1
|
Morley SA, Bates AE, Clark MS, Fitzcharles E, Smith R, Stainthorp RE, Peck LS. Testing the Resilience, Physiological Plasticity and Mechanisms Underlying Upper Temperature Limits of Antarctic Marine Ectotherms. BIOLOGY 2024; 13:224. [PMID: 38666836 PMCID: PMC11047991 DOI: 10.3390/biology13040224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Antarctic marine ectotherms live in the constant cold and are characterised by limited resilience to elevated temperature. Here we tested three of the central paradigms underlying this resilience. Firstly, we assessed the ability of eight species, from seven classes representing a range of functional groups, to survive, for 100 to 303 days, at temperatures 0 to 4 °C above previously calculated long-term temperature limits. Survivors were then tested for acclimation responses to acute warming and acclimatisation, in the field, was tested in the seastar Odontaster validus collected in different years, seasons and locations within Antarctica. Finally, we tested the importance of oxygen limitation in controlling upper thermal limits. We found that four of 11 species studied were able to survive for more than 245 days (245-303 days) at higher than previously recorded temperatures, between 6 and 10 °C. Only survivors of the anemone Urticinopsis antarctica did not acclimate CTmax and there was no evidence of acclimatisation in O. validus. We found species-specific effects of mild hyperoxia (30% oxygen) on survival duration, which was extended (two species), not changed (four species) or reduced (one species), re-enforcing that oxygen limitation is not universal in dictating thermal survival thresholds. Thermal sensitivity is clearly the product of multiple ecological and physiological capacities, and this diversity of response needs further investigation and interpretation to improve our ability to predict future patterns of biodiversity.
Collapse
Affiliation(s)
- Simon A. Morley
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| | - Amanda E. Bates
- Department of Biology, University of Victoria, P.O. Box 1700, Victoria, BC V8W 2Y2, Canada;
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| | - Elaine Fitzcharles
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| | - Rebecca Smith
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| | - Rose E. Stainthorp
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
- National Oceanography Centre, University of Southampton, Southampton SO14 3ZH, UK
| | - Lloyd S. Peck
- British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK; (M.S.C.); (E.F.); (R.S.); (R.E.S.); (L.S.P.)
| |
Collapse
|
2
|
Montie S, Thomsen MS. Facilitation of animals is stronger during summer marine heatwaves and around morphologically complex foundation species. Ecol Evol 2023; 13:e10512. [PMID: 37727775 PMCID: PMC10505761 DOI: 10.1002/ece3.10512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Foundation species create biogenic habitats, modify environmental conditions, augment biodiversity, and control animal community structures. In recent decades, marine heatwaves (MHWs) have affected the ecology of foundation species worldwide, and perhaps also their associated animal communities. However, no realistic field experiment has tested how MHWs affect animals that live in and around these foundation species. We therefore tested, in a four-factorial field experiment, if colonisation by small mobile marine animals (epifauna) onto plates with attached single versus co-occurring foundation species of different morphological complexities, were affected by 3-5°C heating (that mirrored a recent extreme MHW in the study area) and if the heating effect on the epifauna varied within and between seasons. For this experiment mimics of turf seaweed represented the single foundation species and holdfasts of seven common canopy-forming seaweed represented the co-occurring foundation species with different morphological complexities. We found that the taxonomic richness and total abundance of epifauna, dominated by copepods, generally were higher on heated plates with complex seaweed holdfasts in warmer summer trials. Furthermore, several interactions between test-factors were significant, e.g., epifaunal abundances, were, across taxonomic groups, generally higher in warmer than colder summer trials. These results suggest that, in temperate ecosystems, small, mobile, short-lived, and fast-growing marine epifauna can be facilitated by warmer oceans and morphologically complex foundation species, implying that future MHWs may increase secondary production and trophic transfers between primary producers and fish. Future studies should test whether these results can be scaled to other ecological species-interactions, across latitudes and biogeographical regions, and if similar results are found after longer MHWs or within live foundation species under real MHW conditions.
