1
|
Pandey DP, Somyajit K. Oncohistone-sculpted epigenetic mechanisms in pediatric brain cancer. Curr Opin Pharmacol 2025; 81:102505. [PMID: 39874681 DOI: 10.1016/j.coph.2025.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/30/2025]
Abstract
Chromatin dynamics, involving reversible changes in chromatin structure, shape key cellular processes and genomic integrity during development and proliferation, with disruptions leading to cancer. Histones, core components of chromatin and substrates for chromatin-modifying enzymes, play crucial roles in oncogenesis when misregulated or mutated. This is particularly pronounced in pediatric hind brain cancers, some of which are driven primarily by the oncohistone H3K27M and the recently identified oncohistone-mimic protein CXorf67/EZHIP. Notably, H3K27M and EZHIP-driven cancers exhibit low mutation burdens, highlighting the enigmatic role of non-mutational epigenetic reprogramming in oncogenesis beyond traditional paradigms of oncogene activation and tumor suppressor loss. Here, we review the impact of H3K27M and EZHIP-driven cancer mechanisms on chromatin and transcriptional dysregulation leading to aberrant cell fate determination, and their potential influence beyond gene activity, affecting broader cellular pathways. Illuminating these mechanisms is crucial for advancing treatment options for pediatric brain cancers, where therapeutic regimens are poorly defined.
Collapse
Affiliation(s)
- Deo Prakash Pandey
- Centre for Embryology and Healthy Development, Department of Microbiology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
| | - Kumar Somyajit
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230, Odense, Denmark.
| |
Collapse
|
2
|
Bakes E, Cheng R, Mañucat-Tan N, Ramaswamy V, Hansford JR. Advances in molecular prognostication and treatments in ependymoma. J Neurooncol 2025:10.1007/s11060-024-04923-9. [PMID: 39757304 DOI: 10.1007/s11060-024-04923-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Ependymoma is the third most common brain tumour of childhood and historically has posed a major challenge to both pediatric and adult neuro-oncologists. Ependymoma can occur anywhere in the central nervous system throughout the entire age spectrum. Treatment options have been limited to surgery and radiation, and outcomes have been widely disparate across studies. Indeed, these disparate outcomes have rendered it extraordinarily difficult to compare studies and to truly understand which patients are low and high-risk. Over the past two decades there have been tremendous advances in our understanding of the biology of ependymoma, which have changed risk stratification dramatically. Indeed, it is now well accepted that ependymoma comprises multiple distinct entities, whereby each compartment (supratentorial, posterior fossa, spinal) are distinct, and within each compartment there exist unique groups. The driver events, demographics and response to treatment vary widely across these groups and allow for a better classification of thee disease. Herein, we review the advances in the molecular stratification of ependymoma including how an improved classification and risk stratification allows for more precise therapies.
Collapse
Affiliation(s)
- Emma Bakes
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Rachel Cheng
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia
| | - Noralyn Mañucat-Tan
- South Australia Health and Medical Research Institute, Adelaide, SA, Australia
| | - Vijay Ramaswamy
- Developmental and Stem Cell Biology, Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Hematology/Oncology, Hospital for Sick Children, Toronto, ON, Canada.
- Departments of Medical Biophysics and Pediatrics, University of Toronto, Toronto, ON, Canada.
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Women's and Children's Hospital, Adelaide, SA, Australia.
- South Australia Health and Medical Research Institute, Adelaide, SA, Australia.
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Bryan E, Valsakumar D, Idigo NJ, Warburton M, Webb KM, McLaughlin KA, Spanos C, Lenci S, Major V, Ambrosi C, Andrews S, Baubec T, Rappsilber J, Voigt P. Nucleosomal asymmetry shapes histone mark binding and promotes poising at bivalent domains. Mol Cell 2024:S1097-2765(24)00997-3. [PMID: 39731917 DOI: 10.1016/j.molcel.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/16/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
Promoters of developmental genes in embryonic stem cells (ESCs) are marked by histone H3 lysine 4 trimethylation (H3K4me3) and H3K27me3 in an asymmetric nucleosomal conformation, with each sister histone H3 carrying only one of the two marks. These bivalent domains are thought to poise genes for timely activation upon differentiation. Here, we show that asymmetric bivalent nucleosomes recruit repressive H3K27me3 binders but fail to enrich activating H3K4me3 binders, thereby promoting a poised state. Strikingly, the bivalent mark combination further promotes recruitment of specific chromatin proteins that are not recruited by each mark individually, including the lysine acetyltransferase (KAT) complex KAT6B. Knockout of KAT6B blocks neuronal differentiation, demonstrating that KAT6B is critical for proper bivalent gene expression during ESC differentiation. These findings reveal how readout of the bivalent histone marks directly promotes a poised state at developmental genes while highlighting how nucleosomal asymmetry is critical for histone mark readout and function.
Collapse
Affiliation(s)
- Elana Bryan
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Devisree Valsakumar
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Nwamaka J Idigo
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Marie Warburton
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kimberly M Webb
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Katy A McLaughlin
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Simone Lenci
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Viktoria Major
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Christina Ambrosi
- Department of Molecular Mechanism of Disease, University of Zurich, 8057 Zurich, Switzerland
| | - Simon Andrews
- Bioinformatics Group, Babraham Institute, Cambridge CB22 3AT, UK
| | - Tuncay Baubec
- Department of Molecular Mechanism of Disease, University of Zurich, 8057 Zurich, Switzerland; Genome Biology and Epigenetics, Institute of Biodynamics and Biocomplexity, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Philipp Voigt
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK; Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK.
| |
Collapse
|
4
|
Liapodimitri A, Tetens AR, Craig-Schwartz J, Lunsford K, Skalitzky KO, Koldobskiy MA. Progress Toward Epigenetic Targeted Therapies for Childhood Cancer. Cancers (Basel) 2024; 16:4149. [PMID: 39766049 PMCID: PMC11674401 DOI: 10.3390/cancers16244149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Among the most significant discoveries from cancer genomics efforts has been the critical role of epigenetic dysregulation in cancer development and progression. Studies across diverse cancer types have revealed frequent mutations in genes encoding epigenetic regulators, alterations in DNA methylation and histone modifications, and a dramatic reorganization of chromatin structure. Epigenetic changes are especially relevant to pediatric cancers, which are often characterized by a low rate of genetic mutations. The inherent reversibility of epigenetic lesions has led to an intense interest in the development of epigenetic targeted therapies. Additionally, the recent appreciation of the interplay between the epigenome and immune regulation has sparked interest in combination therapies and synergistic immunotherapy approaches. Further, the recent appreciation of epigenetic variability as a driving force in cancer evolution has suggested new roles for epigenetic therapies in limiting plasticity and resistance. Here, we review recent progress and emerging directions in the development of epigenetic targeted therapeutics and their promise across the landscape of childhood cancers.
Collapse
Affiliation(s)
- Athanasia Liapodimitri
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Ashley R. Tetens
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Jordyn Craig-Schwartz
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kayleigh Lunsford
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kegan O. Skalitzky
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Michael A. Koldobskiy
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
5
|
Haase S, Carney S, Varela ML, Mukherji D, Zhu Z, Li Y, Nuñez FJ, Lowenstein PR, Castro MG. Epigenetic reprogramming in pediatric gliomas: from molecular mechanisms to therapeutic implications. Trends Cancer 2024; 10:1147-1160. [PMID: 39394009 PMCID: PMC11631670 DOI: 10.1016/j.trecan.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Brain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes. We review how distinct chromatin imbalances in glioma subtypes impact on oncogenic features such as cellular fate, proliferation, immune landscape, and radio resistance. Understanding these mechanisms of epigenetic dysregulation carries substantial implications for advancing targeted epigenetic therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devarshi Mukherji
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingxiang Li
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Felipe J Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
6
|
Cassim A, Dun MD, Gallego-Ortega D, Valdes-Mora F. EZHIP's role in diffuse midline glioma: echoes of oncohistones? Trends Cancer 2024; 10:1095-1105. [PMID: 39343635 DOI: 10.1016/j.trecan.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
The enhancer of zeste inhibitory protein (EZHIP) is typically expressed during germ cell development and has been classified as a cancer-testis antigen (CTA) in various cancers. In 2020, 4% of diffuse midline gliomas (DMGs) were shown to aberrantly express EZHIP, mirroring the DMG hallmark histone H3 K27M (H3K27M) oncohistone mutation. Similar to H3K27M, EZHIP is a negative regulator of polycomb repressive complex 2 (PRC2), leading to global epigenomic remodeling. In this opinion, we explore the similarities and disparities between H3K27M- and EZHIP-DMGs with a focus on their shared functional hallmark of PRC2 inhibition, their genetic and epigenomic landscapes, plausible differences in the cell of origin, and therapeutic avenues. Upcoming research on EZHIP will help better understand its role in gliomagenesis and DMG therapy.
Collapse
Affiliation(s)
- Afraah Cassim
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia
| | - Matthew D Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine, and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - David Gallego-Ortega
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales Sydney, New South Wales, Australia; Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Fatima Valdes-Mora
- Cancer Epigenetic Biology and Therapeutics Laboratory, Children's Cancer Institute, Lowy Cancer Centre, Kensington, New South Wales, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, New South Wales, Australia; School of Clinical Medicine, Faculty of Medicine & Health, University of New South Wales Sydney, New South Wales, Australia; Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
7
|
Jiao AL, Sendinc E, Zee BM, Wallner F, Shi Y. An E2 ubiquitin-conjugating enzyme links diubiquitinated H2B to H3K27M oncohistone function. Proc Natl Acad Sci U S A 2024; 121:e2416614121. [PMID: 39560642 PMCID: PMC11621828 DOI: 10.1073/pnas.2416614121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
The H3K27M oncogenic histone (oncohistone) mutation drives ~80% of incurable childhood brain tumors known as diffuse midline gliomas (DMGs). The major molecular feature of H3K27M mutant DMGs is a global loss of H3K27 trimethylation (H3K27me3), a phenotype conserved in Caenorhabditis elegans (C. elegans). Here, we perform unbiased genome-wide suppressor screens in C. elegans expressing H3K27M and isolate 20 suppressors, all of which at least partially restore H3K27me3. 19/20 suppressor mutations map to the same histone H3.3 gene in which the K27M mutation was originally introduced. Most of these create single amino acid substitutions between residues R26-Y54, which do not disrupt oncohistone expression. Rather, they are predicted to impair interactions with the Polycomb Repressive Complex 2 (PRC2) and are functionally conserved in human cells. Further, we mapped a single extragenic H3K27M suppressor to ubc-20, an E2 ubiquitin-conjugating enzyme, whose loss rescued H3K27me3 to nearly 50% wild-type levels despite continued oncohistone expression and chromatin incorporation. We demonstrate that ubc-20 is the major enzyme responsible for generating diubiquitinated histone H2B. Our study provides in vivo support for existing models of PRC2 inhibition via direct oncohistone contact and suggests that the effects of H3K27M may be modulated by H2B ubiquitination.
