098/rsob.200377] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
The syndecans are the major family of transmembrane proteoglycans, usually bearing multiple heparan sulfate chains. They are present on virtually all nucleated cells of vertebrates and are also present in invertebrates, indicative of a long evolutionary history. Genetic models in both vertebrates and invertebrates have shown that syndecans link to the actin cytoskeleton and can fine-tune cell adhesion, migration, junction formation, polarity and differentiation. Although often associated as co-receptors with other classes of receptors (e.g. integrins, growth factor and morphogen receptors), syndecans can nonetheless signal to the cytoplasm in discrete ways. Syndecan expression levels are upregulated in development, tissue repair and an array of human diseases, which has led to the increased appreciation that they may be important in pathogenesis not only as diagnostic or prognostic agents, but also as potential targets. Here, their functions in development and inflammatory diseases are summarized, including their potential roles as conduits for viral pathogen entry into cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - Samantha Arokiasamy
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Csilla Pataki
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - James R. Whiteford
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - John R. Couchman
- Biotech Research and Innovation Centre, University of Copenhagen, Biocentre 1.3.16, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
40
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|
41
|
Marsico G, Jin C, Abbah SA, Brauchle EM, Thomas D, Rebelo AL, Orbanić D, Chantepie S, Contessotto P, Papy-Garcia D, Rodriguez-Cabello C, Kilcoyne M, Schenke-Layland K, Karlsson NG, McCullagh KJA, Pandit A. Elastin-like hydrogel stimulates angiogenesis in a severe model of critical limb ischemia (CLI): An insight into the glyco-host response. Biomaterials 2021; 269:120641. [PMID: 33493768 DOI: 10.1016/j.biomaterials.2020.120641] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Abstract
Critical limb ischemia (CLI) is characterized by the impairment of microcirculation, necrosis and inflammation of the muscular tissue. Although the role of glycans in mediating inflammation has been reported, changes in the glycosylation following muscle ischemia remains poorly understood. Here, a murine CLI model was used to show the increase of high mannose, α-(2, 6)-sialic acid and the decrease of hybrid and bisected N-glycans as glycosylation associated with the ischemic environment. Using this model, the efficacy of an elastin-like recombinamers (ELR) hydrogel was assessed. The hydrogel modulates key angiogenic signaling pathways, resulting in capillary formation, and ECM remodeling. Arterioles formation, reduction of fibrosis and anti-inflammatory macrophage polarization wa also induced by the hydrogel administration. Modulation of glycosylation was observed, suggesting, in particular, a role for mannosylation and sialylation in the mediation of tissue repair. Our study elucidates the angiogenic potential of the ELR hydrogel for CLI applications and identifies glycosylation alterations as potential new therapeutic targets.
Collapse
Affiliation(s)
- Grazia Marsico
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Chunseng Jin
- Department of Medical Biochemistry and Cell Biology at Institute of Biomedicine, Sahlgrenska Academy, The University of Gothenburg, Sweden
| | - Sunny A Abbah
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Eva M Brauchle
- Department of Women's Health, Research Institute for Women's Health, The Eberhard-Karls-University Tuebingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - Dilip Thomas
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Ana Lúcia Rebelo
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | | | - Sandrine Chantepie
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | - Paolo Contessotto
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Dulce Papy-Garcia
- Cell Growth, Tissue Repair and Regeneration (CRRET), UPEC EA 4397/ERL CNRS 9215, Université Paris Est Créteil, Université Paris Est, Créteil, France
| | | | - Michelle Kilcoyne
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland; Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - K Schenke-Layland
- Department of Women's Health, Research Institute for Women's Health, The Eberhard-Karls-University Tuebingen, Germany; The Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany
| | - N G Karlsson
- Department of Medical Biochemistry and Cell Biology at Institute of Biomedicine, Sahlgrenska Academy, The University of Gothenburg, Sweden
| | - Karl J A McCullagh
- Physiology Department, National University of Ireland Galway, Galway H92 W2TY, Ireland
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway H92 W2TY, Ireland.