Collapse
Affiliation(s)
- Shinae Montie
- Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Mads S. Thomsen
- Marine Ecology Research Group, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Aarhus UniversityDepartment of EcoscienceRoskildeDenmark
| |
Collapse
|
3
|
Détrée C, Navarro JM, Figueroa A, Cardenas L. Acclimation of the Antarctic sea urchin Sterechinus neumayeri to warmer temperatures involves a modulation of cellular machinery. MARINE ENVIRONMENTAL RESEARCH 2023; 188:105979. [PMID: 37099993 DOI: 10.1016/j.marenvres.2023.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/25/2023] [Accepted: 04/09/2023] [Indexed: 06/11/2023]
Abstract
Global warming is threatening marine Antarctic fauna, which has evolved in isolation in a cold environment for millions of years. Facing increasing temperatures, marine Antarctic invertebrates can either tolerate or develop adaptations to these changes. On a short timescale, their survival and resistance to warming will be driven by the efficiency of their phenotypic plasticity through their capacity for acclimation. The current study aims at evaluating the capacity for acclimation of the Antarctic sea urchin Sterechinus neumayeri to predicted ocean warming scenarios (+2, RCP 2.6 and + 4 °C, RCP 8.5, IPCC et al., 2019) and deciphering the subcellular mechanisms underlying their acclimation. A combination of transcriptomics, physiological (e.g. growth rate, gonad growth, ingestion rate and oxygen consumption), and behavioral-based approaches were used on individuals incubated at 1, 3 and, 5 °C for 22 weeks. Mortality was low at warmer temperatures (20%) and oxygen consumption and ingestion rate seemed to reach a stable state around 16 weeks suggesting that S. neumayeri might be able to acclimate to warmer temperatures (until 5 °C). Transcriptomic analyses highlighted adjustments of the cellular machinery with the activation of replication, recombination, and repair processes as well as cell cycle and division and repression of transcriptional and signal transduction mechanisms and defense processes. These results suggest that acclimation to warmer scenarios might require more than 22 weeks for the Antarctic Sea urchins S. neumayeri but that projections of climate change for the end of the century may not strongly affect the population of S. neumayeri of this part of the Antarctic.
Collapse
Affiliation(s)
- Camille Détrée
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile.
| | - Jorge M Navarro
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Marinas y Limnologicas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Alvaro Figueroa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Leyla Cardenas
- Centro FONDAP de Investigación de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
4
|
Montie S, Thomsen MS. Spatiotemporal stressors, not secondary structures or small temperature increases, control rapid facilitation of intertidal epifauna. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105969. [PMID: 37003078 DOI: 10.1016/j.marenvres.2023.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Small animals (epifauna) are ubiquitous in marine systems. Epifauna have high secondary production and provide trophic linkages between primary producers and higher-order consumers, like fish. Despite their importance, little is known about how these animals respond to warming or how their communities vary across spatiotemporal gradients. Here we use mimics of turf seaweed and invasive kelp holdfast to test, in a 5-factorial field experiment, whether intertidal epifauna are facilitated by different habitat structures, temperature conditions, and along cooccurring spatiotemporal gradients. We found that facilitation of epifauna by intertidal turf seaweed peaked in summer, at low elevation, in older habitats and at a less wave-exposed site. However, epifauna were not affected by the presence of a secondary structure like kelp holdfast mimics or small temperature increases from passive solar heating of black and white mimics. There were many significant two-way, but few higher order interactions, showing stronger facilitation under specific environmental conditions, like at low elevation in summer, or low elevation in old habitats. These results highlight that turf-associated epifauna are controlled by vertical elevation, season, hydrodynamics, and habitat age, and appear to be resilient to small temperature increases. Findings are important to better understand linkages between primary producers and higher order consumers and system-wide productivity, and because fast growing turf, facilitated by global warming and eutrophication, are increasingly outcompeting slower growing large perennial canopy forming seaweeds, like kelp and rockweeds.
