1
|
Staudner T, Geiges L, Khamseekaew J, Sure F, Korbmacher C, Ilyaskin AV. Disease-associated missense mutations in the pore loop of polycystin-2 alter its ion channel function in a heterologous expression system. J Biol Chem 2024; 300:107574. [PMID: 39009345 PMCID: PMC11630642 DOI: 10.1016/j.jbc.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/20/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Polycystin-2 (PC2) is mutated in ∼15% of patients with autosomal dominant polycystic kidney disease (ADPKD). PC2 belongs to the family of transient receptor potential (TRP) channels and can function as a homotetramer. We investigated whether three disease-associated mutations (F629S, C632R, or R638C) localized in the channel's pore loop alter ion channel properties of human PC2 expressed in Xenopus laevis oocytes. Expression of wild-type (WT) PC2 typically resulted in small but measurable Na+ inward currents in the absence of extracellular divalent cations. These currents were no longer observed when individual pore mutations were introduced in WT PC2. Similarly, Na+ inward currents mediated by the F604P gain-of-function (GOF) PC2 construct (PC2 F604P) were abolished by each of the three pore mutations. In contrast, when the mutations were introduced in another GOF construct, PC2 L677A N681A, only C632R had a complete loss-of-function effect, whereas significant residual Na+ inward currents were observed with F629S (∼15%) and R638C (∼30%). Importantly, the R638C mutation also abolished the Ca2+ permeability of PC2 L677A N681A and altered its monovalent cation selectivity. To elucidate the molecular mechanisms by which the R638C mutation affects channel function, molecular dynamics (MD) simulations were used in combination with functional experiments and site-directed mutagenesis. Our findings suggest that R638C stabilizes ionic interactions between Na+ ions and the selectivity filter residue D643. This probably explains the reduced monovalent cation conductance of the mutant channel. In summary, our data support the concept that altered ion channel properties of PC2 contribute to the pathogenesis of ADPKD.
Collapse
Affiliation(s)
- Tobias Staudner
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Linda Geiges
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Juthamas Khamseekaew
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Florian Sure
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Christoph Korbmacher
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Cellular and Molecular Physiology, Erlangen, Germany.
| |
Collapse
|
2
|
García-Navarrete C, Kretschmar C, Toledo J, Gutiérrez K, Hernández-Cáceres MP, Budini M, Parra V, Burgos PV, Lavandero S, Morselli E, Peña-Oyarzún D, Criollo A. PKD2 regulates autophagy and forms a protein complex with BECN1 at the primary cilium of hypothalamic neuronal cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167256. [PMID: 38782303 DOI: 10.1016/j.bbadis.2024.167256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.
Collapse
Affiliation(s)
- Camila García-Navarrete
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Catalina Kretschmar
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Advanced Scientific Equipment Network (REDECA), Facultad de Medicina, Universidad de Chile, Chile
| | - Karla Gutiérrez
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - María Paz Hernández-Cáceres
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Santiago, Chile
| | - Valentina Parra
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas & Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Patricia V Burgos
- Autophagy Research Center, Santiago, Chile; Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile; Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, Huechuraba 8580702, Santiago, Chile
| | - Sergio Lavandero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas & Farmacéuticas, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile; Cardiology Division, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile; Autophagy Research Center, Santiago, Chile
| | - Daniel Peña-Oyarzún
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile; Faculty of Odontology and Rehabilitation Sciences, Universidad San Sebastián, Chile.
| | - Alfredo Criollo
- Instituto de Investigación en Ciencias Odontológicas (ICOD), Facultad de Odontología, Universidad de Chile, Santiago, Chile; Autophagy Research Center, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas & Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
3
|
Hilgendorf KI, Myers BR, Reiter JF. Emerging mechanistic understanding of cilia function in cellular signalling. Nat Rev Mol Cell Biol 2024; 25:555-573. [PMID: 38366037 PMCID: PMC11199107 DOI: 10.1038/s41580-023-00698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/18/2024]
Abstract
Primary cilia are solitary, immotile sensory organelles present on most cells in the body that participate broadly in human health, physiology and disease. Cilia generate a unique environment for signal transduction with tight control of protein, lipid and second messenger concentrations within a relatively small compartment, enabling reception, transmission and integration of biological information. In this Review, we discuss how cilia function as signalling hubs in cell-cell communication using three signalling pathways as examples: ciliary G-protein-coupled receptors (GPCRs), the Hedgehog (Hh) pathway and polycystin ion channels. We review how defects in these ciliary signalling pathways lead to a heterogeneous group of conditions known as 'ciliopathies', including metabolic syndromes, birth defects and polycystic kidney disease. Emerging understanding of these pathways' transduction mechanisms reveals common themes between these cilia-based signalling pathways that may apply to other pathways as well. These mechanistic insights reveal how cilia orchestrate normal and pathophysiological signalling outputs broadly throughout human biology.
Collapse
Affiliation(s)
- Keren I Hilgendorf
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Benjamin R Myers
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA.
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
4
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EF, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. EMBO Rep 2024; 25:3040-3063. [PMID: 38849673 PMCID: PMC11239879 DOI: 10.1038/s44319-024-00170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K Rezi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mariam G Aslanyan
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gaurav D Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Mohamed Chamlali
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Zeinab Anvarian
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Aarhus, Denmark
| | - Kleo B Pauly
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Eduardo Fa Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Copenhagen, Denmark
| | | | - Stine F Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Robert B Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Reddy Palicharla V, Mukhopadhyay S. Molecular and structural perspectives on protein trafficking to the primary cilium membrane. Biochem Soc Trans 2024; 52:1473-1487. [PMID: 38864436 PMCID: PMC11346432 DOI: 10.1042/bst20231403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/13/2024]
Abstract
The primary cilium is a dynamic subcellular compartment templated from the mother centriole or basal body. Cilia are solitary and tiny, but remarkably consequential in cellular pathways regulating proliferation, differentiation, and maintenance. Multiple transmembrane proteins such as G-protein-coupled receptors, channels, enzymes, and membrane-associated lipidated proteins are enriched in the ciliary membrane. The precise regulation of ciliary membrane content is essential for effective signal transduction and maintenance of tissue homeostasis. Surprisingly, a few conserved molecular factors, intraflagellar transport complex A and the tubby family adapter protein TULP3, mediate the transport of most membrane cargoes into cilia. Recent advances in cryogenic electron microscopy provide fundamental insights into these molecular players. Here, we review the molecular players mediating cargo delivery into the ciliary membrane through the lens of structural biology. These mechanistic insights into ciliary transport provide a framework for understanding of disease variants in ciliopathies, enable precise manipulation of cilia-mediated pathways, and provide a platform for the development of targeted therapeutics.
Collapse
Affiliation(s)
- Vivek Reddy Palicharla
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| | - Saikat Mukhopadhyay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, U.S.A
| |
Collapse
|
6
|
Mahboobipour AA, Ala M, Safdari Lord J, Yaghoobi A. Clinical manifestation, epidemiology, genetic basis, potential molecular targets, and current treatment of polycystic liver disease. Orphanet J Rare Dis 2024; 19:175. [PMID: 38671465 PMCID: PMC11055360 DOI: 10.1186/s13023-024-03187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Polycystic liver disease (PLD) is a rare condition observed in three genetic diseases, including autosomal dominant polycystic liver disease (ADPLD), autosomal dominant polycystic kidney disease (ADPKD), and autosomal recessive polycystic kidney disease (ARPKD). PLD usually does not impair liver function, and advanced PLD becomes symptomatic when the enlarged liver compresses adjacent organs or increases intra-abdominal pressure. Currently, the diagnosis of PLD is mainly based on imaging, and genetic testing is not required except for complex cases. Besides, genetic testing may help predict patients' prognosis, classify patients for genetic intervention, and conduct early treatment. Although the underlying genetic causes and mechanisms are not fully understood, previous studies refer to primary ciliopathy or impaired ciliogenesis as the main culprit. Primarily, PLD occurs due to defective ciliogenesis and ineffective endoplasmic reticulum quality control. Specifically, loss of function mutations of genes that are directly involved in ciliogenesis, such as Pkd1, Pkd2, Pkhd1, and Dzip1l, can lead to both hepatic and renal cystogenesis in ADPKD and ARPKD. In addition, loss of function mutations of genes that are involved in endoplasmic reticulum quality control and protein folding, trafficking, and maturation, such as PRKCSH, Sec63, ALG8, ALG9, GANAB, and SEC61B, can impair the production and function of polycystin1 (PC1) and polycystin 2 (PC2) or facilitate their degradation and indirectly promote isolated hepatic cystogenesis or concurrent hepatic and renal cystogenesis. Recently, it was shown that mutations of LRP5, which impairs canonical Wnt signaling, can lead to hepatic cystogenesis. PLD is currently treated by somatostatin analogs, percutaneous intervention, surgical fenestration, resection, and liver transplantation. In addition, based on the underlying molecular mechanisms and signaling pathways, several investigational treatments have been used in preclinical studies, some of which have shown promising results. This review discusses the clinical manifestation, complications, prevalence, genetic basis, and treatment of PLD and explains the investigational methods of treatment and future research direction, which can be beneficial for researchers and clinicians interested in PLD.
