1
|
Martiniuc C, Taveira I, Abreu F, Cabral AS, Paranhos R, Seldin L, Jurelevicius D. Insights into the dynamics and evolution of Rummeliibacillus stabekisii prophages in extreme environments: from Antarctic soil to spacecraft floors. Extremophiles 2024; 29:10. [PMID: 39708135 DOI: 10.1007/s00792-024-01377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Since prophages can play a multifaceted role in bacterial evolution, this study aims to characterize the virome of Rummeliibacillus stabekisii, a bacterium isolated from different environments, including Antarctic soil and NASA spacecraft floors. From the analyses, it was found that the Antarctic strain, PP9, had the largest number of prophages, including intact ones, indicating potential benefits for survival in adverse conditions. In contrast, other strains harbored predominantly degenerate prophages, suggesting a dynamic process of gene gain and loss during evolution. Furthermore, strain PP9 exhibited polylysogeny, a strategy capable of increasing its competitive advantage by providing a broader spectrum of defensive mechanisms. In addition, evidence demonstrates that prophage regions in PP9 act as hotspots for recombination events, favoring the insertion of different phages and possible antimicrobial resistance genes. Finally, lytic cycle induction experiments revealed at least two intact prophages active in PP9. In this way, understanding the interaction between viruses and bacteria can provide valuable information about microbial evolution and adaptation in extreme environments, such as Antarctica.
Collapse
Affiliation(s)
- Caroline Martiniuc
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Igor Taveira
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Fernanda Abreu
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Anderson S Cabral
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Rodolfo Paranhos
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lucy Seldin
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil
| | - Diogo Jurelevicius
- Laboratório de Ecologia E Biotecnologia Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal Do Rio de Janeiro (UFRJ), Bloco I, Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
2
|
Voglauer EM, Alteio LV, Pracser N, Thalguter S, Quijada NM, Wagner M, Rychli K. Listeria monocytogenes colonises established multispecies biofilms and resides within them without altering biofilm composition or gene expression. Microbiol Res 2024; 292:127997. [PMID: 39700628 DOI: 10.1016/j.micres.2024.127997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Listeria (L.) monocytogenes can survive for extended periods in the food producing environment. Here, biofilms possibly provide a niche for long-term survival due to their protective nature against environmental fluctuations and disinfectants. This study examined the behaviour of a L. monocytogenes ST121 isolate in a multispecies biofilm composed of Pseudomonas (P.) fragi, Brochothrix (B.) thermosphacta, and Carnobacterium (C.) maltaromaticum, previously isolated from a meat processing facility. The composition of the biofilm community and matrix, and transcriptional activity were analysed. L. monocytogenes colonised the multispecies biofilm, accounting for 6.4 % of all total biofilm cells after six hours. Transcriptomic analysis revealed 127 significantly up-regulated L. monocytogenes genes compared to the inoculum, including motility, chemotaxis, iron, and protein transport related genes. When comparing the differentially expressed transcripts within the multispecies biofilm with and without L. monocytogenes, only a cadmium/zinc exporting ATPase gene in C. maltaromaticum was significantly upregulated, while the other 9313 genes in the biofilm community showed no significant differential expression. We further monitored biofilm development over time (6, 24 hours and 7 days). P. fragi remained the dominant species, while L. monocytogenes was able to survive in the multispecies biofilm accounting for 2.4 % of total biofilm cells after 7 days, without any significant changes in its abundance. The presence of L. monocytogenes did neither alter the biofilm community nor its matrix composition (amount of extracellular DNA, carbohydrates, and protein). Our data indicate that L. monocytogenes resides in multispecies biofilms, potentially increasing survival against cleaning and disinfection in food processing environments, supporting persistence.
Collapse
Affiliation(s)
- Eva M Voglauer
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria.
| | - Lauren V Alteio
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria
| | - Nadja Pracser
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria
| | - Sarah Thalguter
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria
| | - Narciso M Quijada
- Institute for Agribiotechnology Research (CIALE), Department of Microbiology and Genetics, University of Salamanca, Villamayor 37185, Salamanca, Spain
| | - Martin Wagner
- FFoQSI GmbH - Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln 3430, Austria; Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna 1210, Austria
| | - Kathrin Rychli
- Centre for Food Science and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna 1210, Austria
| |
Collapse
|
3
|
Richards VA, Ferrell BD, Polson SW, Wommack KE, Fuhrmann JJ. Soybean Bradyrhizobium spp. Spontaneously Produce Abundant and Diverse Temperate Phages in Culture. Viruses 2024; 16:1750. [PMID: 39599864 PMCID: PMC11599138 DOI: 10.3390/v16111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Soybean bradyrhizobia (Bradyrhizobium spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Bradyrhizobium Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia. Some UDBCC accessions produce temperate (lysogenic) bacteriophages spontaneously under routine culture conditions without chemical or other apparent inducing agents. Spontaneous phage production may promote horizontal gene transfer and shape bacterial genomes and associated phenotypes. A diverse subset (n = 98) of the UDBCC was examined for spontaneously produced virus-like particles (VLPs) using epifluorescent microscopy, with a majority (69%) producing detectable VLPs (>1 × 107 mL-1) in laboratory culture. Phages from the higher-producing accessions (>2.0 × 108 VLP mL-1; n = 44) were examined using transmission electron microscopy. Diverse morphologies were observed, including various tail types and lengths, capsid sizes and shapes, and the presence of collars or baseplates. In many instances, putative extracellular vesicles of a size similar to virions were also observed. Three of the four species examined (B. japonicum, B. elkanii, and B. diazoefficiens) produced apparently tailless phages. All species except B. ottawaense also produced siphovirus-like phages, while all but B. diazoefficiens additionally produced podovirus-like phages. Myovirus-like phages were restricted to B. japonicum and B. elkanii. At least three strains were polylysogens, producing up to three distinct morphotypes. These observations suggest spontaneously produced phages may play a significant role in the ecology and evolution of soybean bradyrhizobia.