Collapse
Affiliation(s)
- Shinae Montie
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| | - Mads S Thomsen
- Marine Ecology Research Group, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand; Aarhus University, Department of Ecoscience, 4000, Roskilde, Denmark
| |
Collapse
|
5
|
Desvignes T, Lauridsen H, Valdivieso A, Fontenele RS, Kraberger S, Murray KN, Le François NR, Detrich HW, Kent ML, Varsani A, Postlethwait JH. A parasite outbreak in notothenioid fish in an Antarctic fjord. iScience 2022; 25:104588. [PMID: 35800770 PMCID: PMC9253362 DOI: 10.1016/j.isci.2022.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Climate changes can promote disease outbreaks, but their nature and potential impacts in remote areas have received little attention. In a hot spot of biodiversity on the West Antarctic Peninsula, which faces among the fastest changing climates on Earth, we captured specimens of two notothenioid fish species affected by large skin tumors at an incidence never before observed in the Southern Ocean. Molecular and histopathological analyses revealed that X-cell parasitic alveolates, members of a genus we call Notoxcellia, are the etiological agent of these tumors. Parasite-specific molecular probes showed that xenomas remained within the skin but largely outgrew host cells in the dermis. We further observed that tumors induced neovascularization in underlying tissue and detrimentally affected host growth and condition. Although many knowledge gaps persist about X-cell disease, including its mode of transmission and life cycle, these findings reveal potentially active biotic threats to vulnerable Antarctic ecosystems.
Collapse
Affiliation(s)
- Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Henrik Lauridsen
- Department of Clinical Medicine, Aarhus University; Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark
| | - Alejandro Valdivieso
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona Spain
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Katrina N Murray
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Nathalie R Le François
- Laboratoire Physiologie, Aquaculture et Conservation, Biodôme de Montréal/Espace pour la vie, 4777 Avenue Pierre-De Coubertin, Montreal, QC H1V 1B3, Canada
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, 430 Nahant Rd, Nahant, MA 01908, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, 7925 Cape Town, South Africa
| | | |
Collapse
|
6
|
Abstract
Marine biofilms are ubiquitous in the marine environment. These complex microbial communities rapidly respond to environmental changes and encompass hugely diverse microbial structures, functions and metabolisms. Nevertheless, knowledge is limited on the microbial community structures and functions of natural marine biofilms and their influence on global geochemical cycles. Microbial cues, including secondary metabolites and microbial structures, regulate interactions between microorganisms, with their environment and with other benthic organisms, which affects their community succession and metamorphosis. Furthermore, marine biofilms are key mediators of marine biofouling, which greatly affect marine industries. In this Review, we discuss marine biofilm dynamics, including their diversity, abundance and functions. We also highlight knowledge gaps, areas for future research and potential biotechnological applications of marine biofilms.
Collapse
|
7
|
Nieva LV, Peck LS, Clark MS. Variable heat shock response in Antarctic biofouling serpulid worms. Cell Stress Chaperones 2021; 26:945-954. [PMID: 34601709 PMCID: PMC8578209 DOI: 10.1007/s12192-021-01235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/18/2021] [Accepted: 09/01/2021] [Indexed: 11/28/2022] Open
Abstract
The classical heat shock response (HSR) with up-regulation of hsp70 in response to warming is often absent in Antarctic marine species. Whilst in Antarctic fish, this is due to a mutation in the gene promoter region resulting in permanent constitutive expression of the inducible form of hsp70; there are further questions as to whether evolution to life below 0 °C has resulted in a generalised alteration to the HSR in Antarctic marine invertebrates. However, the number of species investigated to date is limited. In the first evaluation of the HSR in two spirorbid polychaetes Romanchella perrieri and Protolaeospira stalagmia, we show highly variable results of HSR induction depending on warming regimes. These animals were subjected to in situ warming (+ 1 °C and + 2 °C above ambient conditions) using heated settlement panels for 18 months, and then the HSR was tested in R. perrieri using acute and chronic temperature elevation trials. The classic HSR was not induced in response to acute thermal challenge in this species (2 h at 15 °C) and significant down-regulation of hsp90 occurred during chronic warming at 4 °C for 30 days. Analysis of heat shock protein (HSP) genes in a transcriptome study of P. stalagmia, which had been warmed in situ for 18 months, showed up-regulation of HSP70 and HSP90 family members, thus further emphasising the complexity of the response in Antarctic marine species. It is increasingly apparent that the Antarctic HSR has evolved in a species-specific manner to life in the cold.
