1
|
Chen S, Zhu J, Hua C, Feng C, Wu X, Zhou C, Chen X, Zhang B, Xu Y, Ma Z, He J, Jin N, Song Y, van der Veen S, Cheng H. Single-cell RNA Sequencing Reveals the Diversity of the Immunological Landscape Response to Genital Herpes. Virol Sin 2024:S1995-820X(24)00152-4. [PMID: 39426602 DOI: 10.1016/j.virs.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
Genital herpes (GH) is a common sexually transmitted disease, which is primarily caused by herpes simplex virus type 2 (HSV-2), and continues to be a global health concern. Although our understanding of the alterations in immune cell populations and immunomodulation in GH patients is still limited, it is evident that systemic intrinsic immunity, innate immunity, and adaptive immunity play crucial roles during HSV-2 infection and GH reactivation. To investigate the mechanisms underlying HSV-2 infection and recurrence, single-cell RNA sequencing (scRNA-seq) was performed on immune cells isolated from the peripheral blood of both healthy individuals and patients with recurrent GH. Furthermore, the systemic immune response in patients with recurrent GH showed activation of classical monocytes, CD4+ T cells, natural killer cells (NK cells), and plasmacytoid dendritic cells (pDCs), especially of genes associated with the Toll-like receptor signaling pathway and T cell activation. Circulating immune cells in GH patients show higher expression of genes associated with inflammation and antiviral responses both in the scRNA-Seq data set and in independent quantitative real-time polymerase chain reaction (qRT-PCR) analysis and ELISA experiments. This study demonstrated that localized genital herpes, resulting from HSV reactivation, may influence the functionality of circulating immune cells, suggesting a potential avenue for future research into the role of systemic immunity during HSV infection and recurrence.
Collapse
Affiliation(s)
- Siji Chen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiang Zhu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chunting Hua
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chenxi Feng
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xia Wu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Can Zhou
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xianzhen Chen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Boya Zhang
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yaohan Xu
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Zeyu Ma
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jianping He
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Na Jin
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yinjing Song
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Stijn van der Veen
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| |
Collapse
|
2
|
Qi G, Battle A. Computational methods for allele-specific expression in single cells. Trends Genet 2024:S0168-9525(24)00169-0. [PMID: 39127549 DOI: 10.1016/j.tig.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Allele-specific expression (ASE) is a powerful signal that can be used to investigate multiple molecular mechanisms, such as cis-regulatory effects and imprinting. Single-cell RNA-sequencing (scRNA-seq) enables ASE characterization at the resolution of individual cells. In this review, we highlight the computational methods for processing and analyzing single-cell ASE data. We first describe a bioinformatics pipeline to obtain ASE counts from raw reads synthesized from previous literature. We then discuss statistical methods for detecting allelic imbalance and its variability across conditions using scRNA-seq data. In addition, we describe other methods that use single-cell ASE to address specific biological questions. Finally, we discuss future directions and emphasize the need for an integrated, optimized bioinformatics pipeline, and further development of statistical methods for different technologies.
Collapse
Affiliation(s)
- Guanghao Qi
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| | - Alexis Battle
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Zou LS, Cable DM, Barrera-Lopez IA, Zhao T, Murray E, Aryee MJ, Chen F, Irizarry RA. Detection of allele-specific expression in spatial transcriptomics with spASE. Genome Biol 2024; 25:180. [PMID: 38978101 PMCID: PMC11229351 DOI: 10.1186/s13059-024-03317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Spatial transcriptomics technologies permit the study of the spatial distribution of RNA at near-single-cell resolution genome-wide. However, the feasibility of studying spatial allele-specific expression (ASE) from these data remains uncharacterized. Here, we introduce spASE, a computational framework for detecting and estimating spatial ASE. To tackle the challenges presented by cell type mixtures and a low signal to noise ratio, we implement a hierarchical model involving additive mixtures of spatial smoothing splines. We apply our method to allele-resolved Visium and Slide-seq from the mouse cerebellum and hippocampus and report new insight into the landscape of spatial and cell type-specific ASE therein.
