1
|
Kiermaier E, Stötzel I, Schapfl MA, Villunger A. Amplified centrosomes-more than just a threat. EMBO Rep 2024; 25:4153-4167. [PMID: 39285247 PMCID: PMC11467336 DOI: 10.1038/s44319-024-00260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Centrosomes are major organizing components of the tubulin-based cytoskeleton. In recent years, we have gained extensive knowledge about their structure, biogenesis, and function from single cells, cell-cell interactions to tissue homeostasis, including their role in human diseases. Centrosome abnormalities are linked to, among others primary microcephaly, birth defects, ciliopathies, and tumorigenesis. Centrosome amplification, a state where two or more centrosomes are present in the G1 phase of the cell cycle, correlates in cancer with karyotype alterations, clinical aggressiveness, and lymph node metastasis. However, amplified centrosomes also appear in healthy tissues and, independent of their established role, in multi-ciliation. One example is the liver where hepatocytes carry amplified centrosomes owing to whole-genome duplication events during organogenesis. More recently, amplified centrosomes have been found in neuronal progenitors and several cell types of hematopoietic origin in which they enhance cellular effector functions. These findings suggest that extra centrosomes do not necessarily pose a risk for genome integrity and are harnessed for physiological processes. Here, we compare established and emerging 'non-canonical functions' of amplified centrosomes in cancerous and somatic cells and discuss their role in cellular physiology.
Collapse
Affiliation(s)
- Eva Kiermaier
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany.
| | - Isabel Stötzel
- Life and Medical Sciences Institute, Immune and Tumor Biology, University of Bonn, Bonn, Germany
| | - Marina A Schapfl
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
2
|
Skinner MW, Simington CJ, López-Jiménez P, Baran KA, Xu J, Dayani Y, Pryzhkova MV, Page J, Gómez R, Holland AJ, Jordan PW. Spermatocytes have the capacity to segregate chromosomes despite centriole duplication failure. EMBO Rep 2024; 25:3373-3405. [PMID: 38943004 PMCID: PMC11316026 DOI: 10.1038/s44319-024-00187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Centrosomes are the canonical microtubule organizing centers (MTOCs) of most mammalian cells, including spermatocytes. Centrosomes comprise a centriole pair within a structurally ordered and dynamic pericentriolar matrix (PCM). Unlike in mitosis, where centrioles duplicate once per cycle, centrioles undergo two rounds of duplication during spermatogenesis. The first duplication is during early meiotic prophase I, and the second is during interkinesis. Using mouse mutants and chemical inhibition, we have blocked centriole duplication during spermatogenesis and determined that non-centrosomal MTOCs (ncMTOCs) can mediate chromosome segregation. This mechanism is different from the acentriolar MTOCs that form bipolar spindles in oocytes, which require PCM components, including gamma-tubulin and CEP192. From an in-depth analysis, we identified six microtubule-associated proteins, TPX2, KIF11, NuMA, and CAMSAP1-3, that localized to the non-centrosomal MTOC. These factors contribute to a mechanism that ensures bipolar MTOC formation and chromosome segregation during spermatogenesis when centriole duplication fails. However, despite the successful completion of meiosis and round spermatid formation, centriole inheritance and PLK4 function are required for normal spermiogenesis and flagella assembly, which are critical to ensure fertility.
Collapse
Affiliation(s)
- Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carter J Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo López-Jiménez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
| | - Kerstin A Baran
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jingwen Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yaron Dayani
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jesús Page
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Rocío Gómez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
3
|
Wang J, Zhu H, Tian R, Zhang Q, Zhang H, Hu J, Wang S. Physiological and pathological effects of phase separation in the central nervous system. J Mol Med (Berl) 2024; 102:599-615. [PMID: 38441598 PMCID: PMC11055734 DOI: 10.1007/s00109-024-02435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/28/2024]
Abstract
Phase separation, also known as biomolecule condensate, participates in physiological processes such as transcriptional regulation, signal transduction, gene expression, and DNA damage repair by creating a membrane-free compartment. Phase separation is primarily caused by the interaction of multivalent non-covalent bonds between proteins and/or nucleic acids. The strength of molecular multivalent interaction can be modified by component concentration, the potential of hydrogen, posttranslational modification, and other factors. Notably, phase separation occurs frequently in the cytoplasm of mitochondria, the nucleus, and synapses. Phase separation in vivo is dynamic or stable in the normal physiological state, while abnormal phase separation will lead to the formation of biomolecule condensates, speeding up the disease progression. To provide candidate suggestions for the clinical treatment of nervous system diseases, this review, based on existing studies, carefully and systematically represents the physiological roles of phase separation in the central nervous system and its pathological mechanism in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, China.
| | - Ruijia Tian
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Qian Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Haoliang Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Jin Hu
- School of Medicine, Xiamen University, Xiamen, Fujian, 361000, People's Republic of China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
4
|
Park JE, Kim TS, Zeng Y, Mikolaj M, Il Ahn J, Alam MS, Monnie CM, Shi V, Zhou M, Chun TW, Maldarelli F, Narayan K, Ahn J, Ashwell JD, Strebel K, Lee KS. Centrosome amplification and aneuploidy driven by the HIV-1-induced Vpr•VprBP•Plk4 complex in CD4 + T cells. Nat Commun 2024; 15:2017. [PMID: 38443376 PMCID: PMC10914751 DOI: 10.1038/s41467-024-46306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
HIV-1 infection elevates the risk of developing various cancers, including T-cell lymphoma. Whether HIV-1-encoded proteins directly contribute to oncogenesis remains unknown. We observe that approximately 1-5% of CD4+ T cells from the blood of people living with HIV-1 exhibit over-duplicated centrioles, suggesting that centrosome amplification underlies the development of HIV-1-associated cancers by driving aneuploidy. Through affinity purification, biochemical, and cellular analyses, we discover that Vpr, an accessory protein of HIV-1, hijacks the centriole duplication machinery and induces centrosome amplification and aneuploidy. Mechanistically, Vpr forms a cooperative ternary complex with an E3 ligase subunit, VprBP, and polo-like kinase 4 (Plk4). Unexpectedly, however, the complex enhances Plk4's functionality by promoting its relocalization to the procentriole assembly and induces centrosome amplification. Loss of either Vpr's C-terminal 17 residues or VprBP acidic region, the two elements required for binding to Plk4 cryptic polo-box, abrogates Vpr's capacity to induce these events. Furthermore, HIV-1 WT, but not its Vpr mutant, induces multiple centrosomes and aneuploidy in human primary CD4+ T cells. We propose that the Vpr•VprBP•Plk4 complex serves as a molecular link that connects HIV-1 infection to oncogenesis and that inhibiting the Vpr C-terminal motif may reduce the occurrence of HIV-1-associated cancers.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tae-Sung Kim
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Melissa Mikolaj
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christina M Monnie
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ming Zhou
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jinwoo Ahn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kyung S Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Lei Q, Yu Q, Yang N, Xiao Z, Song C, Zhang R, Yang S, Liu Z, Deng H. Therapeutic potential of targeting polo-like kinase 4. Eur J Med Chem 2024; 265:116115. [PMID: 38199166 DOI: 10.1016/j.ejmech.2023.116115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
Polo-like kinase 4 (PLK4), a highly conserved serine/threonine kinase, masterfully regulates centriole duplication in a spatiotemporal manner to ensure the fidelity of centrosome duplication and proper mitosis. Abnormal expression of PLK4 contributes to genomic instability and associates with a poor prognosis in cancer. Inhibition of PLK4 is demonstrated to exhibit significant efficacy against various types of human cancers, further highlighting its potential as a promising therapeutic target for cancer treatment. As such, numerous small-molecule inhibitors with distinct chemical scaffolds targeting PLK4 have been extensively investigated for the treatment of different human cancers, with several undergoing clinical evaluation (e.g., CFI-400945). Here, we review the structure, distribution, and biological functions of PLK4, encapsulate its intricate regulatory mechanisms of expression, and highlighting its multifaceted roles in cancer development and metastasis. Moreover, the recent advancements of PLK4 inhibitors in patent or literature are summarized, and their therapeutic potential as monotherapies or combination therapies with other anticancer agents are also discussed.
Collapse
Affiliation(s)
- Qian Lei
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Na Yang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaolin Xiao
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chao Song
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rui Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guizhou, Guiyang, 550002, China
| | - Shuxin Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhihao Liu
- Department of Emergency Medicine and Laboratory of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Hui Deng
- Department of Respiratory and Critical Care Medicine, West China Hospital and Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
6
|
Sullenberger C, Kong D, Avazpour P, Luvsanjav D, Loncarek J. Centrosomal organization of Cep152 provides flexibility in Plk4 and procentriole positioning. J Cell Biol 2023; 222:e202301092. [PMID: 37707473 PMCID: PMC10501443 DOI: 10.1083/jcb.202301092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/25/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023] Open
Abstract
Centriole duplication is a high-fidelity process driven by Polo-like kinase 4 (Plk4) and a few conserved initiators. Dissecting how Plk4 and its receptors organize within centrosomes is critical to understand the centriole duplication process and biochemical and architectural differences between centrosomes of different species. Here, at nanoscale resolution, we dissect centrosomal localization of Plk4 in G1 and S phase in its catalytically active and inhibited state during centriole duplication and amplification. We build a precise distribution map of Plk4 and its receptor Cep152, as well as Cep44, Cep192, and Cep152-anchoring factors Cep57 and Cep63. We find that Cep57, Cep63, Cep44, and Cep192 localize in ninefold symmetry. However, during centriole maturation, Cep152, which we suggest is the major Plk4 receptor, develops a more complex pattern. We propose that the molecular arrangement of Cep152 creates flexibility for Plk4 and procentriole placement during centriole initiation. As a result, procentrioles form at variable positions in relation to the mother centriole microtubule triplets.
Collapse
Affiliation(s)
- Catherine Sullenberger
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Dong Kong
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Pegah Avazpour
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Delgermaa Luvsanjav
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| | - Jadranka Loncarek
- Cancer Innovation Laboratory, National Institutes of Health, National Cancer Institute, Center for Cancer Research, Frederick, MD, USA
| |
Collapse
|
7
|
Scott P, Curinha A, Gliech C, Holland AJ. PLK4 self-phosphorylation drives the selection of a single site for procentriole assembly. J Cell Biol 2023; 222:e202301069. [PMID: 37773039 PMCID: PMC10541313 DOI: 10.1083/jcb.202301069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/02/2023] [Accepted: 09/12/2023] [Indexed: 09/30/2023] Open
Abstract
Polo-like kinase 4 (PLK4) is a key regulator of centriole biogenesis, but how PLK4 selects a single site for procentriole assembly remains unclear. Using ultrastructure expansion microscopy, we show that PLK4 localizes to discrete sites along the wall of parent centrioles. While there is variation in the number of sites PLK4 occupies on the parent centriole, most PLK4 localize at a dominant site that directs procentriole assembly. Inhibition of PLK4 activity leads to stable binding of PLK4 to the centriole and increases occupancy to a maximum of nine sites. We show that self-phosphorylation of an unstructured linker promotes the release of active PLK4 from the centriole to drive the selection of a single site for procentriole assembly. Preventing linker phosphorylation blocks PLK4 turnover, leading to supernumerary sites of PLK4 localization and centriole amplification. Therefore, self-phosphorylation is a major driver of the spatial patterning of PLK4 at the centriole and plays a critical role in selecting a single centriole duplication site.
Collapse
Affiliation(s)
- Phillip Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ana Curinha
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Colin Gliech
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew J. Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Wilmott ZM, Goriely A, Raff JW. A simple Turing reaction-diffusion model explains how PLK4 breaks symmetry during centriole duplication and assembly. PLoS Biol 2023; 21:e3002391. [PMID: 37983248 PMCID: PMC10659181 DOI: 10.1371/journal.pbio.3002391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023] Open
Abstract
Centrioles duplicate when a mother centriole gives birth to a daughter that grows from its side. Polo-like-kinase 4 (PLK4), the master regulator of centriole duplication, is recruited symmetrically around the mother centriole, but it then concentrates at a single focus that defines the daughter centriole assembly site. How PLK4 breaks symmetry is unclear. Here, we propose that phosphorylated and unphosphorylated species of PLK4 form the 2 components of a classical Turing reaction-diffusion system. These 2 components bind to/unbind from the surface of the mother centriole at different rates, allowing a slow-diffusing activator species of PLK4 to accumulate at a single site on the mother, while a fast-diffusing inhibitor species of PLK4 suppresses activator accumulation around the rest of the centriole. This "short-range activation/long-range inhibition," inherent to Turing systems, can drive PLK4 symmetry breaking on a either a continuous or compartmentalised Plk4-binding surface, with PLK4 overexpression producing multiple PLK4 foci and PLK4 kinase inhibition leading to a lack of symmetry-breaking and PLK4 accumulation-as observed experimentally.
Collapse
Affiliation(s)
- Zachary M. Wilmott
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Jordan W. Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Kim Y, Hwang JY, Kim DK, Na K, Lee S, Baek S, Kang SS, Yang SM, Kim MH, Han H, Lee CY, Han YJ, Hong MH, Lee JB, Lim SM, Cho BC, Park Y, Pyo KH. Polo-like Kinase 4: A Multifaceted Marker Linking Tumor Aggressiveness and Unfavorable Prognosis, and Insights into Therapeutic Strategies. Cancers (Basel) 2023; 15:4663. [PMID: 37760631 PMCID: PMC10526937 DOI: 10.3390/cancers15184663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: This study investigated whether polo-like kinase 4 (PLK4) is a suitable therapeutic target or biomarker for lung adenocarcinoma (LUAD). (2) Methods: We acquired LUAD data from The Cancer Genome Atlas (TCGA) database through the UCSC Xena data portal. Gene expression, clinical, survival, and mutation data from multiple samples were analyzed. Gene enrichment analysis, unsupervised clustering of PLK4-related pathways, and differential gene expression analyses were performed. Additionally, correlations, t-tests, survival analyses, and statistical analyses were performed. (3) Results: PLK4 expression was higher in LUAD tissues than in normal tissues and was associated with poor prognosis for both overall and progression-free survival in LUAD. PLK4 was highly correlated with cell-proliferation-related pathways using Gene Ontology (GO) biological process terms. PLK4 expression and pathways that were highly correlated with PLK4 expression levels were upregulated in patients with LUAD with the TP53 mutation. (4) Conclusions: PLK4 expression affects the survival of patients with LUAD and is a potential therapeutic target for LUAD with TP53 mutations.
Collapse
Affiliation(s)
- Youngtaek Kim
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Joon Yeon Hwang
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Dong Kwon Kim
- Severance Biomedical Science Institutse, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (D.K.K.); (S.L.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03186, Republic of Korea
| | - Kwangmin Na
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Seul Lee
- Severance Biomedical Science Institutse, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (D.K.K.); (S.L.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03186, Republic of Korea
| | - Sujeong Baek
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Seong-san Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi 39418, Republic of Korea;
| | - Seung Min Yang
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Mi Hyun Kim
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Heekyung Han
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Chai Young Lee
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Yu Jin Han
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
| | - Min Hee Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (M.H.H.); (J.B.L.); (S.M.L.); (B.C.C.)
| | - Jii Bum Lee
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (M.H.H.); (J.B.L.); (S.M.L.); (B.C.C.)
| | - Sun Min Lim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (M.H.H.); (J.B.L.); (S.M.L.); (B.C.C.)
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (M.H.H.); (J.B.L.); (S.M.L.); (B.C.C.)
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, College of Medicine, Yonsei University, Seoul 03186, Republic of Korea
| | - Youngjoon Park
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (Y.K.); (J.Y.H.); (K.N.); (S.B.); (S.M.Y.); (M.H.K.); (H.H.); (C.Y.L.); (Y.J.H.)
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, College of Medicine, Yonsei University, Seoul 03186, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institutse, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (D.K.K.); (S.L.)
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul 03186, Republic of Korea; (M.H.H.); (J.B.L.); (S.M.L.); (B.C.C.)
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, College of Medicine, Yonsei University, Seoul 03186, Republic of Korea
- Department of Medical Science, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
10
|
Park JE, Kirsch K, Lee H, Oliva P, Ahn JI, Ravishankar H, Zeng Y, Fox SD, Kirby SA, Badhwar P, Andresson T, Jacobson KA, Lee KS. Specific inhibition of an anticancer target, polo-like kinase 1, by allosterically dismantling its mechanism of substrate recognition. Proc Natl Acad Sci U S A 2023; 120:e2305037120. [PMID: 37603740 PMCID: PMC10629583 DOI: 10.1073/pnas.2305037120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 08/23/2023] Open
Abstract
Polo-like kinase 1 (Plk1) is considered an attractive target for anticancer therapy. Over the years, studies on the noncatalytic polo-box domain (PBD) of Plk1 have raised the expectation of generating highly specific protein-protein interaction inhibitors. However, the molecular nature of the canonical PBD-dependent interaction, which requires extensive water network-mediated interactions with its phospholigands, has hampered efforts to identify small molecules suitable for Plk1 PBD drug discovery. Here, we report the identification of the first allosteric inhibitor of Plk1 PBD, called Allopole, a prodrug that can disrupt intracellular interactions between PBD and its cognate phospholigands, delocalize Plk1 from centrosomes and kinetochores, and induce mitotic block and cancer cell killing. At the structural level, its unmasked active form, Allopole-A, bound to a deep Trp-Phe-lined pocket occluded by a latch-like loop, whose adjoining region was required for securely retaining a ligand anchored to the phospho-binding cleft. Allopole-A binding completely dislodged the L2 loop, an event that appeared sufficient to trigger the dissociation of a phospholigand and inhibit PBD-dependent Plk1 function during mitosis. Given Allopole's high specificity and antiproliferative potency, this study is expected to open an unexplored avenue for developing Plk1 PBD-specific anticancer therapeutic agents.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Hobin Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Paola Oliva
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Stephen D. Fox
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Samuel A. Kirby
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Pooja Badhwar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD21702
| | - Kenneth A. Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD20892
| | - Kyung S. Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD20892
| |
Collapse
|
11
|
Park JE, Kim TS, Zeng Y, Monnie CM, Alam MS, Zhou M, Mikolaj M, Maldarelli F, Narayan K, Ahn J, Ashwell JD, Strebel K, Lee KS. Centrosome amplification and aneuploidy driven by the HIV-1-induced Vpr•VprBP•Plk4 complex in CD4 + T cells. RESEARCH SQUARE 2023:rs.3.rs-2924123. [PMID: 37645926 PMCID: PMC10462243 DOI: 10.21203/rs.3.rs-2924123/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
HIV-1 infection elevates the risk of developing various cancers, including T-cell lymphoma. Whether HIV-1-encoded proteins directly contribute to oncogenesis remains unknown. We observed that approximately 1-5% of CD4+ T cells from the blood of people living with HIV-1 exhibit over-duplicated centrioles, suggesting that centrosome amplification underlies the development of HIV-1-associated cancers by driving aneuploidy. Through affinity purification, biochemical, and cell biology analyses, we discovered that Vpr, an accessory protein of HIV-1, hijacks the centriole duplication machinery and induces centrosome amplification and aneuploidy. Mechanistically, Vpr formed a cooperative ternary complex with an E3 ligase subunit, VprBP, and polo-like kinase 4 (Plk4). Unexpectedly, however, the complex enhanced Plk4's functionality by promoting its relocalization to the procentriole assembly and induced centrosome amplification. Loss of either Vpr's C-terminal 17 residues or VprBP acidic region, the two elements required for binding to Plk4 cryptic polo-box, abrogated Vpr's capacity to induce all these events. Furthermore, HIV-1 WT, but not its Vpr mutant, induced multiple centrosomes and aneuploidy in primary CD4+ T cells. We propose that the Vpr•VprBP•Plk4 complex serves as a molecular link that connects HIV-1 infection to oncogenesis and that inhibiting the Vpr C-terminal motif may reduce the occurrence of HIV-1-associated cancers.
