1
|
Rollier FA, Muravev V, Kosinov N, Wissink T, Anastasiadou D, Ligt B, Barthe L, Costa Figueiredo M, Hensen EJM. Cu-Ag interactions in bimetallic Cu-Ag catalysts enhance C 2+ product formation during electrochemical CO reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2025; 13:2285-2300. [PMID: 39679096 PMCID: PMC11639664 DOI: 10.1039/d4ta04263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
The electroreduction of CO (CORR) is a promising alternative to the direct CO2 electroreduction reaction (CO2RR) to produce C2+ products. Cu-based electrocatalysts enable the formation of C-C bonds, leading to various C2+ hydrocarbon and oxygenate products. Herein, we investigated how the composition of bimetallic Cu-Ag catalysts impacted the nature of the Cu-Ag interactions and the product distribution of the CORR, aiming to improve the selectivity to C2+ products. Cu-Ag catalysts containing 1-50 mol% Ag were prepared by sol-gel synthesis. A Ag content of 10 mol% of Ag (Cu0.9Ag0.1) was optimum with respect to increasing the C2+ product selectivity and suppressing H2 evolution. Operando X-ray absorption spectroscopy and quasi-in situ X-ray photoelectron spectroscopy demonstrated the complete reduction of CuO to Cu during CORR. Electron microscopy (EM) and in situ wide-angle X-ray scattering (WAXS) revealed substantial restructuring during reduction. EM imaging showed the formation of Ag-Cu core-shell structures in Cu0.9Ag0.1, while separate Cu and Ag particles were predominant at higher Ag content. In situ WAXS revealed the formation of a Cu-Ag nanoalloy phase in the bimetallic Cu-Ag samples. The optimum Cu0.9Ag0.1 sample contained more Cu-Ag nanoalloys than samples with a higher Ag content. The Cu-Ag interfaces between the Ag-core and the Cu-shell in the bimetallic particles are thought to host the nanoalloys. The optimum CORR performance for Cu0.9Ag0.1 is likely due to the enhanced Cu-Ag interactions, as confirmed by a sample prepared with the same surface composition by galvanic exchange.
Collapse
Affiliation(s)
- Floriane A Rollier
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Valery Muravev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Tim Wissink
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Dimitra Anastasiadou
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Bianca Ligt
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Laurent Barthe
- Synchrotron SOLEIL L'Orme des Merisiers, Départementale 128 91190 Saint-Aubin France
| | - Marta Costa Figueiredo
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
2
|
Huang F, Wang F, Liu Y, Guo L. Cu-ZnS Modulated Multi-Carbon Coupling Enables High Selectivity Photoreduction CO 2 to CH 3CH 2COOH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416708. [PMID: 39723696 DOI: 10.1002/adma.202416708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Indexed: 12/28/2024]
Abstract
The direct photocatalytic conversion of CO2 and H2O into high-value C3 chemicals holds great promise but remains challenging due to the intrinsic difficulty of C1-C1 and C2-C1 coupling processes and the lack of clarity regarding the underlying reaction mechanisms. Here, the design and synthesis of a Cu-ZnS photocatalyst featuring dispersed Cu single atoms are reported. These Cu single atoms are coordinated with S atoms, forming unique Cu-S-Zn active units with tunable charge distributions that interact favorably with surface-adsorbed intermediates. This configuration stabilizes the *COHCO intermediate and facilitates its subsequent coupling with *CO to form *COCOHCO both thermodynamically and kinetically favorable on the Cu-ZnS surface. Notably, multiple critical C3 intermediates, including *COCOHCO, *OCCCO, and *CHCHCO, are identified, providing a clear reaction pathway for CO2 to CH3CH2COOH conversion. The Cu-ZnS photocatalyst achieves a CO2 to CH3CH2COOH conversion rate of 0.45 µmol h-¹ with an electron selectivity of 91.2%. Remarkably, in the presence of triethanolamine, the production rate increases to 16.9 µmol h-¹ with a selectivity of 99.8%. These findings underscore the importance of modulating multicarbon coupling processes to enable the efficient photocatalytic transformation of CO2 into C3 products, paving the way for future advancements in sustainable chemical synthesis.
Collapse
Affiliation(s)
- Fuxia Huang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Feng Wang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Ya Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| | - Liejin Guo
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi, 710049, China
| |
Collapse
|
3
|
Xie L, Cai Y, Jiang Y, Shen M, Lam JCH, Zhu JJ, Zhu W. Direct low concentration CO 2 electroreduction to multicarbon products via rate-determining step tuning. Nat Commun 2024; 15:10386. [PMID: 39613736 DOI: 10.1038/s41467-024-54590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Direct converting low concentration CO2 in industrial exhaust gases to high-value multi-carbon products via renewable-energy-powered electrochemical catalysis provides a sustainable strategy for CO2 utilization with minimized CO2 separation and purification capital and energy cost. Nonetheless, the electrocatalytic conversion of dilute CO2 into value-added chemicals (C2+ products, e.g., ethylene) is frequently impeded by low CO2 conversion rate and weak carbon intermediates' surface adsorption strength. Here, we fabricate a range of Cu catalysts comprising fine-tuned Cu(111)/Cu2O(111) interface boundary density crystal structures aimed at optimizing rate-determining step and decreasing the thermodynamic barriers of intermediates' adsorption. Utilizing interface boundary engineering, we attain a Faradaic efficiency of (51.9 ± 2.8) % and a partial current density of (34.5 ± 6.4) mA·cm-2 for C2+ products at a dilute CO2 feed condition (5% CO2 v/v), comparing to the state-of-art low concentration CO2 electrolysis. In contrast to the prevailing belief that the CO2 activation step (C O 2 + e - + * → C O 2 - * ) governs the reaction rate, we discover that, under dilute CO2 feed conditions, the rate-determining step shifts to the generation of *COOH (C O 2 - * + H 2 O → C * O O H + O H - ( a q ) ) at the Cu0/Cu1+ interface boundary, resulting in a better C2+ production performance.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanming Cai
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Meikun Shen
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, 999077, China
| | - Jun-Jie Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
4
|
Lan J, Wang Z, Kao CW, Lu YR, Xie F, Tan Y. Isolating Cu-Zn active-sites in Ordered Intermetallics to Enhance Nitrite-to-Ammonia Electroreduction. Nat Commun 2024; 15:10173. [PMID: 39580449 PMCID: PMC11585598 DOI: 10.1038/s41467-024-53897-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/23/2024] [Indexed: 11/25/2024] Open
Abstract
Electrocatalytic nitrite reduction to the valuable ammonia is a green and sustainable alternative to the conventional Haber-Bosch method for ammonia synthesis, while the activity and selectivity for ammonia production remains poor at low nitrite concentrations. Herein, we report a nanoporous intermetallic single-atom alloy CuZn (np/ISAA-CuZn) catalyst with completely isolated Cu-Zn active-sites, which achieves neutral nitrite reduction reaction with a remarkable NH3 Faradaic efficiency over 95% and the highest energy efficiency of ≈ 59.1% in wide potential range from -0.2 to -0.8 V vs. RHE. The np/ISAA-CuZn electrocatalyst was able to operate stably at 500 mA cm-2 for 220 h under membrane electrode assembly conditions with a stabilized NH3 Faraday efficiency of ~80% and high NO2‒ removal rate of ~100%. A series of in situ experimental studies combined with density functional theory calculations reveal that strong electronic interactions of isolated Cu-Zn active-sites altered the protonation adsorption species, effectively alleviating the protonation barrier of *NO2 and thus greatly facilitating the selective reduction of NO2- into NH3.
Collapse
Affiliation(s)
- Jiao Lan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Zhen Wang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Feng Xie
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yongwen Tan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
5
|
Wang J, Zang H, Liu X, Liu C, Lu H, Yu N, Geng B. Mg-Doped Cu Catalyst for Electroreduction of CO 2 to Multicarbon Products: Lewis Acid Sites Simultaneously Promote *CO Adsorption and Water Dissociation. Inorg Chem 2024; 63:18892-18901. [PMID: 39305308 DOI: 10.1021/acs.inorgchem.4c03122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The electroreduction of CO2 to valuable fuels or high-value chemicals by using sustainable electric energy provides a promising strategy for solving environmental problems dominated by the greenhouse effect. Copper-based materials are the only catalysts that can convert CO2 into multicarbon products, but they are plagued by high potential, low selectivity, and poor stability. The key factors to optimize the conversion of CO2 into multicarbon products are to improve the adsorption capacity of intermediates on the catalyst surface, accelerate the hydrogenation step, and improve the C-C coupling efficiency. Herein, we successfully doped Lewis acid Mg into Cu-based materials using a simple liquid-phase chemical method. In situ Raman and FT-IR tracking show that the Mg site enhances the surface coverage of the *CO intermediate, simultaneously promoting water dissociation. Under an industrial current density of 0.7 A cm-2, the FEC2+ reaches 73.9 ± 3.48% with remarkable stability. Density functional theory studies show that doping the Lewis acid Mg site increases the coverage of *CO and accelerates the splitting of water, thus promoting the C-C coupling efficiency, reducing the reaction energy barrier, and greatly improving the selectivity of C2+ products.
Collapse
Affiliation(s)
- Jiahao Wang
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Hu Zang
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Xin Liu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Changjiang Liu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Haiyan Lu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Nan Yu
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Normal University, Jiuhua Road 189, Wuhu 241002, China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei230031, China
| |
Collapse
|
6
|
Kim JY, Hong WT, Phu TKC, Cho SC, Kim B, Baeck U, Oh H, Koh JH, Yu X, Choi CH, Park J, Lee SU, Chung C, Kim JK. Proton-Coupled Electron Transfer on Cu 2O/Ti 3C 2T x MXene for Propane (C 3H 8) Synthesis from Electrochemical CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405154. [PMID: 39159072 PMCID: PMC11497005 DOI: 10.1002/advs.202405154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to produce value-added multi-carbon chemicals has been an appealing approach to achieving environmentally friendly carbon neutrality in recent years. Despite extensive research focusing on the use of CO2 to produce high-value chemicals like high-energy-density hydrocarbons, there have been few reports on the production of propane (C3H8), which requires carbon chain elongation and protonation. A rationally designed 0D/2D hybrid Cu2O anchored-Ti3C2Tx MXene catalyst (Cu2O/MXene) is demonstrated with efficient CO2RR activity in an aqueous electrolyte to produce C3H8. As a result, a significantly high Faradaic efficiency (FE) of 3.3% is achieved for the synthesis of C3H8 via the CO2RR with Cu2O/MXene, which is ≈26 times higher than that of Cu/MXene prepared by the same hydrothermal process without NH4OH solution. Based on in-situ attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and density functional theory (DFT) calculations, it is proposed that the significant electrocatalytic conversion originated from the synergistic behavior of the Cu2O nanoparticles, which bound the *C2 intermediates, and the MXene that bound the *CO coupling to the C3 intermediate. The results disclose that the rationally designed MXene-based hybrid catalyst facilitates multi-carbon coupling as well as protonation, thereby manipulating the CO2RR pathway.
Collapse
Affiliation(s)
- Jun Young Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Won Tae Hong
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Thi Kim Cuong Phu
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Seong Chan Cho
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Byeongkyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Unbeom Baeck
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Hyung‐Suk Oh
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Hwarang‐ro 14‐gil 5, Seongbuk‐guSeoul02792Republic of Korea
| | - Jai Hyun Koh
- Clean Energy Research CenterKorea Institute of Science and Technology (KIST)Hwarang‐ro 14‐gil 5, Seongbuk‐guSeoul02792Republic of Korea
| | - Xu Yu
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhou225002P. R. China
| | - Chang Hyuck Choi
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute of Convergence Research and Education in Advanced Technology (I‐CREATE)Yonsei UniversitySeoul03722Republic of Korea
| | - Jongwook Park
- Integrated EngineeringDepartment of Chemical EngineeringKyung Hee UniversityGyeonggi17104South Korea
| | - Sang Uck Lee
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Chan‐Hwa Chung
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
| | - Jung Kyu Kim
- School of Chemical EngineeringSungkyunkwan University (SKKU)2066, Seobu‐ro, Jangan‐guSuwon16419Republic of Korea
- SKKU Advanced Institute of Nano Technology (SAINT)Sungkyunkwan University2066 Seobu‐roSuwon16419Republic of Korea
| |
Collapse
|
7
|
Rabiee H, Li M, Yan P, Wu Y, Zhang X, Dorosti F, Zhang X, Ma B, Hu S, Wang H, Zhu Z, Ge L. Rational Designing Microenvironment of Gas-Diffusion Electrodes via Microgel-Augmented CO 2 Availability for High-Rate and Selective CO 2 Electroreduction to Ethylene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402964. [PMID: 39206751 PMCID: PMC11515925 DOI: 10.1002/advs.202402964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Indexed: 09/04/2024]
Abstract
Efficient electrochemical CO2 reduction reaction (CO2RR) requires advanced gas-diffusion electrodes (GDEs) with tunned microenvironment to overcome low CO2 availability in the vicinity of catalyst layer. Herein, for the first time, pyridine-containing microgels-augmented CO2 availability is presented in Cu2O-based GDE for high-rate CO2 reduction to ethylene, owing to the presence of CO2-phil microgels with amine moieties. Microgels as three-dimensional polymer networks act as CO2 micro-reservoirs to engineer the GDE microenvironment and boost local CO2 availability. The superior ethylene production performance of the GDE modified by 4-vinyl pyridine microgels, as compared with the GDE with diethylaminoethyl methacrylate microgels, indicates the bifunctional effect of pyridine-based microgels to enhance CO2 availability, and electrocatalytic CO2 reduction. While the Faradaic efficiency (FE) of ethylene without microgels was capped at 43% at 300 mA cm-2, GDE with the pyridine microgels showed 56% FE of ethylene at 700 mA cm-2. A similar trend was observed in zero-gap design, and GDEs showed 58% FE of ethylene at -4.0 cell voltage (>350 mA cm-2 current density), resulting in over 2-fold improvement in ethylene production. This study showcases the use of CO2-phil microgels for a higher rate of CO2RR-to-C2+, opening an avenue for several other microgels for more selective and efficient CO2 electrolysis.
Collapse
Affiliation(s)
- Hesamoddin Rabiee
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Mengran Li
- Department of Chemical EngineeringThe University of MelbourneMelbourneVIC3052Australia
| | - Penghui Yan
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Yuming Wu
- School of EngineeringMacquarie UniversitySydneyNSW2109Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology (ACWEB)The University of QueenslandSt. LuciaQLD4072Australia
| | - Fatereh Dorosti
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Xi Zhang
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Beibei Ma
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology (ACWEB)The University of QueenslandSt. LuciaQLD4072Australia
| | - Hao Wang
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
| | - Zhonghua Zhu
- School of Chemical EngineeringThe University of QueenslandBrisbaneQLD4072Australia
| | - Lei Ge
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldQLD4300Australia
- School of EngineeringUniversity of Southern QueenslandSpringfieldQLD4300Australia
| |
Collapse
|
8
|
Niu W, Feng J, Chen J, Deng L, Guo W, Li H, Zhang L, Li Y, Zhang B. High-efficiency C 3 electrosynthesis on a lattice-strain-stabilized nitrogen-doped Cu surface. Nat Commun 2024; 15:7070. [PMID: 39152122 PMCID: PMC11329774 DOI: 10.1038/s41467-024-51478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
The synthesis of multi-carbon (C2+) fuels via electrocatalytic reduction of CO, H2O using renewable electricity, represents a significant stride in sustainable energy storage and carbon recycling. The foremost challenge in this field is the production of extended-chain carbon compounds (Cn, n ≥ 3), wherein elevated *CO coverage (θco) and its subsequent multiple-step coupling are both critical. Notwithstanding, there exists a "seesaw" dynamic between intensifying *CO adsorption to augment θco and surmounting the C-C coupling barrier, which have not been simultaneously realized within a singular catalyst yet. Here, we introduce a facilely synthesized lattice-strain-stabilized nitrogen-doped Cu (LSN-Cu) with abundant defect sites and robust nitrogen integration. The low-coordination sites enhance θco and concurrently, the compressive strain substantially fortifies nitrogen dopants on the catalyst surface, promoting C-C coupling activity. The n-propanol formation on the LSN-Cu electrode exhibits a 54% faradaic efficiency and a 29% half-cell energy efficiency. Moreover, within a membrane electrode assembly setup, a stable n-propanol electrosynthesis over 180 h at a total current density of 300 mA cm-2 is obtained.
Collapse
Affiliation(s)
- Wenzhe Niu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China
| | - Jie Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Junfeng Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China
| | - Lei Deng
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004, Qinhuangdao, China
| | - Wen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China.
| | - Huajing Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004, Qinhuangdao, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM) and Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 215123, Suzhou, China
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
9
|
Plaza-Mayoral E, Okatenko V, Dalby KN, Falsig H, Chorkendorff I, Sebastián-Pascual P, Escudero-Escribano M. Composition effects of electrodeposited Cu-Ag nanostructured electrocatalysts for CO 2 reduction. iScience 2024; 27:109933. [PMID: 38812548 PMCID: PMC11134916 DOI: 10.1016/j.isci.2024.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024] Open
Abstract
The electrochemical carbon dioxide reduction (CO2RR) on Cu-based catalysts is a promising strategy to store renewable electricity and produce valuable C2+ chemicals. We investigate the CO2RR on Cu-Ag nanostructures that have been electrodeposited in a green choline chloride and urea deep eutectic solvent (DES). We determine the electrochemically active surface area (ECSA) using lead underpotential deposition (UPD) to investigate the CO2RR intrinsic activity and selectivity. We show that the addition of Ag on electrodeposited Cu primarily suppresses the production of hydrogen and methane. While the production of carbon monoxide slightly increases, the partial current of the total C2+ products does not considerably increase. Despite that the production rate of C2+ is similar on Cu and Cu-Ag, the addition of Ag enhances the formation of alcohols and oxygenates over ethylene. We highlight the potential of metal electrodeposition from DES as a sustainable strategy to develop bimetallic Cu-based nanocatalysts for CO2RR.
Collapse
Affiliation(s)
- Elena Plaza-Mayoral
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Kim N. Dalby
- Topsoe A/S, Haldor Topsøe Allé 1, DK-2800 Kgs, Lyngby, Denmark
| | - Hanne Falsig
- Topsoe A/S, Haldor Topsøe Allé 1, DK-2800 Kgs, Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis, Technical University of Denmark, Fysikvej, DK-2800 Lyngby, Denmark
| | - Paula Sebastián-Pascual
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - María Escudero-Escribano
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, UAB, 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Wang D, Jung HD, Liu S, Chen J, Yang H, He Q, Xi S, Back S, Wang L. Revealing the structural evolution of CuAg composites during electrochemical carbon monoxide reduction. Nat Commun 2024; 15:4692. [PMID: 38824127 PMCID: PMC11144262 DOI: 10.1038/s41467-024-49158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024] Open
Abstract
Comprehending the catalyst structural evolution during the electrocatalytic process is crucial for establishing robust structure/performance correlations for future catalysts design. Herein, we interrogate the structural evolution of a promising Cu-Ag oxide catalyst precursor during electrochemical carbon monoxide reduction. By using extensive in situ and ex situ characterization techniques, we reveal that the homogenous oxide precursors undergo a transformation to a bimetallic composite consisting of small Ag nanoparticles enveloped by thin layers of amorphous Cu. We believe that the amorphous Cu layer with undercoordinated nature is responsible for the enhanced catalytic performance of the current catalyst composite. By tuning the Cu/Ag ratio in the oxide precursor, we find that increasing the Ag concentration greatly promotes liquid products formation while suppressing the byproduct hydrogen. CO2/CO co-feeding electrolysis and isotopic labelling experiments suggest that high CO concentrations in the feed favor the formation of multi-carbon products. Overall, we anticipate the insights obtained for Cu-Ag bimetallic systems for CO electroreduction in this study may guide future catalyst design with improved performance.
Collapse
Affiliation(s)
- Di Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Hyun Dong Jung
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea
| | - Shikai Liu
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Haozhou Yang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Qian He
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Seoin Back
- Department of Chemical and Biomolecular Engineering, Institute of Emergent Materials, Sogang University, Seoul, Republic of Korea.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Gao Q, Han X, Liu Y, Zhu H. Electrifying Energy and Chemical Transformations with Single-Atom Alloy Nanoparticle Catalysts. ACS Catal 2024; 14:6045-6061. [PMID: 38660612 PMCID: PMC11036398 DOI: 10.1021/acscatal.4c00365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Single-atom alloys (SAAs) have attracted considerable attention as promising electrocatalysts in reactions central to energy conversion and chemical transformation. In contrast to monometallic nanocrystals and metal alloys, SAAs possess unique and intriguing physicochemical properties, positioning them as ideal model systems for studying structure-property relationships. However, the field is still in its early stages. In this Perspective, we first review and summarize rational synthesis methods and advanced characterization techniques for SAA nanoparticle catalysts. We then emphasize the extensive applications of SAAs in a range of electrocatalytic reactions, including fuel cell reactions, water splitting, and carbon dioxide and nitrate reductions. Finally, we provide insights into existing challenges and prospects associated with the controlled synthesis, characterization, and design of SAA catalysts.
Collapse
Affiliation(s)
- Qiang Gao
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Xue Han
- Department
of Chemical Engineering, Virginia Polytechnic
Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yuanqi Liu
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Huiyuan Zhu
- Department
of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
12
|
Zheng M, Zhang J, Wang P, Jin H, Zheng Y, Qiao SZ. Recent Advances in Electrocatalytic Hydrogenation Reactions on Copper-Based Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307913. [PMID: 37756435 DOI: 10.1002/adma.202307913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Hydrogenation reactions play a critical role in the synthesis of value-added products within the chemical industry. Electrocatalytic hydrogenation (ECH) using water as the hydrogen source has emerged as an alternative to conventional thermocatalytic processes for sustainable and decentralized chemical synthesis under mild conditions. Among the various ECH catalysts, copper-based (Cu-based) nanomaterials are promising candidates due to their earth-abundance, unique electronic structure, versatility, and high activity/selectivity. Herein, recent advances in the application of Cu-based catalysts in ECH reactions for the upgrading of valuable chemicals are systematically analyzed. The unique properties of Cu-based catalysts in ECH are initially introduced, followed by design strategies to enhance their activity and selectivity. Then, typical ECH reactions on Cu-based catalysts are presented in detail, including carbon dioxide reduction for multicarbon generation, alkyne-to-alkene conversion, selective aldehyde conversion, ammonia production from nitrogen-containing substances, and amine production from organic nitrogen compounds. In these catalysts, the role of catalyst composition and nanostructures toward different products is focused. The co-hydrogenation of two substrates (e.g., CO2 and NOx n, SO3 2-, etc.) via C─N, C─S, and C─C cross-coupling reactions are also highlighted. Finally, the critical issues and future perspectives of Cu-catalyzed ECH are proposed to accelerate the rational development of next-generation catalysts.
Collapse
Affiliation(s)
- Min Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Junyu Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Huanyu Jin
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
13
|
Yang X, Ding H, Li S, Zheng S, Li JF, Pan F. Cation-Induced Interfacial Hydrophobic Microenvironment Promotes the C-C Coupling in Electrochemical CO 2 Reduction. J Am Chem Soc 2024; 146:5532-5542. [PMID: 38362877 DOI: 10.1021/jacs.3c13602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2RR) toward C2 products is a promising way for the clean energy economy. Modulating the structure of the electric double layer (EDL), especially the interfacial water and cation type, is a useful strategy to promote C-C coupling, but atomic understanding lags far behind the experimental observations. Herein, we investigate the combined effect of interfacial water and alkali metal cations on the C-C coupling at the Cu(100) electrode/electrolyte interface using ab initio molecular dynamics (AIMD) simulations with a constrained MD and slow-growth approach. We observe a linear correlation between the water-adsorbate stabilization effect, which manifests as hydrogen bonds, and the corresponding alleviation in the C-C coupling free energy. The role of a larger cation, compared to a smaller cation (e.g., K+ vs Li+), lies in its ability to approach the interface through desolvation and coordinates with the *CO+*CO moiety, partially substituting the hydrogen-bonding stabilizing effect of interfacial water. Although this only results in a marginal reduction of the energy barrier for C-C coupling, it creates a local hydrophobic environment with a scarcity of hydrogen bonds owing to its great ionic radius, impeding the hydrogen of surrounding interfacial water to approach the oxygen of the adsorbed *CO. This skillfully circumvents the further hydrogenation of *CO toward the C1 pathway, serving as the predominant factor through which a larger cation facilitates C-C coupling. This study unveils a comprehensive atomic mechanism of the cation-water-adsorbate interactions that can facilitate the further optimization of the electrolyte and EDL for efficient C-C coupling in CO2RR.
Collapse
Affiliation(s)
- Xinzhe Yang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Haowen Ding
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| | - Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
- College of Energy, Xiamen University, Xiamen 361000, China
| | - Jian-Feng Li
- College of Energy, Xiamen University, Xiamen 361000, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Electronic Science and Engineering, College of Physical Science and Technology, Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361000, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361000, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518000, China
| |
Collapse
|
14
|
Long C, Wan K, Chen Y, Li L, Jiang Y, Yang C, Wu Q, Wu G, Xu P, Li J, Shi X, Tang Z, Cui C. Steering the Reconstruction of Oxide-Derived Cu by Secondary Metal for Electrosynthesis of n-Propanol from CO. J Am Chem Soc 2024; 146:4632-4641. [PMID: 38340061 DOI: 10.1021/jacs.3c11359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
As fuel and an important chemical feedstock, n-propanol is highly desired in electrochemical CO2/CO reduction on Cu catalysts. However, the precise regulation of the Cu localized structure is still challenging and poorly understood, thus hindering the selective n-propanol electrosynthesis. Herein, by decorating Au nanoparticles (NPs) on CuO nanosheets (NSs), we present a counterintuitive transformation of CuO into undercoordinated Cu sites locally around Au NPs during CO reduction. In situ spectroscopic techniques reveal the Au-steered formation of abundant undercoordinated Cu sites during the removal of oxygen on CuO. First-principles accuracy molecular dynamic simulation demonstrates that the localized Cu atoms around Au tend to rearrange into disordered layer rather than a Cu (111) close-packed plane observed on bare CuO NSs. These Au-steered undercoordinated Cu sites facilitate CO binding, enabling selective electroreduction of CO into n-propanol with a high Faradaic efficiency of 48% in a flow cell. This work provides new insight into the regulation of the oxide-derived catalysts reconstruction with a secondary metal component.
Collapse
Affiliation(s)
- Chang Long
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Kaiwei Wan
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Lei Li
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yuheng Jiang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Caoyu Yang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qianbao Wu
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Guoling Wu
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Peng Xu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jiong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, P. R. China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhiyong Tang
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chunhua Cui
- Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
15
|
Liu Q, Jiang Q, Li L, Yang W. Spontaneous Reconstruction of Copper Active Sites during the Alkaline CORR: Degradation and Recovery of the Performance. J Am Chem Soc 2024; 146:4242-4251. [PMID: 38300828 DOI: 10.1021/jacs.3c14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Understanding the reconstruction of electrocatalysts under operational conditions is essential for studying their catalytic mechanisms and industrial applications. Herein, using spatiotemporally resolved Raman spectroscopy with CO as a probe molecule, we resolved the spontaneous reconstruction of Cu active sites during cathodic CO reduction reactions (CORRs). Quasi-in situ focused ion beam transmission electron microscopy (FIB-TEM) revealed that under prolonged electrolysis, the Cu surface can reconstruct to form nanometer-sized Cu particles with (111)/(100) facets and abundant grain boundaries, which strongly favor the formation of an inactive *CObridge binding site and deteriorate the CORR performance. A short period of anodic oxidation can efficiently remove these reconstructed nanoparticles by quick dissolution of Cu, thus providing an effective strategy to regenerate the Cu catalysts and recover their CORR performance. This study provides real-time in situ observations of Cu reconstruction and changes in the binding of key reaction intermediates, highlighting the decisive role of the local active site, rather than the macroscopic morphology, on adsorption of key reaction intermediates and thus CORR performance.
Collapse
Affiliation(s)
- Qiliang Liu
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030,Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang,China
| | - Qike Jiang
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, Zhejiang, China
| | - Ling Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030,Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang,China
| | - Wenxing Yang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030,Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou 310000, Zhejiang,China
| |
Collapse
|
16
|
Wang X, Chen Y, Li F, Miao RK, Huang JE, Zhao Z, Li XY, Dorakhan R, Chu S, Wu J, Zheng S, Ni W, Kim D, Park S, Liang Y, Ozden A, Ou P, Hou Y, Sinton D, Sargent EH. Site-selective protonation enables efficient carbon monoxide electroreduction to acetate. Nat Commun 2024; 15:616. [PMID: 38242870 PMCID: PMC10798983 DOI: 10.1038/s41467-024-44727-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024] Open
Abstract
Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C2+) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H2 FE) at 150 mA cm-2. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.
Collapse
Affiliation(s)
- Xinyue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Feng Li
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Zilin Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiao-Yan Li
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Senlin Chu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jinhong Wu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Sixing Zheng
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiyan Ni
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Dongha Kim
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Sungjin Park
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Yongxiang Liang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, M5S 3G8, Canada.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, M5S 1A4, Canada.
| |
Collapse
|
17
|
Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci 2023; 14:13629-13660. [PMID: 38075661 PMCID: PMC10699555 DOI: 10.1039/d3sc04353c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 04/26/2024] Open
Abstract
The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Shichao Ding
- Department of Nanoengineering, University of California La Jolla San Diego CA 92093 USA
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
18
|
Phong Duong H, Rivera de la Cruz JG, Tran NH, Louis J, Zanna S, Portehault D, Zitolo A, Walls M, Peron DV, Schreiber MW, Menguy N, Fontecave M. Silver and Copper Nitride Cooperate for CO Electroreduction to Propanol. Angew Chem Int Ed Engl 2023; 62:e202310788. [PMID: 37811682 DOI: 10.1002/anie.202310788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/08/2023] [Accepted: 10/08/2023] [Indexed: 10/10/2023]
Abstract
The need of carbon sources for the chemical industry, alternative to fossil sources, has pointed to CO2 as a possible feedstock. While CO2 electroreduction (CO2 R) allows production of interesting organic compounds, it suffers from large carbon losses, mainly due to carbonate formation. This is why, quite recently, tandem CO2 R, a two-step process, with first CO2 R to CO using a solid oxide electrolysis cell followed by CO electroreduction (COR), has been considered, since no carbon is lost as carbonate in either step. Here we report a novel copper-based catalyst, silver-doped copper nitride, with record selectivity for formation of propanol (Faradaic efficiency: 45 %), an industrially relevant compound, from CO electroreduction in gas-fed flow cells. Selective propanol formation occurs at metallic copper atoms derived from copper nitride and is promoted by silver doping as shown experimentally and computationally. In addition, the selectivity for C2+ liquid products (Faradaic efficiency: 80 %) is among the highest reported so far. These findings open new perspectives regarding the design of catalysts for production of C3 compounds from CO2 .
Collapse
Affiliation(s)
- Hong Phong Duong
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Jose Guillermo Rivera de la Cruz
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Ngoc-Huan Tran
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Jacques Louis
- Laboratoire de Chimie du Solide et Energie, CNRS UMR 8260, Collège de France, Sorbonne Université, 1 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Sandrine Zanna
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - David Portehault
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), 4 place Jussieu, 75005, Paris, France
| | - Andrea Zitolo
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192, Gif-sur-Yvette, France
| | - Michael Walls
- CNRS UMR 8502, Université Paris-Saclay, Laboratoire de Physique des Solides, F-91405, Orsay, France
| | - Deizi Vanessa Peron
- Total Research and Technology, Refining and Chemicals, Division CO2 Conversion, Feluy, 7181, Seneffe, Belgium
| | - Moritz W Schreiber
- Total Research and Technology, Refining and Chemicals, Division CO2 Conversion, Feluy, 7181, Seneffe, Belgium
| | - Nicolas Menguy
- Sorbonne Université, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, 75005, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| |
Collapse
|
19
|
Zhang XY, Lou ZX, Chen J, Liu Y, Wu X, Zhao JY, Yuan HY, Zhu M, Dai S, Wang HF, Sun C, Liu PF, Yang HG. Direct OC-CHO coupling towards highly C 2+ products selective electroreduction over stable Cu 0/Cu 2+ interface. Nat Commun 2023; 14:7681. [PMID: 37996421 PMCID: PMC10667242 DOI: 10.1038/s41467-023-43182-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Electroreduction of CO2 to valuable multicarbon (C2+) products is a highly attractive way to utilize and divert emitted CO2. However, a major fraction of C2+ selectivity is confined to less than 90% by the difficulty of coupling C-C bonds efficiently. Herein, we identify the stable Cu0/Cu2+ interfaces derived from copper phosphate-based (CuPO) electrocatalysts, which can facilitate C2+ production with a low-energy pathway of OC-CHO coupling verified by in situ spectra studies and theoretical calculations. The CuPO precatalyst shows a high Faradaic efficiency (FE) of 69.7% towards C2H4 in an H-cell, and exhibits a significant FEC2+ of 90.9% under industrially relevant current density (j = -350 mA cm-2) in a flow cell configuration. The stable Cu0/Cu2+ interface breaks new ground for the structural design of electrocatalysts and the construction of synergistic active sites to improve the activity and selectivity of valuable C2+ products.
Collapse
Affiliation(s)
- Xin Yu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jiacheng Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Feng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
20
|
Niu W, Chen Z, Guo W, Mao W, Liu Y, Guo Y, Chen J, Huang R, Kang L, Ma Y, Yan Q, Ye J, Cui C, Zhang L, Wang P, Xu X, Zhang B. Pb-rich Cu grain boundary sites for selective CO-to-n-propanol electroconversion. Nat Commun 2023; 14:4882. [PMID: 37573371 PMCID: PMC10423280 DOI: 10.1038/s41467-023-40689-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023] Open
Abstract
Electrochemical carbon monoxide (CO) reduction to high-energy-density fuels provides a potential way for chemical production and intermittent energy storage. As a valuable C3 species, n-propanol still suffers from a relatively low Faradaic efficiency (FE), sluggish conversion rate and poor stability. Herein, we introduce an "atomic size misfit" strategy to modulate active sites, and report a facile synthesis of a Pb-doped Cu catalyst with numerous atomic Pb-concentrated grain boundaries. Operando spectroscopy studies demonstrate that these Pb-rich Cu-grain boundary sites exhibit stable low coordination and can achieve a stronger CO adsorption for a higher surface CO coverage. Using this Pb-Cu catalyst, we achieve a CO-to-n-propanol FE (FEpropanol) of 47 ± 3% and a half-cell energy conversion efficiency (EE) of 25% in a flow cell. When applied in a membrane electrode assembly (MEA) device, a stable FEpropanol above 30% and the corresponding full-cell EE of over 16% are maintained for over 100 h with the n-propanol partial current above 300 mA (5 cm2 electrode). Furthermore, operando X-ray absorption spectroscopy and theoretical studies reveal that the structurally-flexible Pb-Cu surface can adaptively stabilize the key intermediates, which strengthens the *CO binding while maintaining the C-C coupling ability, thus promoting the CO-to-n-propanol conversion.