Collapse
Affiliation(s)
- Amir Ali Mahboobipour
- Tracheal Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Moein Ala
- Experimental Medicine Research Center, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Javad Safdari Lord
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Yaghoobi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
7
|
Rezi CK, Aslanyan MG, Diwan GD, Cheng T, Chamlali M, Junger K, Anvarian Z, Lorentzen E, Pauly KB, Afshar-Bahadori Y, Fernandes EFA, Qian F, Tosi S, Christensen ST, Pedersen SF, Strømgaard K, Russell RB, Miner JH, Mahjoub MR, Boldt K, Roepman R, Pedersen LB. DLG1 functions upstream of SDCCAG3 and IFT20 to control ciliary targeting of polycystin-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.10.566524. [PMID: 37987012 PMCID: PMC10659422 DOI: 10.1101/2023.11.10.566524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney caused ciliary elongation and cystogenesis, and cell-based proximity labelling proteomics and fluorescence microscopy showed alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20 and polycystin-2 (PC2) were reduced in cilia of DLG1 deficient cells compared to control cells. This phenotype was recapitulated in vivo and rescuable by re-expression of wildtype DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggested that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.
Collapse
Affiliation(s)
- Csenge K. Rezi
- Department of Biology, University of Copenhagen, Denmark
| | - Mariam G. Aslanyan
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gaurav D. Diwan
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Tao Cheng
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | | | - Katrin Junger
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | | | - Esben Lorentzen
- Department of Molecular Biology and Genetics - Protein Science, Aarhus University, Denmark
| | - Kleo B. Pauly
- Department of Biology, University of Copenhagen, Denmark
| | | | - Eduardo F. A. Fernandes
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sébastien Tosi
- Danish BioImaging Infrastructure Image Analysis Core Facility (DBI-INFRA IACF), University of Copenhagen, Denmark
| | | | | | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Denmark
| | - Robert B. Russell
- BioQuant, Heidelberg University, Heidelberg, Germany
- Biochemistry Center (BZH), Heidelberg University, Heidelberg, Germany
| | - Jeffrey H. Miner
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Moe R. Mahjoub
- Department of Medicine (Nephrology Division) and Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| | - Karsten Boldt
- Institute for Ophthalmic Research, Eberhard Karl University of Tübingen, Tübingen, Germany
| | - Ronald Roepman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | | |
Collapse
|
8
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Bocquet B, Borday C, Erkilic N, Mamaeva D, Donval A, Masson C, Parain K, Kaminska K, Quinodoz M, Perea-Romero I, Garcia-Garcia G, Jimenez-Medina C, Boukhaddaoui H, Coget A, Leboucq N, Calzetti G, Gandolfi S, Percesepe A, Barili V, Uliana V, Delsante M, Bozzetti F, Scholl HP, Corton M, Ayuso C, Millan JM, Rivolta C, Meunier I, Perron M, Kalatzis V. TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa. JCI Insight 2023; 8:e169426. [PMID: 37768732 PMCID: PMC10721274 DOI: 10.1172/jci.insight.169426] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease (IRD) and is characterized by photoreceptor degeneration and progressive vision loss. We report 4 patients presenting with RP from 3 unrelated families with variants in TBC1D32, which to date has never been associated with an IRD. To validate TBC1D32 as a putative RP causative gene, we combined Xenopus in vivo approaches and human induced pluripotent stem cell-derived (iPSC-derived) retinal models. Our data showed that TBC1D32 was expressed during retinal development and that it played an important role in retinal pigment epithelium (RPE) differentiation. Furthermore, we identified a role for TBC1D32 in ciliogenesis of the RPE. We demonstrated elongated ciliary defects that resulted in disrupted apical tight junctions, loss of functionality (delayed retinoid cycling and altered secretion balance), and the onset of an epithelial-mesenchymal transition-like phenotype. Last, our results suggested photoreceptor differentiation defects, including connecting cilium anomalies, that resulted in impaired trafficking to the outer segment in cones and rods in TBC1D32 iPSC-derived retinal organoids. Overall, our data highlight a critical role for TBC1D32 in the retina and demonstrate that TBC1D32 mutations lead to RP. We thus identify TBC1D32 as an IRD-causative gene.
Collapse
Affiliation(s)
- Béatrice Bocquet
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Caroline Borday
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Nejla Erkilic
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Daria Mamaeva
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Alicia Donval
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Christel Masson
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karine Parain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karolina Kaminska
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Mathieu Quinodoz
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Irene Perea-Romero
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Garcia-Garcia
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Joint Unit of Rare Diseases, IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carla Jimenez-Medina
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Hassan Boukhaddaoui
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Arthur Coget
- Department of Neuroradiology and
- Institute for Human Functional Imaging (I2FH), University of Montpellier, CHU, Montpellier, France
| | | | - Giacomo Calzetti
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Medicine and Surgery
| | | | | | | | | | | | - Francesca Bozzetti
- Neuroradiology Unit, Diagnostic Department, University Hospital of Parma, Parma, Italy
| | - Hendrik P.N. Scholl
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Marta Corton
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose M. Millan
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Joint Unit of Rare Diseases, IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Department of Ophthalmology, University of Basel, Basel, Switzerland
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU, Montpellier, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| |
Collapse
|
10
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
11
|
Yanda MK, Ciobanu C, Guggino WB, Cebotaru L. CFTR and PC2, partners in the primary cilia in autosomal dominant polycystic kidney disease. Am J Physiol Cell Physiol 2023; 325:C682-C693. [PMID: 37519231 PMCID: PMC10635646 DOI: 10.1152/ajpcell.00197.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Defects in the primary cilium are associated with autosomal dominant polycystic kidney disease (ADPKD). We used a combination of animal models, Western blotting, and confocal microscopy and discovered that CFTR and polycystin 2 (PC2) are both colocalized to the cilium in normal kidneys, with the levels of both being decreased in cystic epithelia. Cilia were longer in CFTR-null mice and in cystic cells in our ADPKD animal models. We examined septin 2, known to play a role in cilia length, to act as a diffusion barrier and to serve as an enhancer of proliferation. We found that septin 2 protein levels were upregulated and colocalized strongly with CFTR in cystic cells. Application of VX-809, the CFTR corrector, restored CFTR and PC2 toward normal in the cilia, decreased the protein levels of septin 2, and drastically reduced septin 2 colocalization with CFTR. Our data suggest that CFTR is present in the cilia and plays a role there, perhaps through its conductance of Cl-. We also postulate that septin 2 is important for localizing CFTR to the apical membrane in cystic epithelia.NEW & NOTEWORTHY CFTR is present in the primary cilia together with polycystin 2 (PC2). Ablation of CFTR makes cilia longer suggesting that CFTR plays a role there, perhaps through its conductance of Cl.
Collapse
Affiliation(s)
- Murali K Yanda
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Cristian Ciobanu
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - William B Guggino
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Liudmila Cebotaru
- The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
12
|
Clearman KR, Haycraft CJ, Croyle MJ, Collawn JF, Yoder BK. Functions of the primary cilium in the kidney and its connection with renal diseases. Curr Top Dev Biol 2023; 155:39-94. [PMID: 38043952 DOI: 10.1016/bs.ctdb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The nonmotile primary cilium is a sensory structure found on most mammalian cell types that integrates multiple signaling pathways involved in tissue development and postnatal function. As such, mutations disrupting cilia activities cause a group of disorders referred to as ciliopathies. These disorders exhibit a wide spectrum of phenotypes impacting nearly every tissue. In the kidney, primary cilia dysfunction caused by mutations in polycystin 1 (Pkd1), polycystin 2 (Pkd2), or polycystic kidney and hepatic disease 1 (Pkhd1), result in polycystic kidney disease (PKD), a progressive disorder causing renal functional decline and end-stage renal disease. PKD affects nearly 1 in 1000 individuals and as there is no cure for PKD, patients frequently require dialysis or renal transplantation. Pkd1, Pkd2, and Pkhd1 encode membrane proteins that all localize in the cilium. Pkd1 and Pkd2 function as a nonselective cation channel complex while Pkhd1 protein function remains uncertain. Data indicate that the cilium may act as a mechanosensor to detect fluid movement through renal tubules. Other functions proposed for the cilium and PKD proteins in cyst development involve regulation of cell cycle and oriented division, regulation of renal inflammation and repair processes, maintenance of epithelial cell differentiation, and regulation of mitochondrial structure and metabolism. However, how loss of cilia or cilia function leads to cyst development remains elusive. Studies directed at understanding the roles of Pkd1, Pkd2, and Pkhd1 in the cilium and other locations within the cell will be important for developing therapeutic strategies to slow cyst progression.