Collapse
Affiliation(s)
- Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- These authors contributed equally to this work
| | - Tae-Sung Kim
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- These authors contributed equally to this work
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christina M. Monnie
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, RM 1055, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Muhammad S. Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Ming Zhou
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702, USA
| | - Melissa Mikolaj
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Frank Maldarelli
- HIV Dynamics and Replication Program, NCI, NIH, Frederick, MD 21702, USA
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Jinwoo Ahn
- Department of Structural Biology and Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, RM 1055, 3501 Fifth Ave., Pittsburgh, PA, 15260, USA
| | - Jonathan D. Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Klaus Strebel
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Kyung S. Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
12
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
13
|
Il Ahn J, Zhang L, Ravishankar H, Fan L, Kirsch K, Zeng Y, Meng L, Park JE, Yun HY, Ghirlando R, Ma B, Ball D, Ku B, Nussinov R, Schmit JD, Heinz WF, Kim SJ, Karpova T, Wang YX, Lee KS. Architectural basis for cylindrical self-assembly governing Plk4-mediated centriole duplication in human cells. Commun Biol 2023; 6:712. [PMID: 37433832 PMCID: PMC10336005 DOI: 10.1038/s42003-023-05067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Proper organization of intracellular assemblies is fundamental for efficient promotion of biochemical processes and optimal assembly functionality. Although advances in imaging technologies have shed light on how the centrosome is organized, how its constituent proteins are coherently architected to elicit downstream events remains poorly understood. Using multidisciplinary approaches, we showed that two long coiled-coil proteins, Cep63 and Cep152, form a heterotetrameric building block that undergoes a stepwise formation into higher molecular weight complexes, ultimately generating a cylindrical architecture around a centriole. Mutants defective in Cep63•Cep152 heterotetramer formation displayed crippled pericentriolar Cep152 organization, polo-like kinase 4 (Plk4) relocalization to the procentriole assembly site, and Plk4-mediated centriole duplication. Given that the organization of pericentriolar materials (PCM) is evolutionarily conserved, this work could serve as a model for investigating the structure and function of PCM in other species, while offering a new direction in probing the organizational defects of PCM-related human diseases.
Collapse
Affiliation(s)
- Jong Il Ahn
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liang Zhang
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Harsha Ravishankar
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lixin Fan
- Basic Science Program, Frederick National Laboratory for Cancer Research, Small-Angle X-ray Scattering Core Facility, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Klara Kirsch
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Zeng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingjun Meng
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jung-Eun Park
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Hye-Yeoung Yun
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- School of Pharmacy, Shanghai Jiao Tong University, 200240, Shanghai, P R China
| | - David Ball
- Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD, 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Jeremy D Schmit
- Department of Physics, Kansas State University, Manhattan, KS, 66506, USA
| | - William F Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Seung Jun Kim
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Tatiana Karpova
- Laboratory of Receptor Biology and Gene Expression, Optical Microscopy Core, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yun-Xing Wang
- Protein-Nucleic Acid Interaction Section, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, 21702, USA
| | - Kyung S Lee
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
14
|
Ryniawec JM, Buster DW, Slevin LK, Boese CJ, Amoiroglou A, Dean SM, Slep KC, Rogers GC. Polo-like kinase 4 homodimerization and condensate formation regulate its own protein levels but are not required for centriole assembly. Mol Biol Cell 2023; 34:ar80. [PMID: 37163316 PMCID: PMC10398880 DOI: 10.1091/mbc.e22-12-0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/11/2023] Open
Abstract
Polo-like kinase 4 (Plk4) is the master-regulator of centriole assembly, and cell cycle-dependent regulation of its activity maintains proper centrosome number. During most of the cell cycle, Plk4 levels are nearly undetectable due to its ability to autophosphorylate and trigger its own ubiquitin-mediated degradation. However, during mitotic exit, Plk4 forms a single aggregate on the centriole surface to stimulate centriole duplication. Whereas most Polo-like kinase family members are monomeric, Plk4 is unique because it forms homodimers. Notably, Plk4 trans-autophosphorylates a degron near its kinase domain, a critical step in autodestruction. While it is thought that the purpose of homodimerization is to promote trans-autophosphorylation, this has not been tested. Here, we generated separation-of-function Plk4 mutants that fail to dimerize and show that homodimerization creates a binding site for the Plk4 activator, Asterless. Surprisingly, however, Plk4 dimer mutants are catalytically active in cells, promote centriole assembly, and can trans-autophosphorylate through concentration-dependent condensate formation. Moreover, we mapped and then deleted the weak-interacting regions within Plk4 that mediate condensation and conclude that dimerization and condensation are not required for centriole assembly. Our findings suggest that Plk4 dimerization and condensation function simply to down-regulate Plk4 and suppress centriole overduplication.
Collapse
Affiliation(s)
- John M. Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Daniel W. Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Lauren K. Slevin
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Cody J. Boese
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Anastasia Amoiroglou
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Spencer M. Dean
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Kevin C. Slep
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
15
|
Elshatlawy M, Sampson J, Clarke K, Bayliss R. EML4-ALK biology and drug resistance in non-small cell lung cancer: a new phase of discoveries. Mol Oncol 2023; 17:950-963. [PMID: 37149843 PMCID: PMC10257413 DOI: 10.1002/1878-0261.13446] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/05/2023] [Accepted: 05/05/2023] [Indexed: 05/08/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) can be driven to oncogenic activity by different types of mutational events such as point-mutations, for example F1174L in neuroblastoma, and gene fusions, for example with echinoderm microtubule-associated protein-like 4 (EML4) in non-small cell lung cancer (NSCLC). EML4-ALK variants result from different breakpoints, generating fusions of different sizes and properties. The most common variants (Variant 1 and Variant 3) form cellular compartments with distinct physical properties. The presence of a partial, probably misfolded beta-propeller domain in variant 1 confers solid-like properties to the compartments it forms, greater dependence on Hsp90 for protein stability and higher cell sensitivity to ALK tyrosine kinase inhibitors (TKIs). These differences translate to the clinic because variant 3, on average, worsens patient prognosis and increases metastatic risk. Latest generation ALK-TKIs are beneficial for most patients with EML4-ALK fusions. However, resistance to ALK inhibitors can occur via point-mutations within the kinase domain of the EML4-ALK fusion, for example G1202R, reducing inhibitor effectiveness. Here, we discuss the biology of EML4-ALK variants, their impact on treatment response, ALK-TKI drug resistance mechanisms and potential combination therapies.
Collapse
Affiliation(s)
- Mariam Elshatlawy
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
| | - Josephina Sampson
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK
| | - Katy Clarke
- Leeds Cancer Center, St.James' University HospitalLeeds Teaching Hospitals NHS TrustUK
| | - Richard Bayliss
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsUK
| |
Collapse
|
16
|
Zheng H, Wen W. Protein phase separation: new insights into cell division. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1042-1051. [PMID: 37249333 PMCID: PMC10415187 DOI: 10.3724/abbs.2023093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/15/2023] [Indexed: 05/31/2023] Open
Abstract
As the foundation for the development of multicellular organisms and the self-renewal of single cells, cell division is a highly organized event which segregates cellular components into two daughter cells equally or unequally, thus producing daughters with identical or distinct fates. Liquid-liquid phase separation (LLPS), an emerging biophysical concept, provides a new perspective for us to understand the mechanisms of a wide range of cellular events, including the organization of membrane-less organelles. Recent studies have shown that several key organelles in the cell division process are assembled into membrane-free structures via LLPS of specific proteins. Here, we summarize the regulatory functions of protein phase separation in centrosome maturation, spindle assembly and polarity establishment during cell division.
Collapse
Affiliation(s)
- Hongdan Zheng
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| | - Wenyu Wen
- />Department of NeurosurgeryHuashan Hospitalthe Shanghai Key Laboratory of Medical EpigeneticsState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceNational Center for Neurological DisordersInstitutes of Biomedical SciencesSchool of Basic Medical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
17
|
Atmakuru PS, Dhawan J. The cilium-centrosome axis in coupling cell cycle exit and cell fate. J Cell Sci 2023; 136:308872. [PMID: 37144419 DOI: 10.1242/jcs.260454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
The centrosome is an evolutionarily conserved, ancient organelle whose role in cell division was first described over a century ago. The structure and function of the centrosome as a microtubule-organizing center, and of its extracellular extension - the primary cilium - as a sensory antenna, have since been extensively studied, but the role of the cilium-centrosome axis in cell fate is still emerging. In this Opinion piece, we view cellular quiescence and tissue homeostasis from the vantage point of the cilium-centrosome axis. We focus on a less explored role in the choice between distinct forms of mitotic arrest - reversible quiescence and terminal differentiation, which play distinct roles in tissue homeostasis. We outline evidence implicating the centrosome-basal body switch in stem cell function, including how the cilium-centrosome complex regulates reversible versus irreversible arrest in adult skeletal muscle progenitors. We then highlight exciting new findings in other quiescent cell types that suggest signal-dependent coupling of nuclear and cytoplasmic events to the centrosome-basal body switch. Finally, we propose a framework for involvement of this axis in mitotically inactive cells and identify future avenues for understanding how the cilium-centrosome axis impacts central decisions in tissue homeostasis.
