1
|
Moiseyev N. Conditions for enhancement of gas phase chemical reactions inside a dark microwave cavity. Commun Chem 2024; 7:227. [PMID: 39358458 PMCID: PMC11447044 DOI: 10.1038/s42004-024-01286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
The ability to slow down or enhance chemical reactions, by a seemingly simple setup of reactions inside a cavity made of two parallel mirrors is fascinating. Unfortunately, currently, theory and experiment have not yet fully converged. Since theory and experiment perfectly match for atom/molecular collisions in gas phase the enhancing chemical reactions in gas phase through its coupling to quantized electromagnetic modes in a dark cavity is investigated. Here the conditions and guidelines for selecting the proper type of reactions that can be enhanced by a dark cavity are provided. Showing that the asymmetric reaction rates of O + D2 → [ODD]# → OD + D and H + ArCl → [ArHCl]# → H + Ar + Cl can be enhanced by a dark cavity. On the other hand, an effect of the dark cavity on the symmetric reaction of hydrogen exchange in methane is predicted to be negligible. Notice that the theory is not limited to microwave cavities only.
Collapse
Affiliation(s)
- Nimrod Moiseyev
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
- Faculty of Physics, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
- Solid State Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel.
| |
Collapse
|
2
|
Sharma SK, Chen HT. Unraveling abnormal collective effects via the non-monotonic number dependence of electron transfer in confined electromagnetic fields. J Chem Phys 2024; 161:104102. [PMID: 39248381 DOI: 10.1063/5.0225434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
Strong light-matter coupling within an optical cavity leverages the collective interactions of molecules and confined electromagnetic fields, giving rise to the possibilities of modifying chemical reactivity and molecular properties. While collective optical responses, such as enhanced Rabi splitting, are often observed, the overall effect of the cavity on molecular systems remains ambiguous for a large number of molecules. In this paper, we investigate the non-adiabatic electron transfer process in electron donor-acceptor pairs influenced by collective excitation and local molecular dynamics. Using the timescale difference between reorganization and thermal fluctuations, we derive analytical formulas for the electron transfer rate constant and the polariton relaxation rate. These formulas apply to any number of molecules (N) and account for the collective effect as induced by cavity photon coupling. Our findings reveal a non-monotonic dependence of the rate constant on N, which can be understood by the interplay between electron transfer and polariton relaxation. As a result, the cavity-induced quantum yield increases linearly with N for small N (as predicted by a simple Dicke model) but shows a turnover and suppression for large N. We also interrelate the thermal bath frequency and the number of molecules, suggesting the optimal number for maximizing enhancement. The analysis provides an analytical insight for understanding the collective excitation of light and electron transfer, helping to predict the optimal condition for effective cavity-controlled chemical reactivity.
Collapse
Affiliation(s)
- Shravan Kumar Sharma
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsing-Ta Chen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
3
|
Warren S, Wang Y, Benavides-Riveros CL, Mazziotti DA. Exact Ansatz of Fermion-Boson Systems for a Quantum Device. PHYSICAL REVIEW LETTERS 2024; 133:080202. [PMID: 39241718 DOI: 10.1103/physrevlett.133.080202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/13/2024] [Accepted: 07/18/2024] [Indexed: 09/09/2024]
Abstract
We present an exact Ansatz for the eigenstate problem of mixed fermion-boson systems that can be implemented on quantum devices. Based on a generalization of the electronic contracted Schrödinger equation (CSE), our approach guides a trial wave function to the ground state of any arbitrary mixed Hamiltonian by directly measuring residuals of the mixed CSE on a quantum device. Unlike density functional and coupled cluster theories applied to electron-phonon or electron-photon systems, the accuracy of our approach is not limited by the unknown exchange-correlation functional or the uncontrolled form of the exponential Ansatz. To test the performance of the method, we study the Tavis-Cummings model, commonly used in polaritonic quantum chemistry. Our results demonstrate that the CSE is a powerful tool in the development of quantum algorithms for solving general fermion-boson many-body problems.
Collapse
|
4
|
Ke Y, Richardson JO. Quantum nature of reactivity modification in vibrational polariton chemistry. J Chem Phys 2024; 161:054104. [PMID: 39087532 DOI: 10.1063/5.0220908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
In this work, we present a mixed quantum-classical open quantum system dynamics method for studying rate modifications of ground-state chemical reactions in an optical cavity under vibrational strong-coupling conditions. In this approach, the cavity radiation mode is treated classically with a mean-field nuclear force averaging over the remaining degrees of freedom, both within the system and the environment, which are handled quantum mechanically within the hierarchical equations of motion framework. Using this approach, we conduct a comparative analysis by juxtaposing the mixed quantum-classical results with fully quantum-mechanical simulations. After eliminating spurious peaks that can occur when not using the rigorous definition of the rate constant, we confirm the crucial role of the quantum nature of the cavity radiation mode in reproducing the resonant peak observed in the cavity frequency-dependent rate profile. In other words, it appears necessary to explicitly consider the quantized photonic states in studying reactivity modification in vibrational polariton chemistry (at least for the model systems studied in this work), as these phenomena stem from cavity-induced reaction pathways involving resonant energy exchanges between photons and molecular vibrational transitions.
Collapse
Affiliation(s)
- Yaling Ke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Jeremy O Richardson
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
5
|
Morshed O, Amin M, Cogan NMB, Koessler ER, Collison R, Tumiel TM, Girten W, Awan F, Mathis L, Huo P, Vamivakas AN, Odom TW, Krauss TD. Room-temperature strong coupling between CdSe nanoplatelets and a metal-DBR Fabry-Pérot cavity. J Chem Phys 2024; 161:014710. [PMID: 38953450 DOI: 10.1063/5.0210700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The generation of exciton-polaritons through strong light-matter interactions represents an emerging platform for exploring quantum phenomena. A significant challenge in colloidal nanocrystal-based polaritonic systems is the ability to operate at room temperature with high fidelity. Here, we demonstrate the generation of room-temperature exciton-polaritons through the coupling of CdSe nanoplatelets (NPLs) with a Fabry-Pérot optical cavity, leading to a Rabi splitting of 74.6 meV. Quantum-classical calculations accurately predict the complex dynamics between the many dark state excitons and the optically allowed polariton states, including the experimentally observed lower polariton photoluminescence emission, and the concentration of photoluminescence intensities at higher in-plane momenta as the cavity becomes more negatively detuned. The Rabi splitting measured at 5 K is similar to that at 300 K, validating the feasibility of the temperature-independent operation of this polaritonic system. Overall, these results show that CdSe NPLs are an excellent material to facilitate the development of room-temperature quantum technologies.
Collapse
Affiliation(s)
- Ovishek Morshed
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Mitesh Amin
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Nicole M B Cogan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Eric R Koessler
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Robert Collison
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Trevor M Tumiel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - William Girten
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Lele Mathis
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Pengfei Huo
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - A Nickolas Vamivakas
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - Teri W Odom
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Todd D Krauss
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
6
|
Li TE. Mesoscale Molecular Simulations of Fabry-Pérot Vibrational Strong Coupling. J Chem Theory Comput 2024. [PMID: 38912683 DOI: 10.1021/acs.jctc.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Developing theoretical frameworks for vibrational strong coupling (VSC) beyond the single-mode approximation is crucial for a comprehensive understanding of experiments with planar Fabry-Pérot cavities. Herein, a generalized cavity molecular dynamics (CavMD) scheme is developed to simulate VSC of a large ensemble of realistic molecules coupled to an arbitrary 1D or 2D photonic environment. This approach is built upon the Power-Zienau-Woolley Hamiltonian in the normal mode basis and uses a grid representation of the molecular ensembles to reduce the computational cost. When simulating the polariton dispersion relation for a homogeneous distribution of molecules in planar Fabry-Pérot cavities, our data highlight the importance of preserving the in-plane translational symmetry of the molecular distribution. In this homogeneous limit, CavMD yields the consistent polariton dispersion relation as an analytic theory, i.e., incorporating many cavity modes with varying in-plane wave vectors (k∥) produces the same spectrum as the system with a single cavity mode. Furthermore, CavMD reveals that the validity of the single-mode approximation is challenged when nonequilibrium polariton dynamics are considered, as polariton-polariton scattering occurs between modes with the nearest neighbor k∥. The procedure for numerically approaching the macroscopic limit is also demonstrated with CavMD by increasing the system size. Looking forward, our generalized CavMD approach may facilitate understanding vibrational polariton transport and condensation.