Collapse
Affiliation(s)
- Leyre Villota Nieva
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| |
Collapse
|
8
|
Cappello S, Caruso G, Bergami E, Macrì A, Venuti V, Majolino D, Corsi I. New insights into the structure and function of the prokaryotic communities colonizing plastic debris collected in King George Island (Antarctica): Preliminary observations from two plastic fragments. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125586. [PMID: 34030422 DOI: 10.1016/j.jhazmat.2021.125586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In Antarctic regions, the composition and metabolic activity of microbial assemblages associated with plastic debris ("plastisphere") are almost unknown. A macroplastic item from land (MaL, 30 cm) and a mesoplastic from the sea (MeS, 4 mm) were collected in Maxwell Bay (King George Island, South Shetland) and analyzed by Fourier transform infrared spectroscopy in attenuated total reflectance geometry (FTIR-ATR), which confirmed a polystyrene foam and a composite high-density polyethylene composition for MaL and MeS, respectively. The structure and function of the two plastic-associated prokaryotic communities were studied by complementary 16S ribosomal RNA gene clone libraries, total bacterioplankton and culturable heterotrophic bacterial counts, enzymatic activities of the whole community and enzymatic profiles of bacterial isolates. Results showed that Gamma- and Betaproteobacteria (31% and 28%, respectively) dominated in MeS, while Beta- and Alphaproteobacteria (21% and 13%, respectively) in MaL. Sequences related to oil degrading bacteria (Alcanivorax,Marinobacter) confirmed the known anthropogenic pressure in King George Island. This investigation on plastic-associated prokaryotic structure and function represents the first attempt to characterize the ecological role of plastisphere in this Antarctic region and provides the necessary background for future research on the significance of polymer type, surface characteristics and environmental conditions in shaping the plastisphere.
Collapse
Affiliation(s)
- Simone Cappello
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy
| | - Gabriella Caruso
- Institute of Polar Sciences (ISP), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy.
| | - Elisa Bergami
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| | - Angela Macrì
- Institute for Biological Resources and Marine Biotechnologies (IRBIM), National Research Council (CNR), Spianata San Raineri 86, Messina 98122, Italy; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Domenico Majolino
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, Messina 98166, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, Siena 53100, Italy
| |
Collapse
|
9
|
Clark MS, Peck LS, Thyrring J. Resilience in Greenland intertidal Mytilus: The hidden stress defense. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144366. [PMID: 33434840 DOI: 10.1016/j.scitotenv.2020.144366] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 05/20/2023]
Abstract
The Arctic is experiencing particularly rapid rates of warming, consequently invasive boreal species are now able to survive the less extreme Arctic winter temperatures. Whilst persistence of intertidal and terrestrial species in the Arctic is primarily determined by their ability to tolerate the freezing winters, air temperatures in the Arctic summer can reach 36 °C in the intertidal, which is beyond the upper thermal limits of many marine species. This is normally lethal for the conspicuous ecosystem engineer Mytilus edulis. Transcriptomic analyses were undertaken on both in situ collected and experimentally warmed animals to understand whether M. edulis is able to tolerate these very high summer temperatures. Surprisingly there was no significant enrichment for Gene Ontology terms (GO) when comparing the inner and outer fjord intertidal animals with outer fjord subtidal (control) animals, representing animals collected at 27 °C, 19 °C and 3 °C respectively. This lack of differentiation indicated a wide acclimation ability in this species. Conversely, significant enrichment for processes such as signal transduction, cytoskeleton and cellular protein modification was identified in the expression profiles of the 22 °C and 32 °C experimentally heated animals. This difference in gene expression between in situ collected and experimentally warmed animals was almost certainly due to the former being acclimated to a fluctuating, but predictable, temperature regime, which has increased their thermal tolerances. Interestingly, there was no evidence for enrichment of the classical cellular stress response in any of the animals sampled. Identification of a massive expansion of the HSPA12 heat shock protein 70 kDa gene family presented the possibility of these genes acting as intertidal regulators underpinning thermal resilience. This expansion has resulted in a modified cellular stress response, as an evolutionary adaptation to the rigour of the invasive intertidal life style. Thus, M. edulis appear to have considerable capacity to withstand the current rates of Arctic warming, and the very large attendant thermal variation.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK.
