• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4657693)   Today's Articles (1347)   Subscriber (51214)
For: Pun GPP, Batra R, Ramprasad R, Mishin Y. Physically informed artificial neural networks for atomistic modeling of materials. Nat Commun 2019;10:2339. [PMID: 31138813 PMCID: PMC6538760 DOI: 10.1038/s41467-019-10343-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 04/26/2019] [Indexed: 11/30/2022]  Open
Number Cited by Other Article(s)
1
Singh A, Wang J, Henkelman G, Li L. Uncertainty Based Machine Learning-DFT Hybrid Framework for Accelerating Geometry Optimization. J Chem Theory Comput 2024;20:10022-10033. [PMID: 39531676 DOI: 10.1021/acs.jctc.4c00953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
2
Zhou J, Ren J, He C. Improved medical waste plasma gasification modelling based on implicit knowledge-guided interpretable machine learning. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024;188:48-59. [PMID: 39098272 DOI: 10.1016/j.wasman.2024.07.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
3
Mohammadi R, Karimi B, Kieffer J, Hashemi D. A molecular dynamics simulation study of thermal conductivity of plumbene. Phys Chem Chem Phys 2024;26:28133-28142. [PMID: 39495312 DOI: 10.1039/d4cp01480d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
4
Karimitari N, Baldwin WJ, Muller EW, Bare ZJL, Kennedy WJ, Csányi G, Sutton C. Accurate Crystal Structure Prediction of New 2D Hybrid Organic-Inorganic Perovskites. J Am Chem Soc 2024;146:27392-27404. [PMID: 39344597 PMCID: PMC11468779 DOI: 10.1021/jacs.4c06549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
5
Xu L, Jiang J. Synergistic Integration of Physical Embedding and Machine Learning Enabling Precise and Reliable Force Field. J Chem Theory Comput 2024. [PMID: 39264358 DOI: 10.1021/acs.jctc.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
6
Hou P, Tian Y, Meng X. Improving Molecular-Dynamics Simulations for Solid-Liquid Interfaces with Machine-Learning Interatomic Potentials. Chemistry 2024;30:e202401373. [PMID: 38877181 DOI: 10.1002/chem.202401373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
7
Willow SY, Kim DG, Sundheep R, Hajibabaei A, Kim KS, Myung CW. Active sparse Bayesian committee machine potential for isothermal-isobaric molecular dynamics simulations. Phys Chem Chem Phys 2024;26:22073-22082. [PMID: 39113586 DOI: 10.1039/d4cp01801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
8
Xia L, Liu H, Pei Y. Theoretical calculations and simulations power the design of inorganic solid-state electrolytes. NANOSCALE 2024;16:15481-15501. [PMID: 39105656 DOI: 10.1039/d4nr02114b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
9
Chen S, Noh J, Jang J, Kim S, Gu GH, Jung Y. Reaction Templates: Bridging Synthesis Knowledge and Artificial Intelligence. Acc Chem Res 2024;57:1964-1972. [PMID: 38924502 DOI: 10.1021/acs.accounts.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
10
Loh JYY, Wang A, Mohan A, Tountas AA, Gouda AM, Tavasoli A, Ozin GA. Leave No Photon Behind: Artificial Intelligence in Multiscale Physics of Photocatalyst and Photoreactor Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024;11:e2306604. [PMID: 38477404 PMCID: PMC11095204 DOI: 10.1002/advs.202306604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Indexed: 03/14/2024]
11
Li X, Xu T, Gong Y. Compositional transferability of deep potential in molten LiF-BeF2 and LaF3 mixtures: prediction of density, viscosity, and local structure. Phys Chem Chem Phys 2024;26:12044-12052. [PMID: 38578045 DOI: 10.1039/d4cp00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
12
Sahimi M. Physics-informed and data-driven discovery of governing equations for complex phenomena in heterogeneous media. Phys Rev E 2024;109:041001. [PMID: 38755895 DOI: 10.1103/physreve.109.041001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 05/18/2024]
13
Li R, Zhou C, Singh A, Pei Y, Henkelman G, Li L. Local-environment-guided selection of atomic structures for the development of machine-learning potentials. J Chem Phys 2024;160:074109. [PMID: 38380745 DOI: 10.1063/5.0187892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024]  Open
14
Pegolotti L, Pfaller MR, Rubio NL, Ding K, Brugarolas Brufau R, Darve E, Marsden AL. Learning reduced-order models for cardiovascular simulations with graph neural networks. Comput Biol Med 2024;168:107676. [PMID: 38039892 PMCID: PMC10886437 DOI: 10.1016/j.compbiomed.2023.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/23/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
15
Zhou Y, Wang Y, Peijnenburg W, Vijver MG, Balraadjsing S, Fan W. Using Machine Learning to Predict Adverse Effects of Metallic Nanomaterials to Various Aquatic Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023;57:17786-17795. [PMID: 36730792 DOI: 10.1021/acs.est.2c07039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