Collapse
Affiliation(s)
- Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
7
|
Fábri C, Császár AG, Halász GJ, Cederbaum LS, Vibók Á. Coupling polyatomic molecules to lossy nanocavities: Lindblad vs Schrödinger description. J Chem Phys 2024; 160:214308. [PMID: 38836455 DOI: 10.1063/5.0205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 06/06/2024] Open
Abstract
The use of cavities to impact molecular structure and dynamics has become popular. As cavities, in particular plasmonic nanocavities, are lossy and the lifetime of their modes can be very short, their lossy nature must be incorporated into the calculations. The Lindblad master equation is commonly considered an appropriate tool to describe this lossy nature. This approach requires the dynamics of the density operator and is thus substantially more costly than approaches employing the Schrödinger equation for the quantum wave function when several or many nuclear degrees of freedom are involved. In this work, we compare numerically the Lindblad and Schrödinger descriptions discussed in the literature for a molecular example where the cavity is pumped by a laser. The laser and cavity properties are varied over a range of parameters. It is found that the Schrödinger description adequately describes the dynamics of the polaritons and emission signal as long as the laser intensity is moderate and the pump time is not much longer than the lifetime of the cavity mode. Otherwise, it is demonstrated that the Schrödinger description gradually fails. We also show that the failure of the Schrödinger description can often be remedied by renormalizing the wave function at every step of time propagation. The results are discussed and analyzed.
Collapse
Affiliation(s)
- Csaba Fábri
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Attila G Császár
- HUN-REN-ELTE Complex Chemical Systems Research Group, P.O. Box 32, H-1518 Budapest 112, Hungary
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| | - Gábor J Halász
- Department of Information Technology, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ágnes Vibók
- Department of Theoretical Physics, University of Debrecen, P.O. Box 400, H-4002 Debrecen, Hungary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics tér 13, H-6720 Szeged, Hungary
| |
Collapse
|
8
|
Kim CW, Franco I. General framework for quantifying dissipation pathways in open quantum systems. I. Theoretical formulation. J Chem Phys 2024; 160:214111. [PMID: 38833366 DOI: 10.1063/5.0202860] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
We present a general and practical theoretical framework to investigate how energy is dissipated in open quantum system dynamics. This is performed by quantifying the contributions of individual bath components to the overall dissipation of the system. The framework is based on the Nakajima-Zwanzig projection operator technique, which allows us to express the rate of energy dissipation into a specific bath degree of freedom by using traces of operator products. The approach captures system-bath interactions to all orders, but is based on second-order perturbation theory on the off-diagonal subsystem's couplings and a Markovian description of the bath. The usefulness of our theory is demonstrated by applying it to various models of open quantum systems involving harmonic oscillators or spin baths and connecting the outcomes to existing results such as our previously reported formula derived for locally coupled harmonic baths [Kim and Franco, J. Chem. Phys. 154, 084109 (2021)]. We also prove that the dissipation calculated by our theory rigorously satisfies thermodynamic principles such as energy conservation and detailed balance. Overall, the strategy can be used to develop the theory and simulation of dissipation pathways to interpret and engineer the dynamics of open quantum systems.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
9
|
Patrahau B, Piejko M, Mayer RJ, Antheaume C, Sangchai T, Ragazzon G, Jayachandran A, Devaux E, Genet C, Moran J, Ebbesen TW. Direct Observation of Polaritonic Chemistry by Nuclear Magnetic Resonance Spectroscopy. Angew Chem Int Ed Engl 2024; 63:e202401368. [PMID: 38584127 DOI: 10.1002/anie.202401368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Polaritonic chemistry is emerging as a powerful approach to modifying the properties and reactivity of molecules and materials. However, probing how the electronics and dynamics of molecular systems change under strong coupling has been challenging due to the narrow range of spectroscopic techniques that can be applied in situ. Here we develop microfluidic optical cavities for vibrational strong coupling (VSC) that are compatible with nuclear magnetic resonance (NMR) spectroscopy using standard liquid NMR tubes. VSC is shown to influence the equilibrium between two conformations of a molecular balance sensitive to London dispersion forces, revealing an apparent change in the equilibrium constant under VSC. In all compounds studied, VSC does not induce detectable changes in chemical shifts, J-couplings, or spin-lattice relaxation times. This unexpected finding indicates that VSC does not substantially affect molecular electron density distributions, and in turn has profound implications for the possible mechanisms at play in polaritonic chemistry under VSC and suggests that the emergence of collective behavior is critical.
Collapse
Affiliation(s)
- B Patrahau
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - M Piejko
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - R J Mayer
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - C Antheaume
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - T Sangchai
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - G Ragazzon
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - A Jayachandran
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - E Devaux
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - C Genet
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - J Moran
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - T W Ebbesen
- University of Strasbourg, CNRS, ISIS & icFRC, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
10
|
Yu Q, Bowman JM. Fully Quantum Simulation of Polaritonic Vibrational Spectra of Large Cavity-Molecule System. J Chem Theory Comput 2024; 20:4278-4287. [PMID: 38717309 DOI: 10.1021/acs.jctc.4c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The formation of molecular vibrational polaritons, arising from the interplay between molecular vibrations and infrared cavity modes, is a quantum phenomenon necessitating accurate quantum dynamical simulations. Here, we introduce the cavity vibrational self-consistent field/virtual state configuration interaction method, enabling quantum simulation of the vibrational spectra of many-molecule systems within the optical cavity. Focusing on the representative (H2O)21 system, we showcase this parameter-free quantum approach's ability to capture both linear and nonlinear vibrational spectral features. Our findings highlight the growing prominence of molecular couplings among OH stretches and bending excited bands with increased light-matter interaction, revealing distinctive nonlinear spectral features induced by vibrational strong coupling.
Collapse
Affiliation(s)
- Qi Yu
- Department of Chemistry, Fudan University, Shanghai 200438, P. R. China
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Wang W, de la Fuente Diez J, Delsuc N, Peng J, Spezia R, Vuilleumier R, Chen Y. Piezoelectric and microfluidic tuning of an infrared cavity for vibrational polariton studies. LAB ON A CHIP 2024; 24:2497-2505. [PMID: 38606494 DOI: 10.1039/d3lc01101a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
We developed a microfluidic system for vibrational polariton studies, which consists of two microfluidic chips: one for solution mixing and another for tuning an infrared cavity made of a pair of gold mirrors and a PDMS (polydimethylsiloxane) spacer. We show that the cavity of the system can be accurately tuned with either piezoelectric actuators or microflow-induced pressure to result in resonant coupling between a cavity mode and a variational mode of the solution molecules. Acrylonitrile solutions were chosen to prove the concept of vabriational strong coupling (VSC) of a CN stretching mode with light inside the cavity. We also show that the Rabi splitting energy is linearly proportional to the square root of molecular concentration, thereby proving the relevance and reliability of the system for VSC studies.
Collapse
Affiliation(s)
- Wei Wang
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Jaime de la Fuente Diez
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Nicolas Delsuc
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Juan Peng
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4, place Jussieu, 75252 Paris Cedex 05, France
| | - Rodolphe Vuilleumier
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| | - Yong Chen
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, CNRS UMR 8640, PASTEUR, 24, rue Lhomond, 75005 Paris, France.
| |
Collapse
|
12
|
Phuc NT. Semiclassical Truncated-Wigner-Approximation Theory of Molecular Vibration-Polariton Dynamics in Optical Cavities. J Chem Theory Comput 2024; 20:3019-3027. [PMID: 38608260 DOI: 10.1021/acs.jctc.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
It has been experimentally demonstrated that molecular-vibration polaritons formed by strong coupling of a molecular vibration to an infrared cavity mode can significantly modify the physical properties and chemical reactivities of various molecular systems. However, a complete theoretical understanding of the underlying mechanisms of the modifications remains elusive due to the complexity of the hybrid system, especially the collective nature of polaritonic states in systems containing many molecules. We develop here the semiclassical theory of molecular vibration-polariton dynamics based on the truncated Wigner approximation (TWA) that is tractable in large molecular systems and simultaneously captures the quantum character of photons in the optical cavity. The theory is then applied to investigate the nuclear quantum dynamics of a system of identical diatomic molecules having the ground-state Morse potential and being strongly coupled to an infrared cavity mode in the ultrastrong coupling regime. The validity of TWA is examined by comparing it with the full quantum dynamics of a single-molecule system for two different initial states in the dipole and Coulomb gauges. For the initial tensor-product ground state in the dipole gauge, which corresponds to a light-matter entangled state in the Coulomb gauge, the collective and resonance effects of molecular vibration-polariton formation on the nuclear dynamics are observed in a system of many molecules.