Collapse
Affiliation(s)
- Alan L. Jiao
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Erdem Sendinc
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Barry M. Zee
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Felice Wallner
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, OxfordOX3 7DQ, United Kingdom
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children’s Hospital, Boston, MA02115
| |
Collapse
|
8
|
Richard Albert J, Urli T, Monteagudo-Sánchez A, Le Breton A, Sultanova A, David A, Scarpa M, Schulz M, Greenberg MVC. DNA methylation shapes the Polycomb landscape during the exit from naive pluripotency. Nat Struct Mol Biol 2024:10.1038/s41594-024-01405-4. [PMID: 39448850 DOI: 10.1038/s41594-024-01405-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
In mammals, 5-methylcytosine (5mC) and Polycomb repressive complex 2 (PRC2)-deposited histone 3 lysine 27 trimethylation (H3K27me3) are generally mutually exclusive at CpG-rich regions. As mouse embryonic stem cells exit the naive pluripotent state, there is massive gain of 5mC concomitantly with restriction of broad H3K27me3 to 5mC-free, CpG-rich regions. To formally assess how 5mC shapes the H3K27me3 landscape, we profiled the epigenome of naive and differentiated cells in the presence and absence of the DNA methylation machinery. Surprisingly, we found that 5mC accumulation is not required to restrict most H3K27me3 domains. Instead, this 5mC-independent H3K27me3 restriction is mediated by aberrant expression of the PRC2 antagonist Ezhip (encoding EZH inhibitory protein). At the subset of regions where 5mC appears to genuinely supplant H3K27me3, we identified 163 candidate genes that appeared to require 5mC deposition and/or H3K27me3 depletion for their activation in differentiated cells. Using site-directed epigenome editing to directly modulate 5mC levels, we demonstrated that 5mC deposition is sufficient to antagonize H3K27me3 deposition and confer gene activation at individual candidates. Altogether, we systematically measured the antagonistic interplay between 5mC and H3K27me3 in a system that recapitulates early embryonic dynamics. Our results suggest that H3K27me3 restraint depends on 5mC, both directly and indirectly. Our study also implies a noncanonical role of 5mC in gene activation, which may be important not only for normal development but also for cancer progression, as oncogenic cells frequently exhibit dynamic replacement of 5mC for H3K27me3 and vice versa.
Collapse
Affiliation(s)
| | - Teresa Urli
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Ana Monteagudo-Sánchez
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Carlos Simon Foundation, INCLIVA Health Research Institute, Valencia, Spain
| | - Anna Le Breton
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Gulbenkian Institute for Molecular Medicine, Lisbon, Portugal
| | - Amina Sultanova
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Development and Disease Research Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Angélique David
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | | - Mathieu Schulz
- Institut Curie, PSL Research University, INSERM U934, CNRS, UMR3215, Paris, France
- Department of Pathology and Cell Biology, Faculty of Medicine, University of Montreal Hospital Research Centre, Montréal, Québec, Canada
| | | |
Collapse
|
9
|
Angelico G, Mazzucchelli M, Attanasio G, Tinnirello G, Farina J, Zanelli M, Palicelli A, Bisagni A, Barbagallo GMV, Certo F, Zizzo M, Koufopoulos N, Magro G, Caltabiano R, Broggi G. H3K27me3 Loss in Central Nervous System Tumors: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2024; 16:3451. [PMID: 39456545 PMCID: PMC11506073 DOI: 10.3390/cancers16203451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation of lysine 27 on the histone H3 protein, plays a crucial role in regulating gene expression and maintaining chromatin architecture (e.g., in X-chromosome inactivation). Notably, a reduction in H3K27me3 levels, frequently tied to mutations in the H3 gene family such as H3F3A and HIST1H3B, is evident in diverse brain tumor variants, including the diffuse midline glioma characterized by the H3K27M mutation and certain pediatric high-grade gliomas. The loss of H3K27me3 has been linked to more aggressive behavior in meningiomas, with the trimethylation loss associated with significantly shorter recurrence-free survival (RFS) among grade 2 meningiomas, albeit not within grade 1 tumors. Pediatric posterior fossa ependymomas characterized by a lowered H3K27me3 and DNA hypomethylation exhibit poor prognosis, underscoring the prognostic significance of these epigenetic alterations in CNS tumors. Comprehending the role of H3K27me3 in CNS tumors is vital for advancing diagnostic tools and therapeutic interventions, with the goal of enhancing patient outcomes and quality of life. This review underscores the importance of ongoing investigations into H3K27me to refine and optimize management strategies for CNS tumors, paving the way for improved personalized medicine practices in oncology.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Manuel Mazzucchelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giulio Attanasio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | | | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (G.M.V.B.); (F.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece;
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| |
Collapse
|
10
|
Richman CM, Dirks PB, Taylor MD, Michealraj KA. Protocol for the derivation of primary cancer stem cell lines from human ependymal tumors. STAR Protoc 2024; 5:103260. [PMID: 39153201 PMCID: PMC11378887 DOI: 10.1016/j.xpro.2024.103260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/24/2024] [Indexed: 08/19/2024] Open
Abstract
Cancer stem cells (CSCs) established from surgical biopsies closely mimic the human context and can be used to investigate disease mechanisms, genetic fitness, and therapeutic evaluation. Here, we present a protocol for the derivation of primary patient-derived CSC lines from ependymal tumors. We describe the necessary steps, from surgical intervention and biopsy to the dissociation of ependymomas to derive cultures. We then detail procedures for cell line propagation and define the characteristics of these primary cancer cell lines. For complete details on the use and execution of this protocol, please refer to Michealraj et al.1.
Collapse
Affiliation(s)
- Cory M Richman
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada.
| | - Peter B Dirks
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pediatrics - Hematology/Oncology, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kulandaimanuvel Antony Michealraj
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
11
|
Tamburri S, Rustichelli S, Amato S, Pasini D. Navigating the complexity of Polycomb repression: Enzymatic cores and regulatory modules. Mol Cell 2024; 84:3381-3405. [PMID: 39178860 DOI: 10.1016/j.molcel.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Polycomb proteins are a fundamental repressive system that plays crucial developmental roles by orchestrating cell-type-specific transcription programs that govern cell identity. Direct alterations of Polycomb activity are indeed implicated in human pathologies, including developmental disorders and cancer. General Polycomb repression is coordinated by three distinct activities that regulate the deposition of two histone post-translational modifications: tri-methylation of histone H3 lysine 27 (H3K27me3) and histone H2A at lysine 119 (H2AK119ub1). These activities exist in large and heterogeneous multiprotein ensembles consisting of common enzymatic cores regulated by heterogeneous non-catalytic modules composed of a large number of accessory proteins with diverse biochemical properties. Here, we have analyzed the current molecular knowledge, focusing on the functional interaction between the core enzymatic activities and their regulation mediated by distinct accessory modules. This provides a comprehensive analysis of the molecular details that control the establishment and maintenance of Polycomb repression, examining their underlying coordination and highlighting missing information and emerging new features of Polycomb-mediated transcriptional control.
Collapse
Affiliation(s)
- Simone Tamburri
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| | - Samantha Rustichelli
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Simona Amato
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Diego Pasini
- IEO, European Institute of Oncology IRCCS, Department of Experimental Oncology, Via Adamello 16, 20139 Milan, Italy; University of Milan, Department of Health Sciences, Via A. di Rudinì 8, 20142 Milan, Italy.
| |
Collapse
|
12
|
Gong L, Liu X, Yang X, Yu Z, Chen S, Xing C, Liu X. EPOP Restricts PRC2.1 Targeting to Chromatin by Directly Modulating Enzyme Complex Dimerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612337. [PMID: 39314288 PMCID: PMC11419040 DOI: 10.1101/2024.09.10.612337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Polycomb repressive complex 2 (PRC2) mediates developmental gene repression as two classes of holocomplexes, PRC2.1 and PRC2.2. EPOP is an accessory subunit specific to PRC2.1, which also contains PCL proteins. Unlike other accessory subunits that collectively facilitate PRC2 targeting, EPOP was implicated in an enigmatic inhibitory role, together with its interactor Elongin BC. We report an unusual molecular mechanism whereby EPOP regulates PRC2.1 by directly modulating its oligomerization state. EPOP disrupts the PRC2.1 dimer and weakens its chromatin association, likely by disabling the avidity effect conferred by the dimeric complex. Congruently, an EPOP mutant specifically defective in PRC2 binding enhances genome-wide enrichments of MTF2 and H3K27me3 in mouse epiblast-like cells. Elongin BC is largely dispensable for the EPOP-mediated inhibition of PRC2.1. EPOP defines a distinct subclass of PRC2.1, which uniquely maintains an epigenetic program by preventing the over-repression of key gene regulators along the continuum of early differentiation.
Collapse
|
13
|
Johnston MJ, Lee JJY, Hu B, Nikolic A, Hasheminasabgorji E, Baguette A, Paik S, Chen H, Kumar S, Chen CCL, Jessa S, Balin P, Fong V, Zwaig M, Michealraj KA, Chen X, Zhang Y, Varadharajan S, Billon P, Juretic N, Daniels C, Rao AN, Giannini C, Thompson EM, Garami M, Hauser P, Pocza T, Ra YS, Cho BK, Kim SK, Wang KC, Lee JY, Grajkowska W, Perek-Polnik M, Agnihotri S, Mack S, Ellezam B, Weil A, Rich J, Bourque G, Chan JA, Yong VW, Lupien M, Ragoussis J, Kleinman C, Majewski J, Blanchette M, Jabado N, Taylor MD, Gallo M. TULIPs decorate the three-dimensional genome of PFA ependymoma. Cell 2024; 187:4926-4945.e22. [PMID: 38986619 DOI: 10.1016/j.cell.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 05/26/2022] [Accepted: 06/18/2024] [Indexed: 07/12/2024]
Abstract
Posterior fossa group A (PFA) ependymoma is a lethal brain cancer diagnosed in infants and young children. The lack of driver events in the PFA linear genome led us to search its 3D genome for characteristic features. Here, we reconstructed 3D genomes from diverse childhood tumor types and uncovered a global topology in PFA that is highly reminiscent of stem and progenitor cells in a variety of human tissues. A remarkable feature exclusively present in PFA are type B ultra long-range interactions in PFAs (TULIPs), regions separated by great distances along the linear genome that interact with each other in the 3D nuclear space with surprising strength. TULIPs occur in all PFA samples and recur at predictable genomic coordinates, and their formation is induced by expression of EZHIP. The universality of TULIPs across PFA samples suggests a conservation of molecular principles that could be exploited therapeutically.
Collapse
Affiliation(s)
- Michael J Johnston
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John J Y Lee
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ana Nikolic
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elham Hasheminasabgorji
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada
| | - Seungil Paik
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Haifen Chen
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Sachin Kumar
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Selin Jessa
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada
| | - Polina Balin
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Vernon Fong
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Melissa Zwaig
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | | | - Xun Chen
- Department of Anatomy and Cell Biology, Kyoto University, Kyoto 606-8501, Japan
| | - Yanlin Zhang
- School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Srinidhi Varadharajan
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pierre Billon
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Nikoleta Juretic
- Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Craig Daniels
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | | | - Caterina Giannini
- Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric M Thompson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Miklos Garami
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Peter Hauser
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Timea Pocza
- Department of Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
| | - Young Shin Ra
- Department of Neurosurgery, University of Ulsan, Asan Medical Center, Seoul 05505, South Korea
| | - Byung-Kyu Cho
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Kyu-Chang Wang
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Ji Yeoun Lee
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul 30322, South Korea
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, University of Warsaw, 04-730 Warsaw, Poland
| | - Marta Perek-Polnik
- Department of Oncology, The Children's Memorial Health Institute, University of Warsaw, 04-730 Warsaw, Poland
| | - Sameer Agnihotri
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States of America
| | - Stephen Mack
- Department of Developmental Neurobiology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Benjamin Ellezam
- Department of Pathology, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Alex Weil
- Department of Pediatric Neurosurgery, Centre Hospitalier Universitaire Sainte-Justine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| | - Jeremy Rich
- University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA; Department of Neurology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - V Wee Yong
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mathieu Lupien
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Ontario Institute for Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Jiannis Ragoussis
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; McGill Genome Centre, Montreal, QC H3A 0G1, Canada
| | - Claudia Kleinman
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada
| | - Mathieu Blanchette
- Quantitative Life Sciences, McGill University, Montreal, QC H3A 1B9, Canada; School of Computer Science, McGill University, Montreal, QC H3A 2A7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC H2A 1B1, Canada; Department of Pediatrics, McGill University and The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC H3A 3J1, Canada.
