1
|
Yan N, Wang Y, Wong TY, Wu Z, Wang X, Xie M, Parodi A, Wang WX, Shi J. Spatiotemporal Mapping of the Evolution of Silver Nanoparticles in Living Cells. ACS NANO 2024; 18:35013-35028. [PMID: 39655906 DOI: 10.1021/acsnano.4c13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Bioaccumulated silver nanoparticles (AgNPs) can undergo transformation and release toxic Ag+, which can be further reduced and form secondary AgNPs (Ag0NPs). However, the intricate interconversions among AgNPs, Ag+, and Ag0NPs remain speculative. Herein, we developed a bioimaging method by coupling the aggregation-induced emission method with the label-free confocal scattering and hyperspectral imaging techniques to quantitatively visualize the biodistribution and biotransformation of AgNPs, Ag0NPs, and Ag+ in living cells. We demonstrated that AgNPs were first dissolved in the medium, and the released Ag+ was converted into Ag0NPs with the presence of algal extracellular polymeric substances and light. Under these conditions, AgNPs alone accounted for 12.4% of the total AgNP toxicity, a percentage comparable to that of Ag0NPs (15.6%). However, Ag+ remained the primary contributor to overall AgNP toxicity. Additionally, we found that about 9.00% of the accumulated AgNPs within the algal cells were transformed after 24 h exposure. Of these transformed AgNPs, 4.70% remained as Ag+ forms (located in the apical region, nucleus, and pyrenoid), while 4.30% persisted as Ag0NP forms (located in the cytosol) that were only detectable after a 4 h exposure. We further showed that AgNP exposure upregulated algal glutathione production with a 38.3-fold increase in glutathione reductase activity, which potentially resulted in Ag0NP formation at the active site. Overall, this study differentiated the toxicity of AgNPs, Ag+, and Ag0NPs and directly visualized the ongoing transformation and translocation of AgNPs, Ag+, and Ag0NPs within living cells, which are critical in unveiling the toxicity mechanisms of AgNPs.
Collapse
Affiliation(s)
- Neng Yan
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yan Wang
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Tin Yan Wong
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon 999077, Hong Kong, China
| | - Zhiwei Wu
- China Hangzhou Puyu Technology Co., Ltd., Hangzhou 311404, China
| | - Xiuxiu Wang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Minwei Xie
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi 354340, Russia
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jianbo Shi
- MOE Key Laboratory of Groundwater Quality and Health, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Guo Z, Liu J, He L, Rodrigues JLM, Chen N, Zuo Y, Wang N, Zhu X, Sun Y, Zhang L, Song Y, Zhang D, Yuan F, Song C, Xu X. Dominant Edaphic Controls on Particulate Organic Carbon in Global Soils. GLOBAL CHANGE BIOLOGY 2024; 30:e17619. [PMID: 39660584 DOI: 10.1111/gcb.17619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024]
Abstract
The current soil carbon paradigm puts particulate organic carbon (POC) as one of the major components of soil organic carbon worldwide, highlighting its pivotal role in carbon mitigation. In this study, we compiled a global dataset of 3418 data points of POC concentration in soils and applied empirical modeling and machine learning algorithms to investigate the spatial variation in POC concentration and its controls. The global POC concentration in topsoil (0-30 cm) is estimated as 3.02 g C/kg dry soil, exhibiting a declining trend from polar regions to the equator. Boreal forests contain the highest POC concentration, averaging at 4.58 g C/kg dry soil, whereas savannas exhibit the lowest at 1.41 g C/kg dry soil. We developed a global map of soil POC density in soil profiles of 0-30 cm and 0-100 cm with an empirical model. The global stock of POC is 158.15 Pg C for 0-30 cm and 222.75 Pg C for 0-100 cm soil profiles with a substantial spatial variation. Analysis with a machine learning algorithm concluded the predominate controls of edaphic factors (i.e., bulk density and soil C content) on POC concentration across biomes. However, the secondary controls vary among biomes, with solid climate controls in grassland, pasture, and shrubland, while strong vegetation controls in forests. The biome-level estimates and maps of POC density provide a benchmark for modeling C fractions in soils; the various controls on POC suggest incorporating biological and physiochemical mechanisms in soil C models to assess and forecast the soil POC dynamics in response to global change.
Collapse
Affiliation(s)
- Ziyu Guo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
- Biology Department, San Diego State University, San Diego, California, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianzhao Liu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liyuan He
- Biology Department, San Diego State University, San Diego, California, USA
| | - Jorge L Mazza Rodrigues
- Department of Land, Air, and Water Resources, University of California Davis, Davis, California, USA
| | - Ning Chen
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Yunjiang Zuo
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Nannan Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xinhao Zhu
- Biology Department, San Diego State University, San Diego, California, USA
| | - Ying Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Lihua Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yanyu Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Dengjun Zhang
- UiS School of Business and Law, University of Stavanger, Stavanger, Norway
| | - Fenghui Yuan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Changchun Song
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, California, USA
| |
Collapse
|
3
|
Yang P, Wang S, Sun T, Jiang T, Cui Y, Liu G, Guo Y, Liu Y, Hu L, Shi J, Zhang Q, Yin Y, Cai Y, Jiang G. Fire-Induced Multiple Changes in Electron Transfer Properties of Peat Soil Organic Matter: The Role of Functional Groups, Graphitic Carbon, and Iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20457-20467. [PMID: 39513731 DOI: 10.1021/acs.est.4c06586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Peatland fires induced changes in electron transfer properties and relevant electroactive structures of peat soil organic matter (PSOM) remain ambiguous, impeding comprehension of postfire biogeochemical processes. Here, we revealed temperature-dependent electron exchange capacity (EEC) of PSOM dynamics through simulated peat soil burning (150-500 °C), which extremely changed postfire microbial Fe-nanoparticles reduction and methanogenesis. EEC diminished significantly (60-75% loss) due to phenolic-quinone moieties depletion with increasing temperature, regardless of oxygen availability. The final EEC in oxic burning surpassed that of anoxic burning by 1.5 times, attributed to additional quinones from oxygen incorporation. Notably, EEC exhibited heat resistance up to 200 °C and stabilized above 350 °C. Additionally, fire reshaped the EEC-relevant redox-active moieties. Heterocyclic-N generated from burning predominantly contributed to the electron-accepting capacity (EAC) alongside quinones, while phenolic moieties and bonded Fe(II) enhanced the electron-donating capacity (EDC). However, the preferential binding of heterocyclic-N to Fe(II) restricted the EDC of Fe(II). Interestingly, the decrease in EAC declined its electron-shuttling effects in microbial Fe nanoparticle reduction, but fire-induced graphitic carbon formation increased the electrical conductivity (EC) of PSOM, promoting electron transfer. Further, enhanced EC may facilitate methanogenesis in postfire peatlands. These findings advance our understanding of elemental biogeochemical cycles and greenhouse emission mechanisms in postfire peatlands.
Collapse
Affiliation(s)
- Peijie Yang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Wang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianran Sun
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, Department of Environmental Sciences and Engineering, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yifan Cui
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Feng Y, Sun Q, Liu P, Fan W, Fan B. Antibacterial Property and Mechanisms of Au@Ag Core-Shell Nanoparticles with Near-Infrared Absorption Against E. faecalis Infection of Dentin. Int J Nanomedicine 2024; 19:6981-6997. [PMID: 39005961 PMCID: PMC11246666 DOI: 10.2147/ijn.s468649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Background Enterococcus faecalis (E. faecalis) is one of the main pathogens responsible for refractory root canal infections in the teeth and shows resistance against various antibacterial managements. Effective control of E. faecalis infection is a prerequisite for successful treatment of refractory apical periodontitis. This study aimed to analyze the antibacterial activity and mechanisms of Au@Ag nanoparticles (NPs) combined with photothermal therapy (PTT) against the original and Ag+-resistant E. faecalis. Methods Au@AgNPs with optimal shell thicknesses were synthesized and characterized. The antibacterial activity of Au@AgNPs with PTT against the original or Ag+-resistant E. faecalis was evaluated, and the antibiofilm activity was tested on E. faecalis biofilm on the dentin of teeth. The potential antibacterial mechanisms of Au@AgNPs combined with PTT against E. faecalis have also been studied. Moreover, its influence on dentin microhardness and cytotoxicity was assessed. Results This study revealed that Au@AgNPs combined with PTT showed enhanced antibacterial and antibiofilm effects, no negative effects on dentin microhardness, and low cytotoxicity toward human periodontal ligament cells (hPDLCs). Moreover, Au@AgNPs combined with PTT effectively inhibited the growth of Ag+-resistant E. faecalis. Its antibacterial effects may be exerted through the release of silver ions (Ag+), destruction of the cell membrane, production of reactive oxygen species (ROS) and inhibition of adenosine triphosphate (ATP) production. Hyperthermia generated by Au@AgNPs with PTT reduced membrane fluidity and enhanced Ag+ sensitivity by downregulating fabF expression. The upregulated expression of heat shock genes demonstrated that the Ag+ released from Au@AgNPs compromised the heat adaptation of E. faecalis. Conclusion PTT significantly enhanced Ag+ sensitivity of the original and Ag+-resistant E. faecalis. Au@AgNPs combined with PTT may have the potential to be developed as a new antibacterial agent to control E. faecalis infections in teeth.
Collapse
Affiliation(s)
- Yaxu Feng
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Qing Sun
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Pei Liu
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Wei Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| | - Bing Fan
- The State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Wu J, Xiong L, Huang X, Li C, Li F, Wong JWC. Silver sulfide nanoparticles eliminate the stimulative effects of earthworms on nutrient uptake by soybeans in high organic matter soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174433. [PMID: 38960153 DOI: 10.1016/j.scitotenv.2024.174433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 06/03/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
A significant knowledge gap exists regarding the impact of soil organic matter on the bioavailability of Ag2S-NPs (environmentally relevant forms of Ag-NPs) in soil-earthworm-plant systems. This study used two soils with varying organic matter content, both with and without earthworms, to investigate the bioavailability of Ag2S-NPs. The findings revealed an 80 % increase in Ag bioaccessibility to soybeans in soils with high organic matter content compared to soils with low organic matter. Additionally, the presence of earthworms significantly increased Cl concentrations from 24.3-62.2 mg L-1 to 80.1-147.2 mg L-1, triggering the elevated bioavailability of Ag. Interestingly, Ag2S-NPs eliminated the stimulative effects of earthworms on plant nutrient uptake. In the presence of earthworms, the high organic matter soil amended with Ag2S-NPs exhibited lower concentrations of essential elements (Ca, Cu, Fe, K, and P) in plant tissues compared to soils without earthworms. Our study presents evidence of the transformation of Ag2S-NPs into Ag-NPs across various soil solutions, resulting in the formation of Ag nanoparticle complexes. Particularly noteworthy is the significant reduction in particle sizes in soils incubated with earthworms and high organic matter content, from 85.0 nm to 40.2 nm. Notably, in the rhizosphere soil, a decrease in the relative abundance of nutrient cycling-related phyla was observed, with reductions of 18.5 % for Proteobacteria and 30.0 % for Actinobacteriota. These findings offer valuable insights into the biological and biochemical consequences of Ag2S-NP exposure on earthworm-mediated plant nutrient acquisition.
Collapse
Affiliation(s)
- Jingtao Wu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia
| | - Lei Xiong
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia; Smart Water Affairs Research Center, Shenzhen University, Shenzhen 518000, China
| | - Xingyun Huang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Cui Li
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland 4072, Australia; Northwestern Polytechnical University, Research Centre for Ecology and Environmental Sciences, Xi'an 710072, China
| | - Feng Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China; College of Chemistry & Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, Hunan, PR China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| |
Collapse
|
6
|
Li B, Zhang Y. Dual role of pyrogenic carbon in mediating electron transfer from clay minerals to chromium in aqueous and solid media. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134290. [PMID: 38615645 DOI: 10.1016/j.jhazmat.2024.134290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Clay minerals (CMs) and pyrogenic carbons (PCs) often co-exist in the environment and participate in the redox cycling of pollutants. This study unveiled the dual role of PCs in CM-dominated chromium transformation in both aqueous and agar solidification media. The findings showed that CMs and PCs adsorbed minimal Cr(VI), while reduced CMs and PCs displayed a substantial difference by directly reducing Cr(VI) to solid/dissolved Cr(III) through reactive structural Fe(II) and functional groups, respectively. Moreover, dissolved PCs were found to mediate electron transfer from reduced CMs to Cr(VI) in aqueous and solid media. Interestingly, the effect of solid PCs on Cr(VI) reduction by reduced CMs was concentration-dependent. At lower concentrations, solid PCs dispersed reduced CMs, acting as electron mediators and facilitating both direct and indirect Cr(VI) reduction, resulting in solid Cr(III) rather than dissolved Cr(III). Conversely, at higher concentrations, solid PCs served as redox buffers, storing electrons transferred from reduced CMs to Cr(VI). In either case, the transformed chromium was primarily immobilized on the surface of CMs rather than PCs. These findings offer valuable insights into pollutant transformations associated with CMs and PCs, deepening our understanding of their geochemical processes.
Collapse
Affiliation(s)
- Biao Li
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| |
Collapse
|
7
|
Qiu X, Wang X, Pan J, Ding L, Liang X, Guo X. Significant contribution of different sources of particulate organic matter to the photoaging of microplastics. WATER RESEARCH 2024; 251:121173. [PMID: 38281334 DOI: 10.1016/j.watres.2024.121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
Particulate organic matter (POM), as an important component of organic matter, can act as a redox mediator and thus intervene in the environmental behavior of microplastics (MPs). However, quantitative information on the role of POM in the photoaging of MPs under ultraviolet (UV) light is still lacking. To raise the knowledge gap, through environmental simulation experiments and qualitative/quantitative experiments of active substances, we found that POM from peat soil has stronger oxidation capacity than POM from sediment, and the involvement of POM at high water content makes the aging of MPs more obvious. This is because the persistent radicals and electron-absorbing groups on the surface of POM indirectly generate reactive oxygen species (ROS) by promoting electron transfer, and the dissolved organic matter (DOM) released from POM under UV light (POM-DOM) is further excited to generate triplet-state photochemistry of DOM (3DOM*) to promote the aging of MPs. Theoretical calculations revealed that the benzene ring, mainly C = C, and C = O in the main chain in the plastic macromolecule structure are more susceptible to ROS attack, and the differences in the vulnerable sites contained in different plastic structures as well as the differences in the energy band gaps lead to differences in their aging processes. This study firstly elucidates the key role and intrinsic mechanism of POM in the photoaging of MPs, providing a theoretical basis for a comprehensive assessment of the effect of POM on MPs in the environment.
Collapse
Affiliation(s)
- Xinran Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xiaoxiao Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Jianrui Pan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Ling Ding
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xujun Liang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Qin L, Yang L, Shiraiwa M, Faiola F, Zhong H, Sonne C, Yang Y, Liu S, Liu G, Zheng M, Jiang G. Unexpected hydroxyl radical production in brewed tea under sunlight. PNAS NEXUS 2024; 3:pgae015. [PMID: 38274119 PMCID: PMC10810332 DOI: 10.1093/pnasnexus/pgae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024]
Abstract
Tea is one of the world's most popular and widely consumed beverages. It is a common pastime to enjoy a cup of tea in the sunshine. However, little attention has been given to understanding the possible photochemical reactions occurring beneath the calm surface of brewed tea. Epigallocatechin gallate (EGCG), which is widely used in food and beverages, is the most significant active ingredient found in tea. In this study, we investigated the presence of free radicals in both an aqueous EGCG solution and brewed tea under simulated sunlight conditions. To our surprise, we unexpectedly observed the production of hydroxyl radicals (•OH) in brewed tea. It was found that sunlight irradiation played a critical role in the formation of •OH, independent of the presence of metal ions. Furthermore, we demonstrated that the •OH generated from the EGCG aqueous solution induced cell cytotoxicity and DNA damage in vitro. Considering the crucial role of •OH in various fields, including human health and the environment, it is important to further explore the practical implications of •OH production in brewed tea under sunlight. In summary, our study unveils the unexpected formation of •OH in brewed tea and emphasizes the significance of sunlight-induced reactions. The observed cytotoxic and DNA-damaging effects of •OH emphasize the importance of understanding the potential health consequences associated with tea consumption. Further research in this area will contribute to a better understanding of the broader implications of •OH production in brewed tea under sunlight.
Collapse
Affiliation(s)
- Linjun Qin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Christian Sonne
- Department for Bioscience, Arctic Research Centre, Aarhus University, Roskilde DK-4000, Denmark
| | - Yujue Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Shuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of the Chinese Academy of Sciences, Beijing 100190, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
9
|
Li H, Qiao D, Chu M, Guo L, Sun Z, Fan Y, Ni SQ, Tung CH, Wang Y. Accumulation of Ag(0) Single Atoms at Water/Mineral Interfaces during Sunlight-Induced Reduction of Ionic Ag by Phenolic DOM. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20822-20829. [PMID: 38014909 DOI: 10.1021/acs.est.3c05922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Silver (Ag) undergoes a complex and dynamic Ag+/Ag0 cycle under environmental conditions. The Ag+ → Ag nanoparticles (AgNPs) transformation due to the combined actions of sunlight, O2, and dissolved organic matter has been a well-known environmental phenomenon. In this study, we indicate that this process may be accompanied by a pronounced accumulation of Ag(0) single atoms (Ag-SAs) on the minerals' surfaces. According to spherical aberration-corrected scanning transmission electron microscopy and high-energy-resolution X-ray adsorption fine structure analyses, humic acid (HA) and phenol (PhOH) can induce Ag-SAs accumulation, whereas oxalic acid causes only AgNPs deposition. Ag-SAs account for more than 20 wt % of total Ag(0) on the γ-Al2O3 surfaces during HA- and PhOH-mediated photolysis processes. HA also causes Ag-SAs to accumulate on two other prevalent soil minerals, SiO2 and Fe2O3, and the fractions of Ag-SAs are about 15 wt %. Our mechanism studies suggest that a phenolic molecule acts as a reducing agent of Ag+ and a stabilizer of Ag-SAs, protecting Ag-SAs against autocatalytic nucleation.