Collapse
Affiliation(s)
- Nguyen Thanh Phuc
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
13
|
Sun K, Ribeiro RF. Theoretical formulation of chemical equilibrium under vibrational strong coupling. Nat Commun 2024; 15:2405. [PMID: 38493189 PMCID: PMC10944518 DOI: 10.1038/s41467-024-46442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Experiments have suggested that strong interactions between molecular ensembles and infrared microcavities can be employed to control chemical equilibria. Nevertheless, the primary mechanism and key features of the effect remain largely unexplored. In this work, we develop a theory of chemical equilibrium in optical microcavities, which allows us to relate the equilibrium composition of a mixture in different electromagnetic environments. Our theory shows that in planar microcavities under strong coupling with polyatomic molecules, hybrid modes formed between all dipole-active vibrations and cavity resonances contribute to polariton-assisted chemical equilibrium shifts. To illustrate key aspects of our formalism, we explore a model SN2 reaction within a single-mode infrared resonator. Our findings reveal that chemical equilibria can be shifted towards either direction of a chemical reaction, depending on the oscillator strength and frequencies of reactant and product normal modes. Polariton-induced zero-point energy changes provide the dominant contributions, though the effects in idealized single-mode cavities tend to diminish quickly as the temperature and number of molecules increase. Our approach is valid in generic electromagnetic environments and paves the way for understanding and controlling chemical equilibria with microcavities.
Collapse
Affiliation(s)
- Kaihong Sun
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, 30322, USA
| | - Raphael F Ribeiro
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
14
|
Schäfer C, Fojt J, Lindgren E, Erhart P. Machine Learning for Polaritonic Chemistry: Accessing Chemical Kinetics. J Am Chem Soc 2024; 146:5402-5413. [PMID: 38354223 PMCID: PMC10910569 DOI: 10.1021/jacs.3c12829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Altering chemical reactivity and material structure in confined optical environments is on the rise, and yet, a conclusive understanding of the microscopic mechanisms remains elusive. This originates mostly from the fact that accurately predicting vibrational and reactive dynamics for soluted ensembles of realistic molecules is no small endeavor, and adding (collective) strong light-matter interaction does not simplify matters. Here, we establish a framework based on a combination of machine learning (ML) models, trained using density-functional theory calculations and molecular dynamics to accelerate such simulations. We then apply this approach to evaluate strong coupling, changes in reaction rate constant, and their influence on enthalpy and entropy for the deprotection reaction of 1-phenyl-2-trimethylsilylacetylene, which has been studied previously both experimentally and using ab initio simulations. While we find qualitative agreement with critical experimental observations, especially with regard to the changes in kinetics, we also find differences in comparison with previous theoretical predictions. The features for which the ML-accelerated and ab initio simulations agree show the experimentally estimated kinetic behavior. Conflicting features indicate that a contribution of dynamic electronic polarization to the reaction process is more relevant than currently believed. Our work demonstrates the practical use of ML for polaritonic chemistry, discusses limitations of common approximations, and paves the way for a more holistic description of polaritonic chemistry.
Collapse
Affiliation(s)
- Christian Schäfer
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Department
of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Jakub Fojt
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Eric Lindgren
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, 412 96, Göteborg, Sweden
| |
Collapse
|
15
|
Li X, Lubbers N, Tretiak S, Barros K, Zhang Y. Machine Learning Framework for Modeling Exciton Polaritons in Molecular Materials. J Chem Theory Comput 2024; 20:891-901. [PMID: 38168674 DOI: 10.1021/acs.jctc.3c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
A light-matter hybrid quasiparticle, called a polariton, is formed when molecules are strongly coupled to an optical cavity. Recent experiments have shown that polariton chemistry can manipulate chemical reactions. Polariton chemistry is a collective phenomenon, and its effects increase with the number of molecules in a cavity. However, simulating an ensemble of molecules in the excited state coupled to a cavity mode is theoretically and computationally challenging. Recent advances in machine learning (ML) techniques have shown promising capabilities in modeling ground-state chemical systems. This work presents a general protocol to predict excited-state properties, such as energies, transition dipoles, and nonadiabatic coupling vectors with the hierarchically interacting particle neural network. ML predictions are then applied to compute the potential energy surfaces and electronic spectra of a prototype azomethane molecule in the collective coupling scenario. These computational tools provide a much-needed framework to model and understand many molecules' emerging excited-state polariton chemistry.
Collapse
Affiliation(s)
- Xinyang Li
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lubbers
- Information Sciences, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kipton Barros
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Yu Zhang
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
16
|
Georgiou K, Athanasiou M, Jayaprakash R, Lidzey DG, Itskos G, Othonos A. Strong coupling in mechanically flexible free-standing organic membranes. J Chem Phys 2023; 159:234303. [PMID: 38112504 DOI: 10.1063/5.0178144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023] Open
Abstract
Strong coupling of a confined optical field to the excitonic or vibronic transitions of a molecular material results in the formation of new hybrid states called polaritons. Such effects have been extensively studied in Fabry-Pèrot microcavity structures where an organic material is placed between two highly reflective mirrors. Recently, theoretical and experimental evidence has suggested that strong coupling can be used to modify chemical reactivity as well as molecular photophysical functionalities. However, the geometry of conventional microcavity structures limits the ability of molecules "encapsulated" in a cavity to interact with their local environment. Here, we fabricate mirrorless organic membranes that utilize the refractive index contrast between the organic active material and its surrounding medium to confine an optical field with Q-factor values up to 33. Using angle-resolved white light reflectivity measurements, we confirm that our structures operate in the strong coupling regime, with Rabi-splitting energies between 60 and 80 meV in the different structures studied. The experimental results are matched by transfer matrix and coupled oscillator models that simulate the various polariton states of the free standing membranes. Our work demonstrates that mechanically flexible and easy-to-fabricate free standing membranes can support strong light-matter coupling, making such simple and versatile structures highly promising for a range of polariton applications.
Collapse
Affiliation(s)
- Kyriacos Georgiou
- Department of Physics, Laboratory of Ultrafast Science, University of Cyprus, Nicosia 1678, Cyprus
| | - Modestos Athanasiou
- Department of Physics, Experimental Condensed Matter Physics Laboratory, University of Cyprus, Nicosia 1678, Cyprus
| | - Rahul Jayaprakash
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| | - David G Lidzey
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, United Kingdom
| | - Grigorios Itskos
- Department of Physics, Experimental Condensed Matter Physics Laboratory, University of Cyprus, Nicosia 1678, Cyprus
| | - Andreas Othonos
- Department of Physics, Laboratory of Ultrafast Science, University of Cyprus, Nicosia 1678, Cyprus
| |
Collapse
|
17
|
Weight BM, Li X, Zhang Y. Theory and modeling of light-matter interactions in chemistry: current and future. Phys Chem Chem Phys 2023; 25:31554-31577. [PMID: 37842818 DOI: 10.1039/d3cp01415k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Light-matter interaction not only plays an instrumental role in characterizing materials' properties via various spectroscopic techniques but also provides a general strategy to manipulate material properties via the design of novel nanostructures. This perspective summarizes recent theoretical advances in modeling light-matter interactions in chemistry, mainly focusing on plasmon and polariton chemistry. The former utilizes the highly localized photon, plasmonic hot electrons, and local heat to drive chemical reactions. In contrast, polariton chemistry modifies the potential energy curvatures of bare electronic systems, and hence their chemistry, via forming light-matter hybrid states, so-called polaritons. The perspective starts with the basic background of light-matter interactions, molecular quantum electrodynamics theory, and the challenges of modeling light-matter interactions in chemistry. Then, the recent advances in modeling plasmon and polariton chemistry are described, and future directions toward multiscale simulations of light-matter interaction-mediated chemistry are discussed.
Collapse
Affiliation(s)
- Braden M Weight
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, 14627, USA
| | - Xinyang Li
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Yu Zhang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
18
|
Bhuyan R, Mony J, Kotov O, Castellanos GW, Gómez Rivas J, Shegai TO, Börjesson K. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chem Rev 2023; 123:10877-10919. [PMID: 37683254 PMCID: PMC10540218 DOI: 10.1021/acs.chemrev.2c00895] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Indexed: 09/10/2023]
Abstract
The interaction between molecular electronic transitions and electromagnetic fields can be enlarged to the point where distinct hybrid light-matter states, polaritons, emerge. The photonic contribution to these states results in increased complexity as well as an opening to modify the photophysics and photochemistry beyond what normally can be seen in organic molecules. It is today evident that polaritons offer opportunities for molecular photochemistry and photophysics, which has caused an ever-rising interest in the field. Focusing on the experimental landmarks, this review takes its reader from the advent of the field of polaritonic chemistry, over the split into polariton chemistry and photochemistry, to present day status within polaritonic photochemistry and photophysics. To introduce the field, the review starts with a general description of light-matter interactions, how to enhance these, and what characterizes the coupling strength. Then the photochemistry and photophysics of strongly coupled systems using Fabry-Perot and plasmonic cavities are described. This is followed by a description of room-temperature Bose-Einstein condensation/polariton lasing in polaritonic systems. The review ends with a discussion on the benefits, limitations, and future developments of strong exciton-photon coupling using organic molecules.