Collapse
Affiliation(s)
- Luli S Zou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Dylan M Cable
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, 02139, USA
| | | | - Tongtong Zhao
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Martin J Aryee
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Rafael A Irizarry
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| |
Collapse
|
4
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. Science 2024; 384:eadi5199. [PMID: 38781369 PMCID: PMC11365579 DOI: 10.1126/science.adi5199] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multiomics datasets into a resource comprising >2.8 million nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550,000 cell type-specific regulatory elements and >1.4 million single-cell expression quantitative trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Chicago, IL 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597 Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
5
|
Emani PS, Liu JJ, Clarke D, Jensen M, Warrell J, Gupta C, Meng R, Lee CY, Xu S, Dursun C, Lou S, Chen Y, Chu Z, Galeev T, Hwang A, Li Y, Ni P, Zhou X, Bakken TE, Bendl J, Bicks L, Chatterjee T, Cheng L, Cheng Y, Dai Y, Duan Z, Flaherty M, Fullard JF, Gancz M, Garrido-Martín D, Gaynor-Gillett S, Grundman J, Hawken N, Henry E, Hoffman GE, Huang A, Jiang Y, Jin T, Jorstad NL, Kawaguchi R, Khullar S, Liu J, Liu J, Liu S, Ma S, Margolis M, Mazariegos S, Moore J, Moran JR, Nguyen E, Phalke N, Pjanic M, Pratt H, Quintero D, Rajagopalan AS, Riesenmy TR, Shedd N, Shi M, Spector M, Terwilliger R, Travaglini KJ, Wamsley B, Wang G, Xia Y, Xiao S, Yang AC, Zheng S, Gandal MJ, Lee D, Lein ES, Roussos P, Sestan N, Weng Z, White KP, Won H, Girgenti MJ, Zhang J, Wang D, Geschwind D, Gerstein M. Single-cell genomics and regulatory networks for 388 human brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585576. [PMID: 38562822 PMCID: PMC10983939 DOI: 10.1101/2024.03.18.585576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Single-cell genomics is a powerful tool for studying heterogeneous tissues such as the brain. Yet, little is understood about how genetic variants influence cell-level gene expression. Addressing this, we uniformly processed single-nuclei, multi-omics datasets into a resource comprising >2.8M nuclei from the prefrontal cortex across 388 individuals. For 28 cell types, we assessed population-level variation in expression and chromatin across gene families and drug targets. We identified >550K cell-type-specific regulatory elements and >1.4M single-cell expression-quantitative-trait loci, which we used to build cell-type regulatory and cell-to-cell communication networks. These networks manifest cellular changes in aging and neuropsychiatric disorders. We further constructed an integrative model accurately imputing single-cell expression and simulating perturbations; the model prioritized ~250 disease-risk genes and drug targets with associated cell types.
Collapse
Affiliation(s)
- Prashant S Emani
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jason J Liu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Declan Clarke
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Matthew Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Jonathan Warrell
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Chirag Gupta
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ran Meng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Che Yu Lee
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Siwei Xu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Cagatay Dursun
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaoke Lou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yuhang Chen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Zhiyuan Chu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Timur Galeev
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ahyeon Hwang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
- Mathematical, Computational and Systems Biology, University of California, Irvine, CA, 92697, USA
| | - Yunyang Li
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Xiao Zhou
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lucy Bicks
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Tanima Chatterjee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | | | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Opthalmology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yi Dai
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Ziheng Duan
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | | | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Michael Gancz
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Diego Garrido-Martín
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Sophia Gaynor-Gillett
- Tempus Labs, Inc., Chicago, IL, 60654, USA
- Department of Biology, Cornell College, Mount Vernon, IA, 52314, USA
| | - Jennifer Grundman
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Natalie Hawken
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ella Henry
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Gabriel E Hoffman
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Ao Huang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
| | - Yunzhe Jiang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Ting Jin
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | | | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
| | - Saniya Khullar
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jianyin Liu
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Junhao Liu
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Shuang Liu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Michael Margolis
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Samantha Mazariegos
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Jill Moore
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | | | - Eric Nguyen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Nishigandha Phalke
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Milos Pjanic
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Henry Pratt
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Diana Quintero
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | | | - Tiernon R Riesenmy
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
| | - Nicole Shedd