Collapse
Affiliation(s)
- Priti S Atmakuru
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
| | - Jyotsna Dhawan
- CSIR Centre for Cellular and Molecular Biology, Hyderabad 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
18
|
Shil S, Tsuruta M, Kawauchi K, Miyoshi D. Biomolecular Liquid-Liquid Phase Separation for Biotechnology. BIOTECH 2023; 12:26. [PMID: 37092470 PMCID: PMC10123627 DOI: 10.3390/biotech12020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
The liquid-liquid phase separation (LLPS) of biomolecules induces condensed assemblies called liquid droplets or membrane-less organelles. In contrast to organelles with lipid membrane barriers, the liquid droplets induced by LLPS do not have distinct barriers (lipid bilayer). Biomolecular LLPS in cells has attracted considerable attention in broad research fields from cellular biology to soft matter physics. The physical and chemical properties of LLPS exert a variety of functions in living cells: activating and deactivating biomolecules involving enzymes; controlling the localization, condensation, and concentration of biomolecules; the filtration and purification of biomolecules; and sensing environmental factors for fast, adaptive, and reversible responses. The versatility of LLPS plays an essential role in various biological processes, such as controlling the central dogma and the onset mechanism of pathological diseases. Moreover, biomolecular LLPS could be critical for developing new biotechnologies such as the condensation, purification, and activation of a series of biomolecules. In this review article, we introduce some fundamental aspects and recent progress of biomolecular LLPS in living cells and test tubes. Then, we discuss applications of biomolecular LLPS toward biotechnologies.
Collapse
Affiliation(s)
| | | | | | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| |
Collapse
|
19
|
Soujanya M, Bihani A, Hajirnis N, Pathak RU, Mishra RK. Nuclear architecture and the structural basis of mitotic memory. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:8. [PMID: 36725757 DOI: 10.1007/s10577-023-09714-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/13/2022] [Accepted: 12/19/2022] [Indexed: 02/03/2023]
Abstract
The nucleus is a complex organelle that hosts the genome and is essential for vital processes like DNA replication, DNA repair, transcription, and splicing. The genome is non-randomly organized in the three-dimensional space of the nucleus. This functional sub-compartmentalization was thought to be organized on the framework of nuclear matrix (NuMat), a non-chromatin scaffold that functions as a substratum for various molecular processes of the nucleus. More recently, nuclear bodies or membrane-less subcompartments of the nucleus are thought to arise due to phase separation of chromatin, RNA, and proteins. The nuclear architecture is an amalgamation of the relative organization of chromatin, epigenetic landscape, the nuclear bodies, and the nucleoskeleton in the three-dimensional space of the nucleus. During mitosis, the nucleus undergoes drastic changes in morphology to the degree that it ceases to exist as such; various nuclear components, including the envelope that defines the nucleus, disintegrate, and the chromatin acquires mitosis-specific epigenetic marks and condenses to form chromosome. Upon mitotic exit, chromosomes are decondensed, re-establish hierarchical genome organization, and regain epigenetic and transcriptional status similar to that of the mother cell. How this mitotic memory is inherited during cell division remains a puzzle. NuMat components that are a part of the mitotic chromosome in the form of mitotic chromosome scaffold (MiCS) could potentially be the seeds that guide the relative re-establishment of the epigenome, chromosome territories, and the nuclear bodies. Here, we synthesize the advances towards understanding cellular memory of nuclear architecture across mitosis and propose a hypothesis that a subset of NuMat proteome essential for nucleation of various nuclear bodies are retained in MiCS to serve as seeds of mitotic memory, thus ensuring the daughter cells re-establish the complex status of nuclear architecture similar to that of the mother cells, thereby maintaining the pre-mitotic transcriptional status.
Collapse
Affiliation(s)
- Mamilla Soujanya
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ashish Bihani
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Nikhil Hajirnis
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
- Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | - Rashmi U Pathak
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular & Molecular Biology, Hyderabad, India.
- AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India.
- TIGS - Tata Institute for Genetics and Society, Bangalore, India.
| |
Collapse
|
20
|
LoMastro GM, Drown CG, Maryniak AL, Jewett CE, Strong MA, Holland AJ. PLK4 drives centriole amplification and apical surface area expansion in multiciliated cells. eLife 2022; 11:80643. [PMID: 35969030 PMCID: PMC9507127 DOI: 10.7554/elife.80643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Multiciliated cells (MCCs) are terminally differentiated epithelia that assemble multiple motile cilia used to promote fluid flow. To template these cilia, MCCs dramatically expand their centriole content during a process known as centriole amplification. In cycling cells, the master regulator of centriole assembly Polo-like kinase 4 (PLK4) is essential for centriole duplication; however recent work has questioned the role of PLK4 in centriole assembly in MCCs. To address this discrepancy, we created genetically engineered mouse models and demonstrated that both PLK4 protein and kinase activity are critical for centriole amplification in MCCs. Tracheal epithelial cells that fail centriole amplification accumulate large assemblies of centriole proteins and do not undergo apical surface area expansion. These results show that the initial stages of centriole assembly are conserved between cycling cells and MCCs and suggest that centriole amplification and surface area expansion are coordinated events. Every day, we inhale thousands of viruses, bacteria and pollution particles. To protect against these threats, cells in our airways produce mucus that traps inhaled particles before they reach the lungs. This mucus then needs to be removed to prevent it from becoming a breeding ground for microbes that may cause a respiratory infection. This is the responsibility of cells covered in tiny hair-like structures called cilia that move together to propel the mucus-trapped particles out of the airways. These specialized cells can have up to 300 motile cilia on their surface, which grow from structures called centrioles that then anchor the cilia in place. Multiciliated cells are generated from precursor cells that only have two centrioles. Therefore, as these precursors develop, they must produce large numbers of centrioles, considerably more than other cells that only need a couple of extra centrioles during cell division. However, recent studies have questioned whether the precursors of multiciliated cells rely on the same regulatory proteins to produce centrioles as dividing cells. To help answer this question, LoMastro et al. created genetically engineered mice that lacked or had an inactive form of PLK4, a protein which controls centriole formation in all cell types lacking multiple cilia. This showed that multiciliated cells also need this protein to produce centrioles. LoMastro et al. also found that multiciliated cells became larger while building centrioles, suggesting that this amplification process helps control the cell’s final size. Defects in motile cilia activity can lead to fluid build-up in the brain, respiratory infections and infertility. Unfortunately, these disorders are difficult to diagnose currently and there is no cure. The findings of LoMastro et al. further our understanding of how motile cilia are built and maintained, and may help future scientists to develop better diagnostic tools and treatments for patients.
Collapse
Affiliation(s)
- Gina M LoMastro
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Chelsea G Drown
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Aubrey L Maryniak
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Cayla E Jewett
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Margaret A Strong
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Andrew Jon Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
21
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
22
|
Cunningham NHJ, Bouhlel IB, Conduit PT. Daughter centrioles assemble preferentially towards the nuclear envelope in Drosophila syncytial embryos. Open Biol 2022; 12:210343. [PMID: 35042404 PMCID: PMC8767211 DOI: 10.1098/rsob.210343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Centrosomes are important organizers of microtubules within animal cells. They comprise a pair of centrioles surrounded by the pericentriolar material, which nucleates and organizes the microtubules. To maintain centrosome numbers, centrioles must duplicate once and only once per cell cycle. During S-phase, a single new ‘daughter’ centriole is built orthogonally on one side of each radially symmetric ‘mother’ centriole. Mis-regulation of duplication can result in the simultaneous formation of multiple daughter centrioles around a single mother centriole, leading to centrosome amplification, a hallmark of cancer. It remains unclear how a single duplication site is established. It also remains unknown whether this site is pre-defined or randomly positioned around the mother centriole. Here, we show that within Drosophila syncytial embryos daughter centrioles preferentially assemble on the side of the mother facing the nuclear envelope, to which the centrosomes are closely attached. This positional preference is established early during duplication and remains stable throughout daughter centriole assembly, but is lost in centrosomes forced to lose their connection to the nuclear envelope. This shows that non-centrosomal cues influence centriole duplication and raises the possibility that these external cues could help establish a single duplication site.
Collapse
Affiliation(s)
- Neil H J Cunningham
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Imène B Bouhlel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Paul T Conduit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.,Université de Paris, CNRS, Institut Jacques Monod, 75006 Paris, France
| |
Collapse
|
23
|
Sampson J, Richards MW, Choi J, Fry AM, Bayliss R. Phase-separated foci of EML4-ALK facilitate signalling and depend upon an active kinase conformation. EMBO Rep 2021; 22:e53693. [PMID: 34661367 PMCID: PMC8647013 DOI: 10.15252/embr.202153693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/11/2022] Open
Abstract
Variants of the oncogenic EML4-ALK fusion protein contain a similar region of ALK encompassing the kinase domain, but different portions of EML4. Here, we show that EML4-ALK V1 and V3 proteins form cytoplasmic foci that contain components of the MAPK, PLCγ and PI3K signalling pathways. The ALK inhibitors ceritinib and lorlatinib dissolve these foci and EML4-ALK V3 but not V1 protein re-localises to microtubules, an effect recapitulated in a catalytically inactive EML4-ALK mutant. Mutations that promote a constitutively active ALK stabilise the cytoplasmic foci even in the presence of these inhibitors. In contrast, the inhibitor alectinib increases foci formation of both wild-type and catalytically inactive EML4-ALK V3 proteins, but not a Lys-Glu salt bridge mutant. We propose that EML4-ALK foci formation occurs as a result of transient association of stable EML4-ALK trimers mediated through an active conformation of the ALK kinase domain. Our results demonstrate the formation of EML4-ALK cytoplasmic foci that orchestrate oncogenic signalling and reveal that their assembly depends upon the conformational state of the catalytic domain and can be differentially modulated by structurally divergent ALK inhibitors.
