1
|
Farnum Z, Mani R, Bindoff A, Wilson R, Fiotakis A, Stephens J, Cho E, Mackay-Sim A, Sinclair D. Convergent effects of synthetic glucocorticoid dexamethasone and amyloid beta in human olfactory neurosphere-derived cells. J Neurochem 2025; 169:e16263. [PMID: 39556451 DOI: 10.1111/jnc.16263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/18/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024]
Abstract
Stressful life events and glucocorticoid (stress) hormones appear to increase the risk of Alzheimer's disease and hasten its progression, but the reasons for this remain unclear. One potential explanation is that when amyloid β (Aβ) pathology is accumulating in the preclinical disease stage, glucocorticoid receptor signalling during stressful events exacerbates cellular dysfunction caused by Aβ. Alternatively, Aβ may disrupt glucocorticoid receptor signalling. To explore these possibilities, we investigated whether the synthetic glucocorticoid dexamethasone and Aβ have overlapping effects on the cellular proteome and whether Aβ influences canonical glucocorticoid receptor function. Human olfactory neurosphere-derived (ONS) cells, collected from the olfactory mucosa of six adult donors, were treated with soluble Aβ40 or Aβ42 followed by dexamethasone. Proteins were quantified by mass spectrometry. After 32 h treatment, Aβ40 and Aβ42 both induced profound changes in innate immunity-related proteins. After 72 h, Aβ42 formed widespread aggregates and induced few proteomic changes, whereas Aβ40 remained soluble and altered expression of mitochondrial and innate immunity-related proteins. ONS cells revealed overlapping impacts of Aβ40 and dexamethasone, with 23 proteins altered by both treatments. For 16 proteins (including eight mitochondrial proteins) dexamethasone counteracted the effects of Aβ40. For example, caspase 4 and methylmalonate-semialdehyde dehydrogenase were increased by Aβ40 and decreased by dexamethasone. Consistent with this finding, Aβ40 increased, but dexamethasone decreased, ONS cell proliferation. For seven proteins, including superoxide dismutase [Mn] mitochondrial, dexamethasone exacerbated the effects of Aβ40. For some proteins, including complement C3, the effects of dexamethasone differed depending on whether Aβ40 was present or absent. Neither Aβ species influenced glucocorticoid receptor nuclear translocation. Overall, this study revealed that glucocorticoid receptor signalling modifies the intracellular effects of Aß40, counteracting some effects and exacerbating others. It suggests that cellular mechanisms through which glucocorticoid receptor signalling influences Alzheimer's disease risk/progression are complex and determined by the balance of beneficial and detrimental glucocorticoid effects.
Collapse
Affiliation(s)
- Zane Farnum
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Radhika Mani
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Adoni Fiotakis
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessica Stephens
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Ellie Cho
- Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alan Mackay-Sim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Duncan Sinclair
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Han Y, Mwesigwa S, Wu Q, Laska MN, Jilcott Pitts SB, Moran NE, Hanchard NA. Common and rare genetic variation intersects with ancestry to influence human skin and plasma carotenoid concentrations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.20.24319465. [PMID: 39763521 PMCID: PMC11703293 DOI: 10.1101/2024.12.20.24319465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2025]
Abstract
Carotenoids are dietary bioactive compounds with health effects that are biomarkers of fruit and vegetable intake. Here, we examine genetic associations with plasma and skin carotenoid concentrations in two rigorously phenotyped human cohorts (n=317). Analysis of genome-wide SNPs revealed heritability to vary by genetic ancestry (h2=0.08-0.44) with ten SNPs at four loci reaching genome-wide significance (P<5E-08) in multivariate models, including at RAPGEF1 (rs3765544, P=8.86E-10, beta=0.75) with α-carotene, and near IGSF11 (rs80316816, P=6.25E-10, beta=0.74), with cryptoxanthin; these were replicated in the second cohort (n=110). Multiple SNPs near IGSF11 demonstrated genotype-dependent dietary effects on plasma cryptoxanthin. Deep sequencing of 35 candidate genes revealed associations between the PKD1L2-BCO1 locus and plasma β-carotene (Padj=0.04, beta=-1.3 to -0.3), and rare, ancestry-restricted, damaging variants in CETP (rs2303790) and APOA1 (rs756535387) in individuals with high skin carotenoids. Our findings implicate novel loci in carotenoid disposition and indicate the importance of including cohorts of diverse genetic ancestry.