Collapse
Affiliation(s)
- Wenzhe Niu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Zheng Chen
- Department of Chemistry, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Wen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Wei Mao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yunna Guo
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Jingzhao Chen
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Rui Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Lin Kang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yiwen Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Qisheng Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Jinyu Ye
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Chunyu Cui
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Xin Xu
- Department of Chemistry, MOE Key Laboratory of Computational Physical Sciences, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Bo Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
21
|
Lan J, Wei Z, Lu YR, Chen D, Zhao S, Chan TS, Tan Y. Efficient electrosynthesis of formamide from carbon monoxide and nitrite on a Ru-dispersed Cu nanocluster catalyst. Nat Commun 2023; 14:2870. [PMID: 37208321 DOI: 10.1038/s41467-023-38603-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 05/21/2023] Open
Abstract
Conversion into high-value-added organic nitrogen compounds through electrochemical C-N coupling reactions under ambient conditions is regarded as a sustainable development strategy to achieve carbon neutrality and high-value utilization of harmful substances. Herein, we report an electrochemical process for selective synthesis of high-valued formamide from carbon monoxide and nitrite with a Ru1Cu single-atom alloy under ambient conditions, which achieves a high formamide selectivity with Faradaic efficiency of 45.65 ± 0.76% at -0.5 V vs. RHE. In situ X-ray absorption spectroscopy, coupled with in situ Raman spectroscopy and density functional theory calculations results reveal that the adjacent Ru-Cu dual active sites can spontaneously couple *CO and *NH2 intermediates to realize a critical C-N coupling reaction, enabling high-performance electrosynthesis of formamide. This work offers insight into the high-value formamide electrocatalysis through coupling CO and NO2- under ambient conditions, paving the way for the synthesis of more-sustainable and high-value chemical products.
Collapse
Affiliation(s)
- Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Zengxi Wei
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - DeChao Chen
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan.
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China.
| |
Collapse
|
22
|
Du H, Liu LX, Li P, Min Q, Guo S, Zhu W. Enriching Reaction Intermediates in Multishell Structured Copper Catalysts for Boosted Propanol Electrosynthesis from Carbon Monoxide. ACS NANO 2023; 17:8663-8670. [PMID: 37068124 DOI: 10.1021/acsnano.3c01516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fine-tuned catalysts that alter the diffusion kinetics of reaction intermediates is of great importance for achieving high-performance multicarbon (C2+) product generation in carbon monoxide (CO) reduction. Herein, we conduct a structural design based on Cu2O nanoparticles and present an effective strategy for enhancing propanol electrosynthesis from CO. The electrochemical characterization, operando Raman monitoring, and finite-element method simulations reveal that the multishell structured catalyst can realize the enrichment of C1 and C2 intermediates by nanoconfinement space, leading to the possibility of further coupling. Consequently, the multishell copper catalyst realizes a high Faraday efficiency of 22.22 ± 0.38% toward propanol at the current density of 50 mA cm-2.
Collapse
Affiliation(s)
| | | | | | | | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | | |
Collapse
|
23
|
Jin J, Wicks J, Min Q, Li J, Hu Y, Ma J, Wang Y, Jiang Z, Xu Y, Lu R, Si G, Papangelakis P, Shakouri M, Xiao Q, Ou P, Wang X, Chen Z, Zhang W, Yu K, Song J, Jiang X, Qiu P, Lou Y, Wu D, Mao Y, Ozden A, Wang C, Xia BY, Hu X, Dravid VP, Yiu YM, Sham TK, Wang Z, Sinton D, Mai L, Sargent EH, Pang Y. Constrained C 2 adsorbate orientation enables CO-to-acetate electroreduction. Nature 2023; 617:724-729. [PMID: 37138081 DOI: 10.1038/s41586-023-05918-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/02/2023] [Indexed: 05/05/2023]
Abstract
The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.
Collapse
Affiliation(s)
- Jian Jin
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Qiuhong Min
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfeng Hu
- Department of Chemical & Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Zhangjiang National Lab, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Yi Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Ruihu Lu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Gangzheng Si
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Panagiotis Papangelakis
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mohsen Shakouri
- Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qunfeng Xiao
- Canadian Light Source, Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Xue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Zhu Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Wei Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Jiayang Song
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohang Jiang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Qiu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Lou
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wu
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Mao
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Chundong Wang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China
| | - Bao Yu Xia
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobing Hu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- The NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- The NUANCE Center, Northwestern University, Evanston, IL, USA
| | - Yun-Mui Yiu
- Department of Chemistry, Western University, London, ON, Canada
| | - Tsun-Kong Sham
- Department of Chemistry, Western University, London, ON, Canada
| | - Ziyun Wang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Liqiang Mai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China.
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
| | - Yuanjie Pang
- School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Chen PC, Chen C, Yang Y, Maulana AL, Jin J, Feijoo J, Yang P. Chemical and Structural Evolution of AgCu Catalysts in Electrochemical CO 2 Reduction. J Am Chem Soc 2023; 145:10116-10125. [PMID: 37115017 DOI: 10.1021/jacs.3c00467] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Silver-copper (AgCu) bimetallic catalysts hold great potential for electrochemical carbon dioxide reduction reaction (CO2RR), which is a promising way to realize the goal of carbon neutrality. Although a wide variety of AgCu catalysts have been developed so far, it is relatively less explored how these AgCu catalysts evolve during CO2RR. The absence of insights into their stability makes the dynamic catalytic sites elusive and hampers the design of AgCu catalysts in a rational manner. Here, we synthesized intermixed and phase-separated AgCu nanoparticles on carbon paper electrodes and investigated their evolution behavior in CO2RR. Our time-sequential electron microscopy and elemental mapping studies show that Cu possesses high mobility in AgCu under CO2RR conditions, which can leach out from the catalysts by migrating to the bimetallic catalyst surface, detaching from the catalysts, and agglomerating as new particles. Besides, Ag and Cu manifest a trend to phase-separate into Cu-rich and Ag-rich grains, regardless of the starting catalyst structure. The composition of the Cu-rich and Ag-rich grains diverges during the reaction and eventually approaches thermodynamic values, i.e., Ag0.88Cu0.12 and Ag0.05Cu0.95. The separation between Ag and Cu has been observed in the bulk and on the surface of the catalysts, highlighting the importance of AgCu phase boundaries for CO2RR. In addition, an operando high-energy-resolution X-ray absorption spectroscopy study confirms the metallic state of Cu in AgCu as the catalytically active sites during CO2RR. Taken together, this work provides a comprehensive understanding of the chemical and structural evolution behavior of AgCu catalysts in CO2RR.
Collapse
Affiliation(s)
- Peng-Cheng Chen
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Chubai Chen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yao Yang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Miller Institute, University of California, Berkeley, California 94720, United States
| | - Arifin Luthfi Maulana
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Julian Feijoo
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peidong Yang
- Kavli Energy Nanoscience Institute, University of California, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
25
|
Li M, Zhang JN. Rational design of bimetallic catalysts for electrochemical CO2 reduction reaction: A review. Sci China Chem 2023. [DOI: 10.1007/s11426-023-1565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Abstract
To enable rational design of alloy nanoparticle catalysts, we develop an approach to generate catalytic activity maps of alloy nanoparticles on a grid of particle size and composition. The catalytic activity maps are created by using a quaternary cluster expansion to explicitly predict adsorbate binding energies on alloy nanoparticles of varying shape, size, and atomic order while accounting for interactions among the adsorbates. This cluster expansion is used in kinetic Monte Carlo simulations to predict activated nanoparticle structures and turnover frequencies on all surface sites. We demonstrate our approach on Pt-Ni octahedral nanoparticle catalysts for the oxygen reduction reaction (ORR), revealing that the specific activity is predicted to be optimized at an edge length of larger than 5.5 nm and a composition of about Pt0.85Ni0.15 and the mass activity is predicted to be optimized at an edge length of 3.3-3.8 nm and a composition of about Pt0.8Ni0.2.
Collapse
|
27
|
Zhang J, Zeng G, Zhu S, Tao H, Pan Y, Lai W, Bao J, Lian C, Su D, Shao M, Huang H. Steering CO 2 electroreduction pathway toward ethanol via surface-bounded hydroxyl species-induced noncovalent interaction. Proc Natl Acad Sci U S A 2023; 120:e2218987120. [PMID: 36877842 PMCID: PMC10089218 DOI: 10.1073/pnas.2218987120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/31/2022] [Indexed: 03/08/2023] Open
Abstract
Selective electroreduction of carbon dioxide (CO2RR) into ethanol at an industrially relevant current density is highly desired. However, it is challenging because the competing ethylene production pathway is generally more thermodynamically favored. Herein, we achieve a selective and productive ethanol production over a porous CuO catalyst that presents a high ethanol Faradaic efficiency (FE) of 44.1 ± 1.0% and an ethanol-to-ethylene ratio of 1.2 at a large ethanol partial current density of 501.0 ± 15.0 mA cm-2, in addition to an extraordinary FE of 90.6 ± 3.4% for multicarbon products. Intriguingly, we found a volcano-shaped relationship between ethanol selectivity and nanocavity size of porous CuO catalyst in the range of 0 to 20 nm. Mechanistic studies indicate that the increased coverage of surface-bounded hydroxyl species (*OH) associated with the nanocavity size-dependent confinement effect contributes to the remarkable ethanol selectivity, which preferentially favors the *CHCOH hydrogenation to *CHCHOH (ethanol pathway) via yielding the noncovalent interaction. Our findings provide insights in favoring the ethanol formation pathway, which paves the path toward rational design of ethanol-oriented catalysts.