Collapse
Affiliation(s)
- Rahul Bhuyan
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Jürgen Mony
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| | - Oleg Kotov
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Gabriel W. Castellanos
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Jaime Gómez Rivas
- Department
of Applied Physics and Science Education, Eindhoven Hendrik Casimir
Institute and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5612 AE Eindhoven, The Netherlands
| | - Timur O. Shegai
- Department
of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Karl Börjesson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 412 96 Göteborg, Sweden
| |
Collapse
|
19
|
Zhu L, Li Q, Wan Y, Guo M, Yan L, Yin H, Shi Y. Short-Range Charge Transfer in DNA Base Triplets: Real-Time Tracking of Coherent Fluctuation Electron Transfer. Molecules 2023; 28:6802. [PMID: 37836645 PMCID: PMC10574627 DOI: 10.3390/molecules28196802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The short-range charge transfer of DNA base triplets has wide application prospects in bioelectronic devices for identifying DNA bases and clinical diagnostics, and the key to its development is to understand the mechanisms of short-range electron dynamics. However, tracing how electrons are transferred during the short-range charge transfer of DNA base triplets remains a great challenge. Here, by means of ab initio molecular dynamics and Ehrenfest dynamics, the nuclear-electron interaction in the thymine-adenine-thymine (TAT) charge transfer process is successfully simulated. The results show that the electron transfer of TAT has an oscillating phenomenon with a period of 10 fs. The charge density difference proves that the charge transfer proportion is as high as 59.817% at 50 fs. The peak position of the hydrogen bond fluctuates regularly between -0.040 and -0.056. The time-dependent Marcus-Levich-Jortner theory proves that the vibrational coupling between nucleus and electron induces coherent electron transfer in TAT. This work provides a real-time demonstration of the short-range coherent electron transfer of DNA base triplets and establishes a theoretical basis for the design and development of novel biological probe molecules.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China; (L.Z.); (Q.L.); (Y.W.); (M.G.); (L.Y.); (H.Y.)
| |
Collapse
|
20
|
Lyu PT, Yin LX, Shen YT, Gao Z, Chen HY, Xu JJ, Kang B. Plasmonic Cavity-Catalysis by Standing Hot Carrier Waves. J Am Chem Soc 2023; 145:18912-18919. [PMID: 37584625 DOI: 10.1021/jacs.3c05392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Manipulating active sites of catalysts is crucial but challenging in catalysis science and engineering. Beyond the design of the composition and structure of catalysts, the confined electromagnetic field in optical cavities has recently become a promising method for catalyzing chemical reactions via strong light-matter interactions. Another form of confined electromagnetic field, the charge density wave in plasmonic cavities, however, still needs to be explored for catalysis. Here, we present an unprecedented catalytic mode based on plasmonic cavities, called plasmonic cavity-catalysis. We achieve direct control of catalytic sites in plasmonic cavities through standing hot carrier waves. Periodic catalytic hotspots are formed because of localized energy and carrier distribution and can be well tuned by cavity geometry, charge density, and excitation angle. We also found that the catalytic activity of the cavity mode increases several orders of magnitude compared with conventional plasmonic catalysis. We ultimately demonstrate that the locally concentrated long-lived hot carriers in the standing wave mode underlie the formation of the catalytic hotspots. Plasmonic cavity-catalysis provides a new approach to manipulate the catalytic sites and rates and may expand the frontier of heterogeneous catalysis.
Collapse
Affiliation(s)
- Pin-Tian Lyu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Li-Xin Yin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Ting Shen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhaoshuai Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bin Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Mandal A, Taylor MA, Weight BM, Koessler ER, Li X, Huo P. Theoretical Advances in Polariton Chemistry and Molecular Cavity Quantum Electrodynamics. Chem Rev 2023; 123:9786-9879. [PMID: 37552606 PMCID: PMC10450711 DOI: 10.1021/acs.chemrev.2c00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 08/10/2023]
Abstract
When molecules are coupled to an optical cavity, new light-matter hybrid states, so-called polaritons, are formed due to quantum light-matter interactions. With the experimental demonstrations of modifying chemical reactivities by forming polaritons under strong light-matter interactions, theorists have been encouraged to develop new methods to simulate these systems and discover new strategies to tune and control reactions. This review summarizes some of these exciting theoretical advances in polariton chemistry, in methods ranging from the fundamental framework to computational techniques and applications spanning from photochemistry to vibrational strong coupling. Even though the theory of quantum light-matter interactions goes back to the midtwentieth century, the gaps in the knowledge of molecular quantum electrodynamics (QED) have only recently been filled. We review recent advances made in resolving gauge ambiguities, the correct form of different QED Hamiltonians under different gauges, and their connections to various quantum optics models. Then, we review recently developed ab initio QED approaches which can accurately describe polariton states in a realistic molecule-cavity hybrid system. We then discuss applications using these method advancements. We review advancements in polariton photochemistry where the cavity is made resonant to electronic transitions to control molecular nonadiabatic excited state dynamics and enable new photochemical reactivities. When the cavity resonance is tuned to the molecular vibrations instead, ground-state chemical reaction modifications have been demonstrated experimentally, though its mechanistic principle remains unclear. We present some recent theoretical progress in resolving this mystery. Finally, we review the recent advances in understanding the collective coupling regime between light and matter, where many molecules can collectively couple to a single cavity mode or many cavity modes. We also lay out the current challenges in theory to explain the observed experimental results. We hope that this review will serve as a useful document for anyone who wants to become familiar with the context of polariton chemistry and molecular cavity QED and thus significantly benefit the entire community.
Collapse
Affiliation(s)
- Arkajit Mandal
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Michael A.D. Taylor
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United
States
| | - Eric R. Koessler
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
| | - Xinyang Li
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
22
|
Davidsson E, Kowalewski M. The role of dephasing for dark state coupling in a molecular Tavis-Cummings model. J Chem Phys 2023; 159:044306. [PMID: 37493131 PMCID: PMC7615654 DOI: 10.1063/5.0155302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
The collective coupling of an ensemble of molecules to a light field is commonly described by the Tavis-Cummings model. This model includes numerous eigenstates that are optically decoupled from the optically bright polariton states. Accessing these dark states requires breaking the symmetry in the corresponding Hamiltonian. In this paper, we investigate the influence of non-unitary processes on the dark state dynamics in the molecular Tavis-Cummings model. The system is modeled with a Lindblad equation that includes pure dephasing, as it would be caused by weak interactions with an environment, and photon decay. Our simulations show that the rate of pure dephasing, as well as the number of two-level systems, has a significant influence on the dark state population.
Collapse
Affiliation(s)
- Eric Davidsson
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden
| | - Markus Kowalewski
- Department of Physics, Stockholm University, Albanova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Koner A, Du M, Pannir-Sivajothi S, Goldsmith RH, Yuen-Zhou J. A path towards single molecule vibrational strong coupling in a Fabry-Pérot microcavity. Chem Sci 2023; 14:7753-7761. [PMID: 37476723 PMCID: PMC10355109 DOI: 10.1039/d3sc01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/31/2023] [Indexed: 07/22/2023] Open
Abstract
Interaction between light and molecular vibrations leads to hybrid light-matter states called vibrational polaritons. Even though many intriguing phenomena have been predicted for single-molecule vibrational strong coupling (VSC), several studies suggest that these effects tend to be diminished in the many-molecule regime due to the presence of dark states. Achieving single or few-molecule vibrational polaritons has been constrained by the need for fabricating extremely small mode volume infrared cavities. In this theoretical work, we propose an alternative strategy to achieve single-molecule VSC in a cavity-enhanced Raman spectroscopy (CERS) setup, based on the physics of cavity optomechanics. We then present a scheme harnessing few-molecule VSC to thermodynamically couple two reactions, such that a spontaneous electron transfer can now fuel a thermodynamically uphill reaction that was non-spontaneous outside the cavity.
Collapse
Affiliation(s)
- Arghadip Koner
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Matthew Du
- Department of Chemistry, University of Chicago 5735 S Ellis Ave Chicago Illinois 60637 USA
| | - Sindhana Pannir-Sivajothi
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison Madison Wisconsin 53706-1322 USA
| | - Joel Yuen-Zhou
- Department of Chemistry and Biochemistry, University of California San Diego La Jolla California 92093 USA
| |
Collapse
|
24
|
Abstract
The coherent exchange of energy between materials and optical fields leads to strong light-matter interactions and so-called polaritonic states with intriguing properties, halfway between light and matter. Two decades ago, research on these strong light-matter interactions, using optical cavity (vacuum) fields, remained for the most part the province of the physicist, with a focus on inorganic materials requiring cryogenic temperatures and carefully fabricated, high-quality optical cavities for their study. This review explores the history and recent acceleration of interest in the application of polaritonic states to molecular properties and processes. The enormous collective oscillator strength of dense films of organic molecules, aggregates, and materials allows cavity vacuum field strong coupling to be achieved at room temperature, even in rapidly fabricated, highly lossy metallic optical cavities. This has put polaritonic states and their associated coherent phenomena at the fingertips of laboratory chemists, materials scientists, and even biochemists as a potentially new tool to control molecular chemistry. The exciting phenomena that have emerged suggest that polaritonic states are of genuine relevance within the molecular and material energy landscape.