Collapse
Affiliation(s)
- Kelsey R Clearman
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Courtney J Haycraft
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mandy J Croyle
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bradley K Yoder
- Department of Cell, Developmental, and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
13
|
Van Sciver RE, Long AB, Katz HG, Gigante ED, Caspary T. Ciliary ARL13B inhibits developmental kidney cystogenesis in mouse. Dev Biol 2023; 500:1-9. [PMID: 37209936 PMCID: PMC10330881 DOI: 10.1016/j.ydbio.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
ARL13B is a small GTPase enriched in cilia. Deletion of Arl13b in mouse kidney results in renal cysts and an associated absence of primary cilia. Similarly, ablation of cilia leads to kidney cysts. To investigate whether ARL13B functions from within cilia to direct kidney development, we examined kidneys of mice expressing an engineered cilia-excluded ARL13B variant, ARL13BV358A. These mice retained renal cilia and developed cystic kidneys. Because ARL13B functions as a guanine nucleotide exchange factor (GEF) for ARL3, we examined kidneys of mice expressing an ARL13B variant that lacks ARL3 GEF activity, ARL13BR79Q. We found normal kidney development with no evidence of cysts in these mice. Taken together, our results show that ARL13B functions within cilia to inhibit renal cystogenesis during mouse development, and that this function does not depend on its role as a GEF for ARL3.
Collapse
Affiliation(s)
- Robert E Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| | - Alyssa B Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| | - Harrison G Katz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Department of Biology, Brown University, Providence, RI, 02912, USA.
| | - Eduardo D Gigante
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Graduate Program in Neuroscience, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA; Department of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Lee EY, Hughes JW. Rediscovering Primary Cilia in Pancreatic Islets. Diabetes Metab J 2023; 47:454-469. [PMID: 37105527 PMCID: PMC10404530 DOI: 10.4093/dmj.2022.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Primary cilia are microtubule-based sensory and signaling organelles on the surfaces of most eukaryotic cells. Despite their early description by microscopy studies, islet cilia had not been examined in the functional context until recent decades. In pancreatic islets as in other tissues, primary cilia facilitate crucial developmental and signaling pathways in response to extracellular stimuli. Many human developmental and genetic disorders are associated with ciliary dysfunction, some manifesting as obesity and diabetes. Understanding the basis for metabolic diseases in human ciliopathies has been aided by close examination of cilia action in pancreatic islets at cellular and molecular levels. In this article, we review the evidence for ciliary expression on islet cells, known roles of cilia in pancreas development and islet hormone secretion, and summarize metabolic manifestations of human ciliopathy syndromes. We discuss emerging data on primary cilia regulation of islet cell signaling and the structural basis of cilia-mediated cell crosstalk, and offer our interpretation on the role of cilia in glucose homeostasis and human diseases.
Collapse
Affiliation(s)
- Eun Young Lee
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jing W. Hughes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
15
|
Van Sciver RE, Long AB, Katz HG, Gigante ED, Caspary T. Ciliary ARL13B inhibits developmental kidney cystogenesis in mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527739. [PMID: 36798281 PMCID: PMC9934666 DOI: 10.1101/2023.02.08.527739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
ARL13B is a small GTPase enriched in cilia. Deletion of Arl13b in mouse kidney results in renal cysts and an associated absence of primary cilia. Similarly, ablation of cilia leads to kidney cysts. To investigate whether ARL13B functions from within cilia to direct kidney development, we examined kidneys of mice expressing an engineered cilia-excluded ARL13B variant, ARL13BV358A. These mice retained renal cilia and developed cystic kidneys. Because ARL13B functions as a guanine nucleotide exchange factor (GEF) for ARL3, we examined kidneys of mice expressing an ARL13B variant that lacks ARL3 GEF activity, ARL13BR79Q. We found normal kidney development with no evidence of cysts in these mice. Taken together, our results show that ARL13B functions within cilia to inhibit renal cystogenesis during mouse development, and that this function does not depend on its role as a GEF for ARL3.
Collapse
Affiliation(s)
- Robert E. Van Sciver
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Alyssa B. Long
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| | - Harrison G. Katz
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Present address: Department of Biology, Brown University, Providence, RI 02912, USA
| | - Eduardo D. Gigante
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Graduate Program in Neuroscience, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
- Present address: Department of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA 30322, USA
| |
Collapse
|
16
|
Abstract
Polycystin subunits can form hetero- and homotetrameric ion channels in the membranes of various compartments of the cell. Homotetrameric polycystin channels are voltage- and calcium-modulated, whereas heterotetrameric versions are proposed to be ligand- or autoproteolytically regulated. Their importance is underscored by variants associated with autosomal dominant polycystic kidney disease and by vital roles in fertilization and embryonic development. The diversity in polycystin assembly and subcellular distribution allows for a multitude of sensory functions by this class of channels. In this review, we highlight their recent structural and functional characterization, which has provided a molecular blueprint to investigate the conformational changes required for channel opening in response to unique stimuli. We consider each polycystin channel type individually, discussing how they contribute to sensory cell biology, as well as their impact on the physiology of various tissues.
Collapse
Affiliation(s)
- Orhi Esarte Palomero
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Megan Larmore
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| | - Paul G DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
17
|
Scarinci N, Perez PL, Cantiello HF, Cantero MDR. Polycystin-2 (TRPP2) regulates primary cilium length in LLC-PK1 renal epithelial cells. Front Physiol 2022; 13:995473. [PMID: 36267587 PMCID: PMC9577394 DOI: 10.3389/fphys.2022.995473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/14/2022] [Indexed: 11/21/2022] Open
Abstract
Polycystin-2 (PC2, TRPP2) is a Ca2+ permeable nonselective cation channel whose dysfunction generates autosomal dominant polycystic kidney disease (ADPKD). PC2 is present in different cell locations, including the primary cilium of renal epithelial cells. However, little is known as to whether PC2 contributes to the primary cilium structure. Here, we explored the effect(s) of external Ca2+, PC2 channel blockers, and PKD2 gene silencing on the length of primary cilia in wild-type LLC-PK1 renal epithelial cells. Confluent cell monolayers were fixed and immuno-labeled with an anti-acetylated α-tubulin antibody to identify primary cilia and measure their length. Although primary cilia length measurements did not follow a Normal distribution, the data were normalized by Box-Cox transformation rendering statistical differences under all experimental conditions. Cells exposed to high external Ca2+ (6.2 mM) decreased a 13.5% (p < 0.001) primary cilia length as compared to controls (1.2 mM Ca2+). In contrast, the PC2 inhibitors amiloride (200 μM) and LiCl (10 mM), both increased primary ciliary length by 33.2% (p < 0.001), and 17.4% (p < 0.001), respectively. PKD2 gene silencing by siRNA elicited a statistically significant, 10.3% (p < 0.001) increase in primary cilia length compared to their respective scrambled RNA transfected cells. The data indicate that conditions that regulate PC2 function or gene expression modify the length of primary cilia in renal epithelial cells. Blocking of PC2 mitigates the effects of elevated external Ca2+ concentration on primary cilia length. Proper regulation of PC2 function in the primary cilium may be essential in the onset of mechanisms that trigger cyst formation in ADPKD.