Collapse
Affiliation(s)
- Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Dan Qiao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Menghui Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Lirong Guo
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shou-Qing Ni
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Chen L, Wang D, Sun T, Fan T, Wu S, Fang G, Yang M, Zhou D. Quantification of the redox properties of microplastics and their effect on arsenite oxidation. FUNDAMENTAL RESEARCH 2023; 3:777-785. [PMID: 38933300 PMCID: PMC11197510 DOI: 10.1016/j.fmre.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
Abstract
Microplastics have attracted global concern. The environmental-weathering processes control their fate, transport, transformation, and toxicity to wildlife and human health, but their impacts on biogeochemical redox processes remain largely unknown. Herein, multiple spectroscopic and electrochemical approaches in concert with wet-chemistry analyses were employed to characterize the redox properties of weathered microplastics. The spectroscopic results indicated that weathering of phenol-formaldehyde resins (PFs) by hydrogen peroxide (H2O2) led to a slight decrease in the content of phenol functional groups, accompanied by an increase in semiquinone radicals, quinone, and carboxylic groups. Electrochemical and wet-chemistry quantifications, coupled with microbial-chemical characterizations, demonstrated that the PFs exhibited appreciable electron-donating capacity (0.264-1.15 mmol e- g-1) and electron-accepting capacity (0.120-0.300 mmol e- g-1). Specifically, the phenol groups and semiquinone radicals were responsible for the electron-donating capacity, whereas the quinone groups dominated the electron-accepting capacity. The reversible redox peaks in the cyclic voltammograms and the enhanced electron-donating capacity after accepting electrons from microbial reduction demonstrated the reversibility of the electron-donating and -accepting reactions. More importantly, the electron-donating phenol groups and weathering-induced semiquinone radicals were found to mediate the production of H2O2 from oxygen for arsenite oxidation. In addition to the H2O2-weathered PFs, the ozone-aged PF and polystyrene were also found to have electron-donating and arsenite-oxidation capacity. This study reports important redox properties of microplastics and their effect in mediating contaminant transformation. These findings will help to better understand the fate, transformation, and biogeochemical roles of microplastics on element cycling and contaminant fate.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tianran Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingting Fan
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Yang
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
Padhye LP, Jasemizad T, Bolan S, Tsyusko OV, Unrine JM, Biswal BK, Balasubramanian R, Zhang Y, Zhang T, Zhao J, Li Y, Rinklebe J, Wang H, Siddique KHM, Bolan N. Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161926. [PMID: 36739022 DOI: 10.1016/j.scitotenv.2023.161926] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Silver (Ag), a naturally occurring, rare and precious metal, is found in major minerals such as cerargyrite (AgCl), pyrargyrite (Ag3SbS3), proustite (Ag3AsS3), and stephanite (Ag5SbS4). From these minerals, Ag is released into soil and water through the weathering of rocks and mining activities. Silver also enters the environment by manufacturing and using Ag compounds in electroplating and photography, catalysts, medical devices, and batteries. With >400 t of Ag NPs produced yearly, Ag NPs have become a rapidly growing source of anthropogenic Ag input in the environment. In soils and natural waters, most Ag is sorbed to soil particles and sediments and precipitated as oxides, carbonates, sulphides, chlorides and hydroxides. Silver and its compounds are toxic, and humans and other animals are exposed to Ag through inhalation of air and the consumption of Ag-contaminated food and drinking water. Remediation of Ag-contaminated soil and water sources can be achieved through immobilization and mobilization processes. Immobilization of Ag in soil and groundwater reduces the bioavailability and mobility of Ag, while mobilization of Ag in the soil can facilitate its removal. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices and regulatory mandates of Ag contamination in complex environmental settings, including soil and aquatic ecosystems. Knowledge gaps and future research priorities in the sustainable management of Ag contamination in these settings are also discussed.
Collapse
Affiliation(s)
- Lokesh P Padhye
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Tahereh Jasemizad
- Department of Civil and Environmental Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA; Kentucky Water Resources Research Institute, University of Kentucky, Lexington, KY, 40506, USA
| | - Basanta Kumar Biswal
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | | | - Yingyu Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jian Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China; Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia; UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
12
|
Li H, Fan Y, Sun Z, Zhang H, Zhu Y, Ni SQ, Wang W, Tung CH, Wang Y. Abrading-Induced Breakdown of Ag Nanoparticles into Atomically Dispersed Ag for Enhancing Antimicrobial Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6150-6158. [PMID: 37010425 DOI: 10.1021/acs.est.3c01200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Silver is among the most essential antimicrobial agents. Increasing the efficacy of silver-based antimicrobial materials will reduce operating costs. Herein, we show that mechanical abrading causes atomization of Ag nanoparticles (AgNPs) into atomically dispersed Ag (AgSAs) on the surfaces of an oxide-mineral support, which eventually boosts the antibacterial efficacy considerably. This approach is straightforward, scalable, and applicable to a wide range of oxide-mineral supports; additionally, it does not require any chemical additives and operates under ambient conditions. The obtained AgSAs-loaded γ-Al2O3 inactivated Escherichia coli (E. coli) five times as fast as the original AgNPs-loaded γ-Al2O3. It can be utilized over 10 runs with minimal efficiency loss. The structural characterizations indicate that AgSAs exhibit a nominal charge of 0 and are anchored at the doubly bridging OH on the γ-Al2O3 surfaces. Mechanism studies demonstrate that AgSAs, like AgNPs, damage bacterial cell wall integrity, but they release Ag+ and superoxide substantially faster. This work not only provides a simple method for manufacturing AgSAs-based materials but also shows that AgSAs have better antibacterial properties than the AgNPs counterpart.
Collapse
Affiliation(s)
- Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yafei Fan
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoli Sun
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Hongqian Zhang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yuxin Zhu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Shou-Qing Ni
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wanjun Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|
13
|
Yu Y, Wu C, Li X, Wu L, Yang Q, Petropoulos E, Feng Y. The impact of Ag nanoparticles on methane emission in two typical paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121215. [PMID: 36740168 DOI: 10.1016/j.envpol.2023.121215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/10/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Numerous applications of Ag nanoparticles (AgNPs) have increased the likelihood of their release and accumulation in agroecosystem. Thus far, few studies have evaluated the impacts of AgNPs to soil methane emissions and the microbial dynamics. In this study, microcosmic experiments were conducted to investigate the responses of methanogenic processes from two paddy soils (Cambisols and Ultisols) subjected to four AgNPs doses (0.1, 1, 10 and 50 mg/kg). The results showed that 0.1 and 1 mg/kg AgNPs had no significant effects on CH4 emissions, but 50 mg/kg AgNPs increased soil CH4 emissions in both paddy soils. The aggravation effect of AgNPs on CH4 emissions was more apparent in Ultisols compared to Cambisols paddy soils. Real-time PCR suggested that 50 mg/kg AgNPs significantly increased the ratio of methanogenic to bacterial gene for both paddy soils. Amplicon sequencing indicated that methanogenic community was clustered into a separate group after 50 mg/kg AgNPs exposure. Structural equation model illustrated that Methanosarcinales was both significantly responded to AgNPs in Cambisols and Ultisols soils; however, Methanocellales significantly responded to AgNPs only in Cambisols soils. Subsequently, uncontrolled use of AgNPs may account as an environmental risk due to the potentially increased soil CH4 emissions in paddy ecosystems.
Collapse
Affiliation(s)
- Yongjie Yu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chen Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xin Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lingyu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qinyu Yang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | | | - Youzhi Feng
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing 210095, China.
| |
Collapse
|
14
|
Wei M, Xiang Q, Wang P, Chen L, Ren M. Ambivalent effects of dissolved organic matter on silver nanoparticles/silver ions transformation: A review. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130533. [PMID: 37055958 DOI: 10.1016/j.jhazmat.2022.130533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/05/2022] [Accepted: 11/29/2022] [Indexed: 06/19/2023]
Abstract
The numerous applications of silver nanoparticles (AgNPs) lead to their spread in aquatic systems and the release of silver ions (Ag+), which brings potential risks to environment and human health. Owing to the different toxicity, the mutual transformations between AgNPs and Ag+ has been a hot topic of research. Dissolved organic matter (DOM) is ubiquitous on the earth and almost participates in all the reactions in the nature. The previous studies have reported the roles of DOM played in the transformation between AgNPs and Ag+. However, different experiment conditions commonly caused contradictory results, leading to the difficulty to predict the fate of AgNPs in specific reactions. Here we summarized mechanisms of DOM-mediated AgNPs oxidation and Ag+ reduction, and analyzed the effects of environmental parameters. Moreover, the knowledge gaps, challenges, and new opportunities for research in this field are discussed. This review will promote the understanding of the fate and risk assessments of AgNPs in natural water systems.
Collapse
Affiliation(s)
- Minxiang Wei
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Qianqian Xiang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China; College of Agronomy and Life Sciences, Kunming University, Kunming 650214, PR China
| | - Peng Wang
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China
| | - Liqiang Chen
- Institute of International River and Eco-security, Yunnan University, Kunming 650500, PR China.
| | - Meijie Ren
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China.
| |
Collapse
|
15
|
Silver nanoparticles based on Sulfobutylether-β-cyclodextrin functionalized graphene oxide nanocomposite: synthesized, characterization, and antibacterial activity. Colloids Surf B Biointerfaces 2022; 221:113009. [DOI: 10.1016/j.colsurfb.2022.113009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/11/2022]
|
16
|
Zhao G, Wu B, Zheng X, Chen B, Kappler A, Chu C. Tide-Triggered Production of Reactive Oxygen Species in Coastal Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11888-11896. [PMID: 35816724 DOI: 10.1021/acs.est.2c03142] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report an unrecognized, tidal source of reactive oxygen species (ROS). Using a newly developed ROS-trapping gel film, we observed hot spots for ROS generation within ∼2.5 mm of coastal surface soil. Kinetic analyses showed rapid production of hydroxyl radicals (•OH), superoxide (O2•-), and hydrogen peroxide (H2O2) upon a shift from high tide to low tide. The ROS production exhibited a distinct rhythmic fluctuation. The oscillations of the redox potential and dissolved oxygen concentration followed the same pattern as the •OH production, suggesting the alternating oxic-anoxic conditions as the main geochemical drive for ROS production. Nationwide coastal field investigations confirmed the widespread and sustainable production of ROS via tidal processes (22.1-117.4 μmol/m2/day), which was 5- to 36-fold more efficient than those via classical photochemical routes (1.5-7.6 μmol/m2/day). Analyses of soil physicochemical properties demonstrated that soil redox-metastable components such as redox-active iron minerals and organic matter played a key role in storing electrons at high tide and shuttling electrons to infiltrated oxygen at low tide for ROS production. Our work sheds light on a ubiquitous but previously overlooked tidal source of ROS, which may accelerate carbon and metal cycles as well as pollutant degradation in coastal soils.