Collapse
Affiliation(s)
- Kenji Hirai
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
| | - James A Hutchison
- School of Chemistry and ARC Centre of Excellence in Exciton Science, The University of Melbourne, Masson Road, Parkville, Victoria 3052 Australia
| | - Hiroshi Uji-I
- Division of Photonics and Optical Science, Research Institute for Electronic Science (RIES), Hokkaido University, North 20 West 10, Kita ward, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee Leuven Belgium
| |
Collapse
|
25
|
Weight BM, Krauss TD, Huo P. Investigating Molecular Exciton Polaritons Using Ab Initio Cavity Quantum Electrodynamics. J Phys Chem Lett 2023; 14:5901-5913. [PMID: 37343178 PMCID: PMC10316409 DOI: 10.1021/acs.jpclett.3c01294] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Coupling molecules to the quantized radiation field inside an optical cavity creates a set of new photon-matter hybrid states called polariton states. We combine electronic structure theory with quantum electrodynamics (QED) to investigate molecular polaritons using ab initio simulations. This framework joins unperturbed electronic adiabatic states with the Fock state basis to compute the eigenstates of the QED Hamiltonian. The key feature of this "parametrized QED" approach is that it provides the exact molecule-cavity interactions, limited by only approximations made in the electronic structure. Using time-dependent density functional theory, we demonstrated comparable accuracy with QED coupled cluster benchmark results for predicting potential energy surfaces in the ground and excited states and showed selected applications to light-harvesting and light-emitting materials. We anticipate that this framework will provide a set of general and powerful tools that enable direct ab initio simulation of exciton polaritons in molecule-cavity hybrid systems.
Collapse
Affiliation(s)
- Braden M. Weight
- Department
of Physics and Astronomy, University of
Rochester, Rochester, New York 14627, United States
| | - Todd D. Krauss
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| | - Pengfei Huo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
- The
Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
26
|
Ahn W, Triana JF, Recabal F, Herrera F, Simpkins BS. Modification of ground-state chemical reactivity via light-matter coherence in infrared cavities. Science 2023; 380:1165-1168. [PMID: 37319215 DOI: 10.1126/science.ade7147] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023]
Abstract
Reaction-rate modifications for chemical processes due to strong coupling between reactant molecular vibrations and the cavity vacuum have been reported; however, no currently accepted mechanisms explain these observations. In this work, reaction-rate constants were extracted from evolving cavity transmission spectra, revealing resonant suppression of the intracavity reaction rate for alcoholysis of phenyl isocyanate with cyclohexanol. We observed up to an 80% suppression of the rate by tuning cavity modes to be resonant with the reactant isocyanate (NCO) stretch, the product carbonyl (CO) stretch, and cooperative reactant-solvent modes (CH). These results were interpreted using an open quantum system model that predicted resonant modifications of the vibrational distribution of reactants from canonical statistics as a result of light-matter quantum coherences, suggesting links to explore between chemistry and quantum science.
Collapse
Affiliation(s)
- Wonmi Ahn
- UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Johan F Triana
- Department of Physics, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Recabal
- Department of Physics, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe Herrera
- Department of Physics, Universidad de Santiago de Chile, Santiago, Chile
- Millennium Institute for Research in Optics (MIRO), Concepción, Chile
| | - Blake S Simpkins
- Chemistry Division, US Naval Research Laboratory, Washington, DC, USA
| |
Collapse
|
27
|
Yu Q, Bowman JM. Manipulating hydrogen bond dissociation rates and mechanisms in water dimer through vibrational strong coupling. Nat Commun 2023; 14:3527. [PMID: 37316497 PMCID: PMC10267182 DOI: 10.1038/s41467-023-39212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
The vibrational strong coupling (VSC) between molecular vibrations and cavity photon modes has recently emerged as a promising tool for influencing chemical reactivities. Despite numerous experimental and theoretical efforts, the underlying mechanism of VSC effects remains elusive. In this study, we combine state-of-art quantum cavity vibrational self-consistent field/configuration interaction theory (cav-VSCF/VCI), quasi-classical trajectory method, along with the quantum-chemical CCSD(T)-level machine learning potential, to simulate the hydrogen bond dissociation dynamics of water dimer under VSC. We observe that manipulating the light-matter coupling strength and cavity frequencies can either inhibit or accelerate the dissociation rate. Furthermore, we discover that the cavity surprisingly modifies the vibrational dissociation channels, with a pathway involving both water fragments in their ground vibrational states becoming the major channel, which is a minor one when the water dimer is outside the cavity. We elucidate the mechanisms behind these effects by investigating the critical role of the optical cavity in modifying the intramolecular and intermolecular coupling patterns. While our work focuses on single water dimer system, it provides direct and statistically significant evidence of VSC effects on molecular reaction dynamics.
Collapse
Affiliation(s)
- Qi Yu
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Chemistry, Emory University and Cherry L. Emerson Center for Scientific Computation, Atlanta, GA, 30322, USA.
| | - Joel M Bowman
- Department of Chemistry, Emory University and Cherry L. Emerson Center for Scientific Computation, Atlanta, GA, 30322, USA
| |
Collapse
|
28
|
Lindoy LP, Mandal A, Reichman DR. Quantum dynamical effects of vibrational strong coupling in chemical reactivity. Nat Commun 2023; 14:2733. [PMID: 37173299 PMCID: PMC10182063 DOI: 10.1038/s41467-023-38368-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Recent experiments suggest that ground state chemical reactivity can be modified when placing molecular systems inside infrared cavities where molecular vibrations are strongly coupled to electromagnetic radiation. This phenomenon lacks a firm theoretical explanation. Here, we employ an exact quantum dynamics approach to investigate a model of cavity-modified chemical reactions in the condensed phase. The model contains the coupling of the reaction coordinate to a generic solvent, cavity coupling to either the reaction coordinate or a non-reactive mode, and the coupling of the cavity to lossy modes. Thus, many of the most important features needed for realistic modeling of the cavity modification of chemical reactions are included. We find that when a molecule is coupled to an optical cavity it is essential to treat the problem quantum mechanically to obtain a quantitative account of alterations to reactivity. We find sizable and sharp changes in the rate constant that are associated with quantum mechanical state splittings and resonances. The features that emerge from our simulations are closer to those observed in experiments than are previous calculations, even for realistically small values of coupling and cavity loss. This work highlights the importance of a fully quantum treatment of vibrational polariton chemistry.
Collapse
Affiliation(s)
- Lachlan P Lindoy
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Arkajit Mandal
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA.
| |
Collapse
|
29
|
Miwa K, Sakamoto S, Ishizaki A. Control and Enhancement of Single-Molecule Electroluminescence through Strong Light-Matter Coupling. NANO LETTERS 2023; 23:3231-3238. [PMID: 37039831 DOI: 10.1021/acs.nanolett.2c05089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The energetic positions of molecular electronic states at molecule/electrode interfaces are crucial factors for determining the transport and optoelectronic properties of molecular junctions. Strong light-matter coupling offers a potential for manipulating these factors, enabling a boost in the efficiency and versatility of these junctions. Here, we investigate electroluminescence from single-molecule junctions in which the molecule is strongly coupled with the vacuum electromagnetic field in a plasmonic nanocavity. We demonstrate an improvement in the electroluminescence efficiency by employing the strong light-matter coupling in conjunction with the characteristic feature of single-molecule junctions to selectively control the formation of the lowest-energy excited state. The mechanism of efficiency improvement is discussed based on the energetic position and composition of the formed polaritonic states. Our findings indicate the possibility to manipulate optoelectronic conversion in molecular junctions by strong light-matter coupling and contribute to providing design principles for developing efficient molecular optoelectronic devices.
Collapse
Affiliation(s)
- Kuniyuki Miwa
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Souichi Sakamoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
| | - Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan
- School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| |
Collapse
|
30
|
Li TE, Hammes-Schiffer S. Electronic Born-Oppenheimer approximation in nuclear-electronic orbital dynamics. J Chem Phys 2023; 158:114118. [PMID: 36948810 DOI: 10.1063/5.0142007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born-Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
31
|
Thanh Phuc N. Chiral-Induced Spin Selectivity in Photon-Coupled Achiral Matters. J Phys Chem Lett 2023; 14:1626-1632. [PMID: 36750980 DOI: 10.1021/acs.jpclett.2c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chiral-induced spin selectivity is a phenomenon in which electron spins are polarized as they are transported through chiral molecules, and the spin polarization depends on the handedness of the chiral molecule. In this study, we show that spin selectivity can be realized in achiral materials by strongly coupling electrons to a circularly polarized mode of an optical cavity or waveguide. Through the investigation of spin-dependent electron transport in a two-terminal setup using the nonequilibrium Green's function approach, it is found that a large spin polarization can be obtained if the rate of dephasing is sufficiently small and the average chemical potential of the two leads is within an appropriate range of values, which is narrow because of the high frequency of the optical mode. To obtain a wider range of energies for a large spin polarization, chiral molecules can be combined with light-matter interactions. To demonstrate this, the spin polarization of electrons transported through a helical molecule strongly coupled to a circularly polarized optical mode is evaluated.