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Manman Shi
- Tempus Labs, Inc., Chicago, IL, 60654, USA
| | | | - Rosemarie Terwilliger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
| | | | - Brie Wamsley
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Gaoyuan Wang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Yan Xia
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Shaohua Xiao
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Andrew C Yang
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Suchen Zheng
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Michael J Gandal
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research Education and Clinical Center, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, 10468, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT, 06510, USA
| | - Zhiping Weng
- Department of Genomics and Computational Biology, UMass Chan Medical School, Worcester, MA, 01605, USA
| | - Kevin P White
- Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Hyejung Won
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Matthew J Girgenti
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06520, USA
- Clinical Neuroscience Division, National Center for Posttraumatic Stress Disorder, Veterans Affairs Connecticut Healthcare System, West Haven, CT, 06516, USA
| | - Jing Zhang
- Department of Computer Science, University of California, Irvine, CA, 92697, USA
| | - Daifeng Wang
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Center for Autism Research and Treatment, Semel Institute, University of California, Los Angeles, CA, 90095, USA
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Institute for Precision Health, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
6
|
Chen L, Chang D, Tandukar B, Deivendran D, Pozniak J, Cruz-Pacheco N, Cho RJ, Cheng J, Yeh I, Marine C, Bastian BC, Ji AL, Shain AH. STmut: a framework for visualizing somatic alterations in spatial transcriptomics data of cancer. Genome Biol 2023; 24:273. [PMID: 38037084 PMCID: PMC10688493 DOI: 10.1186/s13059-023-03121-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023] Open
Abstract
Spatial transcriptomic technologies, such as the Visium platform, measure gene expression in different regions of tissues. Here, we describe new software, STmut, to visualize somatic point mutations, allelic imbalance, and copy number alterations in Visium data. STmut is tested on fresh-frozen Visium data, formalin-fixed paraffin-embedded (FFPE) Visium data, and tumors with and without matching DNA sequencing data. Copy number is inferred on all conditions, but the chemistry of the FFPE platform does not permit analyses of single nucleotide variants. Taken together, we propose solutions to add the genetic dimension to spatial transcriptomic data and describe the limitations of different datatypes.
Collapse
Affiliation(s)
- Limin Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, USA
| | - Darwin Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, USA
| | - Bishal Tandukar
- Department of Dermatology, University of California, San Francisco, San Francisco, USA
| | - Delahny Deivendran
- Department of Dermatology, University of California, San Francisco, San Francisco, USA
| | - Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Louvain, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Louvain, Belgium
| | - Noel Cruz-Pacheco
- Department of Dermatology, University of California, San Francisco, San Francisco, USA
| | - Raymond J Cho
- Department of Dermatology, University of California, San Francisco, San Francisco, USA
| | - Jeffrey Cheng
- Department of Dermatology, University of California, San Francisco, San Francisco, USA
| | - Iwei Yeh
- Department of Dermatology, University of California, San Francisco, San Francisco, USA
- Department of Pathology, University of California, San Francisco, San Francisco, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA
| | - Chris Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Louvain, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Louvain, Belgium
| | - Boris C Bastian
- Department of Dermatology, University of California, San Francisco, San Francisco, USA
- Department of Pathology, University of California, San Francisco, San Francisco, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA
| | - Andrew L Ji
- Department of Dermatology, Department of Oncological Sciences, Black Family Stem Cell Institute, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, San Francisco, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, USA.
| |
Collapse
|
7
|
Tang W, Jørgensen ACS, Marguerat S, Thomas P, Shahrezaei V. Modelling capture efficiency of single-cell RNA-sequencing data improves inference of transcriptome-wide burst kinetics. Bioinformatics 2023; 39:btad395. [PMID: 37354494 PMCID: PMC10318389 DOI: 10.1093/bioinformatics/btad395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023] Open
Abstract
MOTIVATION Gene expression is characterized by stochastic bursts of transcription that occur at brief and random periods of promoter activity. The kinetics of gene expression burstiness differs across the genome and is dependent on the promoter sequence, among other factors. Single-cell RNA sequencing (scRNA-seq) has made it possible to quantify the cell-to-cell variability in transcription at a global genome-wide level. However, scRNA-seq data are prone to technical variability, including low and variable capture efficiency of transcripts from individual cells. RESULTS Here, we propose a novel mathematical theory for the observed variability in scRNA-seq data. Our method captures burst kinetics and variability in both the cell size and capture efficiency, which allows us to propose several likelihood-based and simulation-based methods for the inference of burst kinetics from scRNA-seq data. Using both synthetic and real data, we show that the simulation-based methods provide an accurate, robust and flexible tool for inferring burst kinetics from scRNA-seq data. In particular, in a supervised manner, a simulation-based inference method based on neural networks proves to be accurate and useful when applied to both allele and nonallele-specific scRNA-seq data. AVAILABILITY AND IMPLEMENTATION The code for Neural Network and Approximate Bayesian Computation inference is available at https://github.com/WT215/nnRNA and https://github.com/WT215/Julia_ABC, respectively.