| | - Lloyd S Peck
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | - Jakob Thyrring
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK; Department of Zoology, University of British Columbia, 4200 - 6270 University Blvd., V6T 1Z4 Vancouver, British Columbia, Canada; Department of Bioscience - Marine Ecology, Aarhus University, Vejlsøvej 25, Silkeborg 8600, Denmark
| |
Collapse
|
10
|
Rowlands E, Galloway T, Manno C. A Polar outlook: Potential interactions of micro- and nano-plastic with other anthropogenic stressors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142379. [PMID: 33254857 DOI: 10.1016/j.scitotenv.2020.142379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Polar marine ecosystems may have higher sensitivity than other ecosystems to plastic pollution due to recurrent physical and biological features; presence of ice and high UV radiation, slow growth rates and weak genetic differentiation of resident biota, accumulation of persistent organic pollutants and heavy metals, and fast rates of warming and global ocean acidification. Here, we discuss potential sources of and exposure to micro- and nano-plastic in polar marine ecosystems and potential mixture effects of micro- and nano-plastic coupled with chemical and climate related stressors. We address the anthropogenic contaminants likely to be 'high risk' for interactions in Arctic and Antarctic waters for reasons such as accumulation under sea-ice, a known sink for plastic particulates. Consequently, we address the potential for localised plastic-chemical interactions and possible seasonal fluctuations in interactions associated with freeze-thaw events. The risks for keystone polar species are also considered, incorporating the behavioural and physiological traits of biota and addressing potential 'hotspot' areas. Finally, we discuss a possible direction for future research.
Collapse
Affiliation(s)
- Emily Rowlands
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, United Kingdom of Great Britain and Northern Ireland; University of Exeter, College of Life and Environmental Science, Streatham Campus, Stocker Rd, Exeter EX4 4PY, United Kingdom of Great Britain and Northern Ireland.
| | - Tamara Galloway
- University of Exeter, College of Life and Environmental Science, Streatham Campus, Stocker Rd, Exeter EX4 4PY, United Kingdom of Great Britain and Northern Ireland
| | - Clara Manno
- British Antarctic Survey, High Cross, Madingley Rd, Cambridge CB3 0ET, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
11
|
Telesca L, Peck LS, Backeljau T, Heinig MF, Harper EM. A century of coping with environmental and ecological changes via compensatory biomineralization in mussels. GLOBAL CHANGE BIOLOGY 2021; 27:624-639. [PMID: 33112464 PMCID: PMC7839727 DOI: 10.1111/gcb.15417] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Accurate biological models are critical to predict biotic responses to climate change and human-caused disturbances. Current understanding of organismal responses to change stems from studies over relatively short timescales. However, most projections lack long-term observations incorporating the potential for transgenerational phenotypic plasticity and genetic adaption, the keys to resistance. Here, we describe unexpected temporal compensatory responses in biomineralization as a mechanism for resistance to altered environmental conditions and predation impacts in a calcifying foundation species. We evaluated exceptional archival specimens of the blue mussel Mytilus edulis collected regularly between 1904 and 2016 along 15 km of Belgian coastline, along with records of key environmental descriptors and predators. Contrary to global-scale predictions, shell production increased over the last century, highlighting a protective capacity of mussels for qualitative and quantitative trade-offs in biomineralization as compensatory responses to altered environments. We also demonstrated the role of changes in predator communities in stimulating unanticipated biological trends that run contrary to experimental predictive models under future climate scenarios. Analysis of archival records has a key role for anticipating emergent impacts of climate change.