Collapse
Affiliation(s)
- Nguyen Thanh Phuc
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
32
|
Li TE, Hammes-Schiffer S. QM/MM Modeling of Vibrational Polariton Induced Energy Transfer and Chemical Dynamics. J Am Chem Soc 2023; 145:377-384. [PMID: 36574620 DOI: 10.1021/jacs.2c10170] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vibrational strong coupling (VSC) provides a novel means to modify chemical reactions and energy transfer pathways. To efficiently model chemical dynamics under VSC in the collective regime, herein a hybrid quantum mechanical/molecular mechanical (QM/MM) cavity molecular dynamics (CavMD) scheme is developed and applied to an experimentally studied chemical system. This approach can achieve linear scaling with respect to the number of molecules for a dilute solution under VSC by assuming that each QM solute molecule is surrounded by an independent MM solvent bath. Application of this approach to a dilute solution of Fe(CO)5 in n-dodecane under VSC demonstrates polariton dephasing to the dark modes and polariton-enhanced molecular nonlinear absorption. These simulations predict that strongly exciting the lower polariton may provide an energy transfer pathway that selectively excites the equatorial CO vibrations rather than the axial CO vibrations. Moreover, these simulations also directly probe the cavity effect on the dynamics of the Fe(CO)5 Berry pseudorotation reaction for comparison to recent two-dimensional infrared spectroscopy experiments. This theoretical approach is applicable to a wide range of other polaritonic systems and provides a tool for exploring the use of VSC for selective infrared photochemistry.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
33
|
Mondal S, Wang DS, Keshavamurthy S. Dissociation dynamics of a diatomic molecule in an optical cavity. J Chem Phys 2022; 157:244109. [PMID: 36586980 DOI: 10.1063/5.0124085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We study the dissociation dynamics of a diatomic molecule, modeled as a Morse oscillator, coupled to an optical cavity. A marked suppression of the dissociation probability, both classical and quantum, is observed for cavity frequencies significantly below the fundamental transition frequency of the molecule. We show that the suppression in the probability is due to the nonlinearity of the dipole function. The effect can be rationalized entirely in terms of the structures in the classical phase space of the model system.
Collapse
Affiliation(s)
- Subhadip Mondal
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India
| | - Derek S Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Srihari Keshavamurthy
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
34
|
Schäfer C, Flick J, Ronca E, Narang P, Rubio A. Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity. Nat Commun 2022; 13:7817. [PMID: 36535939 PMCID: PMC9763331 DOI: 10.1038/s41467-022-35363-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Strong light-matter interaction in cavity environments is emerging as a promising approach to control chemical reactions in a non-intrusive and efficient manner. The underlying mechanism that distinguishes between steering, accelerating, or decelerating a chemical reaction has, however, remained unclear, hampering progress in this frontier area of research. We leverage quantum-electrodynamical density-functional theory to unveil the microscopic mechanism behind the experimentally observed reduced reaction rate under cavity induced resonant vibrational strong light-matter coupling. We observe multiple resonances and obtain the thus far theoretically elusive but experimentally critical resonant feature for a single strongly coupled molecule undergoing the reaction. While we describe only a single mode and do not explicitly account for collective coupling or intermolecular interactions, the qualitative agreement with experimental measurements suggests that our conclusions can be largely abstracted towards the experimental realization. Specifically, we find that the cavity mode acts as mediator between different vibrational modes. In effect, vibrational energy localized in single bonds that are critical for the reaction is redistributed differently which ultimately inhibits the reaction.
Collapse
Affiliation(s)
- Christian Schäfer
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics, Hamburg, Germany.
- The Hamburg Center for Ultrafast Imaging, Hamburg, Germany.
- Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, Göteborg, Sweden.
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Department of Physics, City College of New York, New York, NY, USA.
- Department of Physics, The Graduate Center, City University of New York, New York, NY, USA.
| | - Enrico Ronca
- Istituto per i Processi Chimico Fisici del CNR (IPCF-CNR), Pisa, Italy.
| | - Prineha Narang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
- Physical Sciences, College of Letters and Science, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter and Center for Free-Electron Laser Science & Department of Physics, Hamburg, Germany.
- The Hamburg Center for Ultrafast Imaging, Hamburg, Germany.
- Center for Computational Quantum Physics, Flatiron Institute, New York, NY, USA.
| |
Collapse
|
35
|
Wang DS, Flick J, Yelin SF. Chemical reactivity under collective vibrational strong coupling. J Chem Phys 2022; 157:224304. [DOI: 10.1063/5.0124551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent experiments of chemical reactions in optical cavities have shown great promise to alter and steer chemical reactions, but still remain poorly understood theoretically. In particular, the origin of resonant effects between the cavity and certain vibrational modes in the collective limit is still subject to active research. In this paper, we study the unimolecular dissociation reactions of many molecules, collectively interacting with an infrared cavity mode, through their vibrational dipole moment. We find that the reaction rate can slow down by increasing the number of aligned molecules, if the cavity mode is resonant with a vibrational mode of the molecules. We also discover a simple scaling relation that scales with the collective Rabi splitting, to estimate the onset of reaction rate modification by collective vibrational strong coupling and numerically demonstrate these effects for up to 104 molecules.
Collapse
Affiliation(s)
- Derek S. Wang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Johannes Flick
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
- Department of Physics, City College of New York, New York, New York 10031, USA
- Department of Physics, The Graduate Center, City University of New York, New York, New York 10016, USA
| | - Susanne F. Yelin
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
36
|
Yu Q, Hammes-Schiffer S. Multidimensional Quantum Dynamical Simulation of Infrared Spectra under Polaritonic Vibrational Strong Coupling. J Phys Chem Lett 2022; 13:11253-11261. [PMID: 36448842 DOI: 10.1021/acs.jpclett.2c03245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent experimental and theoretical studies demonstrate that the chemical reactivity of molecules can be modified inside an optical cavity. Here, we provide a theoretical framework for conducting multidimensional quantum simulations of the infrared (IR) spectra for molecules interacting with cavity modes. A single water molecule under polaritonic vibrational strong coupling serves as an illustrative example. Combined with accurate potential energy and dipole moment surfaces, our cavity vibrational self-consistent field/virtual state configuration interaction (cav-VSCF/VCI) approach can predict the IR spectra when the molecule is inside or outside the cavity. The spectral signatures of Rabi splittings and shifts of certain bands are found to be strongly dependent on the frequency and polarization direction of the cavity modes. Analyses of the simulated spectra show that polaritonic vibrational strong coupling can induce unconventional couplings among the molecule's vibrational modes, suggesting that intramolecular vibrational energy transfer can be significantly accelerated by the cavity.
Collapse
Affiliation(s)
- Qi Yu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | | |
Collapse
|
37
|
Chowdhury SN, Zhang P, Beratan DN. Interference between Molecular and Photon Field-Mediated Electron Transfer Coupling Pathways in Cavities. J Phys Chem Lett 2022; 13:9822-9828. [PMID: 36240481 DOI: 10.1021/acs.jpclett.2c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cavity polaritonics creates novel opportunities to direct chemical reactions. Electron transfer (ET) reactions are among the simplest reactions, and they underpin energy conversion. New strategies to manipulate and direct electron flow at the nanoscale are of particular interest in biochemistry, energy science, bioinspired materials science, and chemistry. We show that optical cavities can modulate electron transfer pathway interferences and ET rates in donor-bridge-acceptor (DBA) systems. We derive the rate for DBA electron transfer when the molecules are coupled to cavity modes, emphasizing novel cavity-induced pathway interferences with the molecular electronic coupling pathways, as these interferences allow a new kind of ET rate tuning. The interference between the cavity-induced coupling pathways and the intrinsic molecular coupling pathway is dependent on the cavity properties. Thus, manipulating the interference between the cavity-induced DA coupling and the bridge-mediated coupling offers an approach to direct and manipulate charge flow at the nanoscale.