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Marco Gallo
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Cancer and Hematology Center, Texas Children's Hospital, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Zhang KY, Parker M, Weber-Levine C, Kalluri A, Gonzalez-Gomez I, Raabe E, Dudley JC, Gocke C, Lin MT, Zou Y, Sherief M, Kamson DO, Holdhoff M, Mukherjee D, Croog V, Schreck KC, Rincon-Torroella J, Bettegowda C, Eberhart CG, Bale T, Lucas CHG. ASXL1 inactivation and reduced H3K27me3 across central nervous system tumors. Acta Neuropathol 2024; 148:19. [PMID: 39141113 PMCID: PMC11324662 DOI: 10.1007/s00401-024-02785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Affiliation(s)
- Kevin Y Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA
| | - Megan Parker
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Anita Kalluri
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Eric Raabe
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Jonathan C Dudley
- Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA
| | - Christopher Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA
| | - Ying Zou
- Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA
| | - Mohamed Sherief
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - David O Kamson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Debraj Mukherjee
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Victoria Croog
- Department of Radiation Oncology, Sibley Memorial Hospital, Washington, USA
| | - Karisa C Schreck
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | | | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA
| | - Tejus Bale
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, 1800 Orleans St, Baltimore, MD, 21287, USA.
| |
Collapse
|
15
|
Algranati D, Oren R, Dassa B, Fellus-Alyagor L, Plotnikov A, Barr H, Harmelin A, London N, Ron G, Furth N, Shema E. Dual targeting of histone deacetylases and MYC as potential treatment strategy for H3-K27M pediatric gliomas. eLife 2024; 13:RP96257. [PMID: 39093942 PMCID: PMC11296706 DOI: 10.7554/elife.96257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.
Collapse
Affiliation(s)
- Danielle Algranati
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of ScienceRehovotIsrael
| | - Liat Fellus-Alyagor
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Alexander Plotnikov
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Haim Barr
- Wohl Institute for Drug Discovery of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of ScienceRehovotIsrael
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of ScienceRehovotIsrael
| | - Nir London
- Department of Chemical and Structural Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Guy Ron
- Racah Institute of Physics, Hebrew UniversityJerusalemIsrael
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
16
|
Kiang KM, Ahad L, Zhong X, Lu QR. Biomolecular condensates: hubs of Hippo-YAP/TAZ signaling in cancer. Trends Cell Biol 2024; 34:566-577. [PMID: 38806345 DOI: 10.1016/j.tcb.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Biomolecular condensates, the membraneless cellular compartments formed by liquid-liquid phase separation (LLPS), represent an important mechanism for physiological and tumorigenic processes. Recent studies have advanced our understanding of how these condensates formed in the cytoplasm or nucleus regulate Hippo signaling, a central player in organogenesis and tumorigenesis. Here, we review recent findings on the dynamic formation and function of biomolecular condensates in regulating the Hippo-yes-associated protein (YAP)/transcription coactivator with PDZ-binding motif (TAZ) signaling pathway under physiological and pathological processes. We further discuss how the nuclear condensates of YAP- or TAZ-fusion oncoproteins compartmentalize crucial transcriptional co-activators and alter chromatin architecture to promote oncogenic programs. Finally, we highlight key questions regarding how these findings may pave the way for novel therapeutics to target cancer.
Collapse
Affiliation(s)
- Karrie M Kiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Surgery, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Leena Ahad
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaowen Zhong
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
17
|
Rubin JB, Abou-Antoun T, Ippolito JE, Llaci L, Marquez CT, Wong JP, Yang L. Epigenetic developmental mechanisms underlying sex differences in cancer. J Clin Invest 2024; 134:e180071. [PMID: 38949020 PMCID: PMC11213507 DOI: 10.1172/jci180071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Cancer risk is modulated by hereditary and somatic mutations, exposures, age, sex, and gender. The mechanisms by which sex and gender work alone and in combination with other cancer risk factors remain underexplored. In general, cancers that occur in both the male and female sexes occur more commonly in XY compared with XX individuals, regardless of genetic ancestry, geographic location, and age. Moreover, XY individuals are less frequently cured of their cancers, highlighting the need for a greater understanding of sex and gender effects in oncology. This will be necessary for optimal laboratory and clinical cancer investigations. To that end, we review the epigenetics of sexual differentiation and its effect on cancer hallmark pathways throughout life. Specifically, we will touch on how sex differences in metabolism, immunity, pluripotency, and tumor suppressor functions are patterned through the epigenetic effects of imprinting, sex chromosome complement, X inactivation, genes escaping X inactivation, sex hormones, and life history.
Collapse
Affiliation(s)
| | | | - Joseph E. Ippolito
- Department of Radiology
- Department of Biochemistry and Molecular Biophysics
| | - Lorida Llaci
- Deartment of Genetics Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
18
|
Chen X, Yang W, Roberts CWM, Zhang J. Developmental origins shape the paediatric cancer genome. Nat Rev Cancer 2024; 24:382-398. [PMID: 38698126 PMCID: PMC11571274 DOI: 10.1038/s41568-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2024] [Indexed: 05/05/2024]
Abstract
In the past two decades, technological advances have brought unprecedented insights into the paediatric cancer genome revealing characteristics distinct from those of adult cancer. Originating from developing tissues, paediatric cancers generally have low mutation burden and are driven by variants that disrupt the transcriptional activity, chromatin state, non-coding cis-regulatory regions and other biological functions. Within each tumour, there are multiple populations of cells with varying states, and the lineages of some can be tracked to their fetal origins. Genome-wide genetic screening has identified vulnerabilities associated with both the cell of origin and transcription deregulation in paediatric cancer, which have become a valuable resource for designing new therapeutic approaches including those for small molecules, immunotherapy and targeted protein degradation. In this Review, we present recent findings on these facets of paediatric cancer from a pan-cancer perspective and provide an outlook on future investigations.
Collapse
Affiliation(s)
- Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wentao Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center, St Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
19
|
Shi TH, Sugishita H, Gotoh Y. Crosstalk within and beyond the Polycomb repressive system. J Cell Biol 2024; 223:e202311021. [PMID: 38506728 PMCID: PMC10955045 DOI: 10.1083/jcb.202311021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
The development of multicellular organisms depends on spatiotemporally controlled differentiation of numerous cell types and their maintenance. To generate such diversity based on the invariant genetic information stored in DNA, epigenetic mechanisms, which are heritable changes in gene function that do not involve alterations to the underlying DNA sequence, are required to establish and maintain unique gene expression programs. Polycomb repressive complexes represent a paradigm of epigenetic regulation of developmentally regulated genes, and the roles of these complexes as well as the epigenetic marks they deposit, namely H3K27me3 and H2AK119ub, have been extensively studied. However, an emerging theme from recent studies is that not only the autonomous functions of the Polycomb repressive system, but also crosstalks of Polycomb with other epigenetic modifications, are important for gene regulation. In this review, we summarize how these crosstalk mechanisms have improved our understanding of Polycomb biology and how such knowledge could help with the design of cancer treatments that target the dysregulated epigenome.
Collapse
Affiliation(s)
- Tianyi Hideyuki Shi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroki Sugishita
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Saratsis AM, Knowles T, Petrovic A, Nazarian J. H3K27M mutant glioma: Disease definition and biological underpinnings. Neuro Oncol 2024; 26:S92-S100. [PMID: 37818718 PMCID: PMC11066930 DOI: 10.1093/neuonc/noad164] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 10/12/2023] Open
Abstract
High-grade glioma (HGG) is the most common cause of cancer death in children and the most common primary central nervous system tumor in adults. While pediatric HGG was once thought to be biologically similar to the adult form of disease, research has shown these malignancies to be significantly molecularly distinct, necessitating distinct approaches to their clinical management. However, emerging data have shown shared molecular events in pediatric and adult HGG including the histone H3K27M mutation. This somatic missense mutation occurs in genes encoding one of two isoforms of the Histone H3 protein, H3F3A (H3.3), or HIST1H3B (H3.1), and is detected in up to 80% of pediatric diffuse midline gliomas and in up to 60% of adult diffuse gliomas. Importantly, the H3K27M mutation is associated with poorer overall survival and response to therapy compared to patients with H3 wild-type tumors. Here, we review the clinical features and biological underpinnings of pediatric and adult H3K27M mutant glioma, offering a groundwork for understanding current research and clinical approaches for the care of patients suffering with this challenging disease.
Collapse
Affiliation(s)
| | | | - Antonela Petrovic
- DMG Research Center, Department of Oncology, University Children’s Hospital, University of Zürich, Zürich, Switzerland
| | - Javad Nazarian
- Research Center for Genetic Medicine, Children’s National Health System, Washington, District of Columbia, USA
- Brain Tumor Institute, Children’s National Health System, Washington, District of Columbia, USA
- DMG Research Center, Department of Pediatrics, University Children’s Hospital, University of Zurich, Zürich, Switzerland
| |
Collapse
|
21
|
Romero P, Richart L, Aflaki S, Petitalot A, Burton M, Michaud A, Masliah-Planchon J, Kuhnowski F, Le Cam S, Baliñas-Gavira C, Méaudre C, Luscan A, Hamza A, Legoix P, Vincent-Salomon A, Wassef M, Holoch D, Margueron R. EZH2 mutations in follicular lymphoma distort H3K27me3 profiles and alter transcriptional responses to PRC2 inhibition. Nat Commun 2024; 15:3452. [PMID: 38658543 PMCID: PMC11043461 DOI: 10.1038/s41467-024-47701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Mutations in chromatin regulators are widespread in cancer. Among them, the histone H3 lysine 27 methyltransferase Polycomb Repressive Complex 2 (PRC2) shows distinct alterations according to tumor type. This specificity is poorly understood. Here, we model several PRC2 alterations in one isogenic system to reveal their comparative effects. Focusing then on lymphoma-associated EZH2 mutations, we show that Ezh2Y641F induces aberrant H3K27 methylation patterns even without wild-type Ezh2, which are alleviated by partial PRC2 inhibition. Remarkably, Ezh2Y641F rewires the response to PRC2 inhibition, leading to induction of antigen presentation genes. Using a unique longitudinal follicular lymphoma cohort, we further link EZH2 status to abnormal H3K27 methylation. We also uncover unexpected variability in the mutational landscape of successive biopsies, pointing to frequent co-existence of different clones and cautioning against stratifying patients based on single sampling. Our results clarify how oncogenic PRC2 mutations disrupt chromatin and transcription, and the therapeutic vulnerabilities this creates.