Collapse
Affiliation(s)
- Guoqiang Zhao
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen, 72074 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, 72074 Tübingen, Germany
| | - Chiheng Chu
- Faculty of Agriculture, Life, and Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Peng XX, Gai S, Cheng K, Yang F. Roles of humic substances redox activity on environmental remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129070. [PMID: 35650747 DOI: 10.1016/j.jhazmat.2022.129070] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Humic substances (HS) as representative natural organic matters and the most common organic compounds existing in the environment, has been applied to the treatment and remediation of environmental pollution. This review systematically introduces and summarizes the redox activity of HS for the remediation of environmental pollutants. For inorganic pollutants (such as silver, chromium, mercury, and arsenic), the redox reaction of HS can reduce their toxicity and mobilization, thereby reducing the harm of these pollutants to the environment. The concentration and chemical composition of HS, environmental pH, ionic strength, and competing components affect the degree and rate of redox reactions between inorganic pollutants and HS significantly. With regards to organic pollutants, HS has photocatalytic activity and produces a large number of reactive oxygen species (ROS) under the light which reacts with organic pollutants to accelerate the degradation of organic pollutants. Under the affection of HS, the redox of Fe(III) and Fe(II) can enhance the efficiency of Fenton-like reaction to degrade organic pollutants. Finally, the research direction of HS redox remediation of environmental pollution is prospected.
Collapse
Affiliation(s)
- Xiong-Xin Peng
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Shuang Gai
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China
| | - Kui Cheng
- Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China; College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China; Joint Laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU-MPICI), Harbin 150030, China.
| |
Collapse
|
18
|
Xiang Y, Guo Y, Liu G, Liu Y, Song M, Shi J, Hu L, Yin Y, Cai Y, Jiang G. Particle-Bound Hg(II) is Available for Microbial Uptake as Revealed by a Whole-Cell Biosensor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6754-6764. [PMID: 35502862 DOI: 10.1021/acs.est.1c08946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Particle-bound mercury (HgP), ubiquitously present in aquatic environments, can be methylated into highly toxic methylmercury, but it remains challenging to assess its bioavailability. In this study, we developed anEscherichia coli-based whole-cell biosensor to probe the microbial uptake of inorganic Hg(II) and assess the bioavailability of HgP sorbed on natural and model particles. This biosensor can quantitatively distinguish the contribution of dissolved Hg(II) and HgP to intracellular Hg. Results showed that the microbial uptake of HgP was ubiquitous in the environment, as evidenced by the bioavailability of sorbed-Hg(II) onto particulate matter and model particles (Fe2O3, Fe3O4, Al2O3, and SiO2). In both oxic and anoxic environments, HgP was an important Hg(II) source for microbial uptake, with enhanced bioavailability under anoxic conditions. The composition of particles significantly affected the microbial uptake of HgP, with higher bioavailability being observed for Fe2O3 and lower for Al2O3 particles. The bioavailability of HgP varied also with the size of particles. In addition, coating with humic substances and model organic compound (cysteine) on Fe2O3 particles decreased the bioavailability of HgP. Overall, our findings highlight the role of HgP in Hg biogeochemical cycling and shed light on the enhanced Hg-methylation in settling particles and sediments in aquatic environments.
Collapse
Affiliation(s)
- Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
19
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
20
|
Ge C, Huang D, Wang D, Zhang E, Li M, Zhu F, Zhu C, Chen N, Wu S, Zhou D. Biotic Process Dominated the Uptake and Transformation of Ag + by Shewanella oneidensis MR-1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2366-2377. [PMID: 35107264 DOI: 10.1021/acs.est.1c06369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Silver ions (Ag+) directly emitted from industrial sources or released from manufactured Ag nanoparticles (AgNPs) in biosolid-amended soils have raised concern about the risk to ecosystems. However, our knowledge of Ag+ toxicity, internalization, and transformation mechanisms to bacteria is still insufficient. Here, we combine the advanced technologies of hyperspectral imaging (HSI) and single-particle inductively coupled plasma mass spectrometry to visualize the potential formed AgNPs inside the bacteria and evaluate the contributions of biological and non-biological processes in the uptake and transformation of Ag+ by Shewanella oneidensis MR-1. The results showed a dose-dependent toxicity of Ag+ to S. oneidensis MR-1 in the ferrihydrite bioreduction process, which was primarily induced by the actively internalized Ag. Moreover, both HSI and cross-section high-resolution transmission electron microscopy results confirmed that Ag inside the bacteria existed in the form of particulate. The Ag mass distribution in and around live and inactivated cells demonstrated that the uptake and transformation of Ag+ by S. oneidensis MR-1 were mainly via biological process. The bioaccumulation of Ag+ may be lethal to bacteria. A better understanding of the uptake and transformation of Ag+ in bacteria is central to predict and monitor the key factors that control Ag partitioning dynamics at the biointerface, which is critical to develop practical risk assessment and mitigation strategies.
Collapse
Affiliation(s)
- Chenghao Ge
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Dixiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Enze Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Min Li
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, P.R. China
| | - Fengxiao Zhu
- School of Environment, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
21
|
Xu Z, Yu Y, Xu X, Tsang DCW, Yao C, Fan J, Zhao L, Qiu H, Cao X. Direct and Indirect Electron Transfer Routes of Chromium(VI) Reduction with Different Crystalline Ferric Oxyhydroxides in the Presence of Pyrogenic Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1724-1735. [PMID: 34978795 DOI: 10.1021/acs.est.1c06642] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electron transfer mediated by iron minerals is considered as a critical redox step for the dynamics of pollutants in soil. Herein, we explored the reduction process of Cr(VI) with different crystalline ferric oxyhydroxides in the presence of pyrogenic carbon (biochar). Both low- and high-crystallinity ferric oxyhydroxides induced Cr(VI) immobilization mainly via the sorption process, with a limited reduction process. However, the Cr(VI) reduction immobilization was inspired by the copresence of biochar. Low-crystallinity ferric oxyhydroxide had an intense chemical combination with biochar and strong sorption for Cr(VI) via inner-sphere complexation, leading to the indirect electron transfer route for Cr(VI) reduction, that is, the electron first transferred from biochar to iron mineral through C-O-Fe binding and then to Cr(VI) with Fe(III)/Fe(II) transformation on ferric oxyhydroxides. With increasing crystallinity of ferric oxyhydroxides, the direct electron transfer between biochar and Cr(VI) became the main electron transfer avenue for Cr(VI) reduction. The indirect electron transfer was suppressed in the high-crystallinity ferric oxyhydroxides due to less sorption of Cr(VI), limited combination with biochar, and higher iron stability. This study demonstrates that electron transfer mechanisms involving iron minerals change with the mineral crystallization process, which would affect the geochemical process of contaminants with pyrogenic carbon.
Collapse
Affiliation(s)
- Zibo Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 852, Hong Kong, 999077, China
| | - Yulu Yu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon 852, Hong Kong, 999077, China
| | - Chengbo Yao
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, United States
| | - Jin Fan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Engineering Research Center for Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| |
Collapse
|
22
|
Yonathan K, Mann R, Mahbub KR, Gunawan C. The impact of silver nanoparticles on microbial communities and antibiotic resistance determinants in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118506. [PMID: 34793904 DOI: 10.1016/j.envpol.2021.118506] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/14/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Nanosilver (NAg) is currently one of the major alternative antimicrobials to control microorganisms. With its broad-spectrum efficacy and lucrative commercial values, NAg has been used in medical devices and increasingly, in consumer products and appliances. This widespread use has inevitably led to the release and accumulation of the nanoparticle in water and sediment, in soil and even, wastewater treatment plants (WWTPs). This Article describes the physical and chemical transformations of NAg as well as the impact of the nanoparticle on microbial communities in different environmental settings; how the nanoparticle shifts not only the diversity and abundance of microbes, including those that are important in nitrogen cycles and decomposition of organic matters, but also their associated genes and in turn, the key metabolic processes. Current findings on the microbiological activity of the leached soluble silver, solid silver particulates and their respective transformed products, which underpin the mechanism of the nanoparticle toxicity in environmental microbes, is critically discussed. The Article also addresses the emerging evidence of silver-driven co-selection of antibiotic resistance determinants. The mechanism has been linked to the increasing pools of many antibiotic resistance genes already detected in samples from different environmental settings, which could ultimately find their ways to animals and human. The realized ecological impact of NAg calls for more judicial use of the nanoparticle. The generated knowledge can inform strategies for a better 'risks versus benefits' assessment of NAg applications, including the disposal stage.