Collapse
Affiliation(s)
- Jiawei Zhang
- College of Materials Science and Engineering,Advanced Catalytic Engineer Research Center of the Ministry of Education,Hunan University, Changsha, Hunan410082, P. R. China
| | - Gangming Zeng
- College of Materials Science and Engineering,Advanced Catalytic Engineer Research Center of the Ministry of Education,Hunan University, Changsha, Hunan410082, P. R. China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Haolan Tao
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Yue Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Wenchuan Lai
- College of Materials Science and Engineering,Advanced Catalytic Engineer Research Center of the Ministry of Education,Hunan University, Changsha, Hunan410082, P. R. China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
- Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei, Anhui230029, P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
- Energy Institute, and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, P. R. China
| | - Hongwen Huang
- College of Materials Science and Engineering,Advanced Catalytic Engineer Research Center of the Ministry of Education,Hunan University, Changsha, Hunan410082, P. R. China
- Shenzhen Research Institute of Hunan University, Shenzhen, Guangdong518055, P. R. China
| |
Collapse
|
28
|
Shen Y, Ren C, Zheng L, Xu X, Long R, Zhang W, Yang Y, Zhang Y, Yao Y, Chi H, Wang J, Shen Q, Xiong Y, Zou Z, Zhou Y. Room-temperature photosynthesis of propane from CO 2 with Cu single atoms on vacancy-rich TiO 2. Nat Commun 2023; 14:1117. [PMID: 36849519 PMCID: PMC9970977 DOI: 10.1038/s41467-023-36778-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Photochemical conversion of CO2 into high-value C2+ products is difficult to achieve due to the energetic and mechanistic challenges in forming multiple C-C bonds. Herein, an efficient photocatalyst for the conversion of CO2 into C3H8 is prepared by implanting Cu single atoms on Ti0.91O2 atomically-thin single layers. Cu single atoms promote the formation of neighbouring oxygen vacancies (VOs) in Ti0.91O2 matrix. These oxygen vacancies modulate the electronic coupling interaction between Cu atoms and adjacent Ti atoms to form a unique Cu-Ti-VO unit in Ti0.91O2 matrix. A high electron-based selectivity of 64.8% for C3H8 (product-based selectivity of 32.4%), and 86.2% for total C2+ hydrocarbons (product-based selectivity of 50.2%) are achieved. Theoretical calculations suggest that Cu-Ti-VO unit may stabilize the key *CHOCO and *CH2OCOCO intermediates and reduce their energy levels, tuning both C1-C1 and C1-C2 couplings into thermodynamically-favourable exothermal processes. Tandem catalysis mechanism and potential reaction pathway are tentatively proposed for C3H8 formation, involving an overall (20e- - 20H+) reduction and coupling of three CO2 molecules at room temperature.
Collapse
Affiliation(s)
- Yan Shen
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Chunjin Ren
- grid.263826.b0000 0004 1761 0489School of Physics, Southeast University, Nanjing, China
| | - Lirong Zheng
- grid.9227.e0000000119573309Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyong Xu
- grid.268415.cChemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ran Long
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Wenqing Zhang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China
| | - Yong Yang
- grid.410579.e0000 0000 9116 9901Key Laboratory of Soft Chemistry and Functional Materials (MOE), Nanjing University of Science and Technology, Nanjing, China
| | - Yongcai Zhang
- grid.268415.cChemistry Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yingfang Yao
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China ,grid.10784.3a0000 0004 1937 0482School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Haoqiang Chi
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing, China.
| | - Qing Shen
- University of Electrocommunication, Graduate School of Informatics and Engineering, Chofu, Tokyo Japan
| | - Yujie Xiong
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, China.
| | - Zhigang Zou
- grid.41156.370000 0001 2314 964XKey Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China ,grid.41156.370000 0001 2314 964XCollege of Engineering and Applied Sciences, Nanjing University, Nanjing, China ,grid.10784.3a0000 0004 1937 0482School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Yong Zhou
- Key Laboratory of Modern Acoustics (MOE), Institute of Acoustics, School of Physics, Jiangsu Key Laboratory of Nanotechnology, Eco-materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China. .,School of Science and Engineering, the Chinese University of Hong Kong (Shenzhen), Shenzhen, China. .,School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, China.
| |
Collapse
|
29
|
Wang Y, Zhao J, Cao C, Ding J, Wang R, Zeng J, Bao J, Liu B. Amino-Functionalized Cu for Efficient Electrochemical Reduction of CO to Acetate. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Yinyin Wang
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Jiankang Zhao
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Cong Cao
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, People’s Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Ruyang Wang
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Jie Zeng
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong Special Administrative Region 999077, People’s Republic of China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
30
|
Zheng S, Liang X, Pan J, Hu K, Li S, Pan F. Multi-Center Cooperativity Enables Facile C–C Coupling in Electrochemical CO 2 Reduction on a Ni 2P Catalyst. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Shisheng Zheng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Xianhui Liang
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Junjie Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Kang Hu
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Shunning Li
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Feng Pan
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
31
|
Lu X, Shinagawa T, Takanabe K. Product Distribution Control Guided by a Microkinetic Analysis for CO Reduction at High-Flux Electrocatalysis Using Gas-Diffusion Cu Electrodes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaofei Lu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Tatsuya Shinagawa
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| | - Kazuhiro Takanabe
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-8656, Japan
| |
Collapse
|
32
|
Li M, Song N, Luo W, Chen J, Jiang W, Yang J. Engineering Surface Oxophilicity of Copper for Electrochemical CO 2 Reduction to Ethanol. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204579. [PMID: 36394094 PMCID: PMC9839838 DOI: 10.1002/advs.202204579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Copper-based materials are known for converting CO2 into deep reduction products via electrochemical reduction reaction (CO2 RR). As the major multicarbon products (C2+ ), ethanol (C2 H5 OH) and ethylene (C2 H4 ) are believed to share a common oxygenic intermediate according to theoretical studies, while the key factors that bifurcate C2 H5 OH and C2 H4 pathways on Cu-based catalysts are not fully understood. Here, a surface oxophilicity regulation strategy to enhance C2 H5 OH production in CO2 RR is proposed, demonstrated by a Cu-Sn bimetallic system. Compared with bare Cu catalyst, the Cu-Sn bimetallic catalysts show improved C2 H5 OH but suppressed C2 H4 selectivity. The experimental results and theoretical calculations demonstrate that the surface oxophilicity of Cu-Sn catalysts plays an important role in steering the protonation of the key oxygenic intermediate and guides the reaction pathways to C2 H5 OH. This study provides new insights into the electrocatalyst design for enhanced production of oxygenic products from CO2 RR by engineering the surface oxophilicity of copper-based catalysts.
Collapse
Affiliation(s)
- Minhan Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Nan Song
- State Key Laboratory of Chemical EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteAustralian Institute of Innovative MaterialsUniversity of WollongongInnovation CampusWollongongNSW2522Australia
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
33
|
Navigating CO utilization in tandem electrocatalysis of CO2. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
34
|
Tang H, Zhou Y, Liu Y, Qian Y, Qiu Z, Chen A, Lin BL. Rationally designed hierarchical carbon supported CuO nano-sheets for highly efficient electroreduction of CO2 to multi-carbon products. J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2022.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Cao Y, Peng Y, Cheng D, Chen L, Wang M, Shang C, Zheng L, Ma D, Liu ZP, He L. Room-Temperature CO Oxidative Coupling for Oxamide Production over Interfacial Au/ZnO Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanwei Cao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yao Peng
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Danyang Cheng
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Lin Chen
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Maolin Wang
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ma
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
36
|
Francis Kurisingal J, Kim H, Hyeak Choe J, Seop Hong C. Covalent organic framework-based catalysts for efficient CO2 utilization reactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Xie M, Wang J, Du XL, Gao N, Liu T, Li Z, Xiao G, Li T, Wang JQ. Metal-organic framework derived single-atom catalysts for electrochemical CO 2 reduction. RSC Adv 2022; 12:32518-32525. [PMID: 36425674 PMCID: PMC9661489 DOI: 10.1039/d2ra06302f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/04/2022] [Indexed: 05/13/2024] Open
Abstract
With maximum atomic utilization, transition metal single atom catalysts (SACs) show great potential in electrochemical reduction of CO2 to CO. Herein, by a facile pyrolysis of zeolitic imidazolate frameworks (ZIFs) assembled with tiny amounts of metal ions, a series of metal-nitrogen-carbon (M-N-C) based SACs (M = Fe, Ni, Mn, Co and Cu), with metal single atoms decorated on a nitrogen-doped carbon support, have been precisely constructed. X-ray photoelectron spectroscopy (XPS) for M-N-C showed that the N 1s spectrum was deconvoluted into five peaks for pyridinic (∼398.3 eV), M-N coordination (∼399.6 eV), pyrrolic (∼400.4 eV), quaternary (∼401.2 eV) and oxidized (∼402.9 eV) N species, demonstrating the existence of M-N bonding. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) indicates homogeneous distribution of metal species throughout the N-doped carbon matrix. Among the catalysts examined, the Fe-N-C catalyst exhibits the best catalytic performance in electrocatalytic CO2 reduction reaction (CO2RR) with nearly 100% faradaic efficiency for CO (FECO) at -0.9 V vs. the reversible hydrogen electrode (RHE). Ni-N-C is the second most active catalyst towards CO2RR performance, then followed by Mn-N-C, Co-N-C and Cu-N-C. Considering the optimum activity of Fe-N-C catalyst for the CO2RR, we then further investigate the effect of pyrolysis temperature on CO2RR of the Fe-N-C catalyst. We find the Fe-N-C catalyst pyrolyzed at 1000 °C exhibits the best catalytic activity in CO2RR with excellent CO selectivity.