Collapse
Affiliation(s)
- Pierre Romero
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
- Institut Curie, Department of Pathology, Paris Sciences et Lettres Research University, Paris, France
| | - Laia Richart
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Setareh Aflaki
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Ambre Petitalot
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Megan Burton
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Audrey Michaud
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Julien Masliah-Planchon
- Institut Curie, Pharmacogenetics Unit, Department of Genetics, Paris Sciences et Lettres Research University, Paris, France
| | - Frédérique Kuhnowski
- Institut Curie, Department of Clinical Hematology, Paris Sciences et Lettres Research University, Paris, France
| | - Samuel Le Cam
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Carlos Baliñas-Gavira
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Céline Méaudre
- Institut Curie, Department of Pathology, Paris Sciences et Lettres Research University, Paris, France
| | - Armelle Luscan
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Abderaouf Hamza
- Institut Curie, Pharmacogenetics Unit, Department of Genetics, Paris Sciences et Lettres Research University, Paris, France
| | - Patricia Legoix
- Institut Curie, Genomics of Excellence (ICGex) Platform, Paris Sciences et Lettres Research University, Paris, France
| | - Anne Vincent-Salomon
- Institut Curie, Department of Pathology, Paris Sciences et Lettres Research University, Paris, France
| | - Michel Wassef
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France
| | - Daniel Holoch
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.
| | - Raphaël Margueron
- Institut Curie, INSERM U934/CNRS UMR 3215, Paris Sciences et Lettres Research University, Sorbonne University, Paris, France.
| |
Collapse
|
22
|
Giacomini G, Piquet S, Chevallier O, Dabin J, Bai SK, Kim B, Siddaway R, Raught B, Coyaud E, Shan CM, Reid RJD, Toda T, Rothstein R, Barra V, Wilhelm T, Hamadat S, Bertin C, Crane A, Dubois F, Forne I, Imhof A, Bandopadhayay P, Beroukhim R, Naim V, Jia S, Hawkins C, Rondinelli B, Polo SE. Aberrant DNA repair reveals a vulnerability in histone H3.3-mutant brain tumors. Nucleic Acids Res 2024; 52:2372-2388. [PMID: 38214234 PMCID: PMC10954481 DOI: 10.1093/nar/gkad1257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
Pediatric high-grade gliomas (pHGG) are devastating and incurable brain tumors with recurrent mutations in histone H3.3. These mutations promote oncogenesis by dysregulating gene expression through alterations of histone modifications. We identify aberrant DNA repair as an independent mechanism, which fosters genome instability in H3.3 mutant pHGG, and opens new therapeutic options. The two most frequent H3.3 mutations in pHGG, K27M and G34R, drive aberrant repair of replication-associated damage by non-homologous end joining (NHEJ). Aberrant NHEJ is mediated by the DNA repair enzyme polynucleotide kinase 3'-phosphatase (PNKP), which shows increased association with mutant H3.3 at damaged replication forks. PNKP sustains the proliferation of cells bearing H3.3 mutations, thus conferring a molecular vulnerability, specific to mutant cells, with potential for therapeutic targeting.
Collapse
Affiliation(s)
- Giulia Giacomini
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Sandra Piquet
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Odile Chevallier
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Juliette Dabin
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Siau-Kun Bai
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| | - Byungjin Kim
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Robert Siddaway
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON M5G1L7, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Université de Lille, Inserm, CHU Lille, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, F-59000 Lille, France
| | - Chun-Min Shan
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Robert J D Reid
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Takenori Toda
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Viviana Barra
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Therese Wilhelm
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Sabah Hamadat
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Chloé Bertin
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Alexander Crane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Frank Dubois
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Ignasi Forne
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University, Martinsried, Germany
| | - Axel Imhof
- Protein Analysis Unit, BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-University, Martinsried, Germany
| | - Pratiti Bandopadhayay
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, USA
| | - Rameen Beroukhim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Valeria Naim
- CNRS UMR9019 Genome Integrity and Cancers, Université Paris-Saclay, Gustave Roussy Institute, Villejuif, France
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
| | | | - Sophie E Polo
- Epigenetics & Cell Fate Centre, CNRS/Université Paris Cité, Paris, France
| |
Collapse
|
23
|
d’Amati A, Bargiacchi L, Rossi S, Carai A, Bertero L, Barresi V, Errico ME, Buccoliero AM, Asioli S, Marucci G, Del Baldo G, Mastronuzzi A, Miele E, D’Antonio F, Schiavello E, Biassoni V, Massimino M, Gessi M, Antonelli M, Gianno F. Pediatric CNS tumors and 2021 WHO classification: what do oncologists need from pathologists? Front Mol Neurosci 2024; 17:1268038. [PMID: 38544524 PMCID: PMC10966132 DOI: 10.3389/fnmol.2024.1268038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.
Collapse
Affiliation(s)
- Antonio d’Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Lavinia Bargiacchi
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica D’Antonio
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
24
|
Gödicke S, Kresbach C, Ehlert M, Obrecht D, Altendorf L, Hack K, von Hoff K, Carén H, Melcher V, Kerl K, Englinger B, Filbin M, Pajtler KW, Gojo J, Pietsch T, Rutkowski S, Schüller U. Clinically relevant molecular hallmarks of PFA ependymomas display intratumoral heterogeneity and correlate with tumor morphology. Acta Neuropathol 2024; 147:23. [PMID: 38265527 PMCID: PMC10808473 DOI: 10.1007/s00401-023-02682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/05/2023] [Accepted: 12/30/2023] [Indexed: 01/25/2024]
Abstract
Posterior fossa type A (PF-EPN-A, PFA) ependymoma are aggressive tumors that mainly affect children and have a poor prognosis. Histopathology shows significant intratumoral heterogeneity, ranging from loose tissue to often sharply demarcated, extremely cell-dense tumor areas. To determine molecular differences in morphologically different areas and to understand their clinical significance, we analyzed 113 PF-EPN-A samples, including 40 corresponding relapse samples. Cell-dense areas ranged from 0 to 100% of the tumor area and displayed a higher proportion of proliferating tumor cells (p < 0.01). Clinically, cell density was associated with poor progression-free and overall survival (pPFS = 0.0026, pOS < 0.01). Molecularly, tumor areas with low and high cell density showed diverging DNA methylation profiles regarding their similarity to distinct previously discovered PF-EPN-A subtypes in 9/21 cases. Prognostically relevant chromosomal changes at 1q and 6q showed spatial heterogeneity within single tumors and were significantly enriched in cell-dense tumor areas as shown by single-cell RNA (scRNA)-sequencing as well as copy number profiling and fluorescence in situ hybridization (FISH) analyses of different tumor areas. Finally, spatial transcriptomics revealed cell-dense areas of different tumors to be more similar than various different areas of the same tumor. High-density areas distinctly overexpressed genes encoding histone proteins, WNT5A, TGFB1, or IGF2. Relapsing tumors displayed a higher proportion of cell-dense areas (p = 0.036), a change in PF-EPN-A methylation subtypes (13/32 patients), and novel chromosome 1q gains and 6q losses (12/32 cases) compared to corresponding primary tumors. Our data suggest that PF-EPN-A ependymomas habor a previously unrecognized intratumoral heterogeneity with clinical implications, which has to be accounted for when selecting diagnostic material, inter alia, by histological evaluation of the proportion of cell-dense areas.
Collapse
Affiliation(s)
- Swenja Gödicke
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Catena Kresbach
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Max Ehlert
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Denise Obrecht
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lea Altendorf
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Karoline Hack
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Katja von Hoff
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Berlin Institute of Health, Berlin, Germany
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Helena Carén
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, 48149, Münster, Germany
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, 1090, Vienna, Austria
| | - Mariella Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Kristian W Pajtler
- Hopp Children's Cancer Center Heidelberg (KiTZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Johannes Gojo
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematolgoy and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Research Institute Children's Cancer Center, Hamburg-Eppendorf, Hamburg, Germany.
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
25
|
Krug B, Hu B, Chen H, Ptack A, Chen X, Gretarsson KH, Deshmukh S, Kabir N, Andrade AF, Jabbour E, Harutyunyan AS, Lee JJY, Hulswit M, Faury D, Russo C, Xu X, Johnston MJ, Baguette A, Dahl NA, Weil AG, Ellezam B, Dali R, Blanchette M, Wilson K, Garcia BA, Soni RK, Gallo M, Taylor MD, Kleinman CL, Majewski J, Jabado N, Lu C. H3K27me3 spreading organizes canonical PRC1 chromatin architecture to regulate developmental programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.567931. [PMID: 38116029 PMCID: PMC10729739 DOI: 10.1101/2023.11.28.567931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification. Using glioma-derived H3 Lys-27-Met (H3K27M) mutations as tools to restrict H3K27me3 deposition, we show that H3K27me3 confinement concentrates the chromatin pool of cPRC1, resulting in heightened 3D interactions mirroring chromatin architecture of pluripotency, and stringent gene repression that maintains cells in progenitor states to facilitate tumor development. Conversely, H3K27me3 spread in pluripotent stem cells, following neural differentiation or loss of the H3K36 methyltransferase NSD1, dilutes cPRC1 concentration and dissolves polycomb loops. These results identify the regulatory principles and disease implications of polycomb looping and nominate histone modification-guided distribution of reader complexes as an important mechanism for nuclear compartment organization. Highlights The confinement of H3K27me3 at PRC2 nucleation sites without its spreading correlates with increased 3D chromatin interactions.The H3K27M oncohistone concentrates canonical PRC1 that anchors chromatin loop interactions in gliomas, silencing developmental programs.Stem and progenitor cells require factors promoting H3K27me3 confinement, including H3K36me2, to maintain cPRC1 loop architecture.The cPRC1-H3K27me3 interaction is a targetable driver of aberrant self-renewal in tumor cells.
Collapse
|
26
|
Serdyukova K, Swearingen AR, Coradin M, Nevo M, Tran H, Bajric E, Brumbaugh J. Leveraging dominant-negative histone H3 K-to-M mutations to study chromatin during differentiation and development. Development 2023; 150:dev202169. [PMID: 37846748 PMCID: PMC10617616 DOI: 10.1242/dev.202169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Histone modifications are associated with regulation of gene expression that controls a vast array of biological processes. Often, these associations are drawn by correlating the genomic location of a particular histone modification with gene expression or phenotype; however, establishing a causal relationship between histone marks and biological processes remains challenging. Consequently, there is a strong need for experimental approaches to directly manipulate histone modifications. A class of mutations on the N-terminal tail of histone H3, lysine-to-methionine (K-to-M) mutations, was identified as dominant-negative inhibitors of histone methylation at their respective and specific residues. The dominant-negative nature of K-to-M mutants makes them a valuable tool for studying the function of specific methylation marks on histone H3. Here, we review recent applications of K-to-M mutations to understand the role of histone methylation during development and homeostasis. We highlight important advantages and limitations that require consideration when using K-to-M mutants, particularly in a developmental context.
Collapse
Affiliation(s)
- Ksenia Serdyukova
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Alison R. Swearingen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mariel Coradin
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mika Nevo
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Huong Tran
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Emir Bajric
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Justin Brumbaugh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
- University of Colorado Cancer Center, Anschutz Medical Campus, Aurora, CO 80045, USA
- Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Weiser A, Sanchez Bergman A, Machaalani C, Bennett J, Roth P, Reimann RR, Nazarian J, Guerreiro Stucklin AS. Bridging the age gap: a review of molecularly informed treatments for glioma in adolescents and young adults. Front Oncol 2023; 13:1254645. [PMID: 37781183 PMCID: PMC10533987 DOI: 10.3389/fonc.2023.1254645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas are the most common primary central nervous system (CNS) tumors and a major cause of cancer-related mortality in children (age <15 years), adolescents and young adults (AYA, ages 15-39 years), and adults (age >39 years). Molecular pathology has helped enhance the characterization of these tumors, revealing a heterogeneous and ever more complex group of malignancies. Recent molecular analyses have led to an increased appreciation of common genomic alterations prevalent across all ages. The 2021 World Health Organization (WHO) CNS tumor classification, 5th edition (WHO CNS5) brings forward a nomenclature distinguishing "pediatric-type" and "adult-type" gliomas. The spectrum of gliomas in AYA comprises both "pediatric-like" and "adult-like" tumor entities but remains ill-defined. With fragmentation of clinical management between pediatric and adult centers, AYAs face challenges related to gaps in medical care, lower rates of enrollment in clinical trials and additional psychosocial and economic challenges. This calls for a rethinking of diagnostic and therapeutic approaches, to improve access to appropriate testing and potentially beneficial treatments to patients of all ages.