Collapse
Affiliation(s)
- Yixing Han
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
| | - Savannah Mwesigwa
- Department of Medical Microbiology, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Qiang Wu
- Department of Public Health, East Carolina University, Greenville, NC
| | - Melissa N Laska
- Division of Epidemiology & Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | | | - Nancy E Moran
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Neil A Hanchard
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
3
|
Filograna A, De Tito S, Monte ML, Oliva R, Bruzzese F, Roca MS, Zannetti A, Greco A, Spano D, Ayala I, Liberti A, Petraccone L, Dathan N, Catara G, Schembri L, Colanzi A, Budillon A, Beccari AR, Del Vecchio P, Luini A, Corda D, Valente C. Identification and characterization of a new potent inhibitor targeting CtBP1/BARS in melanoma cells. J Exp Clin Cancer Res 2024; 43:137. [PMID: 38711119 PMCID: PMC11071220 DOI: 10.1186/s13046-024-03044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models. CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.
Collapse
Affiliation(s)
- Angela Filograna
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Stefano De Tito
- Molecular Cell Biology of Autophagy, The Francis Crick Institute, London, UK. The Study Has Been Previously Performed at IEOS-CNR, Naples, Italy
| | - Matteo Lo Monte
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Francesca Bruzzese
- Animal Facility Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, Naples, 80131, Italy
| | - Antonella Zannetti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), Naples, 80145, Italy
| | - Adelaide Greco
- Interdepartmental Service Center of Veterinary Radiology, University of Naples Federico II, 80137, Naples, Italy
| | - Daniela Spano
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Assunta Liberti
- National Research Council (CNR), Piazzale Aldo Moro, 700185, Rome, Italy
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Luigi Petraccone
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Nina Dathan
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), 80131, Naples, Italy
| | - Laura Schembri
- National Research Council (CNR), Piazzale Aldo Moro, 700185, Rome, Italy
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Pompea Del Vecchio
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
| | - Alberto Luini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy
| | - Daniela Corda
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy.
| | - Carmen Valente
- Institute of Experimental Endocrinology and Oncology "G. Salvatore"(IEOS), National Research Council (CNR), 80131, Naples, Italy.
- Present address: Dompé Farmaceutici S.P.A, L'Aquila, Italy.
| |
Collapse
|
4
|
Liu ZY, Lin XH, Guo HY, Shi X, Zhang DY, Sun JL, Zhang GC, Xu RC, Wang F, Yu XN, Wang D, Weng SQ, Shen XZ, Liu TT, Dong L, Zhu JM. Multi-Omics profiling identifies aldehyde dehydrogenase 2 as a critical mediator in the crosstalk between Treg-mediated immunosuppression microenvironment and hepatocellular carcinoma. Int J Biol Sci 2024; 20:2763-2778. [PMID: 38725845 PMCID: PMC11077362 DOI: 10.7150/ijbs.93075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2023] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
Dysregulation of the aldehyde dehydrogenase (ALDH) family has been implicated in various pathological conditions, including cancer. However, a systematic evaluation of ALDH alterations and their therapeutic relevance in hepatocellular carcinoma (HCC) remains lacking. Herein, we found that 15 of 19 ALDHs were transcriptionally dysregulated in HCC tissues compared to normal liver tissues. A four gene signature, including ALDH2, ALDH5A1, ALDH6A1, and ALDH8A1, robustly predicted prognosis and defined a high-risk subgroup exhibiting immunosuppressive features like regulatory T cell (Tregs) infiltration. Single-cell profiling revealed selective overexpression of tumor necrosis factor receptor superfamily member 18 (TNFRSF18) on Tregs, upregulated in high-risk HCC patients. We identified ALDH2 as a tumor suppressor in HCC, with three novel phosphorylation sites mediated by protein kinase C zeta that enhanced enzymatic activity. Mechanistically, ALDH2 suppressed Tregs differentiation by inhibiting β-catenin/TGF-β1 signaling in HCC. Collectively, our integrated multi-omics analysis defines an ALDH-Tregs-TNFRSF18 axis that contributes to HCC pathogenesis and represents potential therapeutic targets for this aggressive malignancy.