Collapse
Affiliation(s)
- Wenhao Tang
- Department of Mathematics, Imperial College London, London SW7 2BX, United Kingdom
| | - Andreas Christ Sølvsten Jørgensen
- Department of Mathematics, Imperial College London, London SW7 2BX, United Kingdom
- I-X Centre for AI in Science, Imperial College London, White City Campus, London W12 0BZ, United Kingdom
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences (LMS), London W12 0NN, United Kingdom
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom
| | - Philipp Thomas
- Department of Mathematics, Imperial College London, London SW7 2BX, United Kingdom
| | - Vahid Shahrezaei
- Department of Mathematics, Imperial College London, London SW7 2BX, United Kingdom
| |
Collapse
|
8
|
Quinones-Valdez G, Fu T, Chan TW, Xiao X. scAllele: A versatile tool for the detection and analysis of variants in scRNA-seq. SCIENCE ADVANCES 2022; 8:eabn6398. [PMID: 36054357 DOI: 10.1126/sciadv.abn6398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) data contain rich information at the gene, transcript, and nucleotide levels. Most analyses of scRNA-seq have focused on gene expression profiles, and it remains challenging to extract nucleotide variants and isoform-specific information. Here, we present scAllele, an integrative approach that detects single-nucleotide variants, insertions, deletions, and their allelic linkage with splicing patterns in scRNA-seq. We demonstrate that scAllele achieves better performance in identifying nucleotide variants than other commonly used tools. In addition, the read-specific variant calls by scAllele enables allele-specific splicing analysis, a unique feature not afforded by other methods. Applied to a lung cancer scRNA-seq dataset, scAllele identified variants with strong allelic linkage to alternative splicing, some of which are cancer specific and enriched in cancer-relevant pathways. scAllele represents a versatile tool to uncover multilayer information and previously unidentified biological insights from scRNA-seq data.
Collapse
Affiliation(s)
| | - Ting Fu
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tracey W Chan
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xinshu Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
A Novel Prognostic Signature Revealed the Interaction of Immune Cells in Tumor Microenvironment Based on Single-Cell RNA Sequencing for Lung Adenocarcinoma. J Immunol Res 2022; 2022:6555810. [PMID: 35812244 PMCID: PMC9270162 DOI: 10.1155/2022/6555810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/12/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background The tumor immune microenvironment (TIME) played an important role in immunotherapy prognosis and treatment response. Immune cells constitute a large part of the tumor microenvironment and regulate tumor progression. Our research is dedicated to studying the infiltrating immune cell in lung adenocarcinoma (LUAD) and seeking potential targets. Methods The scRNA-seq data were collected from our FDZSH and two public datasets. The code for cell-type mapping algorithms was downloaded from the CIBERSORTx portal. The bioinformatics data of LUAD patients could be approached from The Cancer Genome Atlas (TCGA) portal. Weighted gene coexpression network analysis (WGCNA) and least absolute shrinkage and selection operator (LASSO) analyses were performed to construct a risk model. TIMER2 and TIDE helped with the immune infiltration estimation, while PROGENy helped the cancer-related pathways' enrichment analysis. GSE31210 dataset and IMVigor ICB therapy cohort validated our findings as the external validation datasets. Results We clustered the scRNA-seq dataset (integrating our FDZSH datasets and other public datasets) into 23 subpopulations. After curated cell annotation, we implemented Cibersort and WGCNA analysis to anchor the brown module and natural killer cell cluster1 due to the most relationship with tumor trait. The overlap of the brown module gene, natural killer cell signature, and DEGs of tumor and adjacent normal samples was screened by LASSO Cox regression. The obtained 5-gene risk model showed an excellent prognostic performance in the validation dataset. Furthermore, there was a correlation between risk score and tumor-infiltrating immune cells and tumor genomics abnormity. Patients with higher risk scores had a significantly lower immunotherapy response rate. Conclusion Our observations implied that immune cells played a pivotal role in TIME and established a 5-gene signature (including IDH2, ADRB2, SFTPC, CCDC69, and CCND2) on the basement of nature killer markers targeted by WGCNA analysis. The significance of clinical outcome and immunotherapy response prediction was validated robustly.