Collapse
Affiliation(s)
- Annette Weiser
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Astrid Sanchez Bergman
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Charbel Machaalani
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Julie Bennett
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Regina R. Reimann
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | - Javad Nazarian
- Department of Pediatrics, Diffuse Midline Glioma (DMG) / Diffuse Intrinsic Pontine Glioma (DIPG) Center, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Research Center for Genetic Medicine, Children's National Hospital, Washington, DC, United States
| | - Ana S. Guerreiro Stucklin
- Translational Brain Tumor Research Group, Children’s Research Center, University Children’s Hospital Zurich, Zurich, Switzerland
- Division of Oncology, University Children’s Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Williams EA, Brastianos PK, Wakimoto H, Zolal A, Filbin MG, Cahill DP, Santagata S, Juratli TA. A comprehensive genomic study of 390 H3F3A-mutant pediatric and adult diffuse high-grade gliomas, CNS WHO grade 4. Acta Neuropathol 2023; 146:515-525. [PMID: 37524847 PMCID: PMC10412483 DOI: 10.1007/s00401-023-02609-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
Malignant brain tumors, known as H3K27-altered diffuse midline glioma (DMG) and H3G34-mutant diffuse hemispheric glioma (DHG), can affect individuals of all ages and are classified as CNS WHO grade 4. We comprehensively characterized 390 H3F3A-mutant diffuse gliomas (201 females, 189 males) arising in pediatric patients (under 20 years old) and adults (20 years and older) evaluated by the CGP program at Foundation Medicine between 2013 and 2020. We assessed information from pathology reports, histopathology review, and clinical data. The cohort included 304 H3K27M-mutant DMG (156 females, 148 males) and 86 H3G34-mutant DHG (45 females, 41 males). Median patient age was 20 years (1-74 years). The frequency of H3K27M-mutant DMG was similar in both pediatric and adult patients in our cohort-48.6% of the patients were over 20 years old, 31.5% over 30, and 18% over 40 at initial diagnosis. FGFR1 hotspot point mutations (N546K and K656E) were exclusively identified in H3K27M-mutant DMG tumors (64/304, 21%; p = 0.0001); these tend to occur in older patients (median age: 32.5 years) and mainly arose in the diencephalon. H3K27M-mutant DMG had higher rates of mutations in NF1 (31.0 vs 8.1%; p = 0.0001) and PIK3CA/PIK3R1 (27.9% vs 15.1%; p = 0.016) compared to H3G34-mutant DHG. However, H3G34-mutant DHG had higher rates of targetable alterations in cell-cycle pathway genes (CDK4 and CDK6 amplification; CDKN2A/B deletion) (27.0 vs 9.0%). Potentially targetable PDGFRA alterations were identified in ~ 20% of both H3G34-mutant DHG and H3K27M-mutant DMG. Overall, in the present study H3K27M-mutant DMG occurred at similar rates in both adult and patient patients. Through our analysis, we were able to identify molecular features characteristic of DMG and DHG. By identifying the recurrent co-mutations including actionable FGFR1 point mutations found in nearly one-third of H3K27M-mutant DMG in young adults, our findings can inform clinical translational studies, patient diagnosis, and clinical trial design.
Collapse
Affiliation(s)
- Erik A Williams
- Department of Pathology and Laboratory Medicine, University of Miami, Sylvester Comprehensive Cancer Center, and Jackson Memorial Hospitals, Miami, USA
- Foundation Medicine Inc, Cambridge, USA
| | - Priscilla K Brastianos
- Department of Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Laboratory of Translational Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Amir Zolal
- Department of Neurosurgery, Division of Neuro-Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Laboratory of Translational Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
- Department of Systems Biology, Harvard Medical School, Boston, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, USA
| | - Tareq A Juratli
- Department of Neurosurgery, Laboratory of Translational Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA.
- Department of Neurosurgery, Division of Neuro-Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
- National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.
| |
Collapse
|
29
|
Kim H, Lee K, Shim YM, Kim EE, Kim SK, Phi JH, Park CK, Choi SH, Park SH. Epigenetic Alteration of H3K27me3 as a Possible Oncogenic Mechanism of Central Neurocytoma. J Transl Med 2023; 103:100159. [PMID: 37088465 DOI: 10.1016/j.labinv.2023.100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023] Open
Abstract
Central neurocytoma (CN) is a low-grade neuronal tumor that mainly arises from the lateral ventricle (LV). This tumor remains poorly understood in the sense that no driver gene aberrations have been identified thus far. We investigated immunomarkers in fetal and adult brains and 45 supratentorial periventricular tumors to characterize the biomarkers, cell of origin, and tumorigenesis of CN. All CNs occurred in the LV. A minority involved the third ventricle, but none involved the fourth ventricle. As expected, next-generation sequencing performed using a brain-tumor-targeted gene panel in 7 CNs and whole exome sequencing in 5 CNs showed no driver mutations. Immunohistochemically, CNs were robustly positive for FGFR3 (100%), SSTR2 (92%), TTF-1 (Nkx2.1) (88%), GLUT-1 (84%), and L1CAM (76%), in addition to the well-known markers of CN, synaptophysin (100%) and NeuN (96%). TTF-1 was also positive in subependymal giant cell astrocytomas (100%, 5/5) and the pituicyte tumor family, including pituicytoma and spindle cell oncocytoma (100%, 5/5). Interestingly, 1 case of LV subependymoma (20%, 1/5) was positive for TTF-1, but all LV ependymomas were negative (0/5 positive). Because TTF-1-positive cells were detected in the medial ganglionic eminence around the foramen of Monro of the fetal brain and in the subventricular zone of the LV of the adult brain, CN may arise from subventricular TTF-1-positive cells undergoing neuronal differentiation. H3K27me3 loss was observed in all CNs and one case (20%) of LV subependymoma, suggesting that chromatin remodeling complexes or epigenetic alterations may be involved in the tumorigenesis of all CNs and some ST-subependymomas. Further studies are required to determine the exact tumorigenic mechanism of CN.
Collapse
Affiliation(s)
- Hyunhee Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kwanghoon Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yu-Mi Shim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eric Eunshik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
30
|
Rechberger JS, Bouchal SM, Power EA, Nonnenbroich LF, Nesvick CL, Daniels DJ. Bench-to-bedside investigations of H3 K27-altered diffuse midline glioma: drug targets and potential pharmacotherapies. Expert Opin Ther Targets 2023; 27:1071-1086. [PMID: 37897190 PMCID: PMC11079776 DOI: 10.1080/14728222.2023.2277232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 10/29/2023]
Abstract
INTRODUCTION H3 K27-altered diffuse midline glioma (DMG) is the most common malignant brainstem tumor in the pediatric population. Despite enormous preclinical and clinical efforts, the prognosis remains dismal, with fewer than 10% of patients surviving for two years after diagnosis. Fractionated radiation remains the only standard treatment options for DMG. Developing novel treatments and therapeutic delivery methods is critical to improving outcomes in this devastating disease. AREAS COVERED This review addresses recent advances in molecularly targeted pharmacotherapy and immunotherapy in DMG. The clinical presentation, diagnostic workup, unique pathological challenges, and current clinical trials are highlighted throughout. EXPERT OPINION Promising pharmacotherapies targeting various components of DMG pathology and the application of immunotherapies have the potential to improve patient outcomes. However, novel approaches are needed to truly revolutionize treatment for this tumor. First, combinational therapy should be employed, as DMG can develop resistance to single-agent approaches and many therapies are susceptible to rapid clearance from the brain. Second, drug-tumor residence time, i.e. the time for which a therapeutic is present at efficacious concentrations within the tumor, must be maximized to facilitate a durable treatment response. Engineering extended drug delivery methods with minimal off-tumor toxicity should be a focus of future studies.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Samantha M. Bouchal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Erica A. Power
- Loyola University Chicago Stritch School of Medicine, Maywood, IL, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Hopp Children’s Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| |
Collapse
|
31
|
Wright GM, Menzel J, Tatman PD, Black JC. Transition from Transient DNA Rereplication to Inherited Gene Amplification Following Prolonged Environmental Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539886. [PMID: 37214911 PMCID: PMC10197558 DOI: 10.1101/2023.05.08.539886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells require the ability to adapt to changing environmental conditions, however, it is unclear how these changes elicit stable permanent changes in genomes. We demonstrate that, in response to environmental metal exposure, the metallothionein (MT) locus undergoes DNA rereplication generating transient site-specific gene amplifications (TSSGs). Chronic metal exposure allows transition from MT TSSG to inherited MT gene amplification through homologous recombination within and outside of the MT locus. DNA rereplication of the MT locus is suppressed by H3K27me3 and EZH2. Long-term ablation of EZH2 activity eventually leads to integration and inheritance of MT gene amplifications without the selective pressure of metal exposure. The rereplication and inheritance of MT gene amplification is an evolutionarily conserved response to environmental metal from yeast to human. Our results describe a new paradigm for adaptation to environmental stress where targeted, transient DNA rereplication precedes stable inherited gene amplification.
Collapse
|
32
|
Andrade AF, Chen CCL, Jabado N. Oncohistones in brain tumors: the soil and seed. Trends Cancer 2023; 9:444-455. [PMID: 36933956 PMCID: PMC11075889 DOI: 10.1016/j.trecan.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Recurrent somatic mutations in histone 3 (H3) variants (termed 'oncohistones') have been identified in high-grade gliomas (HGGs) in children and young adults and induce tumorigenesis through disruption of chromatin states. Oncohistones occur with exquisite neuroanatomical specificity and are associated with specific age distribution and epigenome landscapes. Here, we review the known intrinsic ('seed') and the extrinsic ('soil') factors needed for their optimal oncogenic effect and highlight the many unresolved questions regarding their effects on development and crosstalk with the tumor microenvironment. The 'seed and soil' analogy, used to explain tumor metastatic niches, also applies to oncohistones, which mainly thrive and flourish in specific chromatin states during very narrow windows of development, creating exquisite vulnerabilities, which could provide effective therapies for these deadly cancers.