Collapse
Affiliation(s)
- Kevin Yonathan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Khandaker Rayhan Mahbub
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; South Australian Research and Development Institute, Primary Industries and Regions SA, Urrbrae, SA 5064, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia; School of Chemical Engineering, University of New South Wales, NSW 2052, Australia.
| |
Collapse
|
23
|
Zhang X, Dang D, Zheng L, Wu L, Wu Y, Li H, Yu Y. Effect of Ag Nanoparticles on Denitrification and Microbial Community in a Paddy Soil. Front Microbiol 2022; 12:785439. [PMID: 35003016 PMCID: PMC8727482 DOI: 10.3389/fmicb.2021.785439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022] Open
Abstract
The extensive application of Ag nanoparticles (AgNPs) in industry, agriculture, and food processing areas increases the possibility of its release and accumulation to agroecosystem, but the effects of AgNPs to denitrification and the microbial community in paddy ecosystems are still poorly studied. In this study, microcosmic simulation experiments were established to investigate the response of soil denitrification to different levels of AgNPs (i.e., 0.1, 1, 10, and 50 mg/kg) in a paddy soil. Real-time quantitative PCR and high-throughput sequencing were conducted to reveal the microbial mechanism of the nanometer effect. The results showed that, though 0.1–10 mg/kg AgNPs had no significant effects on denitrification rate and N2O emission rate compared to CK and bulk Ag treatments, 50 mg/kg AgNPs significantly stimulated more than 60% increase of denitrification rate and N2O emission rate on the 3rd day (P < 0.05). Real-time quantitative PCR revealed that 50 mg/kg AgNPs significantly decreased the abundance of 16S bacterial rRNA gene, nirS/nirK, cnorB, and nosZ genes, but it did not change the narG gene abundance. The correlation analysis further revealed that the cumulative N2O emission was positively correlated with the ratio of all the five tested denitrifying genes to bacterial 16S rRNA gene (P < 0.05), indicating that the tolerance of narG gene to AgNPs was the key factor of the increase in denitrification in the studied soil. High-throughput sequencing showed that only the 50-mg/kg-AgNP treatment significantly changed the microbial community composition compared to bulk Ag and CK treatments. The response of microbial phylotypes to AgNPs suggested that the most critical bacteria which drove the stimulation of 50 mg/kg AgNPs on N2O emission were Firmicutes and β-proteobacteria, such as Clotridiales, Burkholderiales, and Anaerolineales. This study revealed the effects of AgNPs to denitrification in a paddy ecosystem and could provide a scientific basis for understanding of the environmental and toxicological effects of Ag nanomaterials.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Di Dang
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lingsi Zheng
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lingyu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yu Wu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Haoruo Li
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China
| | - Yongjie Yu
- Key Laboratory of Agrometeorology of Jiangsu Province, Nanjing University of Information Science and Technology, Nanjing, China.,Key Laboratory of Karst Dynamics, MNR and Guangxi, Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin, China
| |
Collapse
|
24
|
Jiang S, Wang F, Cao X, Slater B, Wang R, Sun H, Wang H, Shen X, Yao Z. Novel application of ion exchange membranes for preparing effective silver and copper based antibacterial membranes. CHEMOSPHERE 2022; 287:132131. [PMID: 34492413 DOI: 10.1016/j.chemosphere.2021.132131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
Ion exchange membranes (IEMs) are widely used in water treatment applications such as electrodialysis. However, the exploration of IEMs as effective antibacterial food contact materials (e.g., food packaging membranes) against pathogenic bacteria to ensure food safety has not been reported. Here, we report a simple but effective method to prepare high performance antibacterial membranes via ion exchange coupled with in-situ reduction. The general membrane properties are characterized using SEM, EDS, FTIR, XPS, XRD, DSC, TGA, water uptake, etc. The distribution of silver and copper in the membranes are generally in line with the distribution of sulfur, indicating that the antibacterial ions are introduced into the membranes via ion exchange and are bonded with the sulfonate groups in the membranes. The antibacterial performance is investigated using zone of inhibition tests and continuous bacteria growth inhibition tests. All of the prepared membranes show obvious antibacterial activities compared to the bare cation exchange membranes. The diameters of inhibition zone against Staphylococcus aureus (S. aureus) are all larger than those of Escherichia coli (E. coli), indicating that the prepared membranes are more efficient in inhibiting S. aureus compared to E. coli. Furthermore, the silver-based membrane shows more sustainable antibacterial activities compared to the copper-based membrane. Especially, the results clearly reveal that the silver-based membrane is capable of killing bacteria instead of just inhibiting the growth of bacteria. We have shown for the first time that membranes derived from IEMs have the potential as food contact materials to inhibit the growth of pathogenic bacteria so as to eliminate the risk of bacterial infections and meanwhile delay food spoilage due to bacteria growth.
Collapse
Affiliation(s)
- Shanxue Jiang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Fang Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xinyue Cao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Ben Slater
- Institute of Porous Materials, Ecole Normale Supérieure, 24 Rue Lhomond, 75005, Paris, France
| | - Rongrong Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Xianbao Shen
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhiliang Yao
- School of Ecology and Environment, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
25
|
Huang D, Dang F, Huang Y, Chen N, Zhou D. Uptake, translocation, and transformation of silver nanoparticles in plants. ENVIRONMENTAL SCIENCE: NANO 2022; 9:12-39. [PMID: 0 DOI: 10.1039/d1en00870f] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This article reviews the plant uptake of silver nanoparticles (AgNPs) that occurred in soil systems and the in planta fate of Ag.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
| | - Yingnan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, P.R. China
| |
Collapse
|
26
|
Zhao Y, Fan M, Zhou W, Li Y, Wang Y, Xiu Z, Gao B. Speciation, controlling steps and pathways of silver release from the sludge generated from coagulation of wastewater spiked with silver nanoparticles. CHEMOSPHERE 2021; 282:131093. [PMID: 34118625 DOI: 10.1016/j.chemosphere.2021.131093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
Sludge generated in wastewater treatment facilities is an integral part for the introduction of silver nanoparticles (AgNPs) to the terrestrial environment, which would cause some adverse ecosystem responses. The understanding of silver release process from the sludge is important to evaluate their risks. In this study, the amount and speciation of the released silver were investigated by taking the sludge generated by wastewater coagulation with AgNPs added (denoted as sludgeC-AgNPs) an example, and kinetic analysis and density functional theory (DFT) calculations were first used to explore the controlling steps and pathways about the silver release. The results showed that sludgeC-AgNPs could release the dissolved silver and the colloidal silver. Beside Cl-, Ca2+ in the leaching solution could enhance the silver release of sludgeC-AgNPs, especially for the colloidal silver. The released colloidal silver restricted in size from 40 nm to 100 nm with irregular shape. Although the oxidative dissolution of Ag0 was the origin of the silver release pathways from the sludgeC-AgNPs, the silver diffusion was the controlling step due to the spontaneous binding between silver and the hydrolysates of polyaluminium chloride in sludgeC-AgNPs. However, Ca2+ in the leaching solution could occupy the binding site of silver on sludgeC-AgNPs, which would increase the diffusion rate of silver over the oxidative rate of Ag0. With this condition, the controlling step of silver release from sludgeC-AgNPs turned to the oxidative dissolution of Ag0. Our findings are important to assess the fate of AgNPs in wastewater treatment as well as sludge applications.
Collapse
Affiliation(s)
- Yi Zhao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Meixia Fan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Wenlin Zhou
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| | - Yanwei Li
- Shenzhen Research Institute, Shandong University, Shenzhen, 518057, PR China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China.
| | - Zongming Xiu
- Deshi Energy Technology Group Co.,Ltd, Dongying, Shandong, 266580, PR China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, PR China
| |
Collapse
|
27
|
Zhang W, Song K, Ding R, Han H, Yao L, Ji M, Chen Z, Yu H, Wu C, Fang T. Role of polystyrene microplastics in sunlight-mediated transformation of silver in aquatic environments: Mechanisms, kinetics and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126429. [PMID: 34174620 DOI: 10.1016/j.jhazmat.2021.126429] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Sunlight-oxidative ageing is a common and critical process for microplastics (MPs) in aquatic environments. O2•-, 1O2, and •OH generation has been widely proven in this process, which can alter metal speciation based on its reduction and oxidation potential. Herein, chemical speciation of Ag mediated by polystyrene (PS) MPs was determined under simulated sunlight irradiation. The O2•- generation on the PS MPs surfaces is the vital factor for Ag+ reduction, regardless of acid or base conditions. The 1O2 and •OH are dominant factors, and 1O2 played a more important role than •OH for its higher formation amount, causing oxidative dissolution of newly formed Ag0 nanoparticles (NPs). The Ag NPs can hetero-aggregate with PS MPs through electrostatic interactions with O-containing groups (C-O, C-OH and CO), and co-precipitate from the water phase. This hetero-aggregation can stabilize Ag NPs by inhibiting Ag NPs surface photooxidation and suppressing Ag+ release. Transformation of Ag species (from Ag+ to Ag0 NPs) mediated by sunlight with PS MPs significantly suppressed acute toxicity of Ag+ to Escherichia coli, Selenastrum capricornutum, Daphnia magna and zebrafish. This study emphasized that PS MPs play an important role in the speciation, migration and toxicity of Ag+ in freshwater environments.