Collapse
|
10
|
Mu W, Sarkar H, Srivastava A, Choi K, Patro R, Love MI. Airpart: interpretable statistical models for analyzing allelic imbalance in single-cell datasets. Bioinformatics 2022; 38:2773-2780. [PMID: 35561168 PMCID: PMC9113279 DOI: 10.1093/bioinformatics/btac212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Allelic expression analysis aids in detection of cis-regulatory mechanisms of genetic variation, which produce allelic imbalance (AI) in heterozygotes. Measuring AI in bulk data lacking time or spatial resolution has the limitation that cell-type-specific (CTS), spatial- or time-dependent AI signals may be dampened or not detected. RESULTS We introduce a statistical method airpart for identifying differential CTS AI from single-cell RNA-sequencing data, or dynamics AI from other spatially or time-resolved datasets. airpart outputs discrete partitions of data, pointing to groups of genes and cells under common mechanisms of cis-genetic regulation. In order to account for low counts in single-cell data, our method uses a Generalized Fused Lasso with Binomial likelihood for partitioning groups of cells by AI signal, and a hierarchical Bayesian model for AI statistical inference. In simulation, airpart accurately detected partitions of cell types by their AI and had lower Root Mean Square Error (RMSE) of allelic ratio estimates than existing methods. In real data, airpart identified differential allelic imbalance patterns across cell states and could be used to define trends of AI signal over spatial or time axes. AVAILABILITY AND IMPLEMENTATION The airpart package is available as an R/Bioconductor package at https://bioconductor.org/packages/airpart. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wancen Mu
- To whom correspondence should be addressed. or
| | - Hirak Sarkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Rob Patro
- Department of Computer Science, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
11
|
Sherbina K, León-Novelo LG, Nuzhdin SV, McIntyre LM, Marroni F. Power calculator for detecting allelic imbalance using hierarchical Bayesian model. BMC Res Notes 2021; 14:436. [PMID: 34838135 PMCID: PMC8626927 DOI: 10.1186/s13104-021-05851-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/15/2021] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Allelic imbalance (AI) is the differential expression of the two alleles in a diploid. AI can vary between tissues, treatments, and environments. Methods for testing AI exist, but methods are needed to estimate type I error and power for detecting AI and difference of AI between conditions. As the costs of the technology plummet, what is more important: reads or replicates? RESULTS We find that a minimum of 2400, 480, and 240 allele specific reads divided equally among 12, 5, and 3 replicates is needed to detect a 10, 20, and 30%, respectively, deviation from allelic balance in a condition with power > 80%. A minimum of 960 and 240 allele specific reads divided equally among 8 replicates is needed to detect a 20 or 30% difference in AI between conditions with comparable power. Higher numbers of replicates increase power more than adding coverage without affecting type I error. We provide a Python package that enables simulation of AI scenarios and enables individuals to estimate type I error and power in detecting AI and differences in AI between conditions.
Collapse
Affiliation(s)
- Katrina Sherbina
- Quantitative and Computational Biology Section, University of Southern California, Los Angeles, CA, 90046, USA
| | - Luis G León-Novelo
- Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston-School of Public Health, Houston, TX, 77030, USA
| | - Sergey V Nuzhdin
- Molecular and Computational Biology Section, University of Southern California, Los Angeles, CA, 90046, USA
| | - Lauren M McIntyre
- Genetics Institute and Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, 32603, USA
| | - Fabio Marroni
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali, Università di Udine, 33100, Udine, Italy.