| |
Collapse
|
42
|
Ricard N, Bailly S, Guignabert C, Simons M. The quiescent endothelium: signalling pathways regulating organ-specific endothelial normalcy. Nat Rev Cardiol 2021; 18:565-580. [PMID: 33627876 PMCID: PMC7903932 DOI: 10.1038/s41569-021-00517-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Endothelial cells are at the interface between circulating blood and tissues. This position confers on them a crucial role in controlling oxygen and nutrient exchange and cellular trafficking between blood and the perfused organs. The endothelium adopts a structure that is specific to the needs and function of each tissue and organ and is subject to tissue-specific signalling input. In adults, endothelial cells are quiescent, meaning that they are not proliferating. Quiescence was considered to be a state in which endothelial cells are not stimulated but are instead slumbering and awaiting activating signals. However, new evidence shows that quiescent endothelium is fully awake, that it constantly receives and initiates functionally important signalling inputs and that this state is actively regulated. Signalling pathways involved in the maintenance of functionally quiescent endothelia are starting to be identified and are a combination of endocrine, autocrine, paracrine and mechanical inputs. The paracrine pathways confer a microenvironment on the endothelial cells that is specific to the perfused organs and tissues. In this Review, we present the current knowledge of organ-specific signalling pathways involved in the maintenance of endothelial quiescence and the pathologies associated with their disruption. Linking organ-specific pathways and human vascular pathologies will pave the way towards the development of innovative preventive strategies and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Nicolas Ricard
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA
| | - Sabine Bailly
- grid.457348.9Université Grenoble Alpes, INSERM, CEA, BIG-Biologie du Cancer et de l’Infection, Grenoble, France
| | - Christophe Guignabert
- grid.414221.0INSERM UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Hôpital Marie Lannelongue, Le Plessis-Robinson, France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Faculté de Médecine, Le Kremlin-Bicêtre, France
| | - Michael Simons
- grid.47100.320000000419368710Yale Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT USA ,grid.47100.320000000419368710Department of Cell Biology, Yale University School of Medicine, New Haven, CT USA
| |
Collapse
|
43
|
Filipek-Górniok B, Habicher J, Ledin J, Kjellén L. Heparan Sulfate Biosynthesis in Zebrafish. J Histochem Cytochem 2020; 69:49-60. [PMID: 33216642 DOI: 10.1369/0022155420973980] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The biosynthesis of heparan sulfate (HS) proteoglycans occurs in the Golgi compartment of cells and will determine the sulfation pattern of HS chains, which in turn will have a large impact on the biological activity of the proteoglycans. Earlier studies in mice have demonstrated the importance of HS for embryonic development. In this review, the enzymes participating in zebrafish HS biosynthesis, along with a description of enzyme mutants available for functional studies, are presented. The consequences of the zebrafish genome duplication and maternal transcript contribution are briefly discussed as are the possibilities of CRISPR/Cas9 methodologies to use the zebrafish model system for studies of biosynthesis as well as proteoglycan biology.