Collapse
Affiliation(s)
- Josephina Sampson
- School of Molecular and Cellular BiologyAstbury Centre for Structural Molecular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Mark W Richards
- School of Molecular and Cellular BiologyAstbury Centre for Structural Molecular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Jene Choi
- Department of PathologyAsan Medical CenterUniversity of Ulsan College of MedicineSeoulKorea
| | - Andrew M Fry
- Department of Molecular and Cell BiologyUniversity of LeicesterLeicesterUK
| | - Richard Bayliss
- School of Molecular and Cellular BiologyAstbury Centre for Structural Molecular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
24
|
Li J, Gao J, Wang R. Control of Chromatin Organization and Chromosome Behavior during the Cell Cycle through Phase Separation. Int J Mol Sci 2021; 22:ijms222212271. [PMID: 34830152 PMCID: PMC8621359 DOI: 10.3390/ijms222212271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
Phase-separated condensates participate in various biological activities. Liquid-liquid phase separation (LLPS) can be driven by collective interactions between multivalent and intrinsically disordered proteins. The manner in which chromatin-with various morphologies and activities-is organized in a complex and small nucleus still remains to be fully determined. Recent findings support the claim that phase separation is involved in the regulation of chromatin organization and chromosome behavior. Moreover, phase separation also influences key events during mitosis and meiosis. This review elaborately dissects how phase separation regulates chromatin and chromosome organization and controls mitotic and meiotic chromosome behavior.
Collapse
|
25
|
Kinetic and structural roles for the surface in guiding SAS-6 self-assembly to direct centriole architecture. Nat Commun 2021; 12:6180. [PMID: 34702818 PMCID: PMC8548535 DOI: 10.1038/s41467-021-26329-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Discovering mechanisms governing organelle assembly is a fundamental pursuit in biology. The centriole is an evolutionarily conserved organelle with a signature 9-fold symmetrical chiral arrangement of microtubules imparted onto the cilium it templates. The first structure in nascent centrioles is a cartwheel, which comprises stacked 9-fold symmetrical SAS-6 ring polymers emerging orthogonal to a surface surrounding each resident centriole. The mechanisms through which SAS-6 polymerization ensures centriole organelle architecture remain elusive. We deploy photothermally-actuated off-resonance tapping high-speed atomic force microscopy to decipher surface SAS-6 self-assembly mechanisms. We show that the surface shifts the reaction equilibrium by ~104 compared to solution. Moreover, coarse-grained molecular dynamics and atomic force microscopy reveal that the surface converts the inherent helical propensity of SAS-6 polymers into 9-fold rings with residual asymmetry, which may guide ring stacking and impart chiral features to centrioles and cilia. Overall, our work reveals fundamental design principles governing centriole assembly. The centriole exhibits an evolutionarily conserved 9-fold radial symmetry that stems from a cartwheel containing vertically stacked ring polymers that harbor 9 homodimers of the protein SAS-6. Here the authors show how dual properties inherent to surface-guided SAS-6 self-assembly possess spatial information that dictates correct scaffolding of centriole architecture.
Collapse
|
26
|
Stemm-Wolf AJ, O’Toole ET, Sheridan RM, Morgan JT, Pearson CG. The SON RNA splicing factor is required for intracellular trafficking structures that promote centriole assembly and ciliogenesis. Mol Biol Cell 2021; 32:ar4. [PMID: 34406792 PMCID: PMC8684746 DOI: 10.1091/mbc.e21-06-0305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 11/11/2022] Open
Abstract
Control of centrosome assembly is critical for cell division, intracellular trafficking, and cilia. Regulation of centrosome number occurs through the precise duplication of centrioles that reside in centrosomes. Here we explored transcriptional control of centriole assembly and find that the RNA splicing factor SON is specifically required for completing procentriole assembly. Whole genome mRNA sequencing identified genes whose splicing and expression are affected by the reduction of SON, with an enrichment in genes involved in the microtubule (MT) cytoskeleton, centrosome, and centriolar satellites. SON is required for the proper splicing and expression of CEP131, which encodes a major centriolar satellite protein and is required to organize the trafficking and MT network around the centrosomes. This study highlights the importance of the distinct MT trafficking network that is intimately associated with nascent centrioles and is responsible for procentriole development and efficient ciliogenesis.
Collapse
Affiliation(s)
- Alexander J. Stemm-Wolf
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | | | - Ryan M. Sheridan
- RNA Biosciences Initiative (RBI), University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Jacob T. Morgan
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| | - Chad G. Pearson
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
27
|
Nabais C, Pessoa D, de-Carvalho J, van Zanten T, Duarte P, Mayor S, Carneiro J, Telley IA, Bettencourt-Dias M. Plk4 triggers autonomous de novo centriole biogenesis and maturation. J Cell Biol 2021; 220:211915. [PMID: 33760919 PMCID: PMC7995200 DOI: 10.1083/jcb.202008090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/14/2020] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Centrioles form centrosomes and cilia. In most proliferating cells, centrioles assemble through canonical duplication, which is spatially, temporally, and numerically regulated by the cell cycle and the presence of mature centrioles. However, in certain cell types, centrioles assemble de novo, yet by poorly understood mechanisms. Herein, we established a controlled system to investigate de novo centriole biogenesis, using Drosophila melanogaster egg explants overexpressing Polo-like kinase 4 (Plk4), a trigger for centriole biogenesis. We show that at a high Plk4 concentration, centrioles form de novo, mature, and duplicate, independently of cell cycle progression and of the presence of other centrioles. Plk4 concentration determines the temporal onset of centriole assembly. Moreover, our results suggest that distinct biochemical kinetics regulate de novo and canonical biogenesis. Finally, we investigated which other factors modulate de novo centriole assembly and found that proteins of the pericentriolar material (PCM), and in particular γ-tubulin, promote biogenesis, likely by locally concentrating critical components.
Collapse
Affiliation(s)
| | | | | | | | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Satyajit Mayor
- National Centre for Biological Sciences, Bangalore, India
| | | | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
28
|
Gu Y, Zhang R, Jiang B, Xu X, Guan JJ, Jiang XJ, Zhou Y, Zhou YL, Chen X. Repair of Spinal Cord Injury by Inhibition of PLK4 Expression Through Local Delivery of siRNA-Loaded Nanoparticles. J Mol Neurosci 2021; 72:544-554. [PMID: 34471984 DOI: 10.1007/s12031-021-01871-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
Polo-like kinase 4 (PLK4) is one of the key regulators of centrosomal replication. However, its role and mechanism in spinal cord injury (SCI) are still unclear. The SCI model on rats was constructed and the expression and localization of PLK4 in the spinal cord are analyzed with Western blot and immunofluorescence, respectively. Then the specific siRNAs were encapsulated in nanoparticles for the inhibition of PLK4 expression. Afterward, the role of PLK4 on astrocytes was investigated by knocking down its expression in the primary astrocytes. Moreover, siRNA-loaded nanoparticles were injected into the injured spinal cord of rats, and the motor function recovery of rats after SCI was assessed using the Basso, Beattie, and Bresnahan (BBB) locomotor scale method. Notably, the siRNA-loaded nanoparticles effectively transfect primary astrocytes and significantly inhibit PLK4 expression, together with the expression of PCNA with significance. After treatment, restoration of the motor function following SCI was significantly improved in the PLK4 knockdown group compared with the control group. Therefore, we speculate that inhibition of Plk4 may inhibit the proliferation of astrocytes and decrease the inflammatory response mediated by astrocytes, so as to promote the functional recovery of SCI. In conclusion, inhibition of PLK4 expression via siRNA-loaded nanoparticles may be a potential treatment for SCI.
Collapse
Affiliation(s)
- Yingchu Gu
- Medical College of Nantong University, Nantong, 226001, China
| | - Runze Zhang
- Medical College of Nantong University, Nantong, 226001, China
| | - Bin Jiang
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Xin Xu
- Medical College of Nantong University, Nantong, 226001, China
| | - Jun Jie Guan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Xing Jie Jiang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Yuan Zhou
- Department of Pain, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - You Lang Zhou
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Xiangdong Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
29
|
Pereira SG, Dias Louro MA, Bettencourt-Dias M. Biophysical and Quantitative Principles of Centrosome Biogenesis and Structure. Annu Rev Cell Dev Biol 2021; 37:43-63. [PMID: 34314592 DOI: 10.1146/annurev-cellbio-120219-051400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centrosome is a main orchestrator of the animal cellular microtubule cytoskeleton. Dissecting its structure and assembly mechanisms has been a goal of cell biologists for over a century. In the last two decades, a good understanding of the molecular constituents of centrosomes has been achieved. Moreover, recent breakthroughs in electron and light microscopy techniques have enabled the inspection of the centrosome and the mapping of its components with unprecedented detail. However, we now need a profound and dynamic understanding of how these constituents interact in space and time. Here, we review the latest findings on the structural and molecular architecture of the centrosome and how its biogenesis is regulated, highlighting how biophysical techniques and principles as well as quantitative modeling are changing our understanding of this enigmatic cellular organelle. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
|
30
|
Badarudeen B, Anand U, Mukhopadhyay S, Manna TK. Ubiquitin signaling in the control of centriole duplication. FEBS J 2021; 289:4830-4849. [PMID: 34115927 DOI: 10.1111/febs.16069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/22/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
The centrosome plays an essential role in maintaining genetic stability, ciliogenesis and cell polarisation. The core of the centrosome is made up of two centrioles that duplicate precisely once during every cell cycle to generate two centrosomes that are required for bipolar spindle assembly and chromosome segregation. Abundance of centriole proteins at optimal levels and their recruitment to the centrosome are tightly regulated in time and space in order to restrict aberrant duplication of centrioles, a phenomenon that is observed in many cancers. Recent advances have conclusively shown that dedicated ubiquitin ligase-dependent protein degradation machineries are involved in governing centriole duplication. These studies revealed intricate mechanistic insights into how the ubiquitin ligases target different centriole proteins. In certain cases, a specific ubiquitin ligase targets a number of substrate proteins that co-regulate centriole assembly, prompting the possibility that substrate-targeting occurs during formation of the sub-centriolar structures. There are also instances where a specific centriole duplication protein is targeted by several ubiquitin ligases at different stages of the cell cycle, suggesting synchronised actions. Recent evidence also indicated a direct association of E3 ubiquitin ligase with the centrioles, supporting the notion that substrate-targeting occurs in the organelle itself. In this review, we highlight these advances by underlining the mechanisms of how different ubiquitin ligase machineries control centriole duplication and discuss our views on their coordination.
Collapse
Affiliation(s)
- Binshad Badarudeen
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Ushma Anand
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Swarnendu Mukhopadhyay
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| | - Tapas K Manna
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, Vithura, India
| |
Collapse
|
31
|
Generic nature of the condensed states of proteins. Nat Cell Biol 2021; 23:587-594. [PMID: 34108660 DOI: 10.1038/s41556-021-00697-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/07/2021] [Indexed: 02/05/2023]
Abstract
Proteins undergoing liquid-liquid phase separation are being discovered at an increasing rate. Since at the high concentrations present in the cell most proteins would be expected to form a liquid condensed state, this state should be considered to be a fundamental state of proteins along with the native state and the amyloid state. Here we discuss the generic nature of the liquid-like and solid-like condensed states, and describe a wide variety of biological functions conferred by these condensed states.
Collapse
|
32
|
Zhang H, Cao X, Tang M, Zhong G, Si Y, Li H, Zhu F, Liao Q, Li L, Zhao J, Feng J, Li S, Wang C, Kaulich M, Wang F, Chen L, Li L, Xia Z, Liang T, Lu H, Feng XH, Zhao B. A subcellular map of the human kinome. eLife 2021; 10:64943. [PMID: 33988507 PMCID: PMC8175086 DOI: 10.7554/elife.64943] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
The human kinome comprises 538 kinases playing essential functions by catalyzing protein phosphorylation. Annotation of subcellular distribution of the kinome greatly facilitates investigation of normal and disease mechanisms. Here, we present Kinome Atlas (KA), an image-based map of the kinome annotated to 10 cellular compartments. 456 epitope-tagged kinases, representing 85% of the human kinome, were expressed in HeLa cells and imaged by immunofluorescent microscopy under a similar condition. KA revealed kinase family-enriched subcellular localizations and discovered a collection of new kinase localizations at mitochondria, plasma membrane, extracellular space, and other structures. Furthermore, KA demonstrated the role of liquid-liquid phase separation in formation of kinase condensates. Identification of MOK as a mitochondrial kinase revealed its function in cristae dynamics, respiration, and oxidative stress response. Although limited by possible mislocalization due to overexpression or epitope tagging, this subcellular map of the kinome can be used to refine regulatory mechanisms involving protein phosphorylation.
Collapse
Affiliation(s)
- Haitao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiaolei Cao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Mei Tang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Guoxuan Zhong
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuan Si
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Haidong Li
- College of Biology and Pharmacy, Yulin Normal University, Yulin, China
| | - Feifeng Zhu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Qinghua Liao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jianhui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Feng
- Department of Ophthalmology, The Children's Hospital, School of Medicine, and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, China
| | - Shuaifeng Li
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Chenliang Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Manuel Kaulich
- Institute of Biochemistry II, Goethe University Frankfurt-Medical Faculty, University Hospital, Frankfurt, Germany
| | - Fangwei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Li Li
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, China
| | - Zongping Xia
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Tingbo Liang
- Cancer Center, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Huasong Lu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Xin-Hua Feng
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Kressin M, Fietz D, Becker S, Strebhardt K. Modelling the Functions of Polo-Like Kinases in Mice and Their Applications as Cancer Targets with a Special Focus on Ovarian Cancer. Cells 2021; 10:1176. [PMID: 34065956 PMCID: PMC8151477 DOI: 10.3390/cells10051176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/06/2021] [Accepted: 05/08/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (PLKs) belong to a five-membered family of highly conserved serine/threonine kinases (PLK1-5) that play differentiated and essential roles as key mitotic kinases and cell cycle regulators and with this in proliferation and cellular growth. Besides, evidence is accumulating for complex and vital non-mitotic functions of PLKs. Dysregulation of PLKs is widely associated with tumorigenesis and by this, PLKs have gained increasing significance as attractive targets in cancer with diagnostic, prognostic and therapeutic potential. PLK1 has proved to have strong clinical relevance as it was found to be over-expressed in different cancer types and linked to poor patient prognosis. Targeting the diverse functions of PLKs (tumor suppressor, oncogenic) are currently at the center of numerous investigations in particular with the inhibition of PLK1 and PLK4, respectively in multiple cancer trials. Functions of PLKs and the effects of their inhibition have been extensively studied in cancer cell culture models but information is rare on how these drugs affect benign tissues and organs. As a step further towards clinical application as cancer targets, mouse models therefore play a central role. Modelling PLK function in animal models, e.g., by gene disruption or by treatment with small molecule PLK inhibitors offers promising possibilities to unveil the biological significance of PLKs in cancer maintenance and progression and give important information on PLKs' applicability as cancer targets. In this review we aim at summarizing the approaches of modelling PLK function in mice so far with a special glimpse on the significance of PLKs in ovarian cancer and of orthotopic cancer models used in this fatal malignancy.
Collapse
Affiliation(s)
- Monika Kressin
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, 35392 Giessen, Germany;
| | - Sven Becker
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
| | - Klaus Strebhardt
- Department of Gynecology, Goethe-University, 60590 Frankfurt, Germany; (S.B.); (K.S.)
- German Cancer Consortium (DKTK), German Cancer Research Center, Partner Site Frankfurt am Main, 60590 Frankfurt, Germany
| |
Collapse
|
34
|
Zhang X, Wei C, Liang H, Han L. Polo-Like Kinase 4's Critical Role in Cancer Development and Strategies for Plk4-Targeted Therapy. Front Oncol 2021; 11:587554. [PMID: 33777739 PMCID: PMC7994899 DOI: 10.3389/fonc.2021.587554] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Polo-like kinases (Plks) are critical regulatory molecules during the cell cycle process. This family has five members: Plk1, 2, 3, 4, and 5. Plk4 has been identified as a master regulator of centriole replication, and its aberrant expression is closely associated with cancer development. In this review, we depict the DNA, mRNA, and protein structure of Plk4, and the regulation of Plk4 at a molecular level. Then we list the downstream targets of Plk4 and the hallmarks of cancer associated with these targets. The role of Plk4 in different cancers is also summarized. Finally, we review the inhibitors that target Plk4 in the hope of discovering effective anticancer drugs. From authors' perspective, Plk4 might represent a valuable tumor biomarker and critical target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Lei Han
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
35
|
Park JE, Meng L, Ryu EK, Nagashima K, Baxa U, Bang JK, Lee KS. Autophosphorylation-induced self-assembly and STIL-dependent reinforcement underlie Plk4's ring-to-dot localization conversion around a human centriole. Cell Cycle 2020; 19:3419-3436. [PMID: 33323015 DOI: 10.1080/15384101.2020.1843772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polo-like kinase 4 (Plk4) is a key regulator of centriole biogenesis. Studies have shown that Plk4 undergoes dynamic relocalization from a ring-like pattern around a centriole to a dot-like morphology at the procentriole assembly site and this event is central for inducing centriole biogenesis. However, the detailed mechanisms underlying Plk4's capacity to drive its symmetry-breaking ring-to-dot relocalization remain largely unknown. Here, we showed that Plk4 self-initiates this process in an autophosphorylation-dependent manner and that STIL, its downstream target, is not required for this event. Time-dependent analyses with mEOS-fused photoconvertible Plk4 revealed that a portion of ring-state Plk4 acquires a capacity, presumably through autophosphorylation, to linger around a centriole, ultimately generating a dot-state morphology. Interestingly, Plk4 WT, but not its catalytically inactive mutant, showed the ability to form a nanoscale spherical assembly in the cytosol of human cells or heterologous E. coli, demonstrating its autophosphorylation-dependent self-organizing capacity. At the biochemical level, Plk4 - unlike its N-terminal βTrCP degron motif - robustly autophosphorylated the PC3 SSTT motif within its C-terminal cryptic polo-box, an event critical for inducing its physical clustering. Additional in vivo experiments showed that although STIL was not required for Plk4's initial ring-to-dot conversion, coexpressed STIL greatly enhanced Plk4's ability to generate a spherical condensate and recruit Sas6, a major component of the centriolar cartwheel structure. We propose that Plk4's autophosphorylation-induced clustering is sufficient to induce its ring-to-dot localization conversion and that subsequently recruited STIL potentiates this process to generate a procentriole assembly body critical for Plk4-dependent centriole biogenesis.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Lingjun Meng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Eun Kyoung Ryu
- Division of Magnetic Resonance, Korea Basic Science Institute , Cheongju, Republic of Korea
| | - Kunio Nagashima
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research , Frederick, MD, USA
| | - Ulrich Baxa
- Electron Microscopy Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research , Frederick, MD, USA
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute , Cheongju, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
36
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
37
|
Use of the Polo-like kinase 4 (PLK4) inhibitor centrinone to investigate intracellular signalling networks using SILAC-based phosphoproteomics. Biochem J 2020; 477:2451-2475. [PMID: 32501498 PMCID: PMC7338032 DOI: 10.1042/bcj20200309] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication in metazoan organisms. Catalytic activity and protein turnover of PLK4 are tightly coupled in human cells, since changes in PLK4 concentration and catalysis have profound effects on centriole duplication and supernumerary centrosomes, which are associated with aneuploidy and cancer. Recently, PLK4 has been targeted with a variety of small molecule kinase inhibitors exemplified by centrinone, which rapidly induces inhibitory effects on PLK4 and leads to on-target centrosome depletion. Despite this, relatively few PLK4 substrates have been identified unequivocally in human cells, and PLK4 signalling outside centriolar networks remains poorly characterised. We report an unbiased mass spectrometry (MS)-based quantitative analysis of cellular protein phosphorylation in stable PLK4-expressing U2OS human cells exposed to centrinone. PLK4 phosphorylation was itself sensitive to brief exposure to the compound, resulting in PLK4 stabilisation. Analysing asynchronous cell populations, we report hundreds of centrinone-regulated cellular phosphoproteins, including centrosomal and cell cycle proteins and a variety of likely 'non-canonical' substrates. Surprisingly, sequence interrogation of ∼300 significantly down-regulated phosphoproteins reveals an extensive network of centrinone-sensitive [Ser/Thr]Pro phosphorylation sequence motifs, which based on our analysis might be either direct or indirect targets of PLK4. In addition, we confirm that NMYC and PTPN12 are PLK4 substrates, both in vitro and in human cells. Our findings suggest that PLK4 catalytic output directly controls the phosphorylation of a diverse set of cellular proteins, including Pro-directed targets that are likely to be important in PLK4-mediated cell signalling.
Collapse
|
38
|
Gonzalez C. Centrosomes in asymmetric cell division. Curr Opin Struct Biol 2020; 66:178-182. [PMID: 33279730 DOI: 10.1016/j.sbi.2020.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 02/04/2023]
Abstract
Asymmetric cell division (ACD) is a strategy for achieving cell diversity. Research carried out over the last two decades has shown that in some cell types that divide asymmetrically, mother and daughter centrosomes are noticeably different from one another in structure, behaviour, and fate, and that robust ACD depends upon centrosome function. Here, I review the latest advances in this field with special emphasis on the complex structure-function relationship of centrosomes with regards to ACD and on mechanistic insight derived from cell types that divide symmetrically but is likely to be relevant in ACD. I also include a comment arguing for the need to investigate the centrosome cycle in other cell types that divide asymmetrically.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
39
|
Ahn JI, Park JE, Meng L, Zhang L, Kim TS, Kruhlak MJ, Kim BY, Lee KS. Phase separation of the Cep63•Cep152 complex underlies the formation of dynamic supramolecular self-assemblies at human centrosomes. Cell Cycle 2020; 19:3437-3457. [PMID: 33208041 DOI: 10.1080/15384101.2020.1843777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The centrosome is a unique membraneless organelle that plays a pivotal role in the orderly progression of the cell cycle in animal cells. It has been shown that two pericentriolar scaffold proteins, Cep63 and Cep152, generate a heterotetrameric complex to self-assemble into a higher-order cylindrical architecture around a centriole. However, the mechanisms underlying how they reach their threshold concentrations in the vast intracellular space and generate a self-assembled architecture remain mysterious. Here we demonstrate that, like liquid-like assemblies, Cep63 and Cep152 cooperatively generate amorphous aggregates capable of undergoing dynamic turnover and inter-aggregate fusion in vivo and a significant level of internal rearrangemefnt within a condensate in vitro. Consistently, 1,6-hexanediol, a liquid-liquid phase separation disruptor, greatly diminished the ability of endogenous Cep63 and Cep152 to localize to centrosomes. Interestingly, a purified Cep63•Cep152 complex generated either a cylindrical structure or a vesicle-like hollow sphere in a spatially controlled manner. It also formed condensate-like solid spheres in the presence of a macromolecular crowder. At the molecular level, two hydrophobic motifs, one each from Cep63 and Cep152, were required for generating phase-separating condensates and a high molecular-weight assembly. Thus, we propose that the self-assembly of the Cep63•Cep152 complex is triggered by an intrinsic property of the complex undergoing density transition through the hydrophobic-motif-mediated phase separation. Abbreviations: PCM, pericentriolar material; LLPS, liquid-liquid phase separation; MW, molecular-weight; CLEM, correlative light and electron microscopy; WT, wild-type; CMV, cytomegalovirus; FRAP, fluorescence recovery after photobleaching; FITC, fluorescein isothiocyanate; PCR, polymerase chain reaction; 3D-SIM, three-dimensional structured illumination microscopy; DMEM, Dulbecco's Modified Eagle Medium; PEI Max, Polyethylenimine Max; PBS, phosphate-buffered saline; RT, room temperature; DAPI, 4', 6-diamidino-2-phenylindole; AOTF, acousto-optic tunable filter; LB, Luria broth; OD, optical density; IPTG, isopropyl β-D-1-thiogalactopyranoside; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Jong Il Ahn
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Jung-Eun Park
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Lingjun Meng
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Liang Zhang
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Tae-Sung Kim
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| | - Bo Yeon Kim
- Chemical Biology Research Center, Korea Research Institute of Bioscience and Biotechnology , Ochang, Republic of Korea
| | - Kyung S Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health , Bethesda, MD, USA
| |
Collapse
|
40
|
A framework for understanding the functions of biomolecular condensates across scales. Nat Rev Mol Cell Biol 2020; 22:215-235. [PMID: 33169001 DOI: 10.1038/s41580-020-00303-z] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 02/07/2023]
Abstract
Biomolecular condensates are found throughout eukaryotic cells, including in the nucleus, in the cytoplasm and on membranes. They are also implicated in a wide range of cellular functions, organizing molecules that act in processes ranging from RNA metabolism to signalling to gene regulation. Early work in the field focused on identifying condensates and understanding how their physical properties and regulation arise from molecular constituents. Recent years have brought a focus on understanding condensate functions. Studies have revealed functions that span different length scales: from molecular (modulating the rates of chemical reactions) to mesoscale (organizing large structures within cells) to cellular (facilitating localization of cellular materials and homeostatic responses). In this Roadmap, we discuss representative examples of biochemical and cellular functions of biomolecular condensates from the recent literature and organize these functions into a series of non-exclusive classes across the different length scales. We conclude with a discussion of areas of current interest and challenges in the field, and thoughts about how progress may be made to further our understanding of the widespread roles of condensates in cell biology.
Collapse
|
41
|
Yamamoto S, Kitagawa D. Emerging insights into symmetry breaking in centriole duplication: updated view on centriole duplication theory. Curr Opin Struct Biol 2020; 66:8-14. [PMID: 32956908 DOI: 10.1016/j.sbi.2020.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/22/2020] [Accepted: 08/25/2020] [Indexed: 11/15/2022]
Abstract
Centriole duplication occurs once per cell cycle. Since only a single daughter centriole is assembled adjacent to each mother centriole, symmetry around the mother centriole must be broken in the process of centriole duplication. Recent studies have established that Plk4, a master kinase for centriole duplication, can self-assemble into condensates, and have suggested that this Plk4 self-assembly is the key to symmetry breaking. Here, we present the current hypotheses for how Plk4 could break symmetry around the mother centriole via autonomous regulation. After this initial symmetry-breaking process, the ring-to-dot conversion of Plk4 around the mother centriole completes the selection of the site for procentriole formation. We also discuss how this dynamic transition contributes to the strict regulation of centriole duplication.
Collapse
Affiliation(s)
- Shohei Yamamoto
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| |
Collapse
|
42
|
TRIM37 controls cancer-specific vulnerability to PLK4 inhibition. Nature 2020; 585:440-446. [PMID: 32908304 PMCID: PMC7501188 DOI: 10.1038/s41586-020-2710-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 06/09/2020] [Indexed: 12/21/2022]
Abstract
Centrosomes catalyze microtubule formation for mitotic spindle assembly1. Centrosomes duplicate once per cell cycle in a process controlled the kinase PLK42,3. Following chemical PLK4 inhibition, cell division in the absence of centrosome duplication generates centrosome-less cells that exhibit delayed, acentrosomal spindle assembly4. Whether PLK4 inhibitors can be leveraged for cancer treatment is not yet clear. Here, we show that acentrosomal spindle assembly following PLK4 inhibition depends on levels of the centrosomal ubiquitin ligase TRIM37. Low TRIM37 accelerates acentrosomal spindle assembly and improves proliferation following PLK4 inhibition, whereas high TRIM37 inhibits acentrosomal spindle assembly, leading to mitotic failure and cessation of proliferation. The Chr17q region containing the TRIM37 gene is frequently amplified in neuroblastoma and in breast cancer5–8, which renders these cancer types highly sensitive to PLK4 inhibition. TRIM37 inactivation improves acentrosomal mitosis because TRIM37 prevents PLK4 self-assembly into centrosome-independent condensates that serve as ectopic microtubule-organizing centers. By contrast, elevated TRIM37 expression inhibits acentrosomal spindle assembly via a distinct mechanism that involves degradation of the centrosomal component CEP192. Thus, TRIM37 is a critical determinant of mitotic vulnerability to PLK4 inhibition. Linkage of TRIM37 to prevalent cancer-associated genomic changes, including 17q gain in neuroblastoma and 17q23 amplification in breast cancer, may offer an opportunity to use PLK4 inhibition to trigger selective mitotic failure and provide new avenues to treatments for these cancers.
Collapse
|
43
|
Trivedi P, Stukenberg PT. A Condensed View of the Chromosome Passenger Complex. Trends Cell Biol 2020; 30:676-687. [PMID: 32684321 PMCID: PMC10714244 DOI: 10.1016/j.tcb.2020.06.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 02/02/2023]
Abstract
The inner centromere is a region on the mitotic chromosome that serves as a platform for mitotic signaling and possesses unique biophysical properties that enable it to withstand relatively large pulling forces that are generated by kinetochores (KTs) during chromosome segregation. The chromosomal passenger complex (CPC) localizes to and is the key regulator of inner centromere organization and function during mitosis. Recently, we demonstrated that in addition to its kinase and histone code-reading activities, the CPC also can undergo liquid-liquid phase separation (LLPS) and proposed that the inner centromere is a membraneless organelle scaffolded by the CPC. In this perspective, we explore mechanisms that can allow the formation and dissolution of this membraneless body. The cell-cycle-regulated spatially defined assembly and disassembly of the CPC condensate at the inner centromere can reveal general principles about how histone modifications control chromatin-bound membraneless organelles. We further explore how the ability of the CPC to undergo LLPS may contribute to the organization and function of the inner centromere during mitosis.