| |
Collapse
|
12
|
Fu R, Qin P, Zou X, Hu Z, Hong N, Wang Y, Jin W. A Comprehensive Characterization of Monoallelic Expression During Hematopoiesis and Leukemogenesis via Single-Cell RNA-Sequencing. Front Cell Dev Biol 2021; 9:702897. [PMID: 34722498 PMCID: PMC8548578 DOI: 10.3389/fcell.2021.702897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/13/2021] [Indexed: 12/30/2022] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) is becoming a powerful tool to investigate monoallelic expression (MAE) in various developmental and pathological processes. However, our knowledge of MAE during hematopoiesis and leukemogenesis is limited. In this study, we conducted a systematic interrogation of MAEs in bone marrow mononuclear cells (BMMCs) at single-cell resolution to construct a MAE atlas of BMMCs. We identified 1,020 constitutive MAEs in BMMCs, which included imprinted genes such as MEG8, NAP1L5, and IRAIN. We classified the BMMCs into six cell types and identified 74 cell type specific MAEs including MTSS1, MOB1A, and TCF12. We further identified 114 random MAEs (rMAEs) at single-cell level, with 78.1% single-allele rMAE and 21.9% biallelic mosaic rMAE. Many MAEs identified in BMMCs have not been reported and are potentially hematopoietic specific, supporting MAEs are functional relevance. Comparison of BMMC samples from a leukemia patient with multiple clinical stages showed the fractions of constitutive MAE were correlated with fractions of leukemia cells in BMMCs. Further separation of the BMMCs into leukemia cells and normal cells showed that leukemia cells have much higher constitutive MAE and rMAEs than normal cells. We identified the leukemia cell-specific MAEs and relapsed leukemia cell-specific MAEs, which were enriched in immune-related functions. These results indicate MAE is prevalent and is an important gene regulation mechanism during hematopoiesis and leukemogenesis. As the first systematical interrogation of constitutive MAEs, cell type specific MAEs, and rMAEs during hematopoiesis and leukemogenesis, the study significantly increased our knowledge about the features and functions of MAEs.
Collapse
Affiliation(s)
- Ruiqing Fu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China.,School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Pengfei Qin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Xianghui Zou
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Ni Hong
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Yun Wang
- Shenzhen Key Laboratory of Microbiology and Gene Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wenfei Jin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
13
|
Abstract
Diploidy has profound implications for population genetics and susceptibility to genetic diseases. Although two copies are present for most genes in the human genome, they are not necessarily both active or active at the same level in a given individual. Genomic imprinting, resulting in exclusive or biased expression in favor of the allele of paternal or maternal origin, is now believed to affect hundreds of human genes. A far greater number of genes display unequal expression of gene copies due to cis-acting genetic variants that perturb gene expression. The availability of data generated by RNA sequencing applied to large numbers of individuals and tissue types has generated unprecedented opportunities to assess the contribution of genetic variation to allelic imbalance in gene expression. Here we review the insights gained through the analysis of these data about the extent of the genetic contribution to allelic expression imbalance, the tools and statistical models for gene expression imbalance, and what the results obtained reveal about the contribution of genetic variants that alter gene expression to complex human diseases and phenotypes.
Collapse
Affiliation(s)
- Siobhan Cleary
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| | - Cathal Seoighe
- School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway H91 H3CY, Ireland;
| |
Collapse
|
14
|
Picard CL, Povilus RA, Williams BP, Gehring M. Transcriptional and imprinting complexity in Arabidopsis seeds at single-nucleus resolution. NATURE PLANTS 2021; 7:730-738. [PMID: 34059805 PMCID: PMC8217372 DOI: 10.1038/s41477-021-00922-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/15/2021] [Indexed: 05/06/2023]
Abstract
Seeds are a key life cycle stage for many plants. Seeds are also the basis of agriculture and the primary source of calories consumed by humans1. Here, we employ single-nucleus RNA-sequencing to generate a transcriptional atlas of developing Arabidopsis thaliana seeds, with a focus on endosperm. Endosperm, the primary site of gene imprinting in flowering plants, mediates the relationship between the maternal parent and the embryo2. We identify transcriptionally uncharacterized nuclei types in the chalazal endosperm, which interfaces with maternal tissue for nutrient unloading3,4. We demonstrate that the extent of parental bias of maternally expressed imprinted genes varies with cell-cycle phase, and that imprinting of paternally expressed imprinted genes is strongest in chalazal endosperm. Thus, imprinting is spatially and temporally heterogeneous. Increased paternal expression in the chalazal region suggests that parental conflict, which is proposed to drive imprinting evolution, is fiercest at the boundary between filial and maternal tissues.