Collapse
Affiliation(s)
| | - Carol C L Chen
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, H3A 0C7, Canada; Department of Pediatrics, McGill University, Montreal, QC, H3A 0C7, Canada; The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
33
|
Ajuyah P, Mayoh C, Lau LMS, Barahona P, Wong M, Chambers H, Valdes-Mora F, Senapati A, Gifford AJ, D'Arcy C, Hansford JR, Manoharan N, Nicholls W, Williams MM, Wood PJ, Cowley MJ, Tyrrell V, Haber M, Ekert PG, Ziegler DS, Khuong-Quang DA. Histone H3-wild type diffuse midline gliomas with H3K27me3 loss are a distinct entity with exclusive EGFR or ACVR1 mutation and differential methylation of homeobox genes. Sci Rep 2023; 13:3775. [PMID: 36882456 PMCID: PMC9992705 DOI: 10.1038/s41598-023-30395-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Diffuse midline gliomas (DMG) harbouring H3K27M mutation are paediatric tumours with a dismal outcome. Recently, a new subtype of midline gliomas has been described with similar features to DMG, including loss of H3K27 trimethylation, but lacking the canonical H3K27M mutation (H3-WT). Here, we report a cohort of five H3-WT tumours profiled by whole-genome sequencing, RNA sequencing and DNA methylation profiling and combine their analysis with previously published cases. We show that these tumours have recurrent and mutually exclusive mutations in either ACVR1 or EGFR and are characterised by high expression of EZHIP associated to its promoter hypomethylation. Affected patients share a similar poor prognosis as patients with H3K27M DMG. Global molecular analysis of H3-WT and H3K27M DMG reveal distinct transcriptome and methylome profiles including differential methylation of homeobox genes involved in development and cellular differentiation. Patients have distinct clinical features, with a trend demonstrating ACVR1 mutations occurring in H3-WT tumours at an older age. This in-depth exploration of H3-WT tumours further characterises this novel DMG, H3K27-altered sub-group, characterised by a specific immunohistochemistry profile with H3K27me3 loss, wild-type H3K27M and positive EZHIP. It also gives new insights into the possible mechanism and pathway regulation in these tumours, potentially opening new therapeutic avenues for these tumours which have no known effective treatment. This study has been retrospectively registered on clinicaltrial.gov on 8 November 2017 under the registration number NCT03336931 ( https://clinicaltrials.gov/ct2/show/NCT03336931 ).
Collapse
Affiliation(s)
- Pamela Ajuyah
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia
| | - Chelsea Mayoh
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Loretta M S Lau
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Paulette Barahona
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia
| | - Marie Wong
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Hazel Chambers
- Department of Anatomical Pathology, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Fatima Valdes-Mora
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Akanksha Senapati
- Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Andrew J Gifford
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Colleen D'Arcy
- Department of Anatomical Pathology, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.,Michael Rice Cancer Centre, Women's and Children's Hospital, Adelaide, SA, Australia.,South Australia Health and Medical Research Institute, Adelaide, SA, Australia.,South Australia Immunogenomics Cancer Institute, Adelaide, SA, Australia.,University of Adelaide, Adelaide, SA, Australia
| | - Neevika Manoharan
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia
| | - Wayne Nicholls
- Oncology Service, Children's Health Queensland Hospital & Health Service, Brisbane, QLD, Australia
| | - Molly M Williams
- Children's Cancer Centre, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Paul J Wood
- Department of Paediatrics, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Mark J Cowley
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Vanessa Tyrrell
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Michelle Haber
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia
| | - Paul G Ekert
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia.,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia.,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia.,Cancer Immunology Program, Peter MacCallum Cancer Centre, Parkville, VIC, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - David S Ziegler
- Lowy Cancer Research Centre, Children's Cancer Institute, UNSW Sydney, Kensington, NSW, Australia. .,School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia. .,University of New South Wales Centre for Childhood Cancer Research, UNSW, Kensington, NSW, Australia. .,Kids Cancer Centre, Sydney Children's Hospital, High Street, Randwick, NSW, 2031, Australia.
| | - Dong-Anh Khuong-Quang
- Children's Cancer Centre, Royal Children's Hospital, 50 Flemington Road, Parkville, VIC, 3052, Australia. .,Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia.
| |
Collapse
|
34
|
Whitehouse JP, Hii H, Mayoh C, Wong M, Ajuyah P, Barahona P, Cui L, Dholaria H, White CL, Buntine MK, Byrne J, Rodrigues da Silva K, Howlett M, Girard EJ, Tsoli M, Ziegler DS, Dyke JM, Lee S, Ekert PG, Cowley MJ, Gottardo NG, Endersby R. In vivo loss of tumorigenicity in a patient-derived orthotopic xenograft mouse model of ependymoma. Front Oncol 2023; 13:1123492. [PMID: 36937401 PMCID: PMC10020925 DOI: 10.3389/fonc.2023.1123492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Ependymomas (EPN) are the third most common malignant brain cancer in children. Treatment strategies for pediatric EPN have remained unchanged over recent decades, with 10-year survival rates stagnating at just 67% for children aged 0-14 years. Moreover, a proportion of patients who survive treatment often suffer long-term neurological side effects as a result of therapy. It is evident that there is a need for safer, more effective treatments for pediatric EPN patients. There are ten distinct subgroups of EPN, each with their own molecular and prognostic features. To identify and facilitate the testing of new treatments for EPN, in vivo laboratory models representative of the diverse molecular subtypes are required. Here, we describe the establishment of a patient-derived orthotopic xenograft (PDOX) model of posterior fossa A (PFA) EPN, derived from a metastatic cranial lesion. Methods Patient and PDOX tumors were analyzed using immunohistochemistry, DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. Results Both patient and PDOX tumors classified as PFA EPN by methylation profiling, and shared similar histological features consistent with this molecular subgroup. RNA sequencing revealed that gene expression patterns were maintained across the primary and metastatic tumors, as well as the PDOX. Copy number profiling revealed gains of chromosomes 7, 8 and 19, and loss of chromosomes 2q and 6q in the PDOX and matched patient tumor. No clinically significant single nucleotide variants were identified, consistent with the low mutation rates observed in PFA EPN. Overexpression of EZHIP RNA and protein, a common feature of PFA EPN, was also observed. Despite the aggressive nature of the tumor in the patient, this PDOX was unable to be maintained past two passages in vivo. Discussion Others who have successfully developed PDOX models report some of the lowest success rates for EPN compared to other pediatric brain cancer types attempted, with loss of tumorigenicity not uncommon, highlighting the challenges of propagating these tumors in the laboratory. Here, we discuss our collective experiences with PFA EPN PDOX model generation and propose potential approaches to improve future success in establishing preclinical EPN models.
Collapse
Affiliation(s)
- Jacqueline P. Whitehouse
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia
| | - Hilary Hii
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
| | - Chelsea Mayoh
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Marie Wong
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Pamela Ajuyah
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Paulette Barahona
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Louise Cui
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
| | - Hetal Dholaria
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Division of Paediatrics, University of Western Australia Medical School, Nedlands, WA, Australia
| | - Christine L. White
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Division of Genetics and Genomics, Victorian Clinical Genetics Services, Parkville, VIC, Australia
| | - Molly K. Buntine
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Jacob Byrne
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
| | - Keteryne Rodrigues da Silva
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- Medical School of Rbeirão Preto (FMRP-USP), University of São Paulo, São Paulo, Brazil
| | - Meegan Howlett
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia
| | - Emily J. Girard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Maria Tsoli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, NSW, Australia
| | - Jason M. Dyke
- Department of Neuropathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, WA, Australia
- Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA, Australia
| | - Sharon Lee
- Department of Neurosurgery, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Paul G. Ekert
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, VIC, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Mark J. Cowley
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Nicholas G. Gottardo
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
35
|
Urabe A, Chi S, Minami Y. The Immuno-Oncology and Genomic Aspects of DNA-Hypomethylating Therapeutics in Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24043727. [PMID: 36835136 PMCID: PMC9961620 DOI: 10.3390/ijms24043727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Hypomethylating agents (HMAs) have been used for decades in the treatment of hematologic neoplasms, and now, have gathered attention again in terms of their combination with potent molecular-targeted agents such as a BCL-6 inhibitor venetoclax and an IDH1 inhibitor ivosidenib, as well as a novel immune-checkpoint inhibitor (anit-CD47 antibody) megrolimab. Several studies have shown that leukemic cells have a distinct immunological microenvironment, which is at least partially due to genetic alterations such as the TP53 mutation and epigenetic dysregulation. HMAs possibly improve intrinsic anti-leukemic immunity and sensitivity to immune therapies such as PD-1/PD-L1 inhibitors and anti-CD47 agents. This review describes the immuno-oncological backgrounds of the leukemic microenvironment and the therapeutic mechanisms of HMAs, as well as current clinical trials of HMAs and/or venetoclax-based combination therapies.
Collapse
Affiliation(s)
| | | | - Yosuke Minami
- Correspondence: ; Tel.: +81-4-7133-1111; Fax: +81-7133-6502
| |
Collapse
|
36
|
Pun M, Pratt D, Nano PR, Joshi PK, Jiang L, Englinger B, Rao A, Cieslik M, Chinnaiyan AM, Aldape K, Pfister S, Filbin MG, Bhaduri A, Venneti S. Common molecular features of H3K27M DMGs and PFA ependymomas map to hindbrain developmental pathways. Acta Neuropathol Commun 2023; 11:25. [PMID: 36759899 PMCID: PMC9912509 DOI: 10.1186/s40478-023-01514-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
Globally decreased histone 3, lysine 27 tri-methylation (H3K27me3) is a hallmark of H3K27-altered diffuse midline gliomas (DMGs) and group-A posterior fossa ependymomas (PFAs). H3K27-altered DMGs are largely characterized by lysine-to-methionine mutations in histone 3 at position 27 (H3K27M). Most PFAs overexpress EZH inhibitory protein (EZHIP), which possesses a region of similarity to the mutant H3K27M. Both H3K27M and EZHIP inhibit the function of the polycomb repressive complex 2 (PRC2) responsible for H3K27me3 deposition. These tumors often arise in neighboring regions of the brainstem and posterior fossa. In rare cases PFAs harbor H3K27M mutations, and DMGs overexpress EZHIP. These findings together raise the possibility that certain cell populations in the developing hindbrain/posterior fossa are especially sensitive to modulation of H3K27me3 states. We identified shared molecular features by comparing genomic, bulk transcriptomic, chromatin-based profiles, and single-cell RNA-sequencing (scRNA-seq) data from the two tumor classes. Our approach demonstrated that 1q gain, a key biomarker in PFAs, is prognostic in H3.1K27M, but not H3.3K27M gliomas. Conversely, Activin A Receptor Type 1 (ACVR1), which is associated with mutations in H3.1K27M gliomas, is overexpressed in a subset of PFAs with poor outcome. Despite diffuse H3K27me3 reduction, previous work shows that both tumors maintain genomic H3K27me3 deposition at select sites. We demonstrate heterogeneity in shared patterns of residual H3K27me3 for both tumors that largely segregated with inferred anatomic tumor origins and progenitor populations of tumor cells. In contrast, analysis of genes linked to H3K27 acetylation (H3K27ac)-marked enhancers showed higher expression in astrocytic-like tumor cells. Finally, common H3K27me3-marked genes mapped closely to expression patterns in the human developing hindbrain. Overall, our data demonstrate developmentally relevant molecular similarities between PFAs and H3K27M DMGs and support the overall hypothesis that deregulated mechanisms of hindbrain development are central to the biology of both tumors.
Collapse
Affiliation(s)
- Matthew Pun
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, 3520E MSRB 1, 1150 W. Medical Center, Ann Arbor, MI, 41804, USA
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Patricia R Nano
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Piyush K Joshi
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Urology, Comprehensive Cancer Center, Medical University of Vienna, 1090, Vienna, Austria
- Center for Cancer Research and Comprehensive Cancer Center, Medical University Vienna, 1090, Vienna, Austria
| | - Arvind Rao
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 10 Center Dr., Room 2S235, Bethesda, MD, 20892, USA
| | - Stefan Pfister
- Hopp Children's Cancer Center (KiTZ) Heidelberg, Division of Pediatric Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sriram Venneti
- Laboratory of Brain Tumor Metabolism and Epigenetics, Department of Pathology, University of Michigan, 3520E MSRB 1, 1150 W. Medical Center, Ann Arbor, MI, 41804, USA.
- Chad Carr Pediatric Tumor Center, Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
37
|
Huang L, Li F, Ye L, Yu F, Wang C. Epigenetic regulation of embryonic ectoderm development in stem cell differentiation and transformation during ontogenesis. Cell Prolif 2023; 56:e13413. [PMID: 36727213 PMCID: PMC10068960 DOI: 10.1111/cpr.13413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Dynamic chromatin accessibility regulates stem cell fate determination and tissue homeostasis via controlling gene expression. As a histone-modifying enzyme that predominantly mediates methylation of lysine 27 in histone H3 (H3K27me1/2/3), Polycomb repressive complex 2 (PRC2) plays the canonical role in targeting developmental regulators during stem cell differentiation and transformation. Embryonic ectoderm development (EED), the core scaffold subunit of PRC2 and as an H3K27me3-recognizing protein, has been broadly implicated with PRC2 stabilization and allosterically stimulated PRC2. Accumulating evidences from experimental data indicate that EED-associating epigenetic modifications are indispensable for stem cell maintenance and differentiation into specific cell lineages. In this review, we discuss the most updated advances to summarize the structural architecture of EED and its contributions and underlying mechanisms to mediating lineage differentiation of different stem cells during epigenetic modification to expand our understanding of PRC2.
Collapse
Affiliation(s)
- Liuyan Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
38
|
Nuclear condensates of YAP fusion proteins alter transcription to drive ependymoma tumourigenesis. Nat Cell Biol 2023; 25:323-336. [PMID: 36732631 DOI: 10.1038/s41556-022-01069-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/01/2022] [Indexed: 02/04/2023]
Abstract
Nuclear localization of HIPPO-YAP fusion proteins has been implicated in supratentorial ependymoma development. Here, unexpectedly, we find that liquid-liquid phase separation, rather than nuclear localization, of recurrent patient-derived YAP fusions, YAP-MAMLD1 and C11ORF95-YAP, underlies ependymoma tumourigenesis from neural progenitor cells. Mutagenesis and chimaera assays demonstrate that an intrinsically disordered region promotes oligomerization of the YAP fusions into nuclear, puncta-like, membrane-less condensates. Oligomerization and nuclear condensates induced by YAP fusion with a coiled-coil domain of transcriptional activator GCN4 also promote ependymoma formation. YAP-MAMLD1 concentrates transcription factors and co-activators, including BRD4, MED1 and TEAD, in condensates while excluding transcriptional repressive PRC2, and induces long-range enhancer-promoter interactions that promote transcription and oncogenic programmes. Blocking condensate-mediated transcriptional co-activator activity inhibits tumourigenesis, indicating a critical role of liquid phase separation for YAP fusion oncogenic activity in ependymoma. YAP fusions containing the intrinsically disordered region features are common in human tumours, suggesting that nuclear condensates could be targeted to treat YAP-fusion-induced cancers.
Collapse
|
39
|
Jovanovich N, Habib A, Head J, Hameed F, Agnihotri S, Zinn PO. Pediatric diffuse midline glioma: Understanding the mechanisms and assessing the next generation of personalized therapeutics. Neurooncol Adv 2023; 5:vdad040. [PMID: 37152806 PMCID: PMC10162114 DOI: 10.1093/noajnl/vdad040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Diffuse midline glioma (DMG) is a pediatric cancer that originates in the midline structures of the brain. Prognosis of DMG patients remains poor due to the infiltrative nature of these tumors and the protection they receive from systemically delivered therapeutics via an intact blood-brain barrier (BBB), making treatment difficult. While the cell of origin remains disputed, it is believed to reside in the ventral pons. Recent research has pointed toward epigenetic dysregulation inducing an OPC-like transcriptomic signature in DMG cells. This epigenetic dysregulation is typically caused by a mutation (K27M) in one of two histone genes-H3F3A or HIST1H3B -and can lead to a differentiation block that increases these cells oncogenic potential. Standard treatment with radiation is not sufficient at overcoming the aggressivity of this cancer and only confers a survival benefit of a few months, and thus, discovery of new therapeutics is of utmost importance. In this review, we discuss the cell of origin of DMGs, as well as the underlying molecular mechanisms that contribute to their aggressivity and resistance to treatment. Additionally, we outline the current standard of care for DMG patients and the potential future therapeutics for this cancer that are currently being tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Ahmed Habib
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Jeffery Head
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Farrukh Hameed
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Sameer Agnihotri
- Sameer Agnihtroi, PhD, 4401 Penn Avenue, Office 7126, Pittsburgh, PA 15224, USA ()
| | - Pascal O Zinn
- Corresponding Authors: Pascal O. Zinn, MD, PhD, 5150 Centre Ave. Suite 433, Pittsburgh, PA 15232, USA ()
| |
Collapse
|
40
|
Abstract
Dynamic regulation of the chromatin state by Polycomb Repressive Complex 2 (PRC2) provides an important mean for epigenetic gene control that can profoundly influence normal development and cell lineage specification. PRC2 and PRC2-induced methylation of histone H3 lysine 27 (H3K27) are critically involved in a wide range of DNA-templated processes, which at least include transcriptional repression and gene imprinting, organization of three-dimensional chromatin structure, DNA replication and DNA damage response and repair. PRC2-based genome regulation often goes wrong in diseases, notably cancer. This chapter discusses about different modes-of-action through which PRC2 and EZH2, a catalytic subunit of PRC2, mediate (epi)genomic and transcriptomic regulation. We will also discuss about how alteration or mutation of the PRC2 core or axillary component promotes oncogenesis, how post-translational modification regulates functionality of EZH2 and PRC2, and how PRC2 and other epigenetic pathways crosstalk. Lastly, we will briefly touch on advances in targeting EZH2 and PRC2 dependence as cancer therapeutics.
Collapse
Affiliation(s)
- Yiran Guo
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| | - Yao Yu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Gang Greg Wang
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
41
|
Splicing-Disrupting Mutations in Inherited Predisposition to Solid Pediatric Cancer. Cancers (Basel) 2022; 14:cancers14235967. [PMID: 36497448 PMCID: PMC9739414 DOI: 10.3390/cancers14235967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
The prevalence of hereditary cancer in children was estimated to be very low until recent studies suggested that at least 10% of pediatric cancer patients carry a germline mutation in a cancer predisposition gene. A significant proportion of pathogenic variants associated with an increased risk of hereditary cancer are variants affecting splicing. RNA splicing is an essential process involved in different cellular processes such as proliferation, survival, and differentiation, and alterations in this pathway have been implicated in many human cancers. Hereditary cancer genes are highly susceptible to splicing mutations, and among them there are several genes that may contribute to pediatric solid tumors when mutated in the germline. In this review, we have focused on the analysis of germline splicing-disrupting mutations found in pediatric solid tumors, as the discovery of pathogenic splice variants in pediatric cancer is a growing field for the development of personalized therapies. Therapies developed to correct aberrant splicing in cancer are also discussed as well as the options to improve the diagnostic yield based on the increase in the knowledge in splicing.
Collapse
|
42
|
Bertero L, Ricci AA, Tampieri C, Cassoni P, Modena P. Ependymomas. Pathologica 2022; 114:436-446. [PMID: 36534422 PMCID: PMC9763977 DOI: 10.32074/1591-951x-817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Ependymal neoplasms are a heterogenous group of neoplasms arising from the progenitors of the cells lining the ventricular system and the spinal central canal. During the last few years, significant novel data concerning oncogenesis, molecular characteristics and clinical correlations of these tumours have been collected, with a strong relevance for their pathological classification. The recently published 5th edition of WHO Classification of Central Nervous System Tumours integrates this novel knowledge and represents a substantial update compared to the previous edition. Concerning supratentorial ependymomas, the previous RELA fusion-positive ependymoma has been renamed into ZFTA fusion-positive and the novel YAP1 fusion-positive ependymoma subtype has been added. Posterior fossa ependymomas should now be allocated either to the Type A or Type B subtypes based on molecular profiling or using the H3 K27me3 immunohistochemical surrogate. Regarding spinal ependymomas, a novel subtype has been added based on a distinctive molecular trait, presence of MYCN amplification, and on the unfavourable outcome. Finally, myxopapillary ependymoma is now classified as a grade 2 tumour in accordance with its overall prognosis which mirrors that of conventional spinal ependymomas. The aim of this review is to present these changes and summarize the current diagnostic framework of ependymal tumours, according to the most recent updates.
Collapse
Affiliation(s)
- Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy,Correspondence Luca Bertero Pathology Unit, Dept. Medical Sciences, University of Turin, via Santena 7, 10126 Torino, Italy Tel.: +390116336181 E-mail:
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Cristian Tampieri
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
43
|
K27M in canonical and noncanonical H3 variants occurs in distinct oligodendroglial cell lineages in brain midline gliomas. Nat Genet 2022; 54:1865-1880. [PMID: 36471070 PMCID: PMC9742294 DOI: 10.1038/s41588-022-01205-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 09/16/2022] [Indexed: 12/12/2022]
Abstract
Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.
Collapse
|
44
|
Gianno F, Giovannoni I, Cafferata B, Diomedi-Camassei F, Minasi S, Barresi S, Buttarelli FR, Alesi V, Cardoni A, Antonelli M, Puggioni C, Colafati GS, Carai A, Vinci M, Mastronuzzi A, Miele E, Alaggio R, Giangaspero F, Rossi S. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathologica 2022; 114:422-435. [PMID: 36534421 PMCID: PMC9763979 DOI: 10.32074/1591-951x-830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
As a relevant element of novelty, the fifth CNS WHO Classification highlights the distinctive pathobiology underlying gliomas arising primarily in children by recognizing for the first time the families of paediatric-type diffuse gliomas, both high-grade and low-grade. This review will focus on the family of paediatric-type diffuse high-grade gliomas, which includes four tumour types: 1) Diffuse midline glioma H3 K27-altered; 2) Diffuse hemispheric glioma H3 G34-mutant; 3) Diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype; and 4) Infant-type hemispheric glioma. The essential and desirable diagnostic criteria as well as the entities entering in the differential will be discussed for each tumour type. A special focus will be given on the issues encountered in the daily practice, especially regarding the diagnosis of the diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype. The advantages and the limits of the multiple molecular tests which may be utilised to define the entities of this tumour family will be evaluated in each diagnostic context.
Collapse
Affiliation(s)
- Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | | | - Simone Minasi
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonello Cardoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Chiara Puggioni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
45
|
Robusti G, Vai A, Bonaldi T, Noberini R. Investigating pathological epigenetic aberrations by epi-proteomics. Clin Epigenetics 2022; 14:145. [PMID: 36371348 PMCID: PMC9652867 DOI: 10.1186/s13148-022-01371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022] Open
Abstract
Epigenetics includes a complex set of processes that alter gene activity without modifying the DNA sequence, which ultimately determines how the genetic information common to all the cells of an organism is used to generate different cell types. Dysregulation in the deposition and maintenance of epigenetic features, which include histone posttranslational modifications (PTMs) and histone variants, can result in the inappropriate expression or silencing of genes, often leading to diseased states, including cancer. The investigation of histone PTMs and variants in the context of clinical samples has highlighted their importance as biomarkers for patient stratification and as key players in aberrant epigenetic mechanisms potentially targetable for therapy. Mass spectrometry (MS) has emerged as the most powerful and versatile tool for the comprehensive, unbiased and quantitative analysis of histone proteoforms. In recent years, these approaches-which we refer to as "epi-proteomics"-have demonstrated their usefulness for the investigation of epigenetic mechanisms in pathological conditions, offering a number of advantages compared with the antibody-based methods traditionally used to profile clinical samples. In this review article, we will provide a critical overview of the MS-based approaches that can be employed to study histone PTMs and variants in clinical samples, with a strong focus on the latest advances in this area, such as the analysis of uncommon modifications and the integration of epi-proteomics data into multi-OMICs approaches, as well as the challenges to be addressed to fully exploit the potential of this novel field of research.