Collapse
Affiliation(s)
- Sutirtha N Chowdhury
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - David N Beratan
- Department of Chemistry and Department of Physics, Duke University, Durham, North Carolina27708, United States
- Department of Biochemistry, Duke University, Durham, North Carolina27710, United States
| |
Collapse
|
38
|
Mondal M, Semenov A, Ochoa MA, Nitzan A. Strong Coupling in Infrared Plasmonic Cavities. J Phys Chem Lett 2022; 13:9673-9678. [PMID: 36215723 DOI: 10.1021/acs.jpclett.2c02304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Controlling molecular spectroscopy and even chemical behavior in a cavity environment is a subject of intense experimental and theoretical interest. In Fabry-Pérot cavities, strong (radiation-matter) coupling phenomena without an intense radiation field often rely on the number of chromophore molecules collectively interacting with a cavity mode. For plasmonic cavities, the cavity field-matter coupling can be strong enough to manifest strong coupling involving even a single molecule. To this end, infrared plasmonic cavities can be particularly useful in understanding vibrational strong coupling. Here we present a procedure for estimating the radiation-matter coupling and, equivalently, the mode volume as well as the mode lifetime and quality factor for plasmonic cavities of arbitrary shapes and use it to estimate these quantities for infrared cavities of two particularly relevant geometries comprising several n-doped semiconductors. Our calculations demonstrate very high field confinement and low mode volumes of these cavities despite having relatively low quality factors, which is often the case for plasmonic cavities.
Collapse
Affiliation(s)
- Monosij Mondal
- Department of Chemistry, University of Pennsylvania, PhiladelphiaPennsylvania19104, United States
| | - Alexander Semenov
- Department of Chemistry, University of Pennsylvania, PhiladelphiaPennsylvania19104, United States
| | - Maicol A Ochoa
- Department of Chemistry, University of Pennsylvania, PhiladelphiaPennsylvania19104, United States
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, PhiladelphiaPennsylvania19104, United States
- School of Chemistry, Tel Aviv University, Tel Aviv69978, Israel
| |
Collapse
|
39
|
Zhang Z, Peng T, Nie X, Agarwal GS, Scully MO. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale. LIGHT, SCIENCE & APPLICATIONS 2022; 11:274. [PMID: 36104344 PMCID: PMC9474554 DOI: 10.1038/s41377-022-00953-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Quantum entanglement has emerged as a great resource for spectroscopy and its importance in two-photon spectrum and microscopy has been demonstrated. Current studies focus on the two-photon absorption, whereas the Raman spectroscopy with quantum entanglement still remains elusive, with outstanding issues of temporal and spectral resolutions. Here we study the new capabilities provided by entangled photons in coherent Raman spectroscopy. An ultrafast frequency-resolved Raman spectroscopy with entangled photons is developed for condensed-phase molecules, to probe the electronic and vibrational coherences. Using quantum correlation between the photons, the signal shows the capability of both temporal and spectral resolutions not accessible by either classical pulses or the fields without entanglement. We develop a microscopic theory for this Raman spectroscopy, revealing the electronic coherence dynamics even at timescale of 50fs. This suggests new paradigms of optical signals and spectroscopy, with potential to push detection below standard quantum limit.
Collapse
Affiliation(s)
- Zhedong Zhang
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China.
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA.
| | - Tao Peng
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoyu Nie
- School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Girish S Agarwal
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Marlan O Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, 77843, USA
- Baylor University, Waco, TX, 76704, USA
| |
Collapse
|
40
|
Cui B, Nitzan A. Collective response in light-matter interactions: The interplay between strong coupling and local dynamics. J Chem Phys 2022; 157:114108. [DOI: 10.1063/5.0101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Strong molecule-radiation field coupling is often reached when a large number N of molecules respond collectively to the radiation field. In electronic strong coupling, molecular nuclear dynamics following polariton excitation reflects (a) the timescale separation between the fast electronic and photonic dynamics and the slow nuclear motion on one hand, and (b) the interplay between the collective nature of the molecule-field coupling and the local nature of the molecules nuclear response on the other. The first implies that the electronic excitation takes place, in the spirit of the Born approximation, at an approximately fixed nuclear configuration. The second can be rephrased as the intriguing question, can the collective nature of the optical excitation lead to collective nuclear motion following polariton formation, resulting in so-called polaron decoupled dynamics. We address this issue by studying the dynamical properties of a simplified Holstein-Tavis-Cummings type model, in which boson modes representing molecular vibrations are replaced by two-level systems while the boson frequency and the vibronic coupling are represented by the coupling between these levels (that induces Rabi oscillations between them) and electronic state dependence of this coupling. We investigate the short-time behavior of this model following polariton excitation as well as its response to CW driving and its density of states spectrum. We find that, while some aspects of the dynamical behavior appear to adhere to the polaron decoupling picture, the observed dynamics mostly reflect the local nature of the nuclear configuration of the electronic polariton rather than this picture.
Collapse
Affiliation(s)
- Bingyu Cui
- University of Pennsylvania, United States of America
| | - Abraham Nitzan
- University of Pennsylvania Department of Chemistry, United States of America
| |
Collapse
|
41
|
Pavosevic F, Rubio A. Wavefunction embedding for molecular polaritons. J Chem Phys 2022; 157:094101. [DOI: 10.1063/5.0095552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polaritonic chemistry relies on the strong light-matter interaction phenomena for altering the chemical reaction rates inside optical cavities. To explain and to understand these processes, the development of reliable theoretical models is essential. While computationally efficient quantum electrodynamics self-consistent field (QED-SCF) methods, such as quantum electrodynamics density functional theory (QEDFT) needs accurate functionals, quantum electrodynamics coupled cluster (QED-CC) methods provide a systematic increase in accuracy but at much greater cost. To overcome this computational bottleneck, herein we introduce and develop the QED-CC-in-QED-SCF projection-based embedding method that inherits all the favorable properties from the two worlds, computational efficiency and accuracy. The performance of the embedding method is assessed by studying some prototypical but relevant reactions, such as methyl transfer reaction, proton transfer reaction, as well as protonation reaction in a complex environment. The results obtained with the new embedding method are in excellent agreement with more expensive QED-CC results. The analysis performed on these reactions indicate that the electron-photon correlation effects are local in nature and that only a small region should be treated at the QED-CC level for capturing important effects due to cavity. This work sets the stage for future developments of polaritonic quantum chemistry methods and it will serve as a guideline for development of other polaritonic embedding models.
Collapse
Affiliation(s)
| | - Angel Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Germany
| |
Collapse
|
42
|
Yamada H, Stemo G, Katsuki H, Yanagi H. Development of a Spacerless Flow-Cell Cavity for Vibrational Polaritons. J Phys Chem B 2022; 126:4689-4696. [PMID: 35723438 DOI: 10.1021/acs.jpcb.2c02752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a spacerless flow-cell cavity for the observation of vibrational strong coupling and demonstrate its availability in two samples with a C≡N bond: a metal complex (aq) and an ionic liquid. It is shown that the cavity length can be tuned over a wide range to investigate coupling with different order Fabry-Pérot cavity modes without reassembling the cavity. In the ionic liquid, analyses based on the coupled harmonic oscillator model with multiple vibrational modes show that the Rabi splitting parameters and the square root of the integrated absorption intensity are proportional among the three neighboring vibrational modes. Our spacerless cell structure simplifies the comparison of the different vibrational strong coupling measurements, such as the mode order dependence and the coupling to different molecular vibrations.
Collapse
Affiliation(s)
- Hayata Yamada
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Garrek Stemo
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Hiroyuki Katsuki
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Hisao Yanagi
- Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
43
|
Fukushima T, Yoshimitsu S, Murakoshi K. Inherent Promotion of Ionic Conductivity via Collective Vibrational Strong Coupling of Water with the Vacuum Electromagnetic Field. J Am Chem Soc 2022; 144:12177-12183. [PMID: 35737737 DOI: 10.1021/jacs.2c02991] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogen bonding interactions among water molecules play a critical role in chemical reactivity, dynamic proton mobility, static dielectric behavior, and the thermodynamic properties of water. In this study, we demonstrate the modification of ionic conductivity of water through hybridization with a vacuum electromagnetic field by strongly coupling the O─H stretching mode of H2O to a Fabry-Perot cavity mode. The hybridization generates collective vibro-polaritonic states, thereby enhancing the proton conductivity by an order of magnitude at resonance. In addition, the dielectric constants increase at resonance in the coupled state. The findings presented herein reveal how a vacuum electromagnetic environment can be engineered to control the ground-state properties of water.
Collapse
Affiliation(s)
- Tomohiro Fukushima
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Soushi Yoshimitsu
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kei Murakoshi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
44
|
Phuc NT. Bose enhancement of excitation-energy transfer with molecular-exciton-polariton condensates. J Chem Phys 2022; 156:234301. [PMID: 35732524 DOI: 10.1063/5.0090463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Room-temperature Bose-Einstein condensates (BECs) of exciton polaritons have been realized in organic molecular systems owing to strong light-matter interaction, strong exciton binding energy, and low effective mass of a polaritonic particle. These molecular-exciton-polariton BECs have demonstrated their potential in nonlinear optics and optoelectronic applications. In this study, we first demonstrate that molecular-polariton BECs can be utilized for Bose enhancement of excitation-energy transfer (EET) in a molecular system with an exciton donor coupled to a group of exciton acceptors that are further strongly coupled to a single mode of an optical cavity. Similar to the stimulated emission of light in which photons are bosonic particles, a greater rate of EET is observed if the group of acceptors is prepared in the exciton-polariton BEC state than if the acceptors are initially either in their electronic ground states or in a normal excited state with an equal average number of molecular excitations. The Bose enhancement also manifests itself as the growth of the EET rate with an increasing number of exciton polaritons in the BEC. Finally, a generalization to the EET in many-donor-many-acceptor molecular systems is considered, and a permutation-symmetry-based approach to suppress the EET to the huge manifold of dark states in the acceptor group is proposed to facilitate the Bose-enhanced EET to the polariton BEC.