Collapse
Affiliation(s)
- Weicheng Zhang
- Henan Provincial Academician Workstation of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Ke Song
- Henan Provincial Academician Workstation of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Runrun Ding
- Henan Provincial Academician Workstation of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Hui Han
- Henan Provincial Academician Workstation of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Lunguang Yao
- Henan Provincial Academician Workstation of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Mingfei Ji
- Henan Provincial Academician Workstation of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Zhaojin Chen
- Henan Provincial Academician Workstation of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project, Nanyang Normal University, Nanyang 473061, China; Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Chenxi Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; China University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Tao Fang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; China University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
28
|
Tang Z, Chen T, Liu K, Du H, Podkolzin SG. Atomic, Molecular and Hybrid Oxygen Structures on Silver. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11603-11610. [PMID: 34565146 DOI: 10.1021/acs.langmuir.1c01941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interactions between oxygen and silver are important in many areas of science and technology, including materials science, medical, biomedical and environmental applications, spectroscopy, photonics, and physics. In the chemical industry, identification of oxygen structures on Ag catalysts is important in the development of environmentally friendly and sustainable technologies that utilize gas-phase oxygen as the oxidizing reagent without generating byproducts. Gas-phase oxygen adsorbs on Ag atomically by breaking the O-O bond and molecularly by preserving the O-O bond. Atomic O structures have Ag-O vibrations at 240-500 cm-1. Molecular O2 structures have O-O vibrations at significantly higher values of 870-1150 cm-1. In this work, we identify hybrid atomic-molecular oxygen structures, which form when one adsorbed O atom reacts with one lattice O atom on the surface or in the subsurface of Ag. Thus, these hybrid structures require dissociation of adsorbed molecular oxygen into O atoms but still possess the O-O bond. The hybrid structures have O-O vibrations at 600-810 cm-1, intermediate between the Ag-O vibrations of atomic oxygen and the O-O vibrations of molecular oxygen. The hybrid O-O structures do not form by a recombination of two adsorbed O atoms because one of the O atoms in the hybrid structure must be embedded into the Ag lattice. The hybrid oxygen structures are metastable and, therefore, serve as active species in selective oxidation reactions on Ag catalysts.
Collapse
Affiliation(s)
- Ziyu Tang
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Tao Chen
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Kai Liu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Henry Du
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| | - Simon G Podkolzin
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, United States
| |
Collapse
|
29
|
Zhao J, Wang X, Hoang SA, Bolan NS, Kirkham MB, Liu J, Xia X, Li Y. Silver nanoparticles in aquatic sediments: Occurrence, chemical transformations, toxicity, and analytical methods. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126368. [PMID: 34329024 DOI: 10.1016/j.jhazmat.2021.126368] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Sediments represent the major sink for released silver nanoparticles (AgNPs) in aquatic environments. It is well known that the environmental behavior and toxicity of AgNPs in sediments are governed by their specific chemical species instead of their total concentration. This review focuses on various chemical transformations of AgNPs in sediments, which have not been well outlined before. We first outline the concentrations of AgNPs in sediments. The predicted concentrations are 1-5 µg kg-1 in most model studies. Once enter sediments, AgNPs are transformed to different species (e.g., Ag2S, Ag-humic substance complexes, AgCl, and Ag+) during multiple chemical transformations, such as oxidative dissolution, sulfidation, chlorination, and complexation. Those chemical behaviors mitigate the toxicity of AgNPs by reducing their availability and decreasing Ag+ release. Benthic invertebrates and microbes are prone to be affected by AgNPs. AgNPs are found to be accumulated in sediment-dwelling organisms and transferred to higher trophic levels along the food web. Besides X-ray absorption spectroscopy, reliable separation procedures coupled with detection techniques, are powerful tools that characterize the speciation of AgNPs in sediments. More research is needed to investigate diverse chemical transformations in various sediments through development of novel techniques and mathematical models.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Son A Hoang
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Viet Nam
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, University of Newcastle, Callaghan, NSW 2308, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506, United States
| | - Jingnan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
30
|
Peng H, Guo H, Gao P, Zhou Y, Pan B, Xing B. Reduction of silver ions to silver nanoparticles by biomass and biochar: Mechanisms and critical factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146326. [PMID: 33752010 DOI: 10.1016/j.scitotenv.2021.146326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The reduction of metal ions by biomasses (BMs) and biochars (BCs) is often neglected when evaluating the environmental behavior and risk of heavy metals. In this study, the formation mechanisms of silver nanoparticles (AgNPs) when Ag+ coexists with BMs/BCs were investigated. Four types of BMs (pine sawdust, bagasse, lignin, and cellulose) as well as their BCs were investigated for their roles in transforming Ag+ to AgNPs. The electron donating capacity (EDC) of all the BMs/BCs was larger than zero. The UV-Vis spectrometer and scanning electron microscopy-energy dispersive X-ray spectrometer (SEM-EDX) analysis confirmed the formation of AgNPs. The quantities of AgNPs formed by BM systems were higher than that by their corresponding BCs. The quantities of formed AgNPs by bagasse and its BCs were the highest when compared with other BMs/BCs, which may be due to their highest EDC values. We found that hydroxyl group (-OH) was the important redox-active functional group in BMs and BCs that contributed to Ag+ reduction according to the results from X-ray photoelectron spectrometric (XPS) and Fourier transform infrared spectroscopic (FTIR) analyses. AgNPs formation was enhanced at elevated pH, probably because of the deprotonated functional groups with high EDC values and electron density. The higher temperature could enhance the formation of AgNPs, suggesting that the reduction of Ag+ by BMs/BC was a thermodynamically favored process. This study illustrated that Ag+ was transformed to AgNPs by BMs and BCs through the redox reactive -OH of BMs/BCs, which further improved our understanding on the formation of AgNPs in the environment.
Collapse
Affiliation(s)
- Hongbo Peng
- Faculty of Agriculture and Food, Kunming University of Science & Technology, Kunming, Yunnan 650500, China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| | - Huiyuan Guo
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA; Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Peng Gao
- City College, Kunming University of Science & Technology, Kunming, Yunnan 650051, China
| | - Yuwei Zhou
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, Yunnan 650500, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
31
|
Zhao X, Wang K, Ai C, Yan L, Jiang C, Shi J. Improvement of antifungal and antibacterial activities of food packages using silver nanoparticles synthesized by iturin A. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100669] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Li S, Wen X, Liu C, Dai Y, Shi X, Li L, Tan S, Qu Q, Huang R. A sustainable way to reuse Cr(VI) into an efficient biological nanometer electrocatalyst by Bacillus megaterium. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124942. [PMID: 33421882 DOI: 10.1016/j.jhazmat.2020.124942] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The remediation of heavy metal is facing the great challenge of failing to achieve valuable transformation. Therefore, the development of a sustainable technology for heavy metal recycling and reuse is essential. The present study proposed a new way to convert Cr(VI) into value-added biological Cr2O3 nanoparticles (bio-Cr2O3 NPs) with B. megaterium-secreted tryptophan residues proteins (TPN). In this process, Cr(VI) was reduced extracellularly to Cr(III) by B. megaterium without additional reductant and electron donors. This study overcomes the difficulty of separation of NPs and biomass, and realizes the recovery of bio-Cr2O3 NPS from biomass. The conversing efficiency of bio-Cr2O3 NPs reached the highest level (96.56%) at the concentration of 10 ppm Cr(VI). In particular, bio-Cr2O3 NPs exhibited excellent catalytic activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 M KOH, outperforming chemically synthesized Cr-base catalysts. Three-dimensional matrix fluorescence (EEM), verification of tryptophan reduction and computation chemistry fully confirmed that TPN was responsible for the bio-Cr2O3 NPs formation. This comprehensive approach to bioremediation, synthesis NPs and recovery, as well as application will open a window for sustainable energy development and heavy metal pollution remediation.
Collapse
Affiliation(s)
- Shunling Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xinwei Wen
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chang Liu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Yixiu Dai
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Xiaoling Shi
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China
| | - Lei Li
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650091, China.
| | - Shuang Tan
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qing Qu
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Rui Huang
- CNPC, South-East Asia Pipeline Co., Ltd, Beijing 100000, China
| |
Collapse
|
33
|
Hao Z, Li F, Liu R, Zhou X, Mu Y, Sharma VK, Liu J, Jiang G. Reduction of Ionic Silver by Sulfur Dioxide as a Source of Silver Nanoparticles in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5569-5578. [PMID: 33683864 DOI: 10.1021/acs.est.0c08790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The natural formation of silver nanoparticles (AgNPs) via biotic and abiotic pathways in water and soil media contributes to the biogeochemical cycle of silver metal in the environment. However, the formation of AgNPs in the atmosphere has not been reported. Here, we describe a previously unreported source of AgNPs via the reduction of Ag(I) by SO2 in the atmosphere, especially in moist environments, using multipronged advanced analytical and surface techniques. The rapid reduction of Ag(I) in the atmospheric aqueous phase was mainly caused by the sulfite ions formed from the dissolution of SO2 in water, which contributed to the formation of AgNPs and was consistent with the Finke-Watzky model with a major contribution of the reduction-nucleation process. Sunlight irradiation excited SO2 to form triplet SO2, which reacted with water to form H2SO3 and greatly enhanced Ag(I) reduction and AgNP formation. Different pH values affected the speciation of Ag(I) and S(IV), which were jointly involved in the reduction of Ag(I). The formation of AgNPs was also observed in the atmospheric gas phase via direct reduction of Ag(I) by SO2(gas), which occurred even in 50 ppbv SO2(gas). The natural occurrence of AgNPs in the atmosphere may also be involved in silver corrosion, AgNP transformation and regeneration, detoxification of gaseous pollutants, and the sulfur cycle in the environment.