Collapse
Affiliation(s)
- Colette L Picard
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Ben P Williams
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Mary Gehring
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
A New Hypothesis for Type 1 Diabetes Risk: The At-Risk Allele at rs3842753 Associates With Increased Beta-cell INS Messenger RNA in a Meta-Analysis of Single-Cell RNA-Sequencing Data. Can J Diabetes 2021; 45:775-784.e2. [PMID: 34052132 DOI: 10.1016/j.jcjd.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Type 1 diabetes is characterized by the autoimmune destruction of insulin-secreting beta cells. Genetic variants upstream at the insulin (INS) locus contribute to ∼10% of type 1 diabetes heritable risk. Previous studies showed an association between rs3842753 C/C genotype and type 1 diabetes susceptibility, but the molecular mechanisms remain unclear. To date, no large-scale studies have looked at the effect of genetic variation at rs3842753 on INS mRNA at the single-cell level. METHODS We aligned all human islet single-cell RNA sequencing data sets available to us in year 2020 to the reference genome GRCh38.98 and genotyped rs3842753, integrating 2,315 β cells and 1,223 β-like cells from 13 A/A protected donors, 23 A/C heterozygous donors and 35 C/C at-risk donors, including adults without diabetes and with type 2 diabetes. RESULTS INS expression mean and variance were significantly higher in single β cells from females compared with males. On comparing across β cells and β-like cells, we found that rs3842753 C‒containing cells (either homozygous or heterozygous) had the highest INS expression. We also found that β cells with the rs3842753 C allele had significantly higher endoplasmic reticulum stress marker gene expression compared with the A/A homozygous genotype. CONCLUSIONS These findings support the emerging concept that inherited risk of type 1 diabetes may be associated with inborn, persistent elevated insulin production, which may lead to β-cell endoplasmic reticulum stress and fragility.
Collapse
|
16
|
Yang HS, Onos KD, Choi K, Keezer KJ, Skelly DA, Carter GW, Howell GR. Natural genetic variation determines microglia heterogeneity in wild-derived mouse models of Alzheimer's disease. Cell Rep 2021; 34:108739. [PMID: 33567283 PMCID: PMC7937391 DOI: 10.1016/j.celrep.2021.108739] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/09/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic and genome-wide association studies suggest a central role for microglia in Alzheimer’s disease (AD). However, single-cell RNA sequencing (scRNA-seq) of microglia in mice, a key preclinical model, has shown mixed results regarding translatability to human studies. To address this, scRNA-seq of microglia from C57BL/6J (B6) and wild-derived strains (WSB/EiJ, CAST/EiJ, and PWK/PhJ) with and without APP/PS1 demonstrates that genetic diversity significantly alters features and dynamics of microglia in baseline neuroimmune functions and in response to amyloidosis. Results show significant variation in the abundance of microglial subtypes or states, including numbers of previously identified disease-associated and interferon-responding microglia, across the strains. For each subtype, significant differences in the expression of many genes are observed in wild-derived strains relative to B6, including 19 genes previously associated with human AD including Apoe, Trem2, and Sorl1. This resource is critical in the development of appropriately targeted therapeutics for AD and other neurological diseases. Neuroinflammation is a key component of Alzheimer’s disease. Yang et al. perform single-cell sequencing of microglia in wild-derived mouse strains that carry amyloid and show that these strains differ from the commonly used strains, exhibiting significant variation in abundance of microglial subtypes, including numbers of disease-associated and interferon-responding microglia.
Collapse
Affiliation(s)
| | | | | | | | | | - Gregory W Carter
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
17
|
Robles-Espinoza CD, Mohammadi P, Bonilla X, Gutierrez-Arcelus M. Allele-specific expression: applications in cancer and technical considerations. Curr Opin Genet Dev 2021; 66:10-19. [PMID: 33383480 PMCID: PMC7985293 DOI: 10.1016/j.gde.2020.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Accepted: 10/31/2020] [Indexed: 11/18/2022]
Abstract
Allele-specific gene expression can influence disease traits. Non-coding germline genetic variants that alter regulatory elements can cause allele-specific gene expression and contribute to cancer susceptibility. In tumors, both somatic copy number alterations and somatic single nucleotide variants have been shown to lead to allele-specific expression of genes, many of which are considered drivers of tumor growth. Here, we review recent studies revealing the pervasive presence of this phenomenon in cancer susceptibility and progression. Furthermore, we underscore the importance of careful experimental design and computational analysis for accurate allelic expression quantification and avoidance of false positives. Finally, we discuss additional methodological challenges encountered in cancer studies and in the burgeoning field of single-cell transcriptomics.
Collapse
Affiliation(s)
- Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro 76230, Mexico; Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA; Scripps Translational Science Institute, The Scripps Research Institute, La Jolla, CA, USA
| | - Ximena Bonilla
- Department of Computer Science, ETH Zurich, Universitätsstr. 6, 8092 Zürich, Switzerland; Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland; University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Maria Gutierrez-Arcelus
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA; Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|