Collapse
Affiliation(s)
| | | | | | - María del Rocío Cantero
- Laboratorio de Canales Iónicos, IMSaTeD, Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (CONICET-UNSE), Santiago del Estero, Argentina
| |
Collapse
|
18
|
Wang W, Silva LM, Wang HH, Kavanaugh MA, Pottorf TS, Allard BA, Jacobs DT, Dong R, Cornelius JT, Chaturvedi A, Swenson-Fields KI, Fields TA, Pritchard MT, Sharma M, Slawson C, Wallace DP, Calvet JP, Tran PV. Ttc21b deficiency attenuates autosomal dominant polycystic kidney disease in a kidney tubular- and maturation-dependent manner. Kidney Int 2022; 102:577-591. [PMID: 35644283 PMCID: PMC9398994 DOI: 10.1016/j.kint.2022.04.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023]
Abstract
Primary cilia are sensory organelles built and maintained by intraflagellar transport (IFT) multiprotein complexes. Deletion of several IFT-B genes attenuates polycystic kidney disease (PKD) severity in juvenile and adult autosomal dominant polycystic kidney disease (ADPKD) mouse models. However, deletion of an IFT-A adaptor, Tulp3, attenuates PKD severity in adult mice only. These studies indicate that dysfunction of specific cilia components has potential therapeutic value. To broaden our understanding of cilia dysfunction and its therapeutic potential, we investigate the role of global deletion of an IFT-A gene, Ttc21b, in juvenile and adult mouse models of ADPKD. Both juvenile (postnatal day 21) and adult (six months of age) ADPKD mice exhibited kidney cysts, increased kidney weight/body weight ratios, lengthened kidney cilia, inflammation, and increased levels of the nutrient sensor, O-linked β-N-acetylglucosamine (O-GlcNAc). Deletion of Ttc21b in juvenile ADPKD mice reduced cortical collecting duct cystogenesis and kidney weight/body weight ratios, increased proximal tubular and glomerular dilations, but did not reduce cilia length, inflammation, nor O-GlcNAc levels. In contrast, Ttc21b deletion in adult ADPKD mice markedly attenuated kidney cystogenesis and reduced cilia length, inflammation, and O-GlcNAc levels. Thus, unlike IFT-B, the effect of Ttc21b deletion in mouse models of ADPKD is development-specific. Unlike an IFT-A adaptor, deleting Ttc21b in juvenile ADPKD mice is partially ameliorative. Thus, our studies suggest that different microenvironmental factors, found in distinct nephron segments and in developing versus mature stages, modify ciliary homeostasis and ADPKD pathobiology. Further, elevated levels of O-GlcNAc, which regulates cellular metabolism and ciliogenesis, may be a pathological feature of ADPKD.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Luciane M Silva
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Tana S Pottorf
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Bailey A Allard
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Damon T Jacobs
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Rouchen Dong
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Joseph T Cornelius
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aakriti Chaturvedi
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Katherine I Swenson-Fields
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Timothy A Fields
- Department of Pathology and Laboratory Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michele T Pritchard
- Pharmacology, Toxicology and Therapeutics, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Madhulika Sharma
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Chad Slawson
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Darren P Wallace
- Department of Internal Medicine, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
19
|
Walker RV, Maranto A, Palicharla VR, Hwang SH, Mukhopadhyay S, Qian F. Cilia-Localized Counterregulatory Signals as Drivers of Renal Cystogenesis. Front Mol Biosci 2022; 9:936070. [PMID: 35832738 PMCID: PMC9272769 DOI: 10.3389/fmolb.2022.936070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 12/18/2022] Open
Abstract
Primary cilia play counterregulatory roles in cystogenesis-they inhibit cyst formation in the normal renal tubule but promote cyst growth when the function of polycystins is impaired. Key upstream cilia-specific signals and components involved in driving cystogenesis have remained elusive. Recent studies of the tubby family protein, Tubby-like protein 3 (TULP3), have provided new insights into the cilia-localized mechanisms that determine cyst growth. TULP3 is a key adapter of the intraflagellar transport complex A (IFT-A) in the trafficking of multiple proteins specifically into the ciliary membrane. Loss of TULP3 results in the selective exclusion of its cargoes from cilia without affecting their extraciliary pools and without disrupting cilia or IFT-A complex integrity. Epistasis analyses have indicated that TULP3 inhibits cystogenesis independently of the polycystins during kidney development but promotes cystogenesis in adults when polycystins are lacking. In this review, we discuss the current model of the cilia-dependent cyst activation (CDCA) mechanism in autosomal dominant polycystic kidney disease (ADPKD) and consider the possible roles of ciliary and extraciliary polycystins in regulating CDCA. We then describe the limitations of this model in not fully accounting for how cilia single knockouts cause significant cystic changes either in the presence or absence of polycystins. Based on available data from TULP3/IFT-A-mediated differential regulation of cystogenesis in kidneys with deletion of polycystins either during development or in adulthood, we hypothesize the existence of cilia-localized components of CDCA (cCDCA) and cilia-localized cyst inhibition (CLCI) signals. We develop the criteria for cCDCA/CLCI signals and discuss potential TULP3 cargoes as possible cilia-localized components that determine cystogenesis in kidneys during development and in adult mice.
Collapse
Affiliation(s)
- Rebecca V. Walker
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anthony Maranto
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Sun-Hee Hwang
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Saikat Mukhopadhyay
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, United States
| | - Feng Qian
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Coveney CR, Samvelyan HJ, Miotla-Zarebska J, Carnegie J, Chang E, Corrin CJ, Coveney T, Stott B, Parisi I, Duarte C, Vincent TL, Staines KA, Wann AK. Ciliary IFT88 Protects Coordinated Adolescent Growth Plate Ossification From Disruptive Physiological Mechanical Forces. J Bone Miner Res 2022; 37:1081-1096. [PMID: 35038201 PMCID: PMC9304194 DOI: 10.1002/jbmr.4502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/21/2021] [Accepted: 01/08/2022] [Indexed: 11/25/2022]
Abstract
Compared with our understanding of endochondral ossification, much less is known about the coordinated arrest of growth defined by the narrowing and fusion of the cartilaginous growth plate. Throughout the musculoskeletal system, appropriate cell and tissue responses to mechanical force delineate morphogenesis and ensure lifelong health. It remains unclear how mechanical cues are integrated into many biological programs, including those coordinating the ossification of the adolescent growth plate at the cessation of growth. Primary cilia are microtubule-based organelles tuning a range of cell activities, including signaling cascades activated or modulated by extracellular biophysical cues. Cilia have been proposed to directly facilitate cell mechanotransduction. To explore the influence of primary cilia in the mouse adolescent limb, we conditionally targeted the ciliary gene Intraflagellar transport protein 88 (Ift88fl/fl ) in the juvenile and adolescent skeleton using a cartilage-specific, inducible Cre (AggrecanCreERT2 Ift88fl/fl ). Deletion of IFT88 in cartilage, which reduced ciliation in the growth plate, disrupted chondrocyte differentiation, cartilage resorption, and mineralization. These effects were largely restricted to peripheral tibial regions beneath the load-bearing compartments of the knee. These regions were typified by an enlarged population of hypertrophic chondrocytes. Although normal patterns of hedgehog signaling were maintained, targeting IFT88 inhibited hypertrophic chondrocyte VEGF expression and downstream vascular recruitment, osteoclastic activity, and the replacement of cartilage with bone. In control mice, increases to physiological loading also impair ossification in the peripheral growth plate, mimicking the effects of IFT88 deletion. Limb immobilization inhibited changes to VEGF expression and epiphyseal morphology in Ift88cKO mice, indicating the effects of depletion of IFT88 in the adolescent growth plate are mechano-dependent. We propose that during this pivotal phase in adolescent skeletal maturation, ciliary IFT88 protects uniform, coordinated ossification of the growth plate from an otherwise disruptive heterogeneity of physiological mechanical forces. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Clarissa R Coveney
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Hasmik J Samvelyan
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Jadwiga Miotla-Zarebska
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Josephine Carnegie
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Emer Chang
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - C Jonty Corrin
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Trystan Coveney
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Bryony Stott
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Ida Parisi
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Claudia Duarte
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tonia L Vincent
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Katherine A Staines
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | - Angus Kt Wann
- Centre for OA Pathogenesis Versus Arthritis, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Shimada IS, Kato Y. Ciliary signaling in stem cells in health and disease: Hedgehog pathway and beyond. Semin Cell Dev Biol 2022; 129:115-125. [PMID: 35466055 DOI: 10.1016/j.semcdb.2022.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The primary cilium is a hair-like sensory compartment that protrudes from the cellular surface. The primary cilium is enriched in a variety of signaling molecules that regulate cellular activities. Stem cells have primary cilia. They reside in a specialized environment, called the stem cell niche. This niche contains a variety of secreted factors, and some of their receptors are localized in the primary cilia of stem cells. Here, we summarize the current understanding of the function of cilia in compartmentalized signaling in stem cells. We describe how ciliary signaling regulates stem cells and progenitor cells during development, tissue homeostasis and tumorigenesis. We summarize our understanding of cilia regulated signaling -primary involving the hedgehog pathway- in stem cells in diverse settings that include neuroepithelial cells, radial glia, cerebellar granule neuron precursors, hematopoietic stem cells, hair follicle stem cells, bone marrow mesenchymal stem cells and mammary gland stem cells. Overall, our review highlights a variety of roles that ciliary signaling plays in regulating stem cells throughout life.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| | - Yoichi Kato
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| |
Collapse
|
22
|
Senum SR, Li Y(SM, Benson KA, Joli G, Olinger E, Lavu S, Madsen CD, Gregory AV, Neatu R, Kline TL, Audrézet MP, Outeda P, Nau CB, Meijer E, Ali H, Steinman TI, Mrug M, Phelan PJ, Watnick TJ, Peters DJ, Ong AC, Conlon PJ, Perrone RD, Cornec-Le Gall E, Hogan MC, Torres VE, Sayer JA, Harris PC, Harris PC. Monoallelic IFT140 pathogenic variants are an important cause of the autosomal dominant polycystic kidney-spectrum phenotype. Am J Hum Genet 2022; 109:136-156. [PMID: 34890546 DOI: 10.1016/j.ajhg.2021.11.016] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), characterized by progressive cyst formation/expansion, results in enlarged kidneys and often end stage kidney disease. ADPKD is genetically heterogeneous; PKD1 and PKD2 are the common loci (∼78% and ∼15% of families) and GANAB, DNAJB11, and ALG9 are minor genes. PKD is a ciliary-associated disease, a ciliopathy, and many syndromic ciliopathies have a PKD phenotype. In a multi-cohort/-site collaboration, we screened ADPKD-diagnosed families that were naive to genetic testing (n = 834) or for whom no PKD1 and PKD2 pathogenic variants had been identified (n = 381) with a PKD targeted next-generation sequencing panel (tNGS; n = 1,186) or whole-exome sequencing (WES; n = 29). We identified monoallelic IFT140 loss-of-function (LoF) variants in 12 multiplex families and 26 singletons (1.9% of naive families). IFT140 is a core component of the intraflagellar transport-complex A, responsible for retrograde ciliary trafficking and ciliary entry of membrane proteins; bi-allelic IFT140 variants cause the syndromic ciliopathy, short-rib thoracic dysplasia (SRTD9). The distinctive monoallelic phenotype is mild PKD with large cysts, limited kidney insufficiency, and few liver cysts. Analyses of the cystic kidney disease probands of Genomics England 100K showed that 2.1% had IFT140 LoF variants. Analysis of the UK Biobank cystic kidney disease group showed probands with IFT140 LoF variants as the third most common group, after PKD1 and PKD2. The proximity of IFT140 to PKD1 (∼0.5 Mb) in 16p13.3 can cause diagnostic confusion, and PKD1 variants could modify the IFT140 phenotype. Importantly, our studies link a ciliary structural protein to the ADPKD spectrum.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
23
|
Nielsen ML, Mundt MC, Lildballe DL, Rasmussen M, Sunde L, Torres VE, Harris PC, Birn H. Functional megalin is expressed in renal cysts in a mouse model of adult polycystic kidney disease. Clin Kidney J 2021; 14:2420-2427. [PMID: 34754438 PMCID: PMC8572980 DOI: 10.1093/ckj/sfab088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) is characterized by the progressive growth of cysts and a decline of renal function. The clinical feasibility of the number of potential disease-modifying drugs is limited by systemic adverse effects. We hypothesize that megalin, a multiligand endocytic receptor expressed in the proximal tubule, may be used to facilitate drug uptake into cysts, thereby allowing for greater efficacy and fewer side effects. Methods The cyst expression of various tubular markers, including megalin and aquaporin 2 (AQP2), was analysed by immunohistochemistry (IHC) of kidney sections from the ADPKD mouse model (PKD1RC/RC) at different post-natal ages. The endocytic function of megalin in cysts was examined by IHC of kidney tissue from mice injected with the megalin ligand aprotinin. Results Cyst lining epithelial cells expressing megalin were observed at all ages; however, the proportion decreased with age. Concomitantly, an increasing proportion of cysts revealed expression of AQP2, partial expression of megalin and/or AQP2 or no expression of the examined markers. Endocytic uptake of aprotinin was evident in megalin-positive cysts, but only in those that remained connected to the renal tubular system. Conclusions Megalin-expressing cysts were observed at all ages, but the proportion decreased with age, possibly due to a switch in tubular origin, a merging of cysts of different tubular origin and/or a change in the expression pattern of cyst lining cells. Megalin expressed in cysts was functional, suggesting that megalin-mediated endocytosis is a potential mechanism for drug targeting in ADPKD if initiated early in the disease.
Collapse
Affiliation(s)
| | - Mia C Mundt
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Dorte L Lildballe
- Department of Molecular Medine, Aarhus University Hospital, Aarhus N, Denmark
| | - Maria Rasmussen
- Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Vicente E Torres
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Peter C Harris
- Department of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA
| | - Henrik Birn
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
24
|
Vasileva VY, Sultanova RF, Sudarikova AV, Ilatovskaya DV. Insights Into the Molecular Mechanisms of Polycystic Kidney Diseases. Front Physiol 2021; 12:693130. [PMID: 34566674 PMCID: PMC8456103 DOI: 10.3389/fphys.2021.693130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/10/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant (AD) and autosomal recessive (AR) polycystic kidney diseases (PKD) are severe multisystem genetic disorders characterized with formation and uncontrolled growth of fluid-filled cysts in the kidney, the spread of which eventually leads to the loss of renal function. Currently, there are no treatments for ARPKD, and tolvaptan is the only FDA-approved drug that alleviates the symptoms of ADPKD. However, tolvaptan has only a modest effect on disease progression, and its long-term use is associated with many side effects. Therefore, there is still a pressing need to better understand the fundamental mechanisms behind PKD development. This review highlights current knowledge about the fundamental aspects of PKD development (with a focus on ADPKD) including the PC1/PC2 pathways and cilia-associated mechanisms, major molecular cascades related to metabolism, mitochondrial bioenergetics, and systemic responses (hormonal status, levels of growth factors, immune system, and microbiome) that affect its progression. In addition, we discuss new information regarding non-pharmacological therapies, such as dietary restrictions, which can potentially alleviate PKD.
Collapse
Affiliation(s)
| | - Regina F Sultanova
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Department of Physiology, Augusta University, Augusta, GA, United States
| | | | | |
Collapse
|
25
|
Grosch M, Brunner K, Ilyaskin AV, Schober M, Staudner T, Schmied D, Stumpp T, Schmidt KN, Madej MG, Pessoa TD, Othmen H, Kubitza M, Osten L, de Vries U, Mair MM, Somlo S, Moser M, Kunzelmann K, Ziegler C, Haerteis S, Korbmacher C, Witzgall R. A polycystin-2 protein with modified channel properties leads to an increased diameter of renal tubules and to renal cysts. J Cell Sci 2021; 134:271186. [PMID: 34345895 PMCID: PMC8435292 DOI: 10.1242/jcs.259013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 01/14/2023] Open
Abstract
Mutations in the PKD2 gene cause autosomal-dominant polycystic kidney disease but the physiological role of polycystin-2, the protein product of PKD2, remains elusive. Polycystin-2 belongs to the transient receptor potential (TRP) family of non-selective cation channels. To test the hypothesis that altered ion channel properties of polycystin-2 compromise its putative role in a control circuit controlling lumen formation of renal tubular structures, we generated a mouse model in which we exchanged the pore loop of polycystin-2 with that of the closely related cation channel polycystin-2L1 (encoded by PKD2L1), thereby creating the protein polycystin-2poreL1. Functional characterization of this mutant channel in Xenopus laevis oocytes demonstrated that its electrophysiological properties differed from those of polycystin-2 and instead resembled the properties of polycystin-2L1, in particular regarding its permeability for Ca2+ ions. Homology modeling of the ion translocation pathway of polycystin-2poreL1 argues for a wider pore in polycystin-2poreL1 than in polycystin-2. In Pkd2poreL1 knock-in mice in which the endogenous polycystin-2 protein was replaced by polycystin-2poreL1 the diameter of collecting ducts was increased and collecting duct cysts developed in a strain-dependent fashion. Summary: Replacement of the pore region of polycystin-2 with that of polycystin-2L1 results in wider renal tubules and polycystic kidney disease, thus demonstrating the essential function of its ion channel properties.
Collapse
Affiliation(s)
- Melanie Grosch
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Katrin Brunner
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Michael Schober
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Tobias Staudner
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Denise Schmied
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Tina Stumpp
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Kerstin N Schmidt
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - M Gregor Madej
- Department of Biophysics, University of Regensburg, 93053 Regensburg, Germany
| | - Thaissa D Pessoa
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Helga Othmen
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Marion Kubitza
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Larissa Osten
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Uwe de Vries
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Magdalena M Mair
- Faculty of Biology and Preclinical Medicine, University of Regensburg, 93053 Regensburg, Germany
| | - Stefan Somlo
- Departments of Medicine and Genetics, Yale University, New Haven, CT 06520, USA
| | - Markus Moser
- Institute of Experimental Hematology, Technical University of Munich, 81675 Munich, Germany
| | - Karl Kunzelmann
- Department of Physiology, University of Regensburg, 93053 Regensburg, Germany
| | - Christine Ziegler
- Department of Biophysics, University of Regensburg, 93053 Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
26
|
Oliveira I, Jacinto R, Pestana S, Nolasco F, Calado J, Lopes SS, Roxo-Rosa M. Zebrafish Model as a Screen to Prevent Cyst Inflation in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2021; 22:ijms22169013. [PMID: 34445719 PMCID: PMC8396643 DOI: 10.3390/ijms22169013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/05/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), kidney cyst growth requires the recruitment of CFTR (cystic fibrosis transmembrane conductance regulator), the chloride channel that is defective in cystic fibrosis. We have been studying cyst inflation using the zebrafish Kupffer’s vesicle (KV) as model system because we previously demonstrated that knocking down polycystin 2 (PC2) induced a CFTR-mediated enlargement of the organ. We have now quantified the PC2 knockdown by showing that it causes a 73% reduction in the number of KV cilia expressing PC2. According to the literature, this is an essential event in kidney cystogenesis in ADPKD mice. Additionally, we demonstrated that the PC2 knockdown leads to a significant accumulation of CFTR-GFP at the apical region of the KV cells. Furthermore, we determined that KV enlargement is rescued by the injection of Xenopus pkd2 mRNA and by 100 µM tolvaptan treatment, the unique and approved pharmacologic approach for ADPKD management. We expected vasopressin V2 receptor antagonist to lower the cAMP levels of KV-lining cells and, thus, to inactivate CFTR. These findings further support the use of the KV as an in vivo model for screening compounds that may prevent cyst enlargement in this ciliopathy, through CFTR inhibition.