Collapse
Affiliation(s)
- Giulia Robusti
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Alessandro Vai
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| | - Tiziana Bonaldi
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Oncology and Hematology-Oncology, University of Milan, 20122 Milan, Italy
| | - Roberta Noberini
- grid.15667.330000 0004 1757 0843Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139 Milan, Italy
| |
Collapse
|
46
|
Gong L, Liu X, Jiao L, Yang X, Lemoff A, Liu X. CK2-mediated phosphorylation of SUZ12 promotes PRC2 function by stabilizing enzyme active site. Nat Commun 2022; 13:6781. [PMID: 36351927 PMCID: PMC9645763 DOI: 10.1038/s41467-022-34431-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022] Open
Abstract
Polycomb repressive complex 2 (PRC2) plays a key role in maintaining cell identity during differentiation. Methyltransferase activity of PRC2 on histone H3 lysine 27 is regulated by diverse cellular mechanisms, including posttranslational modification. Here, we report a unique phosphorylation-dependent mechanism stimulating PRC2 enzymatic activity. Residue S583 of SUZ12 is phosphorylated by casein kinase 2 (CK2) in cells. A crystal structure captures phosphorylation in action: the flexible phosphorylation-dependent stimulation loop harboring S583 becomes engaged with the catalytic SET domain through a phosphoserine-centered interaction network, stabilizing the enzyme active site and in particular S-adenosyl-methionine (SAM)-binding pocket. CK2-mediated S583 phosphorylation promotes catalysis by enhancing PRC2 binding to SAM and nucleosomal substrates and facilitates reporter gene repression. Loss of S583 phosphorylation impedes PRC2 recruitment and H3K27me3 deposition in pluripotent mESCs and compromises the ability of PRC2 to maintain differentiated cell identity.
Collapse
Affiliation(s)
- Lihu Gong
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiuli Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianying Jiao
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Xin Yang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew Lemoff
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Liu
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
47
|
Zhao S, Li J, Zhang H, Qi L, Du Y, Kogiso M, Braun FK, Xiao S, Huang Y, Li J, Teo WY, Lindsay H, Baxter P, Su JMF, Adesina A, Laczik M, Genevini P, Veillard AC, Schvartzman S, Berguet G, Ding SR, Du L, Stephan C, Yang J, Davies PJA, Lu X, Chintagumpala M, Parsons DW, Perlaky L, Xia YF, Man TK, Huang Y, Sun D, Li XN. Epigenetic Alterations of Repeated Relapses in Patient-matched Childhood Ependymomas. Nat Commun 2022; 13:6689. [PMID: 36335125 PMCID: PMC9637194 DOI: 10.1038/s41467-022-34514-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2022] Open
Abstract
Recurrence is frequent in pediatric ependymoma (EPN). Our longitudinal integrated analysis of 30 patient-matched repeated relapses (3.67 ± 1.76 times) over 13 years (5.8 ± 3.8) reveals stable molecular subtypes (RELA and PFA) and convergent DNA methylation reprogramming during serial relapses accompanied by increased orthotopic patient derived xenograft (PDX) (13/27) formation in the late recurrences. A set of differentially methylated CpGs (DMCs) and DNA methylation regions (DMRs) are found to persist in primary and relapse tumors (potential driver DMCs) and are acquired exclusively in the relapses (potential booster DMCs). Integrating with RNAseq reveals differentially expressed genes regulated by potential driver DMRs (CACNA1H, SLC12A7, RARA in RELA and HSPB8, GMPR, ITGB4 in PFA) and potential booster DMRs (PLEKHG1 in RELA and NOTCH, EPHA2, SUFU, FOXJ1 in PFA tumors). DMCs predicators of relapse are also identified in the primary tumors. This study provides a high-resolution epigenetic roadmap of serial EPN relapses and 13 orthotopic PDX models to facilitate biological and preclinical studies.
Collapse
Affiliation(s)
- Sibo Zhao
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.413584.f0000 0004 0383 5679Jane and John Justin Neurosciences Center, Cook Children’s Medical Center, Fort Worth, TX 76104 USA ,grid.413584.f0000 0004 0383 5679Hematology and Oncology Center, Cook Children’s Medical Center, Fort Worth, TX 76104 USA
| | - Jia Li
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA ,grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA ,grid.470124.4State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University; and Guangzhou Laboratory, Bioland, 510120 Guangzhou, Guangdong P. R. China
| | - Huiyuan Zhang
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Lin Qi
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yuchen Du
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Mari Kogiso
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Frank K. Braun
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Sophie Xiao
- grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Yulun Huang
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.263761.70000 0001 0198 0694Department of Neurosurgery and Brain and Nerve Research Laboratory, the First Affiliated Hospital, and Department of Neurosurgery, Dushu Lake Hospital, Suzhou Medical College, Soochow University, 215007 Suzhou, P. R. China
| | - Jianfang Li
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Wan-Yee Teo
- grid.410724.40000 0004 0620 9745Humphrey Oei Institute of Cancer Research, National Cancer Center Singapore, Singapore, 169610 Singapore ,grid.428397.30000 0004 0385 0924Cancer and Stem Cell Biology Program, Duke-NUS Medical School Singapore, Singapore, Singapore ,grid.414963.d0000 0000 8958 3388KK Women’s & Children’s Hospital Singapore, Singapore, Singapore ,grid.418812.60000 0004 0620 9243Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Holly Lindsay
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Patricia Baxter
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Jack M. F. Su
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Adekunle Adesina
- grid.39382.330000 0001 2160 926XDepartment of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Miklós Laczik
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Paola Genevini
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | | | - Sol Schvartzman
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Geoffrey Berguet
- grid.424287.f0000 0004 0555 845XEpigenetic Services, Diagenode, Liège Belgium
| | - Shi-Rong Ding
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Department of Radiation, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong P. R. China
| | - Liping Du
- grid.16753.360000 0001 2299 3507Clinical Cytogenetic Laboratory, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Clifford Stephan
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA
| | - Jianhua Yang
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Peter J. A. Davies
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030 USA
| | - Xinyan Lu
- grid.16753.360000 0001 2299 3507Clinical Cytogenetic Laboratory, Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| | - Murali Chintagumpala
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Donald William Parsons
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Laszlo Perlaky
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun-Fei Xia
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; Department of Radiation, Sun Yat-sen University Cancer Center, 510060 Guangzhou, Guangdong P. R. China
| | - Tsz-Kwong Man
- grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA
| | - Yun Huang
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Deqiang Sun
- grid.264756.40000 0004 4687 2082Center for Epigenetics & Disease Prevention, Texas A&M University, Houston, TX 77030 USA
| | - Xiao-Nan Li
- grid.39382.330000 0001 2160 926XPre-clinical Neuro-oncology Research Program, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.39382.330000 0001 2160 926XTexas Children’s Cancer Center, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030 USA ,grid.16753.360000 0001 2299 3507Program of Precision Medicine PDOX Modeling of Pediatric Tumors, Division of Hematology-Oncology, Neuro-Oncology & Stem Cell transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago; Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611 USA
| |
Collapse
|
48
|
Abstract
Polycomb group (PcG) proteins are crucial chromatin regulators that maintain repression of lineage-inappropriate genes and are therefore required for stable cell fate. Recent advances show that PcG proteins form distinct multi-protein complexes in various cellular environments, such as in early development, adult tissue maintenance and cancer. This surprising compositional diversity provides the basis for mechanistic diversity. Understanding this complexity deepens and refines the principles of PcG complex recruitment, target-gene repression and inheritance of memory. We review how the core molecular mechanism of Polycomb complexes operates in diverse developmental settings and propose that context-dependent changes in composition and mechanism are essential for proper epigenetic regulation in development.
Collapse
Affiliation(s)
- Jongmin J Kim
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Kingston
- Department of Molecular Biology and MGH Research Institute, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
49
|
Day CA, Hinchcliffe EH, Robinson JP. H3K27me3 in Diffuse Midline Glioma and Epithelial Ovarian Cancer: Opposing Epigenetic Changes Leading to the Same Poor Outcomes. Cells 2022; 11:cells11213376. [PMID: 36359771 PMCID: PMC9655269 DOI: 10.3390/cells11213376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
Abstract
Histone post-translational modifications modulate gene expression through epigenetic gene regulation. The core histone H3 family members, H3.1, H3.2, and H3.3, play a central role in epigenetics. H3 histones can acquire many post-translational modifications, including the trimethylation of H3K27 (H3K27me3), which represses transcription. Triple methylation of H3K27 is performed by the histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the Polycomb Repressive Complex 2. Both global increases and decreases in H3K27me3 have been implicated in a wide range of cancer types. Here, we explore how opposing changes in H3K27me3 contribute to cancer by highlighting its role in two vastly different cancer types; (1) a form of glioma known as diffuse midline glioma H3K27-altered and (2) epithelial ovarian cancer. These two cancers vary widely in the age of onset, sex, associated mutations, and cell and organ type. However, both diffuse midline glioma and ovarian cancer have dysregulation of H3K27 methylation, triggering changes to the cancer cell transcriptome. In diffuse midline glioma, the loss of H3K27 methylation is a primary driving factor in tumorigenesis that promotes glial cell stemness and silences tumor suppressor genes. Conversely, hypermethylation of H3K27 occurs in late-stage epithelial ovarian cancer, which promotes tumor vascularization and tumor cell migration. By using each cancer type as a case study, this review emphasizes the importance of H3K27me3 in cancer while demonstrating that the mechanisms of histone H3 modification and subsequent gene expression changes are not a one-size-fits-all across cancer types.
Collapse
Affiliation(s)
- Charles A. Day
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Mayo Clinic, Rochester, MN 55902, USA
- Correspondence:
| | - Edward H. Hinchcliffe
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - James P. Robinson
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
50
|
Smith HL, Wadhwani N, Horbinski C. Major Features of the 2021 WHO Classification of CNS Tumors. Neurotherapeutics 2022; 19:1691-1704. [PMID: 35578106 PMCID: PMC9723092 DOI: 10.1007/s13311-022-01249-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 12/13/2022] Open
Abstract
Advances in the understanding of the molecular biology of central nervous system (CNS) tumors prompted a new World Health Organization (WHO) classification scheme in 2021, only 5 years after the prior iteration. The 2016 version was the first to include specific molecular alterations in the diagnoses of a few tumors, but the 2021 system greatly expanded this approach, with over 40 tumor types and subtypes now being defined by their key molecular features. Many tumors have also been reconceptualized into new "supercategories," including adult-type diffuse gliomas, pediatric-type diffuse low- and high-grade gliomas, and circumscribed astrocytic gliomas. Some entirely new tumors are in this scheme, particularly pediatric tumors. Naturally, these changes will impact how CNS tumor patients are diagnosed and treated, including clinical trial enrollment. This review addresses the most clinically relevant changes in the 2021 WHO book, including diffuse and circumscribed gliomas, ependymomas, embryonal tumors, and meningiomas.
Collapse
Affiliation(s)
- Heather L Smith
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Nitin Wadhwani
- Department of Pathology, Lurie Children's Hospital, Chicago, IL, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Feinberg School of Medicine, Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|