Collapse
Affiliation(s)
- Prasad Trivedi
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA
| | - P Todd Stukenberg
- Department of Cell Biology, University of Virginia, School of Medicine, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
44
|
Ong JY, Torres JZ. Phase Separation in Cell Division. Mol Cell 2020; 80:9-20. [PMID: 32860741 DOI: 10.1016/j.molcel.2020.08.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Cell division requires the assembly and organization of a microtubule spindle for the proper separation of chromosomes in mitosis and meiosis. Phase separation is an emerging paradigm for understanding spatial and temporal regulation of a variety of cellular processes, including cell division. Phase-separated condensates have been recently discovered at many structures during cell division as a possible mechanism for properly localizing, organizing, and activating proteins involved in cell division. Here, we review how these condensates play roles in regulating microtubule density and organization and spindle assembly and function and in activating some of the key players in cell division. We conclude with perspectives on areas of future research for this exciting and rapidly advancing field.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
45
|
Lee KS, Park JE, Il Ahn J, Wei Z, Zhang L. A self-assembled cylindrical platform for Plk4-induced centriole biogenesis. Open Biol 2020; 10:200102. [PMID: 32810424 PMCID: PMC7479937 DOI: 10.1098/rsob.200102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
The centrosome, a unique membraneless multiprotein organelle, plays a pivotal role in various cellular processes that are critical for promoting cell proliferation. Faulty assembly or organization of the centrosome results in abnormal cell division, which leads to various human disorders including cancer, microcephaly and ciliopathy. Recent studies have provided new insights into the stepwise self-assembly of two pericentriolar scaffold proteins, Cep63 and Cep152, into a near-micrometre-scale higher-order structure whose architectural properties could be crucial for proper execution of its biological function. The construction of the scaffold architecture appears to be centrally required for tight control of a Ser/Thr kinase called Plk4, a key regulator of centriole duplication, which occurs precisely once per cell cycle. In this review, we will discuss a new paradigm for understanding how pericentrosomal scaffolds are self-organized into a new functional entity and how, on the resulting structural platform, Plk4 undergoes physico-chemical conversion to trigger centriole biogenesis.
Collapse
Affiliation(s)
- Kyung S. Lee
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
46
|
Li Q, Meng L, Liu D. Screening and Identification of Therapeutic Targets for Pulmonary Arterial Hypertension Through Microarray Technology. Front Genet 2020; 11:782. [PMID: 32849793 PMCID: PMC7396553 DOI: 10.3389/fgene.2020.00782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare but fatal disease characterized by vascular cell proliferation; the pathogenesis of PAH has yet to be fully elucidated. Publicly available genetic data were downloaded from the Gene Expression Omnibus (GEO) database, and gene set enrichment analysis (GSEA) was used to determine significant differences in gene expression between tissues with PAH and healthy lung tissues. Differentially expressed genes (DEGs) were identified using the online tool, GEO2R, and functional annotation of DEGs was performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Next, the construction and module analysis of the protein–protein interaction (PPI) network and verification of the expression level of hub genes was performed. Finally, prediction and enrichment analysis of microRNAs associated with the hub genes was carried out. A total of 110 DEGs were detected by screening PAH and healthy lung samples. The expression of nine genes [polo-like kinase 4 (PLK4), centromere protein U, kinesin family member 20B, structural maintenance of chromosome 2 (SMC2), abnormal spindle microtubule assembly, Fanconi Anemia complementation group I, kinesin family member 18A, spindle apparatus coiled-coil protein 1, and MIS18 binding protein 1] was elevated in PAH; this was statistically significant compared with their expression in healthy lung tissue, and they were identified as hub genes. GO and KEGG analysis showed that the variations in DEGs were abundant in DNA-templated transcription, sister chromatid cohesion, mitotic nuclear division, cell proliferation, and regulation of the actin cytoskeleton. In conclusion, this study has successfully identified hub genes and key pathways of PAH, with a total of 110 DEGs and nine hub genes related to PAH, especially the PLK4 and SMC2 genes, thus providing important clues for the in-depth understanding of the molecular mechanism of PAH and providing potential therapeutic targets.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - LingBing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Departments of Cardiology, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - DePing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
47
|
Gartenmann L, Vicente CC, Wainman A, Novak ZA, Sieber B, Richens JH, Raff JW. Drosophila Sas-6, Ana2 and Sas-4 self-organise into macromolecular structures that can be used to probe centriole and centrosome assembly. J Cell Sci 2020; 133:jcs244574. [PMID: 32409564 PMCID: PMC7328145 DOI: 10.1242/jcs.244574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Centriole assembly requires a small number of conserved proteins. The precise pathway of centriole assembly has been difficult to study, as the lack of any one of the core assembly proteins [Plk4, Ana2 (the homologue of mammalian STIL), Sas-6, Sas-4 (mammalian CPAP) or Asl (mammalian Cep152)] leads to the absence of centrioles. Here, we use Sas-6 and Ana2 particles (SAPs) as a new model to probe the pathway of centriole and centrosome assembly. SAPs form in Drosophila eggs or embryos when Sas-6 and Ana2 are overexpressed. SAP assembly requires Sas-4, but not Plk4, whereas Asl helps to initiate SAP assembly but is not required for SAP growth. Although not centrioles, SAPs recruit and organise many centriole and centrosome components, nucleate microtubules, organise actin structures and compete with endogenous centrosomes to form mitotic spindle poles. SAPs require Asl to efficiently recruit pericentriolar material (PCM), but Spd-2 (the homologue of mammalian Cep192) can promote some PCM assembly independently of Asl. These observations provide new insights into the pathways of centriole and centrosome assembly.
Collapse
Affiliation(s)
- Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Catarina C Vicente
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Zsofi A Novak
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Boris Sieber
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jennifer H Richens
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, South Parks Rd, Oxford OX1 3RE, UK
| |
Collapse
|
48
|
Aydogan MG, Steinacker TL, Mofatteh M, Wilmott ZM, Zhou FY, Gartenmann L, Wainman A, Saurya S, Novak ZA, Wong SS, Goriely A, Boemo MA, Raff JW. An Autonomous Oscillation Times and Executes Centriole Biogenesis. Cell 2020; 181:1566-1581.e27. [PMID: 32531200 PMCID: PMC7327525 DOI: 10.1016/j.cell.2020.05.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 12/19/2019] [Accepted: 05/08/2020] [Indexed: 01/18/2023]
Abstract
The accurate timing and execution of organelle biogenesis is crucial for cell physiology. Centriole biogenesis is regulated by Polo-like kinase 4 (Plk4) and initiates in S-phase when a daughter centriole grows from the side of a pre-existing mother. Here, we show that a Plk4 oscillation at the base of the growing centriole initiates and times centriole biogenesis to ensure that centrioles grow at the right time and to the right size. The Plk4 oscillation is normally entrained to the cell-cycle oscillator but can run autonomously of it-potentially explaining why centrioles can duplicate independently of cell-cycle progression. Mathematical modeling indicates that the Plk4 oscillation can be generated by a time-delayed negative feedback loop in which Plk4 inactivates the interaction with its centriolar receptor through multiple rounds of phosphorylation. We hypothesize that similar organelle-specific oscillations could regulate the timing and execution of organelle biogenesis more generally.
Collapse
Affiliation(s)
- Mustafa G Aydogan
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Thomas L Steinacker
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mohammad Mofatteh
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Zachary M Wilmott
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK; Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Felix Y Zhou
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Lisa Gartenmann
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alan Wainman
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Saroj Saurya
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Zsofia A Novak
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Siu-Shing Wong
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Michael A Boemo
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| | - Jordan W Raff
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
49
|
Requirement of the Cep57-Cep63 Interaction for Proper Cep152 Recruitment and Centriole Duplication. Mol Cell Biol 2020; 40:MCB.00535-19. [PMID: 32152252 DOI: 10.1128/mcb.00535-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/27/2020] [Indexed: 01/27/2023] Open
Abstract
Cep57 has been characterized as a component of a pericentriolar complex containing Cep63 and Cep152. Interestingly, Cep63 and Cep152 self-assemble into a pericentriolar cylindrical architecture, and this event is critical for the orderly recruitment of Plk4, a key regulator of centriole duplication. However, the way in which Cep57 interacts with the Cep63-Cep152 complex and contributes to the structure and function of Cep63-Cep152 self-assembly remains unknown. We demonstrate that Cep57 interacts with Cep63 through N-terminal motifs and associates with Cep152 via Cep63. Three-dimensional structured illumination microscopy (3D-SIM) analyses suggested that the Cep57-Cep63-Cep152 complex is concentrically arranged around a centriole in a Cep57-in and Cep152-out manner. Cep57 mutant cells defective in Cep63 binding exhibited improper Cep63 and Cep152 localization and impaired Sas6 recruitment for procentriole assembly, proving the significance of the Cep57-Cep63 interaction. Intriguingly, Cep63 fused to a microtubule (MT)-binding domain of Cep57 functioned in concert with Cep152 to assemble around stabilized MTs in vitro Thus, Cep57 plays a key role in architecting the Cep63-Cep152 assembly around centriolar MTs and promoting centriole biogenesis. This study may offer a platform to investigate how the organization and function of the pericentriolar architecture are altered by disease-associated mutations found in the Cep57-Cep63-Cep152 complex.
Collapse
|