Collapse
Affiliation(s)
- Inês Oliveira
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
| | - Fernando Nolasco
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
| | - Joaquim Calado
- Department of Nephrology, Centro Hospitalar e Universitário de Lisboa Central, Hospital de Curry Cabral, Rua da Beneficência, 8, 1069-166 Lisboa, Portugal; (F.N.); (J.C.)
- ToxOmics, Center of ToxicoGenomics & Human Health, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Susana Santos Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School|Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (I.O.); (R.J.); (S.P.)
- Correspondence: (S.S.L.); (M.R.-R.)
| |
Collapse
|
27
|
Wang J, Nikonorova IA, Silva M, Walsh JD, Tilton PE, Gu A, Akella JS, Barr MM. Sensory cilia act as a specialized venue for regulated extracellular vesicle biogenesis and signaling. Curr Biol 2021; 31:3943-3951.e3. [PMID: 34270950 DOI: 10.1016/j.cub.2021.06.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Ciliary extracellular vesicle (EV) shedding is evolutionarily conserved. In Chlamydomonas and C. elegans, ciliary EVs act as signaling devices.1-3 In cultured mammalian cells, ciliary EVs regulate ciliary disposal but also receptor abundance and signaling, ciliary length, and ciliary membrane dynamics.4-7 Mammalian cilia produce EVs from the tip and along the ciliary membrane.8,9 This study aimed to determine the functional significance of shedding at distinct locations and to explore ciliary EV biogenesis mechanisms. Using Airyscan super-resolution imaging in living C. elegans animals, we find that neuronal sensory cilia shed TRP polycystin-2 channel PKD-2::GFP-carrying EVs from two distinct sites: the ciliary tip and the ciliary base. Ciliary tip shedding requires distal ciliary enrichment of PKD-2 by the myristoylated coiled-coil protein CIL-7. Kinesin-3 KLP-6 and intraflagellar transport (IFT) kinesin-2 motors are also required for ciliary tip EV shedding. A big unanswered question in the EV field is how cells sort EV cargo. Here, we show that two EV cargoes- CIL-7 and PKD-2-localized and trafficked differently along cilia and were sorted to different environmentally released EVs. In response to mating partners, C. elegans males modulate EV cargo composition by increasing the ratio of PKD-2 to CIL-7 EVs. Overall, our study indicates that the cilium and its trafficking machinery act as a specialized venue for regulated EV biogenesis and signaling.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Malan Silva
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Jonathon D Walsh
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Peter E Tilton
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Amanda Gu
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Jyothi S Akella
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
28
|
Wang W, Jack BM, Wang HH, Kavanaugh MA, Maser RL, Tran PV. Intraflagellar Transport Proteins as Regulators of Primary Cilia Length. Front Cell Dev Biol 2021; 9:661350. [PMID: 34095126 PMCID: PMC8170031 DOI: 10.3389/fcell.2021.661350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Primary cilia are small, antenna-like organelles that detect and transduce chemical and mechanical cues in the extracellular environment, regulating cell behavior and, in turn, tissue development and homeostasis. Primary cilia are assembled via intraflagellar transport (IFT), which traffics protein cargo bidirectionally along a microtubular axoneme. Ranging from 1 to 10 μm long, these organelles typically reach a characteristic length dependent on cell type, likely for optimum fulfillment of their specific roles. The importance of an optimal cilia length is underscored by the findings that perturbation of cilia length can be observed in a number of cilia-related diseases. Thus, elucidating mechanisms of cilia length regulation is important for understanding the pathobiology of ciliary diseases. Since cilia assembly/disassembly regulate cilia length, we review the roles of IFT in processes that affect cilia assembly/disassembly, including ciliary transport of structural and membrane proteins, ectocytosis, and tubulin posttranslational modification. Additionally, since the environment of a cell influences cilia length, we also review the various stimuli encountered by renal epithelia in healthy and diseased states that alter cilia length and IFT.
Collapse
Affiliation(s)
- Wei Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Brittany M Jack
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Henry H Wang
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Matthew A Kavanaugh
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Robin L Maser
- Department of Clinical Laboratory Sciences, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Pamela V Tran
- Department of Anatomy and Cell Biology, The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
29
|
Thompson CL, McFie M, Chapple JP, Beales P, Knight MM. Polycystin-2 Is Required for Chondrocyte Mechanotransduction and Traffics to the Primary Cilium in Response to Mechanical Stimulation. Int J Mol Sci 2021; 22:4313. [PMID: 33919210 PMCID: PMC8122406 DOI: 10.3390/ijms22094313] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Primary cilia and associated intraflagellar transport are essential for skeletal development, joint homeostasis, and the response to mechanical stimuli, although the mechanisms remain unclear. Polycystin-2 (PC2) is a member of the transient receptor potential polycystic (TRPP) family of cation channels, and together with Polycystin-1 (PC1), it has been implicated in cilia-mediated mechanotransduction in epithelial cells. The current study investigates the effect of mechanical stimulation on the localization of ciliary polycystins in chondrocytes and tests the hypothesis that they are required in chondrocyte mechanosignaling. Isolated chondrocytes were subjected to mechanical stimulation in the form of uniaxial cyclic tensile strain (CTS) in order to examine the effects on PC2 ciliary localization and matrix gene expression. In the absence of strain, PC2 localizes to the chondrocyte ciliary membrane and neither PC1 nor PC2 are required for ciliogenesis. Cartilage matrix gene expression (Acan, Col2a) is increased in response to 10% CTS. This response is inhibited by siRNA-mediated loss of PC1 or PC2 expression. PC2 ciliary localization requires PC1 and is increased in response to CTS. Increased PC2 cilia trafficking is dependent on the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4) activation. Together, these findings demonstrate for the first time that polycystins are required for chondrocyte mechanotransduction and highlight the mechanosensitive cilia trafficking of PC2 as an important component of cilia-mediated mechanotransduction.
Collapse
Affiliation(s)
- Clare L. Thompson
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| | - Megan McFie
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| | - J. Paul Chapple
- Centre for Endocrinology, William Harvey Research Institute, School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Philip Beales
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK;
| | - Martin M. Knight
- Centre for Predictive In Vitro Models, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK; (M.M.); (M.M.K.)
| |
Collapse
|
30
|
Jacinto R, Sampaio P, Roxo-Rosa M, Pestana S, Lopes SS. Pkd2 Affects Cilia Length and Impacts LR Flow Dynamics and Dand5. Front Cell Dev Biol 2021; 9:624531. [PMID: 33869175 PMCID: PMC8047213 DOI: 10.3389/fcell.2021.624531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
The left-right (LR) field recognizes the importance of the mechanism involving the calcium permeable channel Polycystin-2. However, whether the early LR symmetry breaking mechanism is exclusively via Polycystin-2 has not been tested. For that purpose, we need to be able to isolate the effects of decreasing the levels of Pkd2 protein from any eventual effects on flow dynamics. Here we demonstrate that curly-up (cup) homozygous mutants have abnormal flow dynamics. In addition, we performed one cell stage Pkd2 knockdowns and LR organizer specific Pkd2 knockdowns and observed that both techniques resulted in shorter cilia length and abnormal flow dynamics. We conclude that Pkd2 reduction leads to LR defects that cannot be assigned exclusively to its putative role in mediating mechanosensation because indirectly, by modifying cell shape or decreasing cilia length, Pkd2 deficit affects LR flow dynamics.