16
Kotykhov AS, Gubaev K, Hodapp M, Tantardini C, Shapeev AV, Novikov IS. Constrained DFT-based magnetic machine-learning potentials for magnetic alloys: a case study of Fe-Al. Sci Rep 2023;13:19728. [PMID: 37957211 PMCID: PMC10643701 DOI: 10.1038/s41598-023-46951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023]  Open
17
Zhu X, Wang X, Liu Y, Luo Y, Zhang H. Probing the Effect of Cuttings Particle Size on the Friction and Wear Mechanism at the Casing Friction Interface: A Molecular Dynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023;39:13386-13398. [PMID: 37688790 DOI: 10.1021/acs.langmuir.3c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
18
Li X, Chang L, Cao Y, Lu J, Lu X, Jiang H. Physics-supervised deep learning-based optimization (PSDLO) with accuracy and efficiency. Proc Natl Acad Sci U S A 2023;120:e2309062120. [PMID: 37603744 PMCID: PMC10466106 DOI: 10.1073/pnas.2309062120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 08/23/2023]  Open
19
Liu H, Huang Z, Schoenholz SS, Cubuk ED, Smedskjaer MM, Sun Y, Wang W, Bauchy M. Learning molecular dynamics: predicting the dynamics of glasses by a machine learning simulator. MATERIALS HORIZONS 2023;10:3416-3428. [PMID: 37382413 DOI: 10.1039/d3mh00028a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
20
Podryabinkin E, Garifullin K, Shapeev A, Novikov I. MLIP-3: Active learning on atomic environments with moment tensor potentials. J Chem Phys 2023;159:084112. [PMID: 37638620 DOI: 10.1063/5.0155887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]  Open
21
Koksal ES, Aydin E. Physics Informed Piecewise Linear Neural Networks for Process Optimization. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
22
Staub R, Gantzer P, Harabuchi Y, Maeda S, Varnek A. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules 2023;28:molecules28114477. [PMID: 37298952 DOI: 10.3390/molecules28114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]  Open
23
Lee S, Zhang Z, Gu GX. Deep Learning Accelerated Design of Mechanically Efficient Architected Materials. ACS APPLIED MATERIALS & INTERFACES 2023;15:22543-22552. [PMID: 37105969 DOI: 10.1021/acsami.3c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
24
Taufik MH, Waheed UB, Alkhalifah TA. A neural network based global traveltime function (GlobeNN). Sci Rep 2023;13:7179. [PMID: 37137918 PMCID: PMC10156740 DOI: 10.1038/s41598-023-33203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/09/2023] [Indexed: 05/05/2023]  Open
25
Bai J, Liu X, Guo W, Lei T, Teng B, Xiang H, Wen X. An Efficient Way to Model Complex Iron Carbides: A Benchmark Study of DFTB2 against DFT. J Phys Chem A 2023;127:2071-2080. [PMID: 36849363 DOI: 10.1021/acs.jpca.2c06805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
26
Xu T, Li X, Wang Y, Tang Z. Development of Deep Potentials of Molten MgCl2-NaCl and MgCl2-KCl Salts Driven by Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36881968 DOI: 10.1021/acsami.2c19272] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
27
Raabe D, Mianroodi JR, Neugebauer J. Accelerating the design of compositionally complex materials via physics-informed artificial intelligence. NATURE COMPUTATIONAL SCIENCE 2023;3:198-209. [PMID: 38177883 DOI: 10.1038/s43588-023-00412-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/07/2023] [Indexed: 01/06/2024]
28
Zhan H, Zhu X, Qiao Z, Hu J. Graph Neural Tree: A novel and interpretable deep learning-based framework for accurate molecular property predictions. Anal Chim Acta 2023;1244:340558. [PMID: 36737143 DOI: 10.1016/j.aca.2022.340558] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
29
Olatomiwa A, Adam T, Edet C, Adewale A, Chik A, Mohammed M, Gopinath SC, Hashim U. Recent advances in density functional theory approach for optoelectronics properties of graphene. Heliyon 2023;9:e14279. [PMID: 36950613 PMCID: PMC10025043 DOI: 10.1016/j.heliyon.2023.e14279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]  Open
30
Bridging the complexity gap in computational heterogeneous catalysis with machine learning. Nat Catal 2023. [DOI: 10.1038/s41929-023-00911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
31
Zhang P, Qin M, Zhang Z, Jin D, Liu Y, Wang Z, Lu Z, Shi J, Xiong R. Accessing the thermal conductivities of Sb2Te3 and Bi2Te3/Sb2Te3 superlattices by molecular dynamics simulations with a deep neural network potential. Phys Chem Chem Phys 2023;25:6164-6174. [PMID: 36752176 DOI: 10.1039/d2cp05590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
32
Schmitz N, Müller KR, Chmiela S. Algorithmic Differentiation for Automated Modeling of Machine Learned Force Fields. J Phys Chem Lett 2022;13:10183-10189. [PMID: 36279418 PMCID: PMC9639201 DOI: 10.1021/acs.jpclett.2c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/20/2022] [Indexed: 05/09/2023]