Collapse
Affiliation(s)
- Zhi-Yong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Xia-Hui Lin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Hong-Ying Guo
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Xuan Shi
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Dan-Ying Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Jia-Lei Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Guang-Cong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Ru-Chen Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Fu Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Xiang-Nan Yu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Dou Wang
- Department of Gastroenterology, Shigatse People's Hospital, Shigatse, Tibet 857000, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
- Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai 200030, China
| | - Tao-Tao Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| | - Ji-Min Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital of Fudan University, Shanghai 200030, China
- Shanghai Institute of Liver Diseases, Shanghai 200030, China
| |
Collapse
|
5
|
Han B, Tian D, Li X, Liu S, Tian F, Liu D, Wang S, Zhao K. Multiomics Analyses Provide New Insight into Genetic Variation of Reproductive Adaptability in Tibetan Sheep. Mol Biol Evol 2024; 41:msae058. [PMID: 38552245 PMCID: PMC10980521 DOI: 10.1093/molbev/msae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2023] [Revised: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024] Open
Abstract
Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.
Collapse
Affiliation(s)
- Buying Han
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehong Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Xue Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Dehui Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Song Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|
6
|
Chu SL, Huang JR, Chang YT, Yao SY, Yang JS, Hsu VW, Hsu JW. Phosphoglycerate kinase 1 acts as a cargo adaptor to promote EGFR transport to the lysosome. Nat Commun 2024; 15:1021. [PMID: 38310114 PMCID: PMC10838266 DOI: 10.1038/s41467-024-45443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2022] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
The epidermal growth factor receptor (EGFR) plays important roles in multiple cellular events, including growth, differentiation, and motility. A major mechanism of downregulating EGFR function involves its endocytic transport to the lysosome. Sorting of proteins into intracellular pathways involves cargo adaptors recognizing sorting signals on cargo proteins. A dileucine-based sorting signal has been identified previously for the sorting of endosomal EGFR to the lysosome, but a cargo adaptor that recognizes this signal remains unknown. Here, we find that phosphoglycerate kinase 1 (PGK1) is recruited to endosomal membrane upon its phosphorylation, where it binds to the dileucine sorting signal in EGFR to promote the lysosomal transport of this receptor. We also elucidate two mechanisms that act in concert to promote PGK1 recruitment to endosomal membrane, a lipid-based mechanism that involves phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and a protein-based mechanism that involves hepatocyte growth factor receptor substrate (Hrs). These findings reveal an unexpected function for a metabolic enzyme and advance the mechanistic understanding of how EGFR is transported to the lysosome.