Collapse
Affiliation(s)
- Raquel Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Pedro Sampaio
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Mónica Roxo-Rosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sara Pestana
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Susana S Lopes
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
Wang ZM, Gao XF, Zhang JJ, Chen SL. Primary Cilia and Atherosclerosis. Front Physiol 2021; 12:640774. [PMID: 33633590 PMCID: PMC7901939 DOI: 10.3389/fphys.2021.640774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/11/2021] [Indexed: 01/10/2023] Open
Abstract
In artery tree, endothelial function correlates with the distribution of shear stress, a dragging force generated by flowing blood. In laminar shear stress areas, endothelial cells (ECs) are available to prevent atherosclerosis, however, ECs in disturbed shear stress sites are featured with proinflammation and atherogenesis. Basic studies in the shear stress field that focused on the mechanosensors of ECs have attracted the interest of researchers. Among all the known mechanosensors, the primary cilium is distinctive because it is enriched in disturbed shear stress regions and sparse in laminar shear stress areas. The primary cilium, a rod liked micro-organelle, can transmit extracellular mechanical and chemical stimuli into intracellular space. In the cardiovascular system, primary cilia are enriched in disturbed shear stress regions, where blood flow is slow and oscillatory, such as the atrium, downstream of the aortic valve, branches, bifurcations, and inner curves of the artery. However, in the atrioventricular canal and straight vessels, blood flow is laminar, and primary cilia can barely be detected. Primary cilia in the heart cavity prevent ECs from mesenchymal transition and calcification by suppressing transforming growth factor (TGF) signaling. Besides, primary cilia in the vascular endothelium protected ECs against disturbed shear stress-induced cellular damage by triggering Ca2+ influx as well as nitric oxide (NO) release. Moreover, primary cilia inhibit the process of atherosclerosis. In the current review, we discussed ciliogenesis, ciliary structure, as well as ciliary distribution, function and the coordinate signal transduction with shear stress in the cardiovascular system.
Collapse
Affiliation(s)
- Zhi-Mei Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Little RB, Norris DP. Right, left and cilia: How asymmetry is established. Semin Cell Dev Biol 2021; 110:11-18. [PMID: 32571625 DOI: 10.1016/j.semcdb.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.
Collapse
Affiliation(s)
- Rosie B Little
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
33
|
Zhang C, Balbo B, Ma M, Zhao J, Tian X, Kluger Y, Somlo S. Cyclin-Dependent Kinase 1 Activity Is a Driver of Cyst Growth in Polycystic Kidney Disease. J Am Soc Nephrol 2021; 32:41-51. [PMID: 33046531 PMCID: PMC7894654 DOI: 10.1681/asn.2020040511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mutations in PKD1 and PKD2, which encode the transmembrane proteins polycystin-1 and polycystin-2, respectively, cause autosomal dominant polycystic kidney disease (ADPKD). Polycystins are expressed in the primary cilium, and disrupting cilia structure significantly slows ADPKD progression following inactivation of polycystins. The cellular mechanisms of polycystin- and cilia-dependent cyst progression in ADPKD remain incompletely understood. METHODS Unbiased transcriptional profiling in an adult-onset Pkd2 mouse model before cysts formed revealed significant differentially expressed genes (DEGs) in Pkd2 single-knockout kidneys, which were used to identify candidate pathways dysregulated in kidneys destined to form cysts. In vivo studies validated the role of the candidate pathway in the progression of ADPKD. Wild-type and Pkd2/Ift88 double-knockout mice that are protected from cyst growth served as controls. RESULTS The RNASeq data identified cell proliferation as the most dysregulated pathway, with 15 of 241 DEGs related to cell cycle functions. Cdk1 appeared as a central component in this analysis. Cdk1 expression was similarly dysregulated in Pkd1 models of ADPKD, and conditional inactivation of Cdk1 with Pkd1 markedly improved the cystic phenotype and kidney function compared with inactivation of Pkd1 alone. The Pkd1/Cdk1 double knockout blocked cyst cell proliferation that otherwise accompanied Pkd1 inactivation alone. CONCLUSIONS Dysregulation of Cdk1 is an early driver of cyst cell proliferation in ADPKD due to Pkd1 inactivation. Selective targeting of cyst cell proliferation is an effective means of slowing ADPKD progression caused by inactivation of Pkd1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Bruno Balbo
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Ming Ma
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Jun Zhao
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut
| | - Xin Tian
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Yuval Kluger
- Department of Pathology, Yale University, New Haven, Connecticut,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut,Program in Applied Mathematics, Yale University, New Haven, Connecticut
| | - Stefan Somlo
- Department of Internal Medicine, Yale University, New Haven, Connecticut,Department of Genetics, Yale University, New Haven, Connecticut
| |
Collapse
|
34
|
Hu J, Harris PC. Regulation of polycystin expression, maturation and trafficking. Cell Signal 2020; 72:109630. [PMID: 32275942 PMCID: PMC7269868 DOI: 10.1016/j.cellsig.2020.109630] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/26/2022]
Abstract
The major autosomal dominant polycystic kidney disease (ADPKD) genes, PKD1 and PKD2, are wildly expressed at the organ and tissue level. PKD1 encodes polycystin 1 (PC1), a large membrane associated receptor-like protein that can complex with the PKD2 product, PC2. Various cellular locations have been described for both PC1, including the plasma membrane and extracellular vesicles, and PC2, especially the endoplasmic reticulum (ER), but compelling evidence indicates that the primary cilium, a sensory organelle, is the key site for the polycystin complex to prevent PKD. As with other membrane proteins, the ER biogenesis pathway is key to appropriately folding, performing quality control, and exporting fully folded PC1 to the Golgi apparatus. There is a requirement for binding with PC2 and cleavage of PC1 at the GPS for this folding and export to occur. Six different monogenic defects in this pathway lead to cystic disease development, with PC1 apparently particularly sensitive to defects in this general protein processing pathway. Trafficking of membrane proteins, and the polycystins in particular, through the Golgi to the primary cilium have been analyzed in detail, but at this time, there is no clear consensus on a ciliary targeting sequence required to export proteins to the cilium. After transitioning though the trans-Golgi network, polycystin-bearing vesicles are likely sorted to early or recycling endosomes and then transported to the ciliary base, possibly via docking to transition fibers (TF). The membrane-bound polycystin complex then undergoes facilitated trafficking through the transition zone, the diffusion barrier at the base of the cilium, before entering the cilium. Intraflagellar transport (IFT) may be involved in moving the polycystins along the cilia, but data also indicates other mechanisms. The ciliary polycystin complex can be ubiquitinated and removed from cilia by internalization at the ciliary base and may be sent back to the plasma membrane for recycling or to lysosomes for degradation. Monogenic defects in processes regulating the protein composition of cilia are associated with syndromic disorders involving many organ systems, reflecting the pleotropic role of cilia during development and for tissue maintenance. Many of these ciliopathies have renal involvement, likely because of faulty polycystin signaling from cilia. Understanding the expression, maturation and trafficking of the polycystins helps understand PKD pathogenesis and suggests opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jinghua Hu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
35
|
Mizuno K, Shiozawa K, Katoh TA, Minegishi K, Ide T, Ikawa Y, Nishimura H, Takaoka K, Itabashi T, Iwane AH, Nakai J, Shiratori H, Hamada H. Role of Ca 2+ transients at the node of the mouse embryo in breaking of left-right symmetry. SCIENCE ADVANCES 2020; 6:eaba1195. [PMID: 32743070 PMCID: PMC7375832 DOI: 10.1126/sciadv.aba1195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 06/11/2020] [Indexed: 05/14/2023]
Abstract
Immotile cilia sense extracellular signals such as fluid flow, but whether Ca2+ plays a role in flow sensing has been unclear. Here, we examined the role of ciliary Ca2+ in the flow sensing that initiates the breaking of left-right (L-R) symmetry in the mouse embryo. Intraciliary and cytoplasmic Ca2+ transients were detected in the crown cells at the node. These Ca2+ transients showed L-R asymmetry, which was lost in the absence of fluid flow or the PKD2 channel. Further characterization allowed classification of the Ca2+ transients into two types: cilium-derived, L-R-asymmetric transients (type 1) and cilium-independent transients without an L-R bias (type 2). Type 1 intraciliary transients occurred preferentially at the left posterior region of the node, where L-R symmetry breaking takes place. Suppression of intraciliary Ca2+ transients delayed L-R symmetry breaking. Our results implicate cilium-derived Ca2+ transients in crown cells in initiation of L-R symmetry breaking in the mouse embryo.
Collapse
Affiliation(s)
- Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Corresponding author. (K.Miz.); (H.H.)
| | - Kei Shiozawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takanobu A. Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takahiro Ide
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Takeshi Itabashi
- RIKEN Center for Biosystems Dynamics Research, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Atsuko H. Iwane
- RIKEN Center for Biosystems Dynamics Research, Higashi-hiroshima, Hiroshima 739-0046, Japan
| | - Junichi Nakai
- Department of Oral Function and Morphology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hidetaka Shiratori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
- Corresponding author. (K.Miz.); (H.H.)
| |
Collapse
|
36
|
Molinari E, Sayer JA. Disease Modeling To Understand the Pathomechanisms of Human Genetic Kidney Disorders. Clin J Am Soc Nephrol 2020; 15:855-872. [PMID: 32139361 PMCID: PMC7274277 DOI: 10.2215/cjn.08890719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The class of human genetic kidney diseases is extremely broad and heterogeneous. Accordingly, the range of associated disease phenotypes is highly variable. Many children and adults affected by inherited kidney disease will progress to ESKD at some point in life. Extensive research has been performed on various different disease models to investigate the underlying causes of genetic kidney disease and to identify disease mechanisms that are amenable to therapy. We review some of the research highlights that, by modeling inherited kidney disease, contributed to a better understanding of the underlying pathomechanisms, leading to the identification of novel genetic causes, new therapeutic targets, and to the development of new treatments. We also discuss how the implementation of more efficient genome-editing techniques and tissue-culture methods for kidney research is providing us with personalized models for a precision-medicine approach that takes into account the specificities of the patient and the underlying disease. We focus on the most common model systems used in kidney research and discuss how, according to their specific features, they can differentially contribute to biomedical research. Unfortunately, no definitive treatment exists for most inherited kidney disorders, warranting further exploitation of the existing disease models, as well as the implementation of novel, complex, human patient-specific models to deliver research breakthroughs.
Collapse
Affiliation(s)
- Elisa Molinari
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John A. Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
- Renal Services, Newcastle Upon Tyne Hospitals National Health Service Trust, Newcastle upon Tyne, United Kingdom
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
37
|
Cilia and polycystic kidney disease. Semin Cell Dev Biol 2020; 110:139-148. [PMID: 32475690 DOI: 10.1016/j.semcdb.2020.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 11/20/2022]
Abstract
Polycystic kidney disease (PKD), comprising autosomal dominant polycystic kidney disease (ADPKD) and autosomal recessive polycystic kidney disease (ARPKD), is characterized by incessant cyst formation in the kidney and liver. ADPKD and ARPKD represent the leading genetic causes of renal disease in adults and children, respectively. ADPKD is caused by mutations in PKD1 encoding polycystin1 (PC1) and PKD2 encoding polycystin 2 (PC2). PC1/2 are multi-pass transmembrane proteins that form a complex localized in the primary cilium. Predominant ARPKD cases are caused by mutations in polycystic kidney and hepatic disease 1 (PKHD1) gene that encodes the Fibrocystin/Polyductin (FPC) protein, whereas a small subset of cases are caused by mutations in DAZ interacting zinc finger protein 1 like (DZIP1L) gene. FPC is a type I transmembrane protein, localizing to the cilium and basal body, in addition to other compartments, and DZIP1L encodes a transition zone/basal body protein. Apparently, PC1/2 and FPC are signaling molecules, while the mechanism that cilia employ to govern renal tubule morphology and prevent cyst formation is unclear. Nonetheless, recent genetic and biochemical studies offer a glimpse of putative physiological malfunctions and the pathomechanisms underlying both disease entities. In this review, I summarize the results of genetic studies that deduced the function of PC1/2 on cilia and of cilia themselves in cyst formation in ADPKD, and I discuss studies regarding regulation of polycystin biogenesis and cilia trafficking. I also summarize the synergistic genetic interactions between Pkd1 and Pkhd1, and the unique tissue patterning event controlled by FPC, but not PC1. Interestingly, while DZIP1L mutations generate compromised PC1/2 cilia expression, FPC deficiency does not affect PC1/2 biogenesis and ciliary localization, indicating that divergent mechanisms could lead to cyst formation in ARPKD. I conclude by outlining promising areas for future PKD research and highlight rationales for potential therapeutic interventions for PKD treatment.
Collapse
|
38
|
Maser RL, Calvet JP. Adhesion GPCRs as a paradigm for understanding polycystin-1 G protein regulation. Cell Signal 2020; 72:109637. [PMID: 32305667 DOI: 10.1016/j.cellsig.2020.109637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Polycystin-1, whose mutation is the most frequent cause of autosomal dominant polycystic kidney disease, is an extremely large and multi-faceted membrane protein whose primary or proximal cyst-preventing function remains undetermined. Accumulating evidence supports the idea that modulation of cellular signaling by heterotrimeric G proteins is a critical function of polycystin-1. The presence of a cis-autocatalyzed, G protein-coupled receptor (GPCR) proteolytic cleavage site, or GPS, in its extracellular N-terminal domain immediately preceding the first transmembrane domain is one of the notable conserved features of the polycystin-1-like protein family, and also of the family of cell adhesion GPCRs. Adhesion GPCRs are one of five families within the GPCR superfamily and are distinguished by a large N-terminal extracellular region consisting of multiple adhesion modules with a GPS-containing GAIN domain and bimodal functions in cell adhesion and signal transduction. Recent advances from studies of adhesion GPCRs provide a new paradigm for unraveling the mechanisms by which polycystin-1-associated G protein signaling contributes to the pathogenesis of polycystic kidney disease. This review highlights the structural and functional features shared by polycystin-1 and the adhesion GPCRs and discusses the implications of such similarities for our further understanding of the functions of this complicated protein.
Collapse
Affiliation(s)
- Robin L Maser
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| | - James P Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA; Jared Grantham Kidney Institute, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160, USA.
| |
Collapse
|
39
|
Brill AL, Fischer TT, Walters JM, Marlier A, Sewanan LR, Wilson PC, Johnson EK, Moeckel G, Cantley LG, Campbell SG, Nerbonne JM, Chung HJ, Robert ME, Ehrlich BE. Polycystin 2 is increased in disease to protect against stress-induced cell death. Sci Rep 2020; 10:386. [PMID: 31941974 PMCID: PMC6962458 DOI: 10.1038/s41598-019-57286-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Polycystin 2 (PC2 or TRPP1, formerly TRPP2) is a calcium-permeant Transient Receptor Potential (TRP) cation channel expressed primarily on the endoplasmic reticulum (ER) membrane and primary cilia of all cell and tissue types. Despite its ubiquitous expression throughout the body, studies of PC2 have focused primarily on its role in the kidney, as mutations in PC2 lead to the development of autosomal dominant polycystic kidney disease (ADPKD), a debilitating condition for which there is no cure. However, the endogenous role that PC2 plays in the regulation of general cellular homeostasis remains unclear. In this study, we measure how PC2 expression changes in different pathological states, determine that its abundance is increased under conditions of cellular stress in multiple tissues including human disease, and conclude that PC2-deficient cells have increased susceptibility to cell death induced by stress. Our results offer new insight into the normal function of PC2 as a ubiquitous stress-sensitive protein whose expression is up-regulated in response to cell stress to protect against pathological cell death in multiple diseases.
Collapse
Affiliation(s)
- Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, United States of America
| | - Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT, 06510, United States of America.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Jennifer M Walters
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Arnaud Marlier
- Department of Internal Medicine, Yale University, New Haven, CT, 06510, United States of America
| | - Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, United States of America
| | - Parker C Wilson
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, United States of America
| | - Eric K Johnson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, United States of America
| | - Gilbert Moeckel
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America
| | - Lloyd G Cantley
- Department of Internal Medicine, Yale University, New Haven, CT, 06510, United States of America
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, United States of America
| | - Jeanne M Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, United States of America.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, United States of America
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Marie E Robert
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, United States of America. .,Department of Pharmacology, Yale University, New Haven, CT, 06510, United States of America.
| |
Collapse
|
40
|
Brill AL, Ehrlich BE. Polycystin 2: A calcium channel, channel partner, and regulator of calcium homeostasis in ADPKD. Cell Signal 2019; 66:109490. [PMID: 31805375 DOI: 10.1016/j.cellsig.2019.109490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 01/26/2023]
Abstract
Polycystin 2 (PC2) is one of two main protein types responsible for the underlying etiology of autosomal dominant polycystic kidney disease (ADPKD), the most prevalent monogenic renal disease in the world. This debilitating and currently incurable condition is caused by loss-of-function mutations in PKD2 and PKD1, the genes encoding for PC2 and Polycystin 1 (PC1), respectively. Two-hit mutation events in these genes lead to renal cyst formation and eventual kidney failure, the main hallmarks of ADPKD. Though much is known concerning the physiological consequences and dysfunctional signaling mechanisms resulting from ADPKD development, to best understand the requirement of PC2 in maintaining organ homeostasis, it is important to recognize how PC2 acts under normal conditions. As such, an array of work has been performed characterizing the endogenous function of PC2, revealing it to be a member of the transient receptor potential (TRP) channel family of proteins. As a TRP protein, PC2 is a nonselective, cation-permeant, calcium-sensitive channel expressed in all tissue types, where it localizes primarily on the endoplasmic reticulum (ER), primary cilia, and plasma membrane. In addition to its channel function, PC2 interacts with and acts as a regulator of a number of other channels, ultimately further affecting intracellular signaling and leading to dysfunction in its absence. In this review, we describe the biophysical and physiological properties of PC2 as a cation channel and modulator of intracellular calcium channels, along with how these properties are altered in ADPKD.
Collapse
Affiliation(s)
- Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA; Department of Pharmacology, Yale University, New Haven, CT, USA.
| |
Collapse
|