33
Mondal A, Kussainova D, Yue S, Panagiotopoulos AZ. Modeling Chemical Reactions in Alkali Carbonate-Hydroxide Electrolytes with Deep Learning Potentials. J Chem Theory Comput 2022. [PMID: 36239670 DOI: 10.1021/acs.jctc.2c00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
34
Ojih J, Onyekpe U, Rodriguez A, Hu J, Peng C, Hu M. Machine Learning Accelerated Discovery of Promising Thermal Energy Storage Materials with High Heat Capacity. ACS APPLIED MATERIALS & INTERFACES 2022;14:43277-43289. [PMID: 36106746 DOI: 10.1021/acsami.2c11350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
35
Sharma S, Thompson M, Laefer D, Lawler M, McIlhany K, Pauluis O, Trinkle DR, Chatterjee S. Machine Learning Methods for Multiscale Physics and Urban Engineering Problems. ENTROPY (BASEL, SWITZERLAND) 2022;24:1134. [PMID: 36010800 PMCID: PMC9407195 DOI: 10.3390/e24081134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
36
Liao Z, Qiu C, Yang J, Yang J, Yang L. Accelerating the Layup Sequences Design of Composite Laminates via Theory-Guided Machine Learning Models. Polymers (Basel) 2022;14:polym14153229. [PMID: 35956742 PMCID: PMC9371008 DOI: 10.3390/polym14153229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022]  Open
37
Yu LY, Ren GP, Hou XJ, Wu KJ, He Y. Transition State Theory-Inspired Neural Network for Estimating the Viscosity of Deep Eutectic Solvents. ACS CENTRAL SCIENCE 2022;8:983-995. [PMID: 35912349 PMCID: PMC9335917 DOI: 10.1021/acscentsci.2c00157] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 06/15/2023]
38
Inverse Design for Coating Parameters in Nano-Film Growth Based on Deep Learning Neural Network and Particle Swarm Optimization Algorithm. PHOTONICS 2022. [DOI: 10.3390/photonics9080513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
39
Mai H, Le TC, Chen D, Winkler DA, Caruso RA. Machine Learning for Electrocatalyst and Photocatalyst Design and Discovery. Chem Rev 2022;122:13478-13515. [PMID: 35862246 DOI: 10.1021/acs.chemrev.2c00061] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
40
Oren E, Kartoon D, Makov G. Machine Learning-Based Modeling of High-Pressure phase diagrams: Anomalousmelting of Rb. J Chem Phys 2022;157:014502. [DOI: 10.1063/5.0088089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
41
Machine learning the metastable phase diagram of covalently bonded carbon. Nat Commun 2022;13:3251. [PMID: 35668085 PMCID: PMC9170764 DOI: 10.1038/s41467-022-30820-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]  Open
42
Machine learning for multiscale modeling in computational molecular design. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
43
Charraud JB, Geneste G, Torrent M, Maillet JB. Machine learning accelerated random structure searching: Application to yttrium superhydrides. J Chem Phys 2022;156:204102. [DOI: 10.1063/5.0085173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
44
Chattoraj J, Hamadicharef B, Kong JF, Pargi MK, Zeng Y, Poh CK, Chen L, Gao F, Tan TL. Theory‐guided machine learning to predict the performance of noble metal catalysts in the water‐gas shift reaction. ChemCatChem 2022. [DOI: 10.1002/cctc.202200355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
45
Lupo Pasini M, Zhang P, Temple Reeve S, Youl Choi J. Multi-task graph neural networks for simultaneous prediction of global and atomic properties in ferromagnetic systems *. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac6a51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]  Open
46
Mizuochi H, Iwao K, Yamamoto S. Thermal remote sensing over heterogeneous urban and suburban landscapes using sensor-driven super-resolution. PLoS One 2022;17:e0266541. [PMID: 35385560 PMCID: PMC8986004 DOI: 10.1371/journal.pone.0266541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022]  Open
47
Moon S, Zhung W, Yang S, Lim J, Kim WY. PIGNet: a physics-informed deep learning model toward generalized drug-target interaction predictions. Chem Sci 2022;13:3661-3673. [PMID: 35432900 PMCID: PMC8966633 DOI: 10.1039/d1sc06946b] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/06/2022] [Indexed: 12/21/2022]  Open
48
Gokcan H, Isayev O. Learning molecular potentials with neural networks. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
49
A Preliminary Study on the Resolution of Electro-Thermal Multi-Physics Coupling Problem Using Physics-Informed Neural Network (PINN). ALGORITHMS 2022. [DOI: 10.3390/a15020053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
50
Sharma N, Liu YA. A Hybrid Science‐Guided Machine Learning Approach for Modeling Chemical Processes: A Review. AIChE J 2022. [DOI: 10.1002/aic.17609] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA