1
|
Hoang H, Matsumoto N, Miyano M, Ikegaya Y, Cortese A. Dopamine-induced relaxation of spike synchrony diversifies burst patterns in cultured hippocampal networks. Neural Netw 2025; 181:106888. [PMID: 39549616 DOI: 10.1016/j.neunet.2024.106888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/17/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
The intricate interplay of neurotransmitters orchestrates a symphony of neural activity in the hippocampus, with dopamine emerging as a key conductor in this complex ensemble. Despite numerous studies uncovering the cellular mechanisms of dopamine, its influence on hippocampal neural networks remains elusive. Combining in vitro electrophysiological recordings of rat embryonic hippocampal neurons, pharmacological interventions, and computational analyses of spike trains, we found that dopamine induces a relaxation in network synchrony. This relaxation expands the repertoire of burst dynamics within these hippocampal networks, a phenomenon notably absent under the administration of dopamine antagonists. Our study provides a thorough understanding of how dopamine signaling influences the formation of functional networks among hippocampal neurons.
Collapse
Affiliation(s)
- Huu Hoang
- Neural Information Analysis Laboratories, ATR Institute International, 619-0288 Kyoto, Japan.
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 100-0005 Tokyo, Japan
| | - Miyuki Miyano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 100-0005 Tokyo, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 113-0033 Tokyo, Japan; Institute for AI and Beyond, The University of Tokyo, 100-0005 Tokyo, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology, 565-0871 Osaka, Japan.
| | - Aurelio Cortese
- Computational Neuroscience Laboratories, ATR Institute International, 619-0288 Kyoto, Japan.
| |
Collapse
|
2
|
Kobayashi R, Shinomoto S. Inference of monosynaptic connections from parallel spike trains: A review. Neurosci Res 2024:S0168-0102(24)00097-X. [PMID: 39098768 DOI: 10.1016/j.neures.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024]
Abstract
This article presents a mini-review about the progress in inferring monosynaptic connections from spike trains of multiple neurons over the past twenty years. First, we explain a variety of meanings of "neuronal connectivity" in different research areas of neuroscience, such as structural connectivity, monosynaptic connectivity, and functional connectivity. Among these, we focus on the methods used to infer the monosynaptic connectivity from spike data. We then summarize the inference methods based on two main approaches, i.e., correlation-based and model-based approaches. Finally, we describe available source codes for connectivity inference and future challenges. Although inference will never be perfect, the accuracy of identifying the monosynaptic connections has improved dramatically in recent years due to continuous efforts.
Collapse
Affiliation(s)
- Ryota Kobayashi
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan; Mathematics and Informatics Center, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Shigeru Shinomoto
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Research Organization of Open Innovation and Collaboration, Ritsumeikan University, Osaka 567-8570, Japan
| |
Collapse
|
3
|
Iwase M, Diba K, Pastalkova E, Mizuseki K. Dynamics of spike transmission and suppression between principal cells and interneurons in the hippocampus and entorhinal cortex. Hippocampus 2024; 34:393-421. [PMID: 38874439 DOI: 10.1002/hipo.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Synaptic excitation and inhibition are essential for neuronal communication. However, the variables that regulate synaptic excitation and inhibition in the intact brain remain largely unknown. Here, we examined how spike transmission and suppression between principal cells (PCs) and interneurons (INTs) are modulated by activity history, brain state, cell type, and somatic distance between presynaptic and postsynaptic neurons by applying cross-correlogram analyses to datasets recorded from the dorsal hippocampus and medial entorhinal cortex (MEC) of 11 male behaving and sleeping Long Evans rats. The strength, temporal delay, and brain-state dependency of the spike transmission and suppression depended on the subregions/layers. The spike transmission probability of PC-INT excitatory pairs that showed short-term depression versus short-term facilitation was higher in CA1 and lower in CA3. Likewise, the intersomatic distance affected the proportion of PC-INT excitatory pairs that showed short-term depression and facilitation in the opposite manner in CA1 compared with CA3. The time constant of depression was longer, while that of facilitation was shorter in MEC than in CA1 and CA3. During sharp-wave ripples, spike transmission showed a larger gain in the MEC than in CA1 and CA3. The intersomatic distance affected the spike transmission gain during sharp-wave ripples differently in CA1 versus CA3. A subgroup of MEC layer 3 (EC3) INTs preferentially received excitatory inputs from and inhibited MEC layer 2 (EC2) PCs. The EC2 PC-EC3 INT excitatory pairs, most of which showed short-term depression, exhibited higher spike transmission probabilities than the EC2 PC-EC2 INT and EC3 PC-EC3 INT excitatory pairs. EC2 putative stellate cells exhibited stronger spike transmission to and received weaker spike suppression from EC3 INTs than EC2 putative pyramidal cells. This study provides detailed comparisons of monosynaptic interaction dynamics in the hippocampal-entorhinal loop, which may help to elucidate circuit operations.
Collapse
Affiliation(s)
- Motosada Iwase
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kamran Diba
- Department of Anesthesiology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eva Pastalkova
- The William Alanson White Institute of Psychiatry, Psychoanalysis & Psychology, New York, New York, USA
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
4
|
Tang D, Zylberberg J, Jia X, Choi H. Stimulus type shapes the topology of cellular functional networks in mouse visual cortex. Nat Commun 2024; 15:5753. [PMID: 38982078 PMCID: PMC11233648 DOI: 10.1038/s41467-024-49704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
On the timescale of sensory processing, neuronal networks have relatively fixed anatomical connectivity, while functional interactions between neurons can vary depending on the ongoing activity of the neurons within the network. We thus hypothesized that different types of stimuli could lead those networks to display stimulus-dependent functional connectivity patterns. To test this hypothesis, we analyzed single-cell resolution electrophysiological data from the Allen Institute, with simultaneous recordings of stimulus-evoked activity from neurons across 6 different regions of mouse visual cortex. Comparing the functional connectivity patterns during different stimulus types, we made several nontrivial observations: (1) while the frequencies of different functional motifs were preserved across stimuli, the identities of the neurons within those motifs changed; (2) the degree to which functional modules are contained within a single brain region increases with stimulus complexity. Altogether, our work reveals unexpected stimulus-dependence to the way groups of neurons interact to process incoming sensory information.
Collapse
Affiliation(s)
- Disheng Tang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, PR China.
| | - Joel Zylberberg
- Department of Physics and Astronomy, and Centre for Vision Research, York University, Toronto, ON M3J 1P3, ON, Canada.
- Learning in Machines and Brains Program, CIFAR, Toronto, ON M5G 1M1, ON, Canada.
| | - Xiaoxuan Jia
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, PR China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Hannah Choi
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| |
Collapse
|
5
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. Front Neurosci 2024; 18:1387098. [PMID: 39035779 PMCID: PMC11258030 DOI: 10.3389/fnins.2024.1387098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/07/2024] [Indexed: 07/23/2024] Open
Abstract
Introduction Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate anesthetic state-dependent effective connectivity of neurons in rat visual cortex in vivo. Methods Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. Results Microstimulation caused early (<10 ms) increase followed by prolonged (11-100 ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1 mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. The number of network motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. Conclusion The results illuminate the impact of anesthesia on functional integrity of local cortical circuits affecting the state of consciousness.
Collapse
Affiliation(s)
- Anthony G Hudetz
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
6
|
Tsubo Y, Shinomoto S. Nondifferentiable activity in the brain. PNAS NEXUS 2024; 3:pgae261. [PMID: 38994500 PMCID: PMC11238849 DOI: 10.1093/pnasnexus/pgae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024]
Abstract
Spike raster plots of numerous neurons show vertical stripes, indicating that neurons exhibit synchronous activity in the brain. We seek to determine whether these coherent dynamics are caused by smooth brainwave activity or by something else. By analyzing biological data, we find that their cross-correlograms exhibit not only slow undulation but also a cusp at the origin, in addition to possible signs of monosynaptic connectivity. Here we show that undulation emerges if neurons are subject to smooth brainwave oscillations while a cusp results from nondifferentiable fluctuations. While modern analysis methods have achieved good connectivity estimation by adapting the models to slow undulation, they still make false inferences due to the cusp. We devise a new analysis method that may solve both problems. We also demonstrate that oscillations and nondifferentiable fluctuations may emerge in simulations of large-scale neural networks.
Collapse
Affiliation(s)
- Yasuhiro Tsubo
- College of Information Science and Engineering, Ritsumeikan University, Osaka 567-8570, Japan
| | - Shigeru Shinomoto
- Research Organization of Open Innovation and Collaboration, Ritsumeikan University, Osaka 567-8570, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Hudetz AG. Microstimulation reveals anesthetic state-dependent effective connectivity of neurons in cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591664. [PMID: 38746366 PMCID: PMC11092428 DOI: 10.1101/2024.04.29.591664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Complex neuronal interactions underlie cortical information processing that can be compromised in altered states of consciousness. Here intracortical microstimulation was applied to investigate the state-dependent effective connectivity of neurons in rat visual cortex in vivo. Extracellular activity was recorded at 32 sites in layers 5/6 while stimulating with charge-balanced discrete pulses at each electrode in random order. The same stimulation pattern was applied at three levels of anesthesia with desflurane and in wakefulness. Spikes were sorted and classified by their waveform features as putative excitatory and inhibitory neurons. Microstimulation caused early (<10ms) increase followed by prolonged (11-100ms) decrease in spiking of all neurons throughout the electrode array. The early response of excitatory but not inhibitory neurons decayed rapidly with distance from the stimulation site over 1mm. Effective connectivity of neurons with significant stimulus response was dense in wakefulness and sparse under anesthesia. Network motifs were identified in graphs of effective connectivity constructed from monosynaptic cross-correlograms. The number of motifs, especially those of higher order, increased rapidly as the anesthesia was withdrawn indicating a substantial increase in network connectivity as the animals woke up. The results illuminate the impact of anesthesia on functional integrity of local circuits affecting the state of consciousness.
Collapse
|
8
|
Liang T, Brinkman BAW. Statistically inferred neuronal connections in subsampled neural networks strongly correlate with spike train covariances. Phys Rev E 2024; 109:044404. [PMID: 38755896 DOI: 10.1103/physreve.109.044404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/29/2024] [Indexed: 05/18/2024]
Abstract
Statistically inferred neuronal connections from observed spike train data are often skewed from ground truth by factors such as model mismatch, unobserved neurons, and limited data. Spike train covariances, sometimes referred to as "functional connections," are often used as a proxy for the connections between pairs of neurons, but reflect statistical relationships between neurons, not anatomical connections. Moreover, covariances are not causal: spiking activity is correlated in both the past and the future, whereas neurons respond only to synaptic inputs in the past. Connections inferred by maximum likelihood inference, however, can be constrained to be causal. However, we show in this work that the inferred connections in spontaneously active networks modeled by stochastic leaky integrate-and-fire networks strongly correlate with the covariances between neurons, and may reflect noncausal relationships, when many neurons are unobserved or when neurons are weakly coupled. This phenomenon occurs across different network structures, including random networks and balanced excitatory-inhibitory networks. We use a combination of simulations and a mean-field analysis with fluctuation corrections to elucidate the relationships between spike train covariances, inferred synaptic filters, and ground-truth connections in partially observed networks.
Collapse
Affiliation(s)
- Tong Liang
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA
| | - Braden A W Brinkman
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
9
|
Vareberg AD, Bok I, Eizadi J, Ren X, Hai A. Inference of network connectivity from temporally binned spike trains. J Neurosci Methods 2024; 404:110073. [PMID: 38309313 PMCID: PMC10949361 DOI: 10.1016/j.jneumeth.2024.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/19/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Processing neural activity to reconstruct network connectivity is a central focus of neuroscience, yet the spatiotemporal requisites of biological nervous systems are challenging for current neuronal sensing modalities. Consequently, methods that leverage limited data to successfully infer synaptic connections, predict activity at single unit resolution, and decipher their effect on whole systems, can uncover critical information about neural processing. Despite the emergence of powerful methods for inferring connectivity, network reconstruction based on temporally subsampled data remains insufficiently unexplored. NEW METHOD We infer synaptic weights by processing firing rates within variable time bins for a heterogeneous feed-forward network of excitatory, inhibitory, and unconnected units. We assess classification and optimize model parameters for postsynaptic spike train reconstruction. We test our method on a physiological network of leaky integrate-and-fire neurons displaying bursting patterns and assess prediction of postsynaptic activity from microelectrode array data. RESULTS Results reveal parameters for improved prediction and performance and suggest that lower resolution data and limited access to neurons can be preferred. COMPARISON WITH EXISTING METHOD(S) Recent computational methods demonstrate highly improved reconstruction of connectivity from networks of parallel spike trains by considering spike lag, time-varying firing rates, and other underlying dynamics. However, these methods insufficiently explore temporal subsampling representative of novel data types. CONCLUSIONS We provide a framework for reverse engineering neural networks from data with limited temporal quality, describing optimal parameters for each bin size, which can be further improved using non-linear methods and applied to more complicated readouts and connectivity distributions in multiple brain circuits.
Collapse
Affiliation(s)
- Adam D Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Jenna Eizadi
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States
| | - Xiaoxuan Ren
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, United States; Department of Electrical and Computer Engineering, University of Wisconsin-Madison, United States; Wisconsin Institute for Translational Neuroengineering (WITNe), University of Wisconsin-Madison, United States.
| |
Collapse
|
10
|
Barta T, Kostal L. Shared input and recurrency in neural networks for metabolically efficient information transmission. PLoS Comput Biol 2024; 20:e1011896. [PMID: 38394341 PMCID: PMC10917264 DOI: 10.1371/journal.pcbi.1011896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Shared input to a population of neurons induces noise correlations, which can decrease the information carried by a population activity. Inhibitory feedback in recurrent neural networks can reduce the noise correlations and thus increase the information carried by the population activity. However, the activity of inhibitory neurons is costly. This inhibitory feedback decreases the gain of the population. Thus, depolarization of its neurons requires stronger excitatory synaptic input, which is associated with higher ATP consumption. Given that the goal of neural populations is to transmit as much information as possible at minimal metabolic costs, it is unclear whether the increased information transmission reliability provided by inhibitory feedback compensates for the additional costs. We analyze this problem in a network of leaky integrate-and-fire neurons receiving correlated input. By maximizing mutual information with metabolic cost constraints, we show that there is an optimal strength of recurrent connections in the network, which maximizes the value of mutual information-per-cost. For higher values of input correlation, the mutual information-per-cost is higher for recurrent networks with inhibitory feedback compared to feedforward networks without any inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a recurrent network can be inferred from metabolically efficient coding arguments and that decorrelation of the input by inhibitory feedback compensates for the associated increased metabolic costs.
Collapse
Affiliation(s)
- Tomas Barta
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Neural Coding and Brain Computing Unit, Okinawa Institute of Science and Technology, Onna-son, Okinawa, Japan
| | - Lubomir Kostal
- Laboratory of Computational Neuroscience, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
Ren X, Bok I, Vareberg A, Hai A. Stimulation-mediated reverse engineering of silent neural networks. J Neurophysiol 2023; 129:1505-1514. [PMID: 37222450 PMCID: PMC10311990 DOI: 10.1152/jn.00100.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023] Open
Abstract
Reconstructing connectivity of neuronal networks from single-cell activity is essential to understanding brain function, but the challenge of deciphering connections from populations of silent neurons has been largely unmet. We demonstrate a protocol for deriving connectivity of simulated silent neuronal networks using stimulation combined with a supervised learning algorithm, which enables inferring connection weights with high fidelity and predicting spike trains at the single-spike and single-cell levels with high accuracy. We apply our method on rat cortical recordings fed through a circuit of heterogeneously connected leaky integrate-and-fire neurons firing at typical lognormal distributions and demonstrate improved performance during stimulation for multiple subpopulations. These testable predictions about the number and protocol of the required stimulations are expected to enhance future efforts for deriving neuronal connectivity and drive new experiments to better understand brain function.NEW & NOTEWORTHY We introduce a new concept for reverse engineering silent neuronal networks using a supervised learning algorithm combined with stimulation. We quantify the performance of the algorithm and the precision of deriving synaptic weights in inhibitory and excitatory subpopulations. We then show that stimulation enables deciphering connectivity of heterogeneous circuits fed with real electrode array recordings, which could extend in the future to deciphering connectivity in broad biological and artificial neural networks.
Collapse
Affiliation(s)
- Xiaoxuan Ren
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Ilhan Bok
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Adam Vareberg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Aviad Hai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe), Madison, Wisconsin, United States
| |
Collapse
|
12
|
Chen S, Yang Q, Lim S. Efficient inference of synaptic plasticity rule with Gaussian process regression. iScience 2023; 26:106182. [PMID: 36879810 PMCID: PMC9985048 DOI: 10.1016/j.isci.2023.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Finding the form of synaptic plasticity is critical to understanding its functions underlying learning and memory. We investigated an efficient method to infer synaptic plasticity rules in various experimental settings. We considered biologically plausible models fitting a wide range of in-vitro studies and examined the recovery of their firing-rate dependence from sparse and noisy data. Among the methods assuming low-rankness or smoothness of plasticity rules, Gaussian process regression (GPR), a nonparametric Bayesian approach, performs the best. Under the conditions measuring changes in synaptic weights directly or measuring changes in neural activities as indirect observables of synaptic plasticity, which leads to different inference problems, GPR performs well. Also, GPR could simultaneously recover multiple plasticity rules and robustly perform under various plasticity rules and noise levels. Such flexibility and efficiency, particularly at the low sampling regime, make GPR suitable for recent experimental developments and inferring a broader class of plasticity models.
Collapse
Affiliation(s)
- Shirui Chen
- Department of Applied Mathematics, University of Washington, Lewis Hall 201, Box 353925, Seattle, WA 98195-3925, USA
- Neural Science, New York University Shanghai, 1555 Century Avenue, Shanghai, 200122, China
| | - Qixin Yang
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, The Suzanne and Charles Goodman Brain Sciences Building, Edmond J. Safra Campus, Jerusalem, 9190401, Israel
- Neural Science, New York University Shanghai, 1555 Century Avenue, Shanghai, 200122, China
| | - Sukbin Lim
- Neural Science, New York University Shanghai, 1555 Century Avenue, Shanghai, 200122, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, 3663 Zhongshan Road North, Shanghai, 200062, China
| |
Collapse
|
13
|
Zhang W, Yin M, Jiang M, Dai Q. Partitioned estimation methodology of biological neuronal networks with topology-based module detection. Comput Biol Med 2023; 154:106552. [PMID: 36738704 DOI: 10.1016/j.compbiomed.2023.106552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023]
Abstract
Parameter estimation of neuronal networks is closely related with information processing mechanisms in neural systems. Estimation of synaptic parameters for neuronal networks was an time consuming task. Due to complex interactions between neurons, computational efficiency and accuracy of estimation methods is relatively low. Meanwhile, inherent topological properties such as core-periphery and modular structures are not fully considered in estimation. In order to improve the efficiency and accuracy of estimation, this study proposes a two-stage PartitionMLE method which introduces detected neuronal modules as topological constraints in estimation. The proposed PartitionMLE method firstly decomposes the system into multiple non-overlapping neuronal modules, by performing topology-based module detection. Dynamic parameters including intra-modular and inter-modular parameters are estimated in two stages, using detected hubs to connect non-overlapping neuronal modules. The contributions of PartitionMLE method are two-folds: reducing estimation errors and improving the model interpretability. Experiments about neuronal networks consisting of Hodgkin-Huxley (HH) and leaky integrate-and-firing (LIF) neurons validated the effectiveness of the PartitionMLE method, with comparison to the single-stage MLE method.
Collapse
Affiliation(s)
- Wei Zhang
- Zhejiang Sci-Tech University, Second Street 928, Hangzhou, 310018, China.
| | - Muqi Yin
- Institute of Cyber-Systems and Control, Zhejiang University, Zheda Road 38, Hangzhou, 310027, China
| | - Mingfeng Jiang
- Zhejiang Sci-Tech University, Second Street 928, Hangzhou, 310018, China
| | - Qi Dai
- Zhejiang Sci-Tech University, Second Street 928, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Shomali SR, Rasuli SN, Ahmadabadi MN, Shimazaki H. Uncovering hidden network architecture from spiking activities using an exact statistical input-output relation of neurons. Commun Biol 2023; 6:169. [PMID: 36792689 PMCID: PMC9932086 DOI: 10.1038/s42003-023-04511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 01/20/2023] [Indexed: 02/17/2023] Open
Abstract
Identifying network architecture from observed neural activities is crucial in neuroscience studies. A key requirement is knowledge of the statistical input-output relation of single neurons in vivo. By utilizing an exact analytical solution of the spike-timing for leaky integrate-and-fire neurons under noisy inputs balanced near the threshold, we construct a framework that links synaptic type, strength, and spiking nonlinearity with the statistics of neuronal population activity. The framework explains structured pairwise and higher-order interactions of neurons receiving common inputs under different architectures. We compared the theoretical predictions with the activity of monkey and mouse V1 neurons and found that excitatory inputs given to pairs explained the observed sparse activity characterized by strong negative triple-wise interactions, thereby ruling out the alternative explanation by shared inhibition. Moreover, we showed that the strong interactions are a signature of excitatory rather than inhibitory inputs whenever the spontaneous rate is low. We present a guide map of neural interactions that help researchers to specify the hidden neuronal motifs underlying observed interactions found in empirical data.
Collapse
Affiliation(s)
- Safura Rashid Shomali
- School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5746, Iran.
| | - Seyyed Nader Rasuli
- grid.418744.a0000 0000 8841 7951School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531 Iran ,grid.411872.90000 0001 2087 2250Department of Physics, University of Guilan, Rasht, 41335-1914 Iran
| | - Majid Nili Ahmadabadi
- grid.46072.370000 0004 0612 7950Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, 14395-515 Iran
| | - Hideaki Shimazaki
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan. .,Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Hokkaido, 060-0812, Japan.
| |
Collapse
|
15
|
Algorithms for Finding Influential People with Mixed Centrality in Social Networks. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
16
|
Celotto M, Lemke S, Panzeri S. Inferring the temporal evolution of synaptic weights from dynamic functional connectivity. Brain Inform 2022; 9:28. [PMID: 36480076 PMCID: PMC9732068 DOI: 10.1186/s40708-022-00178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
How to capture the temporal evolution of synaptic weights from measures of dynamic functional connectivity between the activity of different simultaneously recorded neurons is an important and open problem in systems neuroscience. Here, we report methodological progress to address this issue. We first simulated recurrent neural network models of spiking neurons with spike timing-dependent plasticity mechanisms that generate time-varying synaptic and functional coupling. We then used these simulations to test analytical approaches that infer fixed and time-varying properties of synaptic connectivity from directed functional connectivity measures, such as cross-covariance and transfer entropy. We found that, while both cross-covariance and transfer entropy provide robust estimates of which synapses are present in the network and their communication delays, dynamic functional connectivity measured via cross-covariance better captures the evolution of synaptic weights over time. We also established how measures of information transmission delays from static functional connectivity computed over long recording periods (i.e., several hours) can improve shorter time-scale estimates of the temporal evolution of synaptic weights from dynamic functional connectivity. These results provide useful information about how to accurately estimate the temporal variation of synaptic strength from spiking activity measures.
Collapse
Affiliation(s)
- Marco Celotto
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy.
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | - Stefan Lemke
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, USA
| | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
- Neural Computation Laboratory, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
17
|
Trepka EB, Zhu S, Xia R, Chen X, Moore T. Functional interactions among neurons within single columns of macaque V1. eLife 2022; 11:e79322. [PMID: 36321687 PMCID: PMC9662816 DOI: 10.7554/elife.79322] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Recent developments in high-density neurophysiological tools now make it possible to record from hundreds of single neurons within local, highly interconnected neural networks. Among the many advantages of such recordings is that they dramatically increase the quantity of identifiable, functional interactions between neurons thereby providing an unprecedented view of local circuits. Using high-density, Neuropixels recordings from single neocortical columns of primary visual cortex in nonhuman primates, we identified 1000s of functionally interacting neuronal pairs using established crosscorrelation approaches. Our results reveal clear and systematic variations in the synchrony and strength of functional interactions within single cortical columns. Despite neurons residing within the same column, both measures of interactions depended heavily on the vertical distance separating neuronal pairs, as well as on the similarity of stimulus tuning. In addition, we leveraged the statistical power afforded by the large numbers of functionally interacting pairs to categorize interactions between neurons based on their crosscorrelation functions. These analyses identified distinct, putative classes of functional interactions within the full population. These classes of functional interactions were corroborated by their unique distributions across defined laminar compartments and were consistent with known properties of V1 cortical circuitry, such as the lead-lag relationship between simple and complex cells. Our results provide a clear proof-of-principle for the use of high-density neurophysiological recordings to assess circuit-level interactions within local neuronal networks.
Collapse
Affiliation(s)
- Ethan B Trepka
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Neurosciences Program, Stanford UniversityStanfordUnited States
| | - Shude Zhu
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Ruobing Xia
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| | - Xiaomo Chen
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
- Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, University of California, DavisDavisUnited States
| | - Tirin Moore
- Department of Neurobiology, Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
18
|
Sukman LJ, Stark E. Cortical Pyramidal and Parvalbumin Cells Exhibit Distinct Spatiotemporal Extracellular Electric Potentials. eNeuro 2022; 9:ENEURO.0265-22.2022. [PMID: 36414411 PMCID: PMC9744183 DOI: 10.1523/eneuro.0265-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022] Open
Abstract
Brain circuits are composed of diverse cell types with distinct morphologies, connections, and distributions of ion channels. Modeling suggests that the spatial distribution of the extracellular voltage during a spike depends on cellular morphology, connectivity, and identity. However, experimental evidence from the intact brain is lacking. Here, we combined high-density recordings from hippocampal region CA1 and neocortex of freely moving mice with optogenetic tagging of parvalbumin-immunoreactive (PV) cells. We used ground truth tagging of the recorded pyramidal cells (PYR) and PV cells to construct binary classification models. Features derived from single-channel waveforms or from spike timing alone allowed near-perfect classification of PYR and PV cells. To determine whether there is unique information in the spatial distribution of the extracellular potentials, we removed all single-channel waveform information from the multichannel waveforms using an event-based delta-transformation. We found that spatiotemporal features derived from the transformed waveforms yield accurate classification. The extracellular analog of the spatial distribution of the initial depolarization phase provided the highest contribution to the spatially based prediction. Compared with PV cell spikes, PYR spikes exhibited higher spatial synchrony at the beginning of the extracellular spike and lower synchrony at the trough. The successful classification of PYR and PV cells based on purely spatial features provides direct experimental evidence that spikes of distinct cell types are associated with distinct spatial distributions of extracellular potentials.
Collapse
Affiliation(s)
- Lior J Sukman
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
19
|
Xue X, Buccino AP, Kumar SS, Hierlemann A, Bartram J. Inferring monosynaptic connections from paired dendritic spine Ca 2+imaging and large-scale recording of extracellular spiking. J Neural Eng 2022; 19:046044. [PMID: 35931040 PMCID: PMC7613561 DOI: 10.1088/1741-2552/ac8765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 11/12/2022]
Abstract
Objective: Techniques to identify monosynaptic connections between neurons have been vital for neuroscience research, facilitating important advancements concerning network topology, synaptic plasticity, and synaptic integration, among others.Approach: Here, we introduce a novel approach to identify and monitor monosynaptic connections using high-resolution dendritic spine Ca2+imaging combined with simultaneous large-scale recording of extracellular electrical activity by means of high-density microelectrode arrays.Main results: We introduce an easily adoptable analysis pipeline that associates the imaged spine with its presynaptic unit and test it onin vitrorecordings. The method is further validated and optimized by simulating synaptically-evoked spine Ca2+transients based on measured spike trains in order to obtain simulated ground-truth connections.Significance: The proposed approach offers unique advantages as (a) it can be used to identify monosynaptic connections with an accurate localization of the synapse within the dendritic tree, (b) it provides precise information of presynaptic spiking, and (c) postsynaptic spine Ca2+signals and, finally, (d) the non-invasive nature of the proposed method allows for long-term measurements. The analysis toolkit together with the rich data sets that were acquired are made publicly available for further exploration by the research community.
Collapse
|
20
|
Ouchi T, Orsborn AL. Quantifying the influence of stimulation protocols on neural network connectivity inference to optimize rapid network measurements. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2369-2372. [PMID: 36085860 DOI: 10.1109/embc48229.2022.9871658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Connectivity is key to understanding neural circuit computations. However, estimating in vivo connectivity using recording of activity alone is challenging. Issues include common input and bias errors in inference, and limited temporal resolution due to large data requirements. Perturbations (e.g. stimulation) can improve inference accuracy and accelerate estimation. However, optimal stimulation protocols for rapid network estimation are not yet established. Here, we use neural network simulations to identify stimulation protocols that minimize connectivity inference errors when using generalized linear model inference. We find that stimulation parameters that balance excitatory and inhibitory activity minimize inference error. We also show that pairing optimized stimulation with adaptive protocols that choose neurons to stimulate via Bayesian inference may ultimately enable rapid network inference.
Collapse
|
21
|
Spivak L, Levi A, Sloin HE, Someck S, Stark E. Deconvolution improves the detection and quantification of spike transmission gain from spike trains. Commun Biol 2022; 5:520. [PMID: 35641587 PMCID: PMC9156687 DOI: 10.1038/s42003-022-03450-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/04/2022] [Indexed: 12/22/2022] Open
Abstract
Accurate detection and quantification of spike transmission between neurons is essential for determining neural network mechanisms that govern cognitive functions. Using point process and conductance-based simulations, we found that existing methods for determining neuronal connectivity from spike times are highly affected by burst spiking activity, resulting in over- or underestimation of spike transmission. To improve performance, we developed a mathematical framework for decomposing the cross-correlation between two spike trains. We then devised a deconvolution-based algorithm for removing effects of second-order spike train statistics. Deconvolution removed the effect of burst spiking, improving the estimation of neuronal connectivity yielded by state-of-the-art methods. Application of deconvolution to neuronal data recorded from hippocampal region CA1 of freely-moving mice produced higher estimates of spike transmission, in particular when spike trains exhibited bursts. Deconvolution facilitates the precise construction of complex connectivity maps, opening the door to enhanced understanding of the neural mechanisms underlying brain function.
Collapse
Affiliation(s)
- Lidor Spivak
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Amir Levi
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Hadas E Sloin
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shirly Someck
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
22
|
Sun C, Lin KC, Yeung CY, Ching ESC, Huang YT, Lai PY, Chan CK. Revealing directed effective connectivity of cortical neuronal networks from measurements. Phys Rev E 2022; 105:044406. [PMID: 35590680 DOI: 10.1103/physreve.105.044406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
In the study of biological networks, one of the major challenges is to understand the relationships between network structure and dynamics. In this paper, we model in vitro cortical neuronal cultures as stochastic dynamical systems and apply a method that reconstructs directed networks from dynamics [Ching and Tam, Phys. Rev. E 95, 010301(R) (2017)2470-004510.1103/PhysRevE.95.010301] to reveal directed effective connectivity, namely, the directed links and synaptic weights, of the neuronal cultures from voltage measurements recorded by a multielectrode array. The effective connectivity so obtained reproduces several features of cortical regions in rats and monkeys and has similar network properties as the synaptic network of the nematode Caenorhabditis elegans, whose entire nervous system has been mapped out. The distribution of the incoming degree is bimodal and the distributions of the average incoming and outgoing synaptic strength are non-Gaussian with long tails. The effective connectivity captures different information from the commonly studied functional connectivity, estimated using statistical correlation between spiking activities. The average synaptic strengths of excitatory incoming and outgoing links are found to increase with the spiking activity in the estimated effective connectivity but not in the functional connectivity estimated using the same sets of voltage measurements. These results thus demonstrate that the reconstructed effective connectivity can capture the general properties of synaptic connections and better reveal relationships between network structure and dynamics.
Collapse
Affiliation(s)
- Chumin Sun
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - K C Lin
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - C Y Yeung
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Emily S C Ching
- Institute of Theoretical Physics and Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yu-Ting Huang
- Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
- Institute of Physics, Academia Sinica, Taipei, Taiwan 115, ROC
| | - Pik-Yin Lai
- Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, ROC
| | - C K Chan
- Institute of Physics, Academia Sinica, Taipei, Taiwan 115, ROC
| |
Collapse
|
23
|
Neuronal Network Inference and Membrane Potential Model using Multivariate Hawkes Processes. J Neurosci Methods 2022; 372:109550. [PMID: 35247493 DOI: 10.1016/j.jneumeth.2022.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND In this work, we propose to catch the complexity of the membrane potential's dynamic of a motoneuron between its spikes, taking into account the spikes from other neurons around. Our approach relies on two types of data: extracellular recordings of multiple spikes trains and intracellular recordings of the membrane potential of a central neuron. NEW METHOD We provide a unified framework and a complete pipeline to analyze neuronal activity from data extraction to statistical inference. To the best of our knowledge, this is the first time that a Hawkes-diffusion model is investigated on such complex data. The first step of the proposed procedure is to select a subnetwork of neurons impacting the central neuron using a multivariate Hawkes process. Then we infer a jump-diffusion dynamic in which jumps are driven from a Hawkes process, the occurrences of which correspond to the spike trains of the aforementioned subset of neurons that interact with the central neuron. RESULTS From the Hawkes estimation step we recover a small connectivity graph which contains the central neuron, and we show that taking into account this information improves the inference of membrane potential through the proposed jump-diffusion model. A goodness of fit test is applied to validate the relevance of the Hawkes model in such context. COMPARISON WITH EXISTING METHODS We compare an empirical inference method and two sparse estimation procedures based on the Hawkes assumption for the reconstruction of the connectivity graph using the spike-trains. Then, the Hawkes-diffusion model is competed with the simple diffusion in terms of best fit to describe the behavior of the membrane potential of a central neuron surrounded by a network. CONCLUSIONS The present method takes advantage of both spike trains and membrane potential to understand the behavior of a fixed neuron. The entire code has been developed and is freely available on GitHub.
Collapse
|
24
|
Adeyelu T, Shrestha A, Adeniyi PA, Lee CC, Ogundele OM. CA1 Spike Timing is Impaired in the 129S Inbred Strain During Cognitive Tasks. Neuroscience 2022; 484:119-138. [PMID: 34800576 PMCID: PMC8844212 DOI: 10.1016/j.neuroscience.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/16/2023]
Abstract
A spontaneous mutation of the disrupted in schizophrenia 1 (Disc1) gene is carried by the 129S inbred mouse strain. Truncated DISC1 protein in 129S mouse synapses impairs the scaffolding of excitatory postsynaptic receptors and leads to progressive spine dysgenesis. In contrast, C57BL/6 inbred mice carry the wild-type Disc1 gene and exhibit more typical cognitive performance in spatial exploration and executive behavioral tests. Because of the innate Disc1 mutation, adult 129S inbred mice exhibit the behavioral phenotypes of outbred B6 Disc1 knockdown (Disc1-/-) or Disc1-L-100P mutant strains. Recent studies in Disc1-/- and L-100P mice have shown that impaired excitation-driven interneuron activity and low hippocampal theta power underlie the behavioral phenotypes that resemble human depression and schizophrenia. The current study compared the firing rate and connectivity profile of putative neurons in the CA1 of freely behaving inbred 129S and B6 mice, which have mutant and wild-type Disc1 genes, respectively. In cognitive behavioral tests, 129S mice had lower exploration scores than B6 mice. Furthermore, the mean firing rate for 129S putative pyramidal (pyr) cells and interneurons (int) was significantly lower than that for B6 CA1 neurons sampled during similar tasks. Analysis of pyr/int connectivity revealed a significant delay in synaptic transmission for 129S putative pairs. Sampled 129S pyr/int pairs also had lower detectability index scores than B6 putative pairs. Therefore, the spontaneous Disc1 mutation in the 129S strain attenuates the firing of putative pyr CA1 neurons and impairs spike timing fidelity during cognitive tasks.
Collapse
Affiliation(s)
- Tolulope Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| | - Amita Shrestha
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| | - Philip A. Adeniyi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| | - Olalekan M. Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine. Baton Rouge, LA70803, Louisiana
| |
Collapse
|
25
|
Dahmen D, Layer M, Deutz L, Dąbrowska PA, Voges N, von Papen M, Brochier T, Riehle A, Diesmann M, Grün S, Helias M. Global organization of neuronal activity only requires unstructured local connectivity. eLife 2022; 11:e68422. [PMID: 35049496 PMCID: PMC8776256 DOI: 10.7554/elife.68422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Modern electrophysiological recordings simultaneously capture single-unit spiking activities of hundreds of neurons spread across large cortical distances. Yet, this parallel activity is often confined to relatively low-dimensional manifolds. This implies strong coordination also among neurons that are most likely not even connected. Here, we combine in vivo recordings with network models and theory to characterize the nature of mesoscopic coordination patterns in macaque motor cortex and to expose their origin: We find that heterogeneity in local connectivity supports network states with complex long-range cooperation between neurons that arises from multi-synaptic, short-range connections. Our theory explains the experimentally observed spatial organization of covariances in resting state recordings as well as the behaviorally related modulation of covariance patterns during a reach-to-grasp task. The ubiquity of heterogeneity in local cortical circuits suggests that the brain uses the described mechanism to flexibly adapt neuronal coordination to momentary demands.
Collapse
Affiliation(s)
- David Dahmen
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
| | - Moritz Layer
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
- RWTH Aachen UniversityAachenGermany
| | - Lukas Deutz
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
- School of Computing, University of LeedsLeedsUnited Kingdom
| | - Paulina Anna Dąbrowska
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
- RWTH Aachen UniversityAachenGermany
| | - Nicole Voges
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
- Institut de Neurosciences de la Timone, CNRS - Aix-Marseille UniversityMarseilleFrance
| | - Michael von Papen
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
| | - Thomas Brochier
- Institut de Neurosciences de la Timone, CNRS - Aix-Marseille UniversityMarseilleFrance
| | - Alexa Riehle
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
- Institut de Neurosciences de la Timone, CNRS - Aix-Marseille UniversityMarseilleFrance
| | - Markus Diesmann
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
- Department of Physics, Faculty 1, RWTH Aachen UniversityAachenGermany
- Department of Psychiatry, Psychotherapy and Psychosomatics, School of Medicine, RWTH Aachen UniversityAachenGermany
| | - Sonja Grün
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
- Theoretical Systems Neurobiology, RWTH Aachen UniversityAachenGermany
| | - Moritz Helias
- Institute of Neuroscience and Medicine and Institute for Advanced Simulation and JARA Institut Brain Structure-Function Relationships, Jülich Research CentreJülichGermany
- Department of Physics, Faculty 1, RWTH Aachen UniversityAachenGermany
| |
Collapse
|
26
|
Estimating the Temporal Evolution of Synaptic Weights from Dynamic Functional Connectivity. Brain Inform 2022. [DOI: 10.1007/978-3-031-15037-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
27
|
Asahina T, Shimba K, Kotani K, Jimbo Y. Observing cell assemblies from spike train recordings based on the biological basis of synaptic connectivity. IEEE Trans Biomed Eng 2021; 69:1524-1532. [PMID: 34727019 DOI: 10.1109/tbme.2021.3123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell assemblies are difficult to observe because they consist of many neurons. We aimed to observe cell assemblies based on biological statistics, such as synaptic connectivity. We developed an estimation method to estimate the activity and synaptic connectivity of cell assemblies from spike trains using mathematical models of individual neurons and cell assemblies. Synaptic transmissions were averaged to generate postsynaptic currents with the same timing and waveform but different amplitudes, as the number of presynaptic neurons was large. We estimated the average synaptic transmission and synaptic connectivity from active cell assemblies based on the stochastic prediction of membrane potentials and verified the estimation ability of the average synaptic transmission and synaptic connectivity using the proposed method on simulated neural activity. Different cell assembly activities evoked by electrical stimuli were correctly sorted into various clusters in experiments using rat cortical neurons cultured on microelectrode arrays. We observed multiple cell assemblies from the spontaneous activity of rat cortical networks on microelectrode arrays, based on the synaptic connectivity patterns estimated by the proposed method. The proposed method was superior to the conventional method for detecting the activity of multiple cell assemblies. Using the proposed method, it is possible to observe multiple cell assemblies based on the biological basis of synaptic connectivity. In summary, we report a novel method to observe cell assemblies from spike train recordings based on the biological basis of synaptic connectivity, rather than merely relying on a statistical method.
Collapse
|
28
|
Information flow in the rat thalamo-cortical system: spontaneous vs. stimulus-evoked activities. Sci Rep 2021; 11:19252. [PMID: 34584151 PMCID: PMC8479136 DOI: 10.1038/s41598-021-98660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
The interaction between the thalamus and sensory cortex plays critical roles in sensory processing. Previous studies have revealed pathway-specific synaptic properties of thalamo-cortical connections. However, few studies to date have investigated how each pathway routes moment-to-moment information. Here, we simultaneously recorded neural activity in the auditory thalamus (or ventral division of the medial geniculate body; MGv) and primary auditory cortex (A1) with a laminar resolution in anesthetized rats. Transfer entropy (TE) was used as an information theoretic measure to operationalize “information flow”. Our analyses confirmed that communication between the thalamus and cortex was strengthened during presentation of auditory stimuli. In the resting state, thalamo-cortical communications almost disappeared, whereas intracortical communications were strengthened. The predominant source of information was the MGv at the onset of stimulus presentation and layer 5 during spontaneous activity. In turn, MGv was the major recipient of information from layer 6. TE suggested that a small but significant population of MGv-to-A1 pairs was “information-bearing,” whereas A1-to-MGv pairs typically exhibiting small effects played modulatory roles. These results highlight the capability of TE analyses to unlock novel avenues for bridging the gap between well-established anatomical knowledge of canonical microcircuits and physiological correlates via the concept of dynamic information flow.
Collapse
|
29
|
Endo D, Kobayashi R, Bartolo R, Averbeck BB, Sugase-Miyamoto Y, Hayashi K, Kawano K, Richmond BJ, Shinomoto S. A convolutional neural network for estimating synaptic connectivity from spike trains. Sci Rep 2021; 11:12087. [PMID: 34103546 PMCID: PMC8187444 DOI: 10.1038/s41598-021-91244-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/21/2021] [Indexed: 02/05/2023] Open
Abstract
The recent increase in reliable, simultaneous high channel count extracellular recordings is exciting for physiologists and theoreticians because it offers the possibility of reconstructing the underlying neuronal circuits. We recently presented a method of inferring this circuit connectivity from neuronal spike trains by applying the generalized linear model to cross-correlograms. Although the algorithm can do a good job of circuit reconstruction, the parameters need to be carefully tuned for each individual dataset. Here we present another method using a Convolutional Neural Network for Estimating synaptic Connectivity from spike trains. After adaptation to huge amounts of simulated data, this method robustly captures the specific feature of monosynaptic impact in a noisy cross-correlogram. There are no user-adjustable parameters. With this new method, we have constructed diagrams of neuronal circuits recorded in several cortical areas of monkeys.
Collapse
Affiliation(s)
- Daisuke Endo
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryota Kobayashi
- Mathematics and Informatics Center, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Complexity Science and Engineering, The University of Tokyo, Chiba, 277-8561, Japan
- JST, PRESTO, Saitama, 332-0012, Japan
| | - Ramon Bartolo
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Yasuko Sugase-Miyamoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Kazuko Hayashi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
- Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan
| | - Kenji Kawano
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Barry J Richmond
- Laboratory of Neuropsychology, NIMH/NIH/DHHS, Bethesda, MD, 20814, USA
| | - Shigeru Shinomoto
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.
- Brain Information Communication Research Laboratory Group, ATR Institute International, Kyoto, 619-0288, Japan.
| |
Collapse
|
30
|
Liew YJ, Pala A, Whitmire CJ, Stoy WA, Forest CR, Stanley GB. Inferring thalamocortical monosynaptic connectivity in vivo. J Neurophysiol 2021; 125:2408-2431. [PMID: 33978507 PMCID: PMC8285656 DOI: 10.1152/jn.00591.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/12/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022] Open
Abstract
As the tools to simultaneously record electrophysiological signals from large numbers of neurons within and across brain regions become increasingly available, this opens up for the first time the possibility of establishing the details of causal relationships between monosynaptically connected neurons and the patterns of neural activation that underlie perception and behavior. Although recorded activity across synaptically connected neurons has served as the cornerstone for much of what we know about synaptic transmission and plasticity, this has largely been relegated to ex vivo preparations that enable precise targeting under relatively well-controlled conditions. Analogous studies in vivo, where image-guided targeting is often not yet possible, rely on indirect, data-driven measures, and as a result such studies have been sparse and the dependence upon important experimental parameters has not been well studied. Here, using in vivo extracellular single-unit recordings in the topographically aligned rodent thalamocortical pathway, we sought to establish a general experimental and computational framework for inferring synaptic connectivity. Specifically, attacking this problem within a statistical signal detection framework utilizing experimentally recorded data in the ventral-posterior medial (VPm) region of the thalamus and the homologous region in layer 4 of primary somatosensory cortex (S1) revealed a trade-off between network activity levels needed for the data-driven inference and synchronization of nearby neurons within the population that results in masking of synaptic relationships. Here, we provide a framework for establishing connectivity in multisite, multielectrode recordings based on statistical inference, setting the stage for large-scale assessment of synaptic connectivity within and across brain structures.NEW & NOTEWORTHY Despite the fact that all brain function relies on the long-range transfer of information across different regions, the tools enabling us to measure connectivity across brain structures are lacking. Here, we provide a statistical framework for identifying and assessing potential monosynaptic connectivity across neuronal circuits from population spiking activity that generalizes to large-scale recording technologies that will help us to better understand the signaling within networks that underlies perception and behavior.
Collapse
Affiliation(s)
- Yi Juin Liew
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
- Joint PhD Program in Biomedical Engineering, Georgia Institute of Technology-Emory University-Peking University, Atlanta, Georgia
| | - Aurélie Pala
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Clarissa J Whitmire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - William A Stoy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Craig R Forest
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Garrett B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
31
|
Barta T, Kostal L. Regular spiking in high-conductance states: The essential role of inhibition. Phys Rev E 2021; 103:022408. [PMID: 33736083 DOI: 10.1103/physreve.103.022408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Strong inhibitory input to neurons, which occurs in balanced states of neural networks, increases synaptic current fluctuations. This has led to the assumption that inhibition contributes to the high spike-firing irregularity observed in vivo. We used single compartment neuronal models with time-correlated (due to synaptic filtering) and state-dependent (due to reversal potentials) input to demonstrate that inhibitory input acts to decrease membrane potential fluctuations, a result that cannot be achieved with simplified neural input models. To clarify the effects on spike-firing regularity, we used models with different spike-firing adaptation mechanisms, and we observed that the addition of inhibition increased firing regularity in models with dynamic firing thresholds and decreased firing regularity if spike-firing adaptation was implemented through ionic currents or not at all. This fluctuation-stabilization mechanism provides an alternative perspective on the importance of strong inhibitory inputs observed in balanced states of neural networks, and it highlights the key roles of biologically plausible inputs and specific adaptation mechanisms in neuronal modeling.
Collapse
Affiliation(s)
- Tomas Barta
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; Charles University, First Medical Faculty, 12108 Prague, Czech Republic; and Institute of Ecology and Environmental Sciences, INRAE, 78026 Versailles, France
| | - Lubomir Kostal
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| |
Collapse
|
32
|
Ren N, Ito S, Hafizi H, Beggs JM, Stevenson IH. Model-based detection of putative synaptic connections from spike recordings with latency and type constraints. J Neurophysiol 2020; 124:1588-1604. [DOI: 10.1152/jn.00066.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Detecting synaptic connections using large-scale extracellular spike recordings is a difficult statistical problem. Here, we develop an extension of a generalized linear model that explicitly separates fast synaptic effects and slow background fluctuations in cross-correlograms between pairs of neurons while incorporating circuit properties learned from the whole network. This model outperforms two previously developed synapse detection methods in the simulated networks and recovers plausible connections from hundreds of neurons in in vitro multielectrode array data.
Collapse
Affiliation(s)
- Naixin Ren
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
| | - Shinya Ito
- Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, California
| | - Hadi Hafizi
- Department of Physics, Indiana University, Bloomington, Indiana
| | - John M. Beggs
- Department of Physics, Indiana University, Bloomington, Indiana
| | - Ian H. Stevenson
- Department of Psychological Sciences, University of Connecticut, Storrs, Connecticut
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
33
|
Tauste Campo A. Inferring neural information flow from spiking data. Comput Struct Biotechnol J 2020; 18:2699-2708. [PMID: 33101608 PMCID: PMC7548302 DOI: 10.1016/j.csbj.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/02/2023] Open
Abstract
The brain can be regarded as an information processing system in which neurons store and propagate information about external stimuli and internal processes. Therefore, estimating interactions between neural activity at the cellular scale has significant implications in understanding how neuronal circuits encode and communicate information across brain areas to generate behavior. While the number of simultaneously recorded neurons is growing exponentially, current methods relying only on pairwise statistical dependencies still suffer from a number of conceptual and technical challenges that preclude experimental breakthroughs describing neural information flows. In this review, we examine the evolution of the field over the years, starting from descriptive statistics to model-based and model-free approaches. Then, we discuss in detail the Granger Causality framework, which includes many popular state-of-the-art methods and we highlight some of its limitations from a conceptual and practical estimation perspective. Finally, we discuss directions for future research, including the development of theoretical information flow models and the use of dimensionality reduction techniques to extract relevant interactions from large-scale recording datasets.
Collapse
Affiliation(s)
- Adrià Tauste Campo
- Centre for Brain and Cognition, Universitat Pompeu Fabra, Ramon Trias Fargas 25, 08018 Barcelona, Spain
| |
Collapse
|
34
|
Terada Y, Obuchi T, Isomura T, Kabashima Y. Inferring Neuronal Couplings From Spiking Data Using a Systematic Procedure With a Statistical Criterion. Neural Comput 2020; 32:2187-2211. [PMID: 32946715 DOI: 10.1162/neco_a_01324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Recent remarkable advances in experimental techniques have provided a background for inferring neuronal couplings from point process data that include a great number of neurons. Here, we propose a systematic procedure for pre- and postprocessing generic point process data in an objective manner to handle data in the framework of a binary simple statistical model, the Ising or generalized McCulloch-Pitts model. The procedure has two steps: (1) determining time bin size for transforming the point process data into discrete-time binary data and (2) screening relevant couplings from the estimated couplings. For the first step, we decide the optimal time bin size by introducing the null hypothesis that all neurons would fire independently, then choosing a time bin size so that the null hypothesis is rejected with the strict criteria. The likelihood associated with the null hypothesis is analytically evaluated and used for the rejection process. For the second postprocessing step, after a certain estimator of coupling is obtained based on the preprocessed data set (any estimator can be used with the proposed procedure), the estimate is compared with many other estimates derived from data sets obtained by randomizing the original data set in the time direction. We accept the original estimate as relevant only if its absolute value is sufficiently larger than those of randomized data sets. These manipulations suppress false positive couplings induced by statistical noise. We apply this inference procedure to spiking data from synthetic and in vitro neuronal networks. The results show that the proposed procedure identifies the presence or absence of synaptic couplings fairly well, including their signs, for the synthetic and experimental data. In particular, the results support that we can infer the physical connections of underlying systems in favorable situations, even when using a simple statistical model.
Collapse
Affiliation(s)
- Yu Terada
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Obuchi
- Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
| | - Takuya Isomura
- Laboratory for Neural Computation and Adaptation, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Yoshiyuki Kabashima
- Institute for Physics of Intelligence, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Ghanbari A, Ren N, Keine C, Stoelzel C, Englitz B, Swadlow HA, Stevenson IH. Modeling the Short-Term Dynamics of in Vivo Excitatory Spike Transmission. J Neurosci 2020; 40:4185-4202. [PMID: 32303648 PMCID: PMC7244199 DOI: 10.1523/jneurosci.1482-19.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/18/2020] [Accepted: 03/22/2020] [Indexed: 11/21/2022] Open
Abstract
Information transmission in neural networks is influenced by both short-term synaptic plasticity (STP) as well as nonsynaptic factors, such as after-hyperpolarization currents and changes in excitability. Although these effects have been widely characterized in vitro using intracellular recordings, how they interact in vivo is unclear. Here, we develop a statistical model of the short-term dynamics of spike transmission that aims to disentangle the contributions of synaptic and nonsynaptic effects based only on observed presynaptic and postsynaptic spiking. The model includes a dynamic functional connection with short-term plasticity as well as effects due to the recent history of postsynaptic spiking and slow changes in postsynaptic excitability. Using paired spike recordings, we find that the model accurately describes the short-term dynamics of in vivo spike transmission at a diverse set of identified and putative excitatory synapses, including a pair of connected neurons within thalamus in mouse, a thalamocortical connection in a female rabbit, and an auditory brainstem synapse in a female gerbil. We illustrate the utility of this modeling approach by showing how the spike transmission patterns captured by the model may be sufficient to account for stimulus-dependent differences in spike transmission in the auditory brainstem (endbulb of Held). Finally, we apply this model to large-scale multielectrode recordings to illustrate how such an approach has the potential to reveal cell type-specific differences in spike transmission in vivo Although STP parameters estimated from ongoing presynaptic and postsynaptic spiking are highly uncertain, our results are partially consistent with previous intracellular observations in these synapses.SIGNIFICANCE STATEMENT Although synaptic dynamics have been extensively studied and modeled using intracellular recordings of postsynaptic currents and potentials, inferring synaptic effects from extracellular spiking is challenging. Whether or not a synaptic current contributes to postsynaptic spiking depends not only on the amplitude of the current, but also on many other factors, including the activity of other, typically unobserved, synapses, the overall excitability of the postsynaptic neuron, and how recently the postsynaptic neuron has spiked. Here, we developed a model that, using only observations of presynaptic and postsynaptic spiking, aims to describe the dynamics of in vivo spike transmission by modeling both short-term synaptic plasticity (STP) and nonsynaptic effects. This approach may provide a novel description of fast, structured changes in spike transmission.
Collapse
Affiliation(s)
| | - Naixin Ren
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Christian Keine
- Carver College of Medicine, Iowa Neuroscience Institute, Department of Anatomy and Cell Biology, University of Iowa, Iowa, IA 52242
| | - Carl Stoelzel
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Bernhard Englitz
- Department of Neurophysiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, Netherlands
| | - Harvey A Swadlow
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| | - Ian H Stevenson
- Department of Biomedical Engineering
- Department of Psychological Sciences, University of Connecticut, Storrs, CT 06268
| |
Collapse
|
36
|
Why do we move to the beat? A multi-scale approach, from physical principles to brain dynamics. Neurosci Biobehav Rev 2020; 112:553-584. [DOI: 10.1016/j.neubiorev.2019.12.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 10/20/2019] [Accepted: 12/13/2019] [Indexed: 01/08/2023]
|
37
|
Barta T, Kostal L. The effect of inhibition on rate code efficiency indicators. PLoS Comput Biol 2019; 15:e1007545. [PMID: 31790384 PMCID: PMC6907877 DOI: 10.1371/journal.pcbi.1007545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 12/12/2019] [Accepted: 11/12/2019] [Indexed: 11/30/2022] Open
Abstract
In this paper we investigate the rate coding capabilities of neurons whose input signal are alterations of the base state of balanced inhibitory and excitatory synaptic currents. We consider different regimes of excitation-inhibition relationship and an established conductance-based leaky integrator model with adaptive threshold and parameter sets recreating biologically relevant spiking regimes. We find that given mean post-synaptic firing rate, counter-intuitively, increased ratio of inhibition to excitation generally leads to higher signal to noise ratio (SNR). On the other hand, the inhibitory input significantly reduces the dynamic coding range of the neuron. We quantify the joint effect of SNR and dynamic coding range by computing the metabolic efficiency-the maximal amount of information per one ATP molecule expended (in bits/ATP). Moreover, by calculating the metabolic efficiency we are able to predict the shapes of the post-synaptic firing rate histograms that may be tested on experimental data. Likewise, optimal stimulus input distributions are predicted, however, we show that the optimum can essentially be reached with a broad range of input distributions. Finally, we examine which parameters of the used neuronal model are the most important for the metabolically efficient information transfer.
Collapse
Affiliation(s)
- Tomas Barta
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Charles University, First Medical Faculty, Prague, Czech Republic
- Institute of Ecology and Environmental Sciences, INRA, Versailles, France
| | - Lubomir Kostal
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|