Collapse
Affiliation(s)
- Shao-Ling Chu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Jia-Rong Huang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Tzu Chang
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Shu-Yun Yao
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jia-Wei Hsu
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
7
|
Wang YC, Lv YH, Hu XR, Lin YT, Crittenden JC, Wang C. Microbial metabolic flexibility guarantees function resilience in response to starvation disturbance. BIORESOURCE TECHNOLOGY 2024; 393:130137. [PMID: 38040311 DOI: 10.1016/j.biortech.2023.130137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/03/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Starvation disturbance due to nutrient limitation is a common problem in bioreactors. However, an understanding of how microbial systems respond to starvation remains in its infancy. Here the metabolic response mechanism of a biofilm community to starvation was investigated using a well-controlled gaseous toluene treatment biofilter through interruption of its operation. It was found that metabolic characteristics showed significant differences before and after starvation. The dominant carbon source utilization type shifted from amino acids and carboxylic acids to esters and carbohydrates after starvation, which is more conducive to improving energy production. Metagenomic sequencing analysis supported that the changes in the dominant metabolic substrate, enhanced metabolic stability, and flexibility in the mode of energy metabolism could be the main ways to guarantee functional resilience in ecosystems after starvation. The results highlight the microbial metabolic response to starvation, which would be beneficial to the understanding of functional resilience and bioreactor stability.
Collapse
Affiliation(s)
- Yong-Chao Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Ya-Hui Lv
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Xu-Rui Hu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - Yu-Ting Lin
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China
| | - John C Crittenden
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Can Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Tianjin Key Lab of Indoor Air Environmental Quality Control, Tianjin 300072, China.
| |
Collapse
|
8
|
Chu X, Xiao X, Wang G, Uosef A, Lou X, Arnold P, Wang Y, Kong G, Wen M, Minze LJ, Li XC. Gasdermin D-mediated pyroptosis is regulated by AMPK-mediated phosphorylation in tumor cells. Cell Death Dis 2023; 14:469. [PMID: 37495617 PMCID: PMC10372026 DOI: 10.1038/s41419-023-06013-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/24/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Gasdermin D (GSDMD) is a critical mediator of pyroptosis, which consists of a N-terminal pore-forming domain and a C-terminal autoinhibitory domain. Its cytolytic activity is sequestered by the intramolecular autoinhibitory mechanism. Upon caspase-1/11 mediated cleavage of GSDMD, the N-terminal pore-forming domain (GD-NT) is released to mediate pyroptosis. However, it remains unclear how GD-NT is regulated once it is generated. In the current study, we developed a TetOn system in which GD-NT was selectively induced in tumor cells to explore how the cytolytic activity of GD-NT is regulated. We found that the cytolytic activity of GD-NT was negatively regulated by the AMP-activated protein kinase (AMPK) and AMPK activation rendered tumor cells resistant to GD-NT-mediated pyroptosis. Mechanistically, AMPK phosphorylated GD-NT at the serine 46 (pS46-GD), which altered GD-NT oligomerization and subsequently eliminated its pore-forming ability. In our in vivo tumor model, AMPK-mediated phosphorylation abolished GD-NT-induced anti-tumor activity and resulted in an aggressive tumor growth. Thus, our data demonstrate the critical role of AMPK in negatively regulating the cytolytic activity of GD-NT. Our data also highlight an unexpected link between GSDMD-mediated pyroptosis and the AMPK signaling pathway in certain tumor cells.
Collapse
Affiliation(s)
- Xiufeng Chu
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
- Department of Oncology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiang Xiao
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Guangchuan Wang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Ahmed Uosef
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Xiaohua Lou
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Preston Arnold
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Yixuan Wang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Gangcheng Kong
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Mou Wen
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Laurie J Minze
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Texas Medical Center, Houston, TX, USA.