Collapse
Affiliation(s)
- Beata Filipek-Górniok
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Judith Habicher
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Johan Ledin
- Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lena Kjellén
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
44
|
Ristori E, Cicaloni V, Salvini L, Tinti L, Tinti C, Simons M, Corti F, Donnini S, Ziche M. Amyloid-β Precursor Protein APP Down-Regulation Alters Actin Cytoskeleton-Interacting Proteins in Endothelial Cells. Cells 2020; 9:cells9112506. [PMID: 33228083 PMCID: PMC7699411 DOI: 10.3390/cells9112506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/16/2022] Open
Abstract
The amyloid-β precursor protein (APP) is a ubiquitous membrane protein often associated with Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). Despite its role in the development of the pathogenesis, APP exerts several physiological roles that have been mainly investigated in neuronal tissue. To date, the role of APP in vasculature and endothelial cells has not been fully elucidated. In this study, we used molecular and proteomic approaches to identify and investigate major cellular targets of APP down-regulation in endothelial cells. We found that APP is necessary for endothelial cells proliferation, migration and adhesion. The loss of APP alters focal adhesion stability and cell-cell junctions' expression. Moreover, APP is necessary to mediate endothelial response to the VEGF-A growth factor. Finally, we document that APP propagates exogenous stimuli and mediates cellular response in endothelial cells by modulating the Scr/FAK signaling pathway. Thus, the intact expression and processing of APP is required for normal endothelial function. The identification of molecular mechanisms responsible for vasoprotective properties of endothelial APP may have an impact on clinical efforts to preserve and protect healthy vasculature in patients at risk of the development of cerebrovascular disease and dementia including AD and CAA.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Science, University of Siena, 53100 Siena, Italy;
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Vittoria Cicaloni
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Laura Salvini
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Laura Tinti
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Cristina Tinti
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
| | - Michael Simons
- Yale Cardiovascular Research Center, 300 George Street, New Haven, CT 06511, USA; (M.S.); (F.C.)
- Departments of Medicine (Cardiology) and Cell Biology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Federico Corti
- Yale Cardiovascular Research Center, 300 George Street, New Haven, CT 06511, USA; (M.S.); (F.C.)
| | - Sandra Donnini
- Department of Life Science, University of Siena, 53100 Siena, Italy;
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
- Correspondence: (S.D.); (M.Z.); Tel.: +39-0577-235382 (S.D.)
| | - Marina Ziche
- Toscana Life Sciences Foundation, 53100 Siena, Italy; (V.C.); (L.S.); (L.T.); (C.T.)
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy
- Correspondence: (S.D.); (M.Z.); Tel.: +39-0577-235382 (S.D.)
| |
Collapse
|
45
|
De La-Rocque S, Moretto E, Butnaru I, Schiavo G. Knockin' on heaven's door: Molecular mechanisms of neuronal tau uptake. J Neurochem 2020; 156:563-588. [PMID: 32770783 PMCID: PMC8432157 DOI: 10.1111/jnc.15144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
Since aggregates of the microtubule‐binding protein tau were found to be the main component of neurofibrillary tangles more than 30 years ago, their contribution to neurodegeneration in Alzheimer's disease (AD) and tauopathies has become well established. Recent work shows that both tau load and its distribution in the brain of AD patients correlate with cognitive decline more closely compared to amyloid plaque deposition. In addition, the amyloid cascade hypothesis has been recently challenged because of disappointing results of clinical trials designed to treat AD by reducing beta‐amyloid levels, thus fuelling a renewed interest in tau. There is now robust evidence to indicate that tau pathology can spread within the central nervous system via a prion‐like mechanism following a stereotypical pattern, which can be explained by the trans‐synaptic inter‐neuronal transfer of pathological tau. In the receiving neuron, tau has been shown to take multiple routes of internalisation, which are partially dependent on its conformation and aggregation status. Here, we review the emerging mechanisms proposed for the uptake of extracellular tau in neurons and the requirements for the propagation of its pathological conformers, addressing how they gain access to physiological tau monomers in the cytosol. Furthermore, we highlight some of the key mechanistic gaps of the field, which urgently need to be addressed to expand our understanding of tau propagation and lead to the identification of new therapeutic strategies for tauopathies.