Collapse
Affiliation(s)
- Mengna Xie
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Engineering Research Center of Large-Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Jiawei Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Engineering Research Center of Large-Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xian-Long Du
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences Dalian 116023 China
| | - Na Gao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences Dalian 116023 China
| | - Tao Liu
- Shandong Energy Group Co., Ltd. Jinan 250014 China
| | - Zhi Li
- Shandong Energy Group Co., Ltd. Jinan 250014 China
| | - GuoPing Xiao
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences Dalian 116023 China
| | - Tao Li
- Engineering Research Center of Large-Scale Reactor Engineering and Technology, Ministry of Education, State Key Laboratory of Chemical Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Jian-Qiang Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
38
|
Wang X, Hu Q, Li G, Yang H, He C. Recent Advances and Perspectives of Electrochemical CO2 Reduction Toward C2+ Products on Cu-Based Catalysts. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Liu YQ, Guo ZY, Qiu ZY, Wang WW, Lin H, Zhao X, Dang JS. Defective hBN-Supported Fe 2N Single Cluster Catalyst for Active and Selective Electro-Reduction of Multiple CO to Propane: Theoretical Elucidation of Metal-Nonmetal Synergic Effects. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46657-46664. [PMID: 36194561 DOI: 10.1021/acsami.2c13154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The present work introduces the multiple CO reduction toward C3 products promoted by a newly designed single cluster catalyst consisting of defective hBN and embedded dimerized Fe, by means of density functional theory calculations. We find the strong metal-support interactions give rise to the local strain and electron accumulation of the N coordinated with two metals and resultantly form a Fe2N active center. The metal-nonmetal synergic effect facilitates the coadsorption and C-C coupling of triple CO molecules and finally generates propane in a highly active and selective way.
Collapse
Affiliation(s)
- Yi-Qing Liu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zi-Yi Guo
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zi-Yang Qiu
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei-Wei Wang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Haiping Lin
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Xiang Zhao
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing-Shuang Dang
- Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
40
|
Chen Y, Lin J, Jia B, Wang X, Jiang S, Ma T. Isolating Single and Few Atoms for Enhanced Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201796. [PMID: 35577552 DOI: 10.1002/adma.202201796] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/16/2022] [Indexed: 05/27/2023]
Abstract
Atomically dispersed metal catalysts have triggered great interest in the field of catalysis owing to their unique features. Isolated single or few metal atoms can be anchored on substrates via chemical bonding or space confinement to maximize atom utilization efficiency. The key challenge lies in precisely regulating the geometric and electronic structure of the active metal centers, thus significantly influencing the catalytic properties. Although several reviews have been published on the preparation, characterization, and application of single-atom catalysts (SACs), the comprehensive understanding of SACs, dual-atom catalysts (DACs), and atomic clusters has never been systematically summarized. Here, recent advances in the engineering of local environments of state-of-the-art SACs, DACs, and atomic clusters for enhanced catalytic performance are highlighted. Firstly, various synthesis approaches for SACs, DACs, and atomic clusters are presented. Then, special attention is focused on the elucidation of local environments in terms of electronic state and coordination structure. Furthermore, a comprehensive summary of isolated single and few atoms for the applications of thermocatalysis, electrocatalysis, and photocatalysis is provided. Finally, the potential challenges and future opportunities in this emerging field are presented. This review will pave the way to regulate the microenvironment of the active site for boosting catalytic processes.
Collapse
Affiliation(s)
- Yang Chen
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Jian Lin
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Xiaodong Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shuaiyu Jiang
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
41
|
de Ruiter J, An H, Wu L, Gijsberg Z, Yang S, Hartman T, Weckhuysen BM, van der Stam W. Probing the Dynamics of Low-Overpotential CO 2-to-CO Activation on Copper Electrodes with Time-Resolved Raman Spectroscopy. J Am Chem Soc 2022; 144:15047-15058. [PMID: 35951390 PMCID: PMC9413204 DOI: 10.1021/jacs.2c03172] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Oxide-derived copper electrodes have displayed a boost
in activity
and selectivity toward valuable base chemicals in the electrochemical
carbon dioxide reduction reaction (CO2RR), but the exact interplay
between the dynamic restructuring of copper oxide electrodes and their
activity and selectivity is not fully understood. In this work, we
have utilized time-resolved surface-enhanced Raman spectroscopy (TR-SERS)
to study the dynamic restructuring of the copper (oxide) electrode
surface and the adsorption of reaction intermediates during cyclic
voltammetry (CV) and pulsed electrolysis (PE). By coupling the electrochemical
data to the spectral features in TR-SERS, we study the dynamic activation
of and reactions on the electrode surface and find that CO2 is already activated to carbon monoxide (CO) during PE (10% Faradaic
efficiency, 1% under static applied potential) at low overpotentials
(−0.35 VRHE). PE at varying cathodic bias on different
timescales revealed that stochastic CO is dominant directly after
the cathodic bias onset, whereas no CO intermediates were observed
after prolonged application of low overpotentials. An increase in
cathodic bias (−0.55 VRHE) resulted in the formation
of static adsorbed CO intermediates, while the overall contribution
of stochastic CO decreased. We attribute the low-overpotential CO2-to-CO activation to a combination of selective Cu(111) facet
exposure, partially oxidized surfaces during PE, and the formation
of copper-carbonate-hydroxide complex intermediates during the anodic
pulses. This work sheds light on the restructuring of oxide-derived
copper electrodes and low-overpotential CO formation and highlights
the power of the combination of electrochemistry and time-resolved
vibrational spectroscopy to elucidate CO2RR mechanisms.
Collapse
Affiliation(s)
- Jim de Ruiter
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Hongyu An
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Longfei Wu
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Zamorano Gijsberg
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Shuang Yang
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Thomas Hartman
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Bert M Weckhuysen
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Ward van der Stam
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
42
|
Fang M, Xu L, Zhang H, Zhu Y, Wong WY. Metalloporphyrin-Linked Mercurated Graphynes for Ultrastable CO 2 Electroreduction to CO with Nearly 100% Selectivity at a Current Density of 1.2 A cm -2. J Am Chem Soc 2022; 144:15143-15154. [PMID: 35947444 DOI: 10.1021/jacs.2c05059] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrochemical reduction reaction of carbon dioxide (CO2RR) to the desired feedstocks with a high faradaic efficiency (FE) and high stability at a high current density is of great importance but challenging owing to its poor electrochemical stability and competition with the hydrogen evolution reaction (HER). Guided by theoretical calculations, herein, a series of novel metalloporphyrin-linked mercurated graphynes (Hg-MTPP) were designed as electrocatalysts for CO2RR, since the mercurated graphyne blocks induce a high HER overpotential. Notably, Hg-CoTPP was synthesized and produced a maximum CO FE of 95.6% at -0.76 V (vs reversible hydrogen electrode (RHE)) in an H-type cell, and a CO FE of 91.2% even at -1.26 V (vs RHE), due to a great suppression of HER. The Hg-CoTPP combined with N-doped graphene (Hg-CoTPP/NG) was able to achieve a high CO FE of nearly 100% at a current density of 1.2 A cm-2 and particularly a ground-breaking stability of over 360 h at around 420 mA cm-2 in a flow-type cell. Further experimental and computational results revealed that the mercurated graphyne of Hg-CoTPP brings a high HER overpotential and tunes the d-band electronic states of the metal center that make the d-band center closer to the Fermi level, thus enhancing the bonding of *COOH intermediates on Hg-CoTPP. The introduction of NG could shorten the Co-N coordination bonds, which enhances electron transfer to the metal center to lower the energy barrier for *COOH. Our results illustrated that Hg-MTPP could serve as a new class of two-dimensional (2D) materials and provide a design concept for developing efficient electrocatalysts for CO2RR in commercial applications.