Collapse
Affiliation(s)
- Luca Telesca
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- British Antarctic SurveyCambridgeUK
| | | | - Thierry Backeljau
- Royal Belgian Institute of Natural SciencesBrusselsBelgium
- Evolutionary Ecology GroupUniversity of AntwerpAntwerpBelgium
| | - Mario F. Heinig
- Technical University of DenmarkDTU NanolabNational Centre for Nano Fabrication and CharacterizationKongens LyngbyDenmark
| | | |
Collapse
|
12
|
Gutt J, Isla E, Xavier JC, Adams BJ, Ahn IY, Cheng CHC, Colesie C, Cummings VJ, di Prisco G, Griffiths H, Hawes I, Hogg I, McIntyre T, Meiners KM, Pearce DA, Peck L, Piepenburg D, Reisinger RR, Saba GK, Schloss IR, Signori CN, Smith CR, Vacchi M, Verde C, Wall DH. Antarctic ecosystems in transition - life between stresses and opportunities. Biol Rev Camb Philos Soc 2020; 96:798-821. [PMID: 33354897 DOI: 10.1111/brv.12679] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
Important findings from the second decade of the 21st century on the impact of environmental change on biological processes in the Antarctic were synthesised by 26 international experts. Ten key messages emerged that have stakeholder-relevance and/or a high impact for the scientific community. They address (i) altered biogeochemical cycles, (ii) ocean acidification, (iii) climate change hotspots, (iv) unexpected dynamism in seabed-dwelling populations, (v) spatial range shifts, (vi) adaptation and thermal resilience, (vii) sea ice related biological fluctuations, (viii) pollution, (ix) endangered terrestrial endemism and (x) the discovery of unknown habitats. Most Antarctic biotas are exposed to multiple stresses and considered vulnerable to environmental change due to narrow tolerance ranges, rapid change, projected circumpolar impacts, low potential for timely genetic adaptation, and migration barriers. Important ecosystem functions, such as primary production and energy transfer between trophic levels, have already changed, and biodiversity patterns have shifted. A confidence assessment of the degree of 'scientific understanding' revealed an intermediate level for most of the more detailed sub-messages, indicating that process-oriented research has been successful in the past decade. Additional efforts are necessary, however, to achieve the level of robustness in scientific knowledge that is required to inform protection measures of the unique Antarctic terrestrial and marine ecosystems, and their contributions to global biodiversity and ecosystem services.
Collapse
Affiliation(s)
- Julian Gutt
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Enrique Isla
- Institute of Marine Sciences-CSIC, Passeig Maritim de la Barceloneta 37-49, Barcelona, 08003, Spain
| | - José C Xavier
- University of Coimbra, MARE - Marine and Environmental Sciences Centre, Faculty of Sciences and Technology, Coimbra, Portugal.,British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Byron J Adams
- Department of Biology and Monte L. Bean Museum, Brigham Young University, Provo, UT, U.S.A
| | - In-Young Ahn
- Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea
| | - C-H Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana, IL, U.S.A
| | - Claudia Colesie
- School of GeoSciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh, EH9 3FF, U.K
| | - Vonda J Cummings
- National Institute of Water and Atmosphere Research Ltd (NIWA), 301 Evans Bay Parade, Greta Point, Wellington, New Zealand
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Huw Griffiths
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, 58 Cross Road, Tauranga, 3100, New Zealand
| | - Ian Hogg
- School of Science, University of Waikato, Private Bag 3105, Hamilton, 3240, New Zealand.,Canadian High Antarctic Research Station, Polar Knowledge Canada, PO Box 2150, Cambridge Bay, NU, X0B 0C0, Canada
| | - Trevor McIntyre
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida, 1710, South Africa
| | - Klaus M Meiners
- Australian Antarctic Division, Department of Agriculture, Water and the Environment, and Australian Antarctic Program Partnership, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS, 7004, Australia
| | - David A Pearce
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K.,Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Northumberland Road, Newcastle upon Tyne, NE1 8ST, U.K
| | - Lloyd Peck
- British Antarctic Survey, Natural Environmental Research Council, High Cross, Madingley Road, Cambridge, CB3 OET, U.K
| | - Dieter Piepenburg
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Columbusstr., Bremerhaven, 27568, Germany
| | - Ryan R Reisinger
- Centre d'Etudes Biologique de Chizé, UMR 7372 du Centre National de la Recherche Scientifique - La Rochelle Université, Villiers-en-Bois, 79360, France
| | - Grace K Saba
- Center for Ocean Observing Leadership, Department of Marine and Coastal Sciences, Rutgers University, 71 Dudley Rd., New Brunswick, NJ, 08901, U.S.A
| | - Irene R Schloss
- Instituto Antártico Argentino, Buenos Aires, Argentina.,Centro Austral de Investigaciones Científicas, Bernardo Houssay 200, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina.,Universidad Nacional de Tierra del Fuego, Ushuaia, Tierra del Fuego, CP V9410CAB, Argentina
| | - Camila N Signori
- Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-900, Brazil