Collapse
Affiliation(s)
- Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Fasong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- College of Resources and Environment, Anqing Normal University, Anqing, Anhui 246011, China
| | - Rui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Xiaoxia Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Yujing Mu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Virender K Sharma
- Department of Environment and Occupational Health, School of Public Health, Texas A&M University, 212 Adriance Lab Road, 1266 TAMU, College Station, Texas 77843, United States
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| |
Collapse
|
34
|
Zhao X, Zhou L, Xu X, Ai C, Zhao P, Yan L, Jiang C, Shi J. Recovery of Ag + by cyclic lipopeptide iturin A and corresponding chain peptide: reaction mechanisms, kinetics, toxicity reduction, and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142988. [PMID: 33129541 DOI: 10.1016/j.scitotenv.2020.142988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Iturin A, a cyclic lipopeptide produced by Bacillus subtilis, has great potential in removal of Ag+ from water, but the mechanisms and kinetic remain unclear. By comparison with the chain peptide (CP) that has the same amino acid sequence as iturin A, the mechanisms were found as iturin A reduced Ag+ to Ag0 and formed silver nanoparticles (AgNPs) via the groups of Ar-OH, CO, -NH-, O=C-O, and -C(CH).The cycle peptide fraction played an important role for the faster formation of AgNPs by iturin A than by CP. The overall Ag+ removal process by iturin A and CP could be well described by a Freundlich isotherm, with the equilibrium Ag+ removal capacity ranging from 58.41 to 61.03 mg/g within 293.15-333.15 K for iturin A. With the application of iturin A, the overall removal rate of Ag+ reached 91.8% in wastewater, the formed AgNPs could be easily recovered via charging the direct electric current, and the toxicity of Ag+ to paddy growth was greatly reduced.
Collapse
Affiliation(s)
- Xixi Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Liangfu Zhou
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Chongyang Ai
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Pengpeng Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province 710072, China.
| |
Collapse
|
35
|
Ma YS, Liu JB, Wu TM, Fu D. New Therapeutic Options for Advanced Hepatocellular Carcinoma. Cancer Control 2021; 27:1073274820945975. [PMID: 32799550 PMCID: PMC7791453 DOI: 10.1177/1073274820945975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most common lethal diseases in the world, has a 5-year survival rate of only 7%. Hepatocellular carcinoma has no symptoms in the early stage but obvious symptoms in the late stage, leading to delayed diagnosis and reduced treatment efficacy. In recent years, as the scope of HCC research has increased in depth, the clinical development and application of molecular targeted drugs and immunotherapy drugs have brought new breakthroughs in HCC treatment. Targeted therapy drugs for HCC have high specificity, allowing them to selectively kill tumor cells and minimize damage to normal tissues. At present, these targeted drugs are mainly classified into 3 categories: small molecule targeted drugs, HCC antigen-specific targeted drugs, and immune checkpoint targeted drugs. This article reviews the latest research progress on the targeted drugs for HCC.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| | - Ji-Bin Liu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China
| | - Ting-Miao Wu
- Department of Radiology, 12485The Forth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Da Fu
- Cancer Institute, 377323Nantong Tumor Hospital, Nantong, China.,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, 12476Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Huang D, Chen N, Zhu C, Fang G, Zhou D. The overlooked oxidative dissolution of silver sulfide nanoparticles by thermal activation of persulfate: Processes, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144504. [PMID: 33360171 DOI: 10.1016/j.scitotenv.2020.144504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 05/03/2023]
Abstract
The widely occurring silver sulfide nanoparticles (Ag2S-NPs) are regarded as stable Ag species in subsurface environments, where are often disturbed by human activities, such as the application of advanced oxidation technologies (e.g. persulfate based in situ chemical oxidation (PS-ISCO)) in the remediation of contaminated soil and groundwater. However, stability of Ag2S-NPs was rarely investigated referring to these processes. Here, we systematically investigated the dissolution process of Ag2S-NPs in thermal activation of PS system. Results showed that dissolution of Ag2S-NPs fitted the pseudo-first-order kinetics and the kobs increased from 0.017 h-1 to 0.249 h-1 with increasing PS concentration from 2 mM to 10 mM (36 h, 40 °C). Quenching experiments and EPR results showed that sulfate radical (SO4•-) and hydroxyl radical (•OH) were the dominant oxidants in inducing the oxidative dissolution of Ag2S-NPs. XPS analysis showed that surface-bound S2- in Ag2S-NPs was oxidized and transformed into aqueous sulfur species. The released Ag+ may also act as effective catalysts to activate PS and therefore promote the oxidation process. These findings suggest that stability of Ag2S-NPs should be reevaluated to better understand its risk to the ecological system in the subsurface environment where ISCO was widely applied.
Collapse
Affiliation(s)
- Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, Jiangsu Province, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China.
| |
Collapse
|
37
|
Wu J, Bai Y, Lu B, Li C, Menzies NW, Bertsch PM, Wang Z, Wang P, Kopittke PM. Application of sewage sludge containing environmentally-relevant silver sulfide nanoparticles increases emissions of nitrous oxide in saline soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114807. [PMID: 32512423 DOI: 10.1016/j.envpol.2020.114807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Silver (Ag) is released from a range of products and accumulates in agricultural soils as silver sulfide (Ag2S) through the application of Ag-containing biosolids as a soil amendment. Although Ag2S is comparatively stable, its solubility increases with salinity, potentially altering its impacts on microbial communities due to the anti-microbial properties of Ag. In this study, we investigated the impacts of Ag on the microbially mediated N cycle in saline soils by examining the relationship between the (bio)availability of Ag2S and microbial functioning following the application of Ag2S-containing sludge. Synchrotron-based X-ray absorption spectroscopy (XAS) revealed that the Ag2S was stable within the soil, although extractable Ag concentrations increased up to 18-fold in soils with higher salinity. However, the extractable Ag accounted for <0.05% of the total Ag in all soils and had no impact on plant biomass or soil bacterial biomass. Interestingly, at high soil salinity, Ag2S significantly increased cumulative N2O emissions from 80.9 to 229.2 mg kg-1 dry soil (by 180%) compared to the corresponding control sludge treatment, which was ascribed to the increased abundance of nitrification and denitrification-related genes (amoA, nxrB, narG, napA, nirS, and nosZ) and increased relative abundance of denitrifiers (Rhodanobacter, Salinimicrobium, and Zunongwangia). Together, our findings show that the application of Ag2S-containing sludge to a saline soil can disrupt the N cycle and increase N2O emissions from agroecosystems.
Collapse
Affiliation(s)
- Jingtao Wu
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia
| | - Yunfei Bai
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, 210095, China
| | - Bingkun Lu
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, 210095, China
| | - Cui Li
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia; Northwestern Polytechnical University, Research Centre for Ecology and Environmental Sciences, Xi'an, 710072, China
| | - Neal W Menzies
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia
| | - Paul M Bertsch
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, 41 Boggo Road, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - Zhanke Wang
- The University of Queensland, School of Chemical Engineering, St Lucia, Queensland, 4072, Australia
| | - Peng Wang
- Nanjing Agricultural University, College of Resources and Environmental Sciences, Nanjing, 210095, China.
| | - Peter M Kopittke
- The University of Queensland, School of Agriculture and Food Sciences, St Lucia, Queensland, 4072, Australia
| |
Collapse
|
38
|
Yin S, Wei C, Zhu D. Surface quinone-induced formation of aqueous reactive sulfur species controls pine wood biochar-mediated reductive dechlorination of hexachloroethane by sulfide. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1898-1907. [PMID: 32856031 DOI: 10.1039/d0em00307g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the mechanisms controlling the redox transformation of organic contaminants mediated by biochar is of great significance for application of biochar in remediation of contaminated soils and sediments. Here we investigated the mediation effect of a pine wood-derived biochar (P-char) in comparison with multiwalled carbon nanotubes (MCNTs) and graphite on the reductive dechlorination of hexachloroethane by sulfide. Upon normalization of the mediator's surface area, the reduction rate of hexachloroethane follows an order of P-char < MCNTs < graphite. Aqueous polysulfides and polysulfide free radicals were readily produced by reacting sulfide only with P-char, and the supernatant separated from the reaction system could account for 83.4% of the pseudo-kinetic rate constant of hexachloroethane mediated by P-char. In contrast, MCNTs and graphite had weak abilities to produce reactive sulfur species, and the supernatant exhibited very low reduction capability (<20.7%) of hexachloroethane. Electron paramagnetic resonance (EPR) analysis demonstrated that the surface quinone moieties on P-char induced the formation of polysulfides and polysulfide free radicals from sulfide by serving as one-electron acceptors. Consistently, polysulfides prepared by reacting elemental sulfur with sulfide showed much stronger reducing capability compared to sulfide. Thus, the mediation effect of P-char was dominantly attributed to the surface quinone-induced formation of reactive reducing sulfur species, whereas the mediation effect of MCNTs and graphite mainly stemmed from the enhanced electron transfer by the graphitized carbon. These results showed for the first time that surface quinone-induced formation of aqueous reactive sulfur species could control biochar-mediated reductive dechlorination of chloroorganic contaminants by sulfides.
Collapse
Affiliation(s)
- Shujun Yin
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China.
| | - Chenhui Wei
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China.
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China.
| |
Collapse
|
39
|
Xu J, Dai Y, Shi Y, Zhao S, Tian H, Zhu K, Jia H. Mechanism of Cr(VI) reduction by humin: Role of environmentally persistent free radicals and reactive oxygen species. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138413. [PMID: 32298894 DOI: 10.1016/j.scitotenv.2020.138413] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/25/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Humic substances, especially humin (HM) in its solid phase, is considered to be the main electron donor during the reduction of Cr(VI) in the environment. This work explores the reaction mechanism between Cr(VI) and the functional groups contained in HM, environmentally persistent free radicals (EPFRs), and reactive oxygen species (ROS). We examine the changes in the functional groups, EPFRs, and ROS on HM during the reaction, and inhibit the production of ROS to verify their effect. Our results demonstrate that the carboxyl and phenolic hydroxyl groups contained in HM are consumed during the reaction. The phenolic hydroxyl group can directly react with Cr(VI) as an electron donor, and can also transfer electrons to molecular oxygen to generate superoxide radicals to reduce Cr(VI). EPFRs also exhibit the same reaction pathway. The molecular oxygen in the solution gains electrons to generate O2·-, which further reacts with Cr(VI) to reduce it to Cr(III). The production and effect of active oxygen are verified by removing oxygen from the solution. In this study, the contribution of active oxygen to the reduction of Cr(VI) is approximately 30%. This study provides theoretical support for revealing the effects of humic substances on the conversion of Cr(VI).
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yunchao Dai
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yafang Shi
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Song Zhao
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Haixia Tian
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
40
|
Zhu S, Huang X, Yang X, Peng P, Li Z, Jin C. Enhanced Transformation of Cr(VI) by Heterocyclic-N within Nitrogen-Doped Biochar: Impact of Surface Modulatory Persistent Free Radicals (PFRs). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8123-8132. [PMID: 32491842 DOI: 10.1021/acs.est.0c02713] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Redox processes mediated by biochar(BC) enhanced the transformation of Cr(VI), which is largely dependent on the presence of PFRs as electron donors. Natural or artificial dopants in BC's could regulate inherent carbon configuration and PFRs. Until recently, the modulation of PFRs and transformation of Cr(VI) in BC by nonmetal-heterocyclic dopants was barely studied. In this study, changes in PFRs introduced by various nitrogen-dopants within BC are presented and the capacity for Cr(VI) transformation without light was investigated. It was found N-dopants were effectively embedded in carbon lattices through activated-Maillard reaction thus altering their charge and PFRs. Transformation of Cr(VI) in N doped biochar relied on mediated direct reduction by surface modulatory PFRs. The kinetic rate of transformation of Cr(VI) was increased 1.4-5 fold in N-BCs compared to nondoped BCs. Theortical calculation suggested a deficiency in surface electrons induced Lewis acid-base bonding which could acted as a bridge for electron transfer. Results of PCA and orbital energy indicated a colinear relationship between PFRs and pyrrolic N, as well as its dual-mode transformation of Cr(VI). This study provides an improved understanding of how N-doped BC contributes to the evolution of PFRs and their corresponding impacts on the transformation of Cr(VI) in environments.
Collapse
Affiliation(s)
- Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Xiaochen Huang
- School of Environment, Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, China
| | - Xiaobao Yang
- Department of Physics, South China University of Technology, Guangzhou 510640, P. R. China
| | - Peng Peng
- Department of Mechanics and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zhipeng Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, PR China
| |
Collapse
|
41
|
Wang JL, Alasonati E, Tharaud M, Gelabert A, Fisicaro P, Benedetti MF. Flow and fate of silver nanoparticles in small French catchments under different land-uses: The first one-year study. WATER RESEARCH 2020; 176:115722. [PMID: 32247257 DOI: 10.1016/j.watres.2020.115722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 02/13/2020] [Accepted: 03/14/2020] [Indexed: 06/11/2023]
Abstract
This study focused on surface waters from three small creeks, within the Seine River watershed, which are characterized by different land-uses, namely forested, agricultural and urban. Silver nanoparticles (Ag-NPs) in these waters were detected and quantified by single-particle ICPMS during one-year of monthly sampling. Their temporal and spatial variations were investigated. Ag-NPs, in the three types of surface water, were found to range from 1.5 × 107 to 2.3 × 109 particles L-1 and from 0.4 to 28.3 ng L-1 at number and mass concentrations, respectively. These values are in consistent with the very few previous studies. In addition, the role of factors driving process and potential sources are discussed with correlations between Ag-NPs concentrations and biogeochemical parameters, like dissolved organic carbon concentration and divalent cations concentrations. For the forested watershed NOM controls the stability (number and mass) of the Ag-NPs as recently observed in the field in lake water in Germany. In the case of the agricultural and urban watersheds major cations such as Ca would control the number and mass of Ag-NPs. Dilution processes are rejected as conductivity and Cl- ions do not show significant correlations with Ag-NPs or other major geochemical parameters. The specific exportation rates of Ag-NPs for artificial, agricultural and forested areas were calculated based on the monthly data for the full year and are equal to 5.5 ± 3.0, 0.5 ± 0.3 and 0.2 ± 0.2 gy-1km-2, respectively. These data suggest a constant release of Ag-NPs from consumer products into freshwaters in artificial areas, for instance, from textiles, washing machines, domestic tap-water filters, outdoor paints. These first data of Ag-NPs fluxes in surface waters of France enlarge the very limited database of field measurements. Moreover, for the first time, the influence of time, land-use and aquatic geochemistry parameters on Ag-NPs in real natural water samples is reported. It is also helpful to further understand the fate and the process of Ag-NPs in natural waters, as well as to the ecotoxicity studies in real-world environment.
Collapse
Affiliation(s)
- Jia-Lan Wang
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France; Department of Biomedical and Inorganic Chemistry, Laboratoire National de Métrologie et d'Essais (LNE), 1 rue Gaston Boissier, Paris, 75015, France
| | - Enrica Alasonati
- Department of Biomedical and Inorganic Chemistry, Laboratoire National de Métrologie et d'Essais (LNE), 1 rue Gaston Boissier, Paris, 75015, France
| | - Mickaël Tharaud
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| | - Alexandre Gelabert
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| | - Paola Fisicaro
- Department of Biomedical and Inorganic Chemistry, Laboratoire National de Métrologie et d'Essais (LNE), 1 rue Gaston Boissier, Paris, 75015, France
| | - Marc F Benedetti
- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France.
| |
Collapse
|
42
|
Yang F, Antonietti M. Artificial Humic Acids: Sustainable Materials against Climate Change. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902992. [PMID: 32154079 PMCID: PMC7055563 DOI: 10.1002/advs.201902992] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 05/24/2023]
Abstract
Humic acid, as a natural organic matter, is widely distributed in surface soil, oceans, rivers, and other ecological environments throughout the whole earth ecosystem. Humic acid provides abundant organic carbon and helps to maintain a hydrated, pH and redox buffered environment hosting the soil microbiome. Humic acid is however also a largely ignored polymer material full of exciting functional properties, and its scale is enormous. This perspective article discusses its synthesis and management as a tool to tackle parts of the climate crisis as well its use in technological applications, as made by chemical conversion of agricultural side products to artificial humic acids.
Collapse
Affiliation(s)
- Fan Yang
- School of Water Conservancy and Civil EngineeringNortheast Agricultural UniversityHarbin150030China
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU‐MPICI)Harbin150030China
- Max Planck Institute of Colloids and Interfaces Department of Colloid Chemistry14476PotsdamGermany
| | - Markus Antonietti
- Joint laboratory of Northeast Agricultural University and Max Planck Institute of Colloids and Interfaces (NEAU‐MPICI)Harbin150030China
- Max Planck Institute of Colloids and Interfaces Department of Colloid Chemistry14476PotsdamGermany
| |
Collapse
|
43
|
Nie X, Zhu K, Zhao S, Dai Y, Tian H, Sharma VK, Jia H. Interaction of Ag + with soil organic matter: Elucidating the formation of silver nanoparticles. CHEMOSPHERE 2020; 243:125413. [PMID: 31765900 DOI: 10.1016/j.chemosphere.2019.125413] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/22/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Naturally silver nanoparticles (AgNPs) have been widely observed in ore deposits, coal, natural water and soil environment. Identifying the source of these naturally AgNPs could be helpful for the elucidation of the geochemical cycle of Ag+ and AgNPs. This paper presents the formation of AgNPs by reducing Ag+ in the presence of soil organic matter (SOM) under various environmentally relevant conditions. The formation of AgNPs associated with various SOM (peat humic acid (PHA), peat fulvic acid (PFA), and commercial humic acids (HA-1 and HA-2)) was determined and compared. The physicochemical properties of the tested SOM were studied by electron paramagnetic resonance (EPR) and attenuated total reflection-infrared (ATR-FTIR) techniques. The formation of AgNPs depended on reductive reactions mediated by SOM. Other influential parameters that influenced the formation of AgNPs included concentrations of Ag+ and SOM and the reaction temperature on AgNPs. The produced AgNPs were characterized by transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The mean hydrodynamic diameters of AgNPs associated with PHA and PFA were in range from 2.5 to 15 nm, which were smaller than that produced from HA-1 and HA-2 in the range from 20 to 120 nm. Two different Ag states, i.e., Ag2O and Ag0 species, were observed by XPS technique. The results indicated that the formation of AgNPs depends largely on the types and the properties of natural organic matter. These findings have important implications for the fate of AgNPs under the soil environment.
Collapse
Affiliation(s)
- Xiaofeng Nie
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Kecheng Zhu
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Song Zhao
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Yunchao Dai
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Haixia Tian
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China
| | - Virender K Sharma
- Program for the Environment and Sustainability, Department of Occupational and Environmental Health, School of Public Health, Texas A&M University, College Station, TX, 77843, USA.
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, Yangling, 712100, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
44
|
Xu Y, Zhou F, Chen M, Hu H, Lin L, Wu J, Zhang M. Facile assembly of 2D α-zirconium phosphate supported silver nanoparticles: superior and recyclable catalysis. NEW J CHEM 2020. [DOI: 10.1039/d0nj01378a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel, efficient and durable two-dimensional ZrP@PDA/Ag nanocatalyst for the reduction of 4-nitrophenol.
Collapse
Affiliation(s)
- Yonghang Xu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Fangya Zhou
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Min Chen
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Huawen Hu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Limiao Lin
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- China
| | - Jingshu Wu
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| | - Min Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan 528000
- China
| |
Collapse
|