Collapse
Affiliation(s)
- Mingwei Fang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Hongyang Zhang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, P. R. China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
43
|
Duong HP, Tran NH, Rousse G, Zanna S, Schreiber MW, Fontecave M. Highly Selective Copper-Based Catalysts for Electrochemical Conversion of Carbon Monoxide to Ethylene Using a Gas-Fed Flow Electrolyzer. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong Phong Duong
- Laboratoire Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, UPMC Univ Paris 06, 11 Place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Ngoc-Huan Tran
- Laboratoire Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, UPMC Univ Paris 06, 11 Place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Gwenaëlle Rousse
- Laboratoire de Chimie du Solide et Energie, FRE 3677 Collège de France, Université Pierre et Marie Curie, 11 Place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| | - Sandrine Zanna
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris (IRCP), 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Moritz W. Schreiber
- Total Research and Technology, Refining and Chemicals, Division CO2 Conversion, Feluy, 7181 Seneffe, Belgium
| | - Marc Fontecave
- Laboratoire Laboratoire de Chimie des Processus Biologiques, CNRS UMR 8229, Collège de France, UPMC Univ Paris 06, 11 Place Marcelin Berthelot, 75231 Paris, Cedex 05, France
| |
Collapse
|
44
|
Zhou Y, Ganganahalli R, Verma S, Tan HR, Yeo BS. Production of C
3
–C
6
Acetate Esters via CO Electroreduction in a Membrane Electrode Assembly Cell. Angew Chem Int Ed Engl 2022; 61:e202202859. [DOI: 10.1002/anie.202202859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yansong Zhou
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ramesha Ganganahalli
- Shell India Markets Private LTD Plot No. 7, Bengaluru Hardware Park, Mahadeva, Kodigehalli Bangalore North 562149 India
| | - Sumit Verma
- Shell International Exploration & Production Inc. 3333 Highway 6 South Houston TX 77082 USA
| | - Hui Ru Tan
- Institute of Materials Research and Engineering (IMRE) Agency of Science Technology, and Research (A*STAR) 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Boon Siang Yeo
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
45
|
Jia S, Zhu Q, Wu H, Han S, Chu M, Zhai J, Xing X, Xia W, He M, Han B. Preparation of trimetallic electrocatalysts by one-step co-electrodeposition and efficient CO 2 reduction to ethylene. Chem Sci 2022; 13:7509-7515. [PMID: 35872807 PMCID: PMC9241956 DOI: 10.1039/d1sc06964k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Use of multi-metallic catalysts to enhance reactions is an interesting research area, which has attracted much attention. In this work, we carried out the first work to prepare trimetallic electrocatalysts by a one-step co-electrodeposition process. A series of Cu-X-Y (X and Y denote different metals) catalysts were fabricated using this method. It was found that Cu10La1Cs1 (the content ratio of Cu2+, La3+, and Cs+ in the electrolyte is 10 : 1 : 1 in the deposition process), which had an elemental composition of Cu10La0.16Cs0.14 in the catalyst, formed a composite structure on three dimensional (3D) carbon paper (CP), which showed outstanding performance for CO2 electroreduction reaction (CO2RR) to produce ethylene (C2H4). The faradaic efficiency (FE) of C2H4 could reach 56.9% with a current density of 37.4 mA cm-2 in an H-type cell, and the partial current density of C2H4 was among the highest ones up to date, including those over the catalysts consisting of Cu and noble metals. Moreover, the FE of C2+ products (C2H4, ethanol, and propanol) over the Cu10La1Cs1 catalyst in a flow cell reached 70.5% with a high current density of 486 mA cm-2. Experimental and theoretical studies suggested that the doping of La and Cs into Cu could efficiently enhance the reaction efficiency via a combination of different effects, such as defects, change of electronic structure, and enhanced charge transfer rate. This work provides a simple method to prepare multi-metallic catalysts and demonstrates a successful example for highly efficient CO2RR using non-noble metals.
Collapse
Affiliation(s)
- Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mengen Chu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| |
Collapse
|
46
|
Liu J, You F, He B, Wu Y, Wang D, Zhou W, Qian C, Yang G, Liu G, Wang H, Guo Y, Gu L, Feng L, Li S, Zhao Y. Directing the Architecture of Surface-Clean Cu 2O for CO Electroreduction. J Am Chem Soc 2022; 144:12410-12420. [PMID: 35758858 DOI: 10.1021/jacs.2c04260] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tailoring the morphology of nanocrystals is a promising way to enhance their catalytic performance. In most previous shape-controlled synthesis strategies, surfactants are inevitable due to their capability to stabilize different facets. However, the adsorbed surfactants block the intrinsic active sites of the nanocrystals, reducing their catalytic performance. For now, strategies to control the morphology without surfactants are still limited but necessary. Herein, a facile surfactant-free synthesis method is developed to regulate the morphology of Cu2O nanocrystals (e.g., solid nanocube, concave nanocube, cubic framework, branching nanocube, branching concave nanocube, and branching cubic framework) to enhance the electrocatalytic performance for the conversion of CO to n-propanol. Specifically, the Cu2O branching cubic framework (BCF-Cu2O), which is difficult to fabricate using previous surfactant-free methods, is fabricated by combining the concentration depletion effect and the oxidation etching process. More significantly, the BCF-Cu2O-derived catalyst (BCF) presents the highest n-propanol current density (-0.85 mA cm-2) at -0.45 V versus the reversible hydrogen electrode (VRHE), which is fivefold higher than that of the surfactant-coated Cu2O nanocube-derived catalyst (SFC, -0.17 mA cm-2). In terms of the n-propanol Faradaic efficiency in CO electroreduction, that of the BCF exhibits a 41% increase at -0.45 VRHE as compared with SFC. The high catalytic activity of the BCF that results from the clean surface and the coexistence of Cu(100) and Cu(110) in the lattice is well-supported by density functional theory calculations. Thus, this work presents an important paradigm for the facile fabrication of surface-clean nanocrystals with an enhanced application performance.
Collapse
Affiliation(s)
- Jiawei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Futian You
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Bowen He
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Yinglong Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Cheng Qian
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Guangbao Yang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Guofeng Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Hou Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Yi Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Long Gu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Lili Feng
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.,School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
47
|
Xie Y, Ou P, Wang X, Xu Z, Li YC, Wang Z, Huang JE, Wicks J, McCallum C, Wang N, Wang Y, Chen T, Lo BTW, Sinton D, Yu JC, Wang Y, Sargent EH. High carbon utilization in CO2 reduction to multi-carbon products in acidic media. Nat Catal 2022. [DOI: 10.1038/s41929-022-00788-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Zhou Y, Ganganahalli R, Verma S, Tan HR, Yeo BS. Production of C
3
–C
6
Acetate Esters via CO Electroreduction in a Membrane Electrode Assembly Cell. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yansong Zhou
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Ramesha Ganganahalli
- Shell India Markets Private LTD Plot No. 7, Bengaluru Hardware Park, Mahadeva, Kodigehalli Bangalore North 562149 India
| | - Sumit Verma
- Shell International Exploration & Production Inc. 3333 Highway 6 South Houston TX 77082 USA
| | - Hui Ru Tan
- Institute of Materials Research and Engineering (IMRE) Agency of Science Technology, and Research (A*STAR) 2 Fusionopolis Way, #08-03 Innovis 138634 Singapore
| | - Boon Siang Yeo
- Department of Chemistry Faculty of Science National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
49
|
Wang YR, Zhuang Q, Cao R, Li Y, Gao FY, Li ZR, He Z, Shi L, Meng YF, Li X, Wang JL, Duan Y, Gao MR, Zheng X, Yu SH. Reduction-Controlled Atomic Migration for Single Atom Alloy Library. NANO LETTERS 2022; 22:4232-4239. [PMID: 35533211 DOI: 10.1021/acs.nanolett.2c01314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Picturing the atomic migration pathways of catalysts in a reactive atmosphere is of central significance for uncovering the underlying catalytic mechanisms and directing the design of high-performance catalysts. Here, we describe a reduction-controlled atomic migration pathway that converts nanoparticles to single atom alloys (SAAs), which has remained synthetically challenging in prior attempts due to the elusive mechanism. We achieved this by thermally treating the noble-metal nanoparticles M (M = Ru, Rh, Pd, Ag, Ir, Pt, and Au) on metal oxide (CuO) supports with H2/Ar. Atomic-level characterization revealed such conversion as the synergistic consequence of noble metal-promoted H2 dissociation and concomitant CuO reduction. The observed atomic migration pathway offers an understanding of the dynamic mechanisms study of nanomaterials formation and catalyst design.
Collapse
Affiliation(s)
- Yan-Ru Wang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Qingfeng Zhuang
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Rui Cao
- Stanford Synchrotron Radiation Lightsource (SSRL), SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yi Li
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Fei-Yue Gao
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Zhao-Rui Li
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Zhen He
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Lei Shi
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Yu-Feng Meng
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Xu Li
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Jin-Long Wang
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Yu Duan
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Min-Rui Gao
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Xiao Zheng
- Division of Theoretical and Computational Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Institute of Energy, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei 230026, Anhui, People's Republic of China
| |
Collapse
|
50
|
Zheng T, Zhang M, Wu L, Guo S, Liu X, Zhao J, Xue W, Li J, Liu C, Li X, Jiang Q, Bao J, Zeng J, Yu T, Xia C. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering. Nat Catal 2022. [DOI: 10.1038/s41929-022-00775-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|