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
9
|
Niu W, Miao J, Li X, Guo Q, Zhang N, Deng Z, Wu L. Combined systematic pharmacology and urine metabonomics to study the therapeutic mechanism of type 2 diabetic treated with the herbal pair of Salvia miltiorrhiza Bunge and Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1217:123627. [PMID: 36796216 DOI: 10.1016/j.jchromb.2023.123627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/25/2022] [Revised: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND The herbal pair of Salvia miltiorrhiza Bunge and Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep (DG) is commonly used in the treatment of type 2 diabetes (T2DM) in traditional Chinese medicine (TCM). The drug pair DG was designed by Dr. Zhu chenyu to improve the treatment of T2DM. AIM This study combined with systematic pharmacology and urine metabonomics to explore the mechanism of DG in the treatment of T2DM. METHODS The therapeutic effect of DG on T2DM was evaluated by fasting blood glucose (FBG) and biochemical indexes. Systematic pharmacology was used to screen the active components and targets that may be related to DG. Metabonomics was established to find urinary metabolites and pathways that may be induced by DG. Finally, integrate the results of these two parts for mutual verification. RESULTS FBG and biochemical indexes showed that DG could reduce FBG and adjust the related biochemical indexes. Metabolomics analysis indicated that 39 metabolites were related to DG for T2DM treatment. In addition, systematic pharmacology showed compounds and potential targets which were associated with DG. Finally, 12 promising targets were selected as targets for T2DM therapy by integrating the results. CONCLUSION The combination of metabonomics and systematic pharmacology based on LC-MS is feasible and effective, which provides strong support for exploring the effective components and pharmacological mechanism of TCM.
Collapse
Affiliation(s)
- Wanlin Niu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junjie Miao
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuejia Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qian Guo
- Jiangsu Hengrui Medicine Co, Ltd, Lianyungang, China
| | - Na Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zujun Deng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lirong Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou, China; School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
10
|
Lu HJ, Chuang CY, Chen MK, Su CW, Yang WE, Yeh CM, Lai KM, Tang CH, Lin CW, Yang SF. The impact of ALDH7A1 variants in oral cancer development and prognosis. Aging (Albany NY) 2022; 14:4556-4571. [PMID: 35613852 PMCID: PMC9186774 DOI: 10.18632/aging.204099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/04/2021] [Accepted: 05/19/2022] [Indexed: 11/25/2022]
Abstract
The gene encoding aldehyde dehydrogenase 7 family member A1 (ALDH7A1) has been associated with the development and prognosis in multiple cancers; however, the role of ALDH7A1 polymorphisms in oral cancer remains unknown. For this purpose, the influences of ALDH7A1 rs13182402 and rs12659017 on oral cancer development and prognosis were analyzed. Our resulted showed that ALDH7A1 rs13182402 genotype had less pathologic nodal metastasis among betel quid chewer. ALDH7A1 rs13182402 also corresponded to higher expressions in upper aerodigestive mucosa, whole blood, the musculoskeletal system and oral cancer tissues than did the ALDH7A1 wild type. Furthermore, ALDH7A1 overexpression in oral cancer cells increased in vitro migration, whereas its silencing reduced cell migration. Conversely, ALDH7A1 expression in tumor tissues and in patients with advanced disease was lower than that in normal tissues and in patients with early-stage disease. When the patients were classified into ALDH7A1-high and -low-expression groups, the high-ALDH7A1 group had superior outcomes in progression-free survival than the low-ALDH7A1 group (5-year survival of 58.7% vs. 48.0%, P = 0.048) did. In conclusion, patients with high ALDH7A1 expression might, however, have more favorable prognoses than those with low ALDH7A1 expression have.
Collapse
Affiliation(s)
- Hsueh-Ju Lu
- Division of Hematology and Oncology, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Yi Chuang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Mu-Kuan Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan.,Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-En Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chia-Ming Yeh
- Oral Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan.,Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Kuan-Ming Lai
- Division of Hematology and Oncology, Department of Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan.,Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
11
|
Yang Q, Zhao D, Zhang C, Sreenivasulu N, Sun SSM, Liu Q. Lysine biofortification of crops to promote sustained human health in the 21st century. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1258-1267. [PMID: 34723338 DOI: 10.1093/jxb/erab482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/19/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Crop biofortification is pivotal in preventing malnutrition, with lysine considered the main limiting essential amino acid (EAA) required to maintain human health. Lysine deficiency is predominant in developing countries where cereal crops are the staple food, highlighting the need for efforts aimed at enriching the staple diet through lysine biofortification. Successful modification of aspartate kinase (AK) and dihydrodipicolinate synthase (DHDPS) feedback inhibition has been used to enrich lysine in transgenic rice plants without yield penalty, while increases in the lysine content of quality protein maize have been achieved via marker-assisted selection. Here, we reviewed the lysine metabolic pathway and proposed the use of metabolic engineering targets as the preferred option for fortification of lysine in crops. Use of gene editing technologies to translate the findings and engineer lysine catabolism is thus a pioneering step forward.
Collapse
Affiliation(s)
- Qingqing Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Dongsheng Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Chuangquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding Innovation Platform, International Rice Research Institute, Los Banos, Philippines
| | - Samuel Sai-Ming Sun
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, College of Agriculture, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Neurons undergo pathogenic metabolic reprogramming in models of familial ALS. Mol Metab 2022; 60:101468. [PMID: 35248787 PMCID: PMC8958550 DOI: 10.1016/j.molmet.2022.101468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/01/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Objectives Methods Results Conclusions Our work is the first to perform a comprehensive and quantitative analysis of intermediary metabolism in neurons in the setting of fALS causing gene products. Because the cardinal feature of ALS is death of motor neurons, these new studies are directly relevant to the pathogenesis of ALS. Our functional interrogations begin to unpack how metabolic re-wiring is induced by fALS genes and it will be very interesting, in the future, to gain insight in amino acid fueling of the TCA cycle. We suspect pleiotropic effects of amino acid fueling, and this may lead to very targeted therapeutic interventions.
Collapse
|
13
|
Zhang Z, Zeng D, Zhang W, Chen A, Lei J, Liu F, Deng B, Zhuo J, He B, Yan M, Lei X, Wang S, Lam EWF, Liu Q, Wang Z. Modulation of oxidative phosphorylation augments antineoplastic activity of mitotic aurora kinase inhibition. Cell Death Dis 2021; 12:893. [PMID: 34593753 PMCID: PMC8484571 DOI: 10.1038/s41419-021-04190-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2021] [Revised: 09/06/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Uncontrolled mitosis is one of the most important features of cancer, and mitotic kinases are thought to be ideal targets for anticancer therapeutics. However, despite numerous clinical attempts spanning decades, clinical trials for mitotic kinase-targeting agents have generally stalled in the late stages due to limited therapeutic effectiveness. Alisertib (MLN8237) is a promising oral mitotic aurora kinase A (AURKA, Aurora-A) selective inhibitor, which is currently under several clinical evaluations but has failed in its first Phase III trial due to inadequate efficacy. In this study, we performed genome-wide CRISPR/Cas9-based screening to identify vulnerable biological processes associated with alisertib in breast cancer MDA-MB-231 cells. The result indicated that alisertib treated cancer cells are more sensitive to the genetic perturbation of oxidative phosphorylation (OXPHOS). Mechanistic investigation indicated that alisertib treatment, as well as other mitotic kinase inhibitors, rapidly reduces the intracellular ATP level to generate a status that is highly addictive to OXPHOS. Furthermore, the combinational inhibition of mitotic kinase and OXPHOS by alisertib, and metformin respectively, generates severe energy exhaustion in mitotic cells that consequently triggers cell death. The combination regimen also enhanced tumor regression significantly in vivo. This suggests that targeting OXPHOS by metformin is a potential strategy for promoting the therapeutic effects of mitotic kinase inhibitors through the joint targeting of mitosis and cellular energy homeostasis.
Collapse
Affiliation(s)
- Zijian Zhang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Deshun Zeng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wei Zhang
- Department of Clinical Immunology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Ailin Chen
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Jie Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Fang Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bing Deng
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Junxiao Zhuo
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Bin He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Min Yan
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Xinxing Lei
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Shulan Wang
- Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Eric W-F Lam
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China.
| | - Zifeng Wang
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
14
|
Watanabe H, Belyea BC, Paxton RL, Li M, Dzamba BJ, DeSimone DW, Gomez RA, Sequeira-Lopez MLS. Renin Cell Baroreceptor, a Nuclear Mechanotransducer Central for Homeostasis. Circ Res 2021; 129:262-276. [PMID: 33993729 PMCID: PMC8273135 DOI: 10.1161/circresaha.120.318711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Brian C. Belyea
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Robert L. Paxton
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Minghong Li
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Bette J. Dzamba
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, Virginia
| | - Douglas W. DeSimone
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, Virginia
| | - R. Ariel Gomez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Maria Luisa S. Sequeira-Lopez
- Department of Pediatrics, Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
15
|
Koch F, Albrecht D, Görs S, Kuhla B. Jejunal mucosa proteomics unravel metabolic adaptive processes to mild chronic heat stress in dairy cows. Sci Rep 2021; 11:12484. [PMID: 34127774 PMCID: PMC8203643 DOI: 10.1038/s41598-021-92053-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2021] [Accepted: 06/04/2021] [Indexed: 12/31/2022] Open
Abstract
Climate change affects the duration and intensity of heat waves during summer months and jeopardizes animal health and welfare. High ambient temperatures cause heat stress in dairy cows resulting in a reduction of milk yield, feed intake, and alterations in gut barrier function. The objectives of this study were to investigate the mucosal amino acid, glucose and lactate metabolism, as well as the proteomic response of the small intestine in heat stressed (HS) Holstein dairy cows. Cows of the HS group (n = 5) were exposed for 4 days to 28 °C (THI = 76) in a climate chamber. Percentage decrease in daily ad libitum intake of HS cows was calculated to provide isocaloric energy intake to pair-fed control cows kept at 15 °C (THI = 60) for 4 days. The metabolite, mRNA and proteomic analyses revealed that HS induced incorrect protein folding, cellular destabilization, increased proteolytic degradation and protein kinase inhibitor activity, reduced glycolysis, and activation of NF-κB signaling, uronate cycling, pentose phosphate pathway, fatty acid and amino acid catabolism, mitochondrial respiration, ATPase activity and the antioxidative defence system. Our results highlight adaptive metabolic and immune mechanisms attempting to maintain the biological function in the small intestine of heat-stressed dairy cows.
Collapse
Affiliation(s)
- Franziska Koch
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Dirk Albrecht
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Solvig Görs
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
16
|
Yan X, Qu X, Tian R, Xu L, Jin X, Yu S, Zhao Y, Ma J, Liu Y, Sun L, Su J. Hypoxia-induced NAD + interventions promote tumor survival and metastasis by regulating mitochondrial dynamics. Life Sci 2020; 259:118171. [PMID: 32738362 DOI: 10.1016/j.lfs.2020.118171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023]
Abstract
Hypoxia, an important feature of the tumor microenvironment, is responsible for the chemo-resistance and metastasis of malignant solid tumors. Recent studies indicated that mitochondria undergo morphological transitions as an adaptive response to maintain self-stability and connectivity under hypoxic conditions. NAD+ may not only provide reducing equivalents for biosynthetic reactions and in determining energy production, but also functions as a signaling molecule in mitochondrial dynamics regulation. In this review, we describe the upregulated KDAC deacetylase expression in the mitochondria and cytoplasm of tumor cells that results from sensing the changes in NAD+ to control mitochondrial dynamics and distribution, which is responsible for survival and metastasis in hypoxia.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xianzhi Qu
- Department of Hepatobiliary & Pancreatic Surgery, The Second Hospital of Jilin University, Jilin University, Changchun, Jilin 130021, China
| | - Rui Tian
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Long Xu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xue Jin
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Sihang Yu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yuanxin Zhao
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jiaoyan Ma
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| | - Jing Su
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China.
| |
Collapse
|