Collapse
Affiliation(s)
- Nguyen Thanh Phuc
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
45
|
Sun J, Vendrell O. Suppression and Enhancement of Thermal Chemical Rates in a Cavity. J Phys Chem Lett 2022; 13:4441-4446. [PMID: 35549344 DOI: 10.1021/acs.jpclett.2c00974] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The observed modification of thermal chemical rates in Fabry-Perot cavities remains a poorly understood effect theoretically. Recent breakthroughs explain some of the observations through the Grote-Hynes theory, where the cavity introduces friction with the reaction coordinate, thus reducing the transmission coefficient and the rate. The regime of rate enhancement, the observed sharp resonances at varying cavity frequencies, and the survival of these effects in the collective regime remain mostly unexplained. In this Letter, we consider the cis-trans isomerization of HONO atomistically using an ab initio potential energy surface. We evaluate the transmission coefficient using the reactive flux method and identify the conditions for rate acceleration. In the underdamped, low-friction regime of the reaction coordinate, the cavity coupling enhances the rate with increasing coupling strength until reaching the Kramers turnover point. Sharp resonances in this regime are related to cavity-enabled energy redistribution channels.
Collapse
Affiliation(s)
- Jing Sun
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| | - Oriol Vendrell
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
46
|
Li TE, Nitzan A, Hammes-Schiffer S, Subotnik JE. Quantum Simulations of Vibrational Strong Coupling via Path Integrals. J Phys Chem Lett 2022; 13:3890-3895. [PMID: 35471100 DOI: 10.1021/acs.jpclett.2c00613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A quantum simulation of vibrational strong coupling (VSC) in the collective regime via thermostated ring-polymer molecular dynamics (TRPMD) is reported. For a collection of liquid-phase water molecules resonantly coupled to a single lossless cavity mode, the simulation shows that as compared with a fully classical calculation, the inclusion of nuclear and photonic quantum effects does not lead to a change in the Rabi splitting but does broaden polaritonic line widths roughly by a factor of 2. Moreover, under thermal equilibrium, both quantum and classical simulations predict that the static dielectric constant of liquid water is largely unchanged inside vs outside the cavity. This result disagrees with a recent experiment demonstrating that the static dielectric constant of liquid water can be resonantly enhanced under VSC, suggesting either limitations of our approach or perhaps other experimental factors that have not yet been explored.
Collapse
Affiliation(s)
- Tao E Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
47
|
Mondal M, Ochoa MA, Sukharev M, Nitzan A. Coupling, lifetimes, and "strong coupling" maps for single molecules at plasmonic interfaces. J Chem Phys 2022; 156:154303. [PMID: 35459293 DOI: 10.1063/5.0077739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The interaction between excited states of a molecule and excited states of a metal nanostructure (e.g., plasmons) leads to hybrid states with modified optical properties. When plasmon resonance is swept through molecular transition frequency, an avoided crossing may be observed, which is often regarded as a signature of strong coupling between plasmons and molecules. Such strong coupling is expected to be realized when 2|⟨U⟩|/ℏΓ > 1, where ⟨U⟩ and Γ are the molecule-plasmon coupling and the spectral width of the optical transition, respectively. Because both ⟨U⟩ and Γ strongly increase with decreasing distance between a molecule and a plasmonic structure, it is not obvious that this condition can be satisfied for any molecule-metal surface distance. In this work, we investigate the behavior of ⟨U⟩ and Γ for several geometries. Surprisingly, we find that if the only contributions to Γ are lifetime broadenings associated with the radiative and nonradiative relaxation of a single molecular vibronic transition, including effects on molecular radiative and nonradiative lifetimes induced by the metal, the criterion 2|⟨U⟩|/ℏΓ > 1 is easily satisfied by many configurations irrespective of the metal-molecule distance. This implies that the Rabi splitting can be observed in such structures if other sources of broadening are suppressed. Additionally, when the molecule-metal surface distance is varied keeping all other molecular and metal parameters constant, this behavior is mitigated due to the spectral shift associated with the same molecule-plasmon interaction, making the observation of Rabi splitting more challenging.
Collapse
Affiliation(s)
- Monosij Mondal
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maicol A Ochoa
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, USA
| | - Abraham Nitzan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
48
|
Fischer EW, Anders J, Saalfrank P. Cavity-altered thermal isomerization rates and dynamical resonant localization in vibro-polaritonic chemistry. J Chem Phys 2022; 156:154305. [PMID: 35459316 DOI: 10.1063/5.0076434] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
It has been experimentally demonstrated that reaction rates for molecules embedded in microfluidic optical cavities are altered when compared to rates observed under "ordinary" reaction conditions. However, precise mechanisms of how strong coupling of an optical cavity mode to molecular vibrations affects the reactivity and how resonance behavior emerges are still under dispute. In the present work, we approach these mechanistic issues from the perspective of a thermal model reaction, the inversion of ammonia along the umbrella mode, in the presence of a single-cavity mode of varying frequency and coupling strength. A topological analysis of the related cavity Born-Oppenheimer potential energy surface in combination with quantum mechanical and transition state theory rate calculations reveals two quantum effects, leading to decelerated reaction rates in qualitative agreement with experiments: the stiffening of quantized modes perpendicular to the reaction path at the transition state, which reduces the number of thermally accessible reaction channels, and the broadening of the barrier region, which attenuates tunneling. We find these two effects to be very robust in a fluctuating environment, causing statistical variations of potential parameters, such as the barrier height. Furthermore, by solving the time-dependent Schrödinger equation in the vibrational strong coupling regime, we identify a resonance behavior, in qualitative agreement with experimental and earlier theoretical work. The latter manifests as reduced reaction probability when the cavity frequency ωc is tuned resonant to a molecular reactant frequency. We find this effect to be based on the dynamical localization of the vibro-polaritonic wavepacket in the reactant well.
Collapse
Affiliation(s)
- Eric W Fischer
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| | - Janet Anders
- Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam, Germany and CEMPS, Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Peter Saalfrank
- Theoretische Chemie, Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
49
|
Wang DS, Neuman T, Yelin SF, Flick J. Cavity-Modified Unimolecular Dissociation Reactions via Intramolecular Vibrational Energy Redistribution. J Phys Chem Lett 2022; 13:3317-3324. [PMID: 35389664 PMCID: PMC9036583 DOI: 10.1021/acs.jpclett.2c00558] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/01/2022] [Indexed: 05/11/2023]
Abstract
While the emerging field of vibrational polariton chemistry has the potential to overcome traditional limitations of synthetic chemistry, the underlying mechanism is not yet well understood. Here, we explore how the dynamics of unimolecular dissociation reactions that are rate-limited by intramolecular vibrational energy redistribution (IVR) can be modified inside an infrared optical cavity. We study a classical model of a bent triatomic molecule, where the two outer atoms are bound by anharmonic Morse potentials to the center atom coupled to a harmonic bending mode. We show that an optical cavity resonantly coupled to particular anharmonic vibrational modes can interfere with IVR and alter unimolecular dissociation reaction rates when the cavity mode acts as a reservoir for vibrational energy. These results lay the foundation for further theoretical work toward understanding the intriguing experimental results of vibrational polaritonic chemistry within the context of IVR.
Collapse
Affiliation(s)
- Derek S. Wang
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Tomáš Neuman
- IPCMS
de Strasbourg, UMR 7504 (CNRS − Université
de Strasbourg), 67034 Strasbourg, France
| | - Susanne F. Yelin
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Johannes Flick
- Center
for Computational Quantum Physics, Flatiron
Institute, New York, New York 10010, United
States
| |
Collapse
|
50
|
Schäfer C, Johansson G. Shortcut to Self-Consistent Light-Matter Interaction and Realistic Spectra from First Principles. PHYSICAL REVIEW LETTERS 2022; 128:156402. [PMID: 35499896 DOI: 10.1103/physrevlett.128.156402] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
We introduce a simple approach to how an electromagnetic environment can be efficiently embedded into state-of-the-art electronic structure methods, taking the form of radiation-reaction forces. We demonstrate that this self-consistently provides access to radiative emission, natural linewidth, Lamb shifts, strong coupling, electromagnetically induced transparency, Purcell-enhanced and superradiant emission. As an example, we illustrate its seamless integration into time-dependent density-functional theory with virtually no additional cost, presenting a convenient shortcut to light-matter interactions.
Collapse
Affiliation(s)
- Christian Schäfer
- Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Göran Johansson
- Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|