Collapse
Affiliation(s)
- Samantha De La-Rocque
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Edoardo Moretto
- UK Dementia Research Institute, University College London, London, UK
| | - Ioana Butnaru
- UK Dementia Research Institute, University College London, London, UK
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, UK.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
46
|
Ye M, Yu J, Shi X, Zhu J, Gao X, Liu W. Polysaccharides catabolism by the human gut bacterium - Bacteroides thetaiotaomicron: advances and perspectives. Crit Rev Food Sci Nutr 2020; 61:3569-3588. [PMID: 32779480 DOI: 10.1080/10408398.2020.1803198] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, the degradation processes of polysaccharides by human gut microbiota are receiving considerable attention due to the discoveries of the powerful function of gut microbiota. Gut microbiota has developed a sensitive, accurate, and complex system for sensing, capturing, and degrading different polysaccharides. Among the gut microbiota, Bacteroides thetaiotaomicron, a representative species of Bacteroides, is considered as the best degrader of polysaccharides and a potential probiotic in pharmaceutical and food industries. Here, we summarize the degradation system of B. thetaiotaomicron and the degradation pathways of different polysaccharides by B. thetaiotaomicron. We also describe a technical route for investigating a specific polysaccharide degradation pathway by human gut bacteria. In addition, we also provide the future perspectives in the development of novel polysaccharides or oligosaccharides drugs, precision microbiology medicine, and personalized nutrition.
Collapse
Affiliation(s)
- Meng Ye
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Juping Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xuexia Shi
- Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| | - Jingyi Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China
| | - Wei Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, PR China.,Department of Clinical Pharmacy, Qinghai University Affiliated Hospital, Xining, PR China
| |
Collapse
|
47
|
Sun L, Hong G, Matsui H, Song YJ, Sasaki K. The Effects of Syndecan on Osteoblastic Cell Adhesion Onto Nano-Zirconia Surface. Int J Nanomedicine 2020; 15:5061-5072. [PMID: 32764936 PMCID: PMC7372001 DOI: 10.2147/ijn.s263053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/04/2020] [Indexed: 11/25/2022] Open
Abstract
Purpose Zirconia is one of the most promising implant materials due to its favorable physical, mechanical and biological properties. However, until now, we know little about the mechanism of osseointegration on zirconia. The purpose of this study is to evaluate the effect of Syndecan (Sdc) on osteoblastic cell (MC3T3-E1) adhesion and proliferation onto zirconia materials. Materials and Methods The mirror-polished disks 15 mm in diameter and 1.5 mm in thick of commercial pure titanium (CpTi), 3mol% yttria-stabilized tetragonal zirconia polycrystalline (3Y-TZP) and nano-zirconia (NanoZr) are used in this study. MC3T3-E1 cells were seeded onto specimen surfaces and subjected to RNA interference (RNAi) for Syndecan-1, Syndecan-2, Syndecan-3, and Syndecan-4. At 48h post-transfection, the cell morphology, actin cytoskeleton, and focal adhesion were observed using scanning electron microscopy or laser scanning confocal fluorescence microscopy. At 24h and 48h post-transfection, cell counting kit-8 (CCK-8) assay was used to investigate cell proliferation. Results The cell morphology of MC3T3-E1 cells on CpTi, 3Y-TZP, and NanoZr changed into abnormal shape after gene silencing of Syndecan. Among the Syndecan family, Sdc-2 is responsible for NanoZr-specific morphology regulation, via maintenance of cytoskeletal conformation without affecting cellular attachment. According to CCK-8 assay, Sdc-2 affects the osteoblastic cell proliferation onto NanoZr. Conclusion Within the limitation of this study, we suggest that Syndecan affects osteoblastic cell adhesion on CpTi, 3Y-TZP, and NanoZr. Sdc-2 might be an important heparin-sensitive cell membrane regulator in osteoblastic cell adhesion, specifically on NanoZr, through the organization of actin cytoskeleton and affects osteoblastic cell proliferation.