| | - Craig R Smith
- Department of Oceanography, University of Hawaii at Manoa, 1000 Pope Road, Honolulu, HI, 96822, U.S.A
| | - Marino Vacchi
- Institute for the Study of the Anthropic Impacts and the Sustainability of the Marine Environment (IAS), National Research Council of Italy (CNR), Via de Marini 6, Genoa, 16149, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, Naples, I-80131, Italy
| | - Diana H Wall
- Department of Biology and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, U.S.A
| |
Collapse
|
13
|
Abstract
Much recent marine research has been directed towards understanding the effects of anthropogenic-induced environmental change on marine biodiversity, particularly for those animals with heavily calcified exoskeletons, such as corals, molluscs and urchins. This is because life in our oceans is becoming more challenging for these animals with changes in temperature, pH and salinity. In the future, it will be more energetically expensive to make marine skeletons and the increasingly corrosive conditions in seawater are expected to result in the dissolution of these external skeletons. However, initial predictions of wide-scale sensitivity are changing as we understand more about the mechanisms underpinning skeletal production (biomineralization). These studies demonstrate the complexity of calcification pathways and the cellular responses of animals to these altered conditions. Factors including parental conditioning, phenotypic plasticity and epigenetics can significantly impact the production of skeletons and thus future population success. This understanding is paralleled by an increase in our knowledge of the genes and proteins involved in biomineralization, particularly in some phyla, such as urchins, molluscs and corals. This Review will provide a broad overview of our current understanding of the factors affecting skeletal production in marine invertebrates. It will focus on the molecular mechanisms underpinning biomineralization and how knowledge of these processes affects experimental design and our ability to predict responses to climate change. Understanding marine biomineralization has many tangible benefits in our changing world, including improvements in conservation and aquaculture and exploitation of natural calcified structure design using biomimicry approaches that are aimed at producing novel biocomposites.
Collapse
Affiliation(s)
- Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| |
Collapse
|
14
|
Microbial Colonization in Marine Environments: Overview of Current Knowledge and Emerging Research Topics. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8020078] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial biofilms are biological structures composed of surface-attached microbial communities embedded in an extracellular polymeric matrix. In aquatic environments, the microbial colonization of submerged surfaces is a complex process involving several factors, related to both environmental conditions and to the physical-chemical nature of the substrates. Several studies have addressed this issue; however, more research is still needed on microbial biofilms in marine ecosystems. After a brief report on environmental drivers of biofilm formation, this study reviews current knowledge of microbial community attached to artificial substrates, as obtained by experiments performed on several material types deployed in temperate and extreme polar marine ecosystems. Depending on the substrate, different microbial communities were found, sometimes highlighting the occurrence of species-specificity. Future research challenges and concluding remarks are also considered. Emphasis is given to future perspectives in biofilm studies and their potential applications, related to biofouling prevention (such as cell-to-cell communication by quorum sensing or improved knowledge of drivers/signals affecting biological settlement) as well as to the potential use of microbial biofilms as sentinels of environmental changes and new candidates for bioremediation purposes.
Collapse
|
15
|
Convey P, Peck LS. Antarctic environmental change and biological responses. SCIENCE ADVANCES 2019; 5:eaaz0888. [PMID: 31807713 PMCID: PMC6881164 DOI: 10.1126/sciadv.aaz0888] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/04/2019] [Indexed: 05/22/2023]
Abstract
Antarctica and the surrounding Southern Ocean are facing complex environmental change. Their native biota has adapted to the region's extreme conditions over many millions of years. This unique biota is now challenged by environmental change and the direct impacts of human activity. The terrestrial biota is characterized by considerable physiological and ecological flexibility and is expected to show increases in productivity, population sizes and ranges of individual species, and community complexity. However, the establishment of non-native organisms in both terrestrial and marine ecosystems may present an even greater threat than climate change itself. In the marine environment, much more limited response flexibility means that even small levels of warming are threatening. Changing sea ice has large impacts on ecosystem processes, while ocean acidification and coastal freshening are expected to have major impacts.
Collapse
|