Collapse
Affiliation(s)
- Lu Sun
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Guang Hong
- Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan.,Department of Prosthodontics, Faculty of Dental Medicine, Airlangga University, Surabaya, Indonesia
| | - Hiroyuki Matsui
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yun-Jia Song
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
48
|
Shu-Ya T, Qiu-Yang Z, Jing-Jing L, Jin Y, Biao Y. Suppression of pathological ocular neovascularization by a small molecule, SU1498. Biomed Pharmacother 2020; 128:110248. [PMID: 32454287 DOI: 10.1016/j.biopha.2020.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 10/24/2022] Open
Abstract
Selective inhibition of vascular endothelial growth factor receptor (VEGFR), particularly VEGFR-2, is an efficient method for the treatment of ocular neovascularization. SU1498 is a specific inhibitor of VEGFR-2. In this study, we investigated the role of SU1498 in ocular neovascularization. Administration of SU1498 did not show any cytotoxicity and tissue toxicity at the tested concentrations. Administration of SU1498 reduced the size and thickness of choroidal neovascularization and decreased the mean length and mean number of corneal neovascular vessels induced by alkali burn. Pretreatment of SU1498 significantly reduced the proliferation, migration, and tube formation ability of HUVECs. SU1498 played the anti-angiogenic role through the regulation of p38-MAPK signaling. Taken together, inhibition of VEGFR-2 by SU1498 provides a novel therapeutic approach for ocular neovascularization.
Collapse
Affiliation(s)
- Tao Shu-Ya
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Zhang Qiu-Yang
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Li Jing-Jing
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Yao Jin
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China.
| | - Yan Biao
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China; National Health Commission (NHC) Key Laboratory of Myopia, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Anand S, Mardhekar S, Raigawali R, Mohanta N, Jain P, D. Shanthamurthy C, Gnanaprakasam B, Kikkeri R. Continuous-Flow Accelerated Sulfation of Heparan Sulfate Intermediates. Org Lett 2020; 22:3402-3406. [DOI: 10.1021/acs.orglett.0c00878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Nirmala Mohanta
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Prashant Jain
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | | | - Boopathy Gnanaprakasam
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411 008, India
| |
Collapse
|
50
|
Lambert J, Makin K, Akbareian S, Johnson R, Alghamdi AAA, Robinson SD, Edwards DR. ADAMTS-1 and syndecan-4 intersect in the regulation of cell migration and angiogenesis. J Cell Sci 2020; 133:jcs.235762. [PMID: 32269093 PMCID: PMC7157938 DOI: 10.1242/jcs.235762] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
ADAMTS-1 is an extracellular protease with critical roles in organogenesis and angiogenesis. Here we demonstrate a functional convergence of ADAMTS-1 and the transmembrane heparan sulfate proteoglycan syndecan-4 in influencing adhesion, migration and angiogenesis. Knockdown of ADAMTS-1 in endothelial cells resulted in a parallel reduction in cell surface syndecan-4, attributable to increased matrix metalloproteinase-9 (MMP9) activity. Knockdown of either ADAMTS-1 or syndecan-4 increased cellular responses to vascular endothelial growth factor A isoform VEGFA164, and increased ex vivo aortic ring microvessel sprouting. On fibronectin, knockdown of either protein enhanced migration and promoted formation of long α5 integrin-containing fibrillar adhesions. However, integrin α5 null cells still showed increased migration in response to ADAMTS-1 and syndecan-4 siRNA treatment. Plating of naïve endothelial cells on cell-conditioned matrix from ADAMTS-1 and syndecan-4 knockdown cells demonstrated that the altered adhesive behaviour was matrix dependent, and this correlated with a lack of expression of fibulin-1: an extracellular matrix co-factor for ADAMTS-1 that is known to inhibit migration. These findings support the notion that ADAMTS-1 and syndecan-4 are functionally interconnected in regulating cell migration and angiogenesis, via collaboration with MMP9 and fibulin-1. This article has an associated First Person interview with the first author of the paper. Summary: ADAMTS-1 and syndecan-4 collaborate to regulate cell adhesion, migration and integrin α5 trafficking, and to sequester VEGFA164, inhibiting angiogenesis.
Collapse
Affiliation(s)
- Jordi Lambert
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Kate Makin
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Sophia Akbareian
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Robert Johnson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Abdullah A A Alghamdi
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Stephen D Robinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Dylan R Edwards
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|