Collapse
Affiliation(s)
- Vanessa A. Richards
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Barbra D. Ferrell
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19713, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| | - K. Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| | - Jeffry J. Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| |
Collapse
|
4
|
Carvalho F, Carreaux A, Sartori-Rupp A, Tachon S, Gazi AD, Courtin P, Nicolas P, Dubois-Brissonnet F, Barbotin A, Desgranges E, Bertrand M, Gloux K, Schouler C, Carballido-López R, Chapot-Chartier MP, Milohanic E, Bierne H, Pagliuso A. Aquatic environment drives the emergence of cell wall-deficient dormant forms in Listeria. Nat Commun 2024; 15:8499. [PMID: 39358320 PMCID: PMC11447242 DOI: 10.1038/s41467-024-52633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.
Collapse
Affiliation(s)
- Filipe Carvalho
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexis Carreaux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Anastasia D Gazi
- Ultrastructural Bioimaging Facility, Institut Pasteur, Paris, France
| | - Pascal Courtin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | | | - Aurélien Barbotin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Desgranges
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthieu Bertrand
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Karine Gloux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
5
|
Sigal N, Lichtenstein-Wolfheim R, Schlussel S, Azulay G, Borovok I, Holdengraber V, Elad N, Wolf SG, Zalk R, Zarivach R, Frank GA, Herskovits AA. Specialized Listeria monocytogenes produce tailocins to provide a population-level competitive growth advantage. Nat Microbiol 2024; 9:2727-2737. [PMID: 39300324 DOI: 10.1038/s41564-024-01793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
Tailocins are phage tail-like bacteriocins produced by various bacterial species to kill kin competitors. Given that tailocin release is dependent upon cell lysis, regulation of tailocin production at the single-cell and population level remains unclear. Here we used flow cytometry, competition assays and structural characterization of tailocin production in a human bacterial pathogen, Listeria monocytogenes. We revealed that a specialized subpopulation, constituting less than 1% of the total bacterial population, differentiates to produce, assemble and store thousands of tailocin particles. Tailocins are packed in a highly ordered manner, clustered in a liquid crystalline phase that occupies a substantial volume of the cell. Tailocin production confers a competitive growth advantage for the rest of the population. This study provides molecular insights into tailocin production as a form of altruism, showing how cell specialization within bacterial populations can confer competitive advantages at the population level.
Collapse
Affiliation(s)
- Nadejda Sigal
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rotem Lichtenstein-Wolfheim
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shai Schlussel
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Azulay
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ilya Borovok
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | | - Nadav Elad
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Sharon G Wolf
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanotechnology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Gabriel A Frank
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anat A Herskovits
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
6
|
Wiafe-Kwakye CS, Fournier A, Maurais H, Southworth KJ, Molloy SD, Neely MN. Comparative Genomic Analysis of Prophages in Human Vaginal Isolates of Streptococcus agalactiae. Pathogens 2024; 13:610. [PMID: 39204211 PMCID: PMC11357604 DOI: 10.3390/pathogens13080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Prophages, viral genomes integrated into bacterial genomes, are known to enhance bacterial colonization, adaptation, and ecological fitness, providing a better chance for pathogenic bacteria to disseminate and cause infection. Streptococcus agalactiae (Group B Streptococcus or GBS) is a common bacterium found colonizing the genitourinary tract of humans. However, GBS-colonized pregnant women are at risk of passing the organism to the neonate, where it can cause severe infections. GBS typically encode one or more prophages in their genomes, yet their role in pathogen fitness and virulence has not yet been described. Sequencing and bioinformatic analysis of the genomic content of GBS human isolates identified 42 complete prophages present in their genomes. Comparative genomic analyses of the prophage sequences revealed that the prophages could be classified into five distinct clusters based on their genomic content, indicating significant diversity in their genetic makeup. Prophage diversity was also identified across GBS capsule serotypes, sequence types (STs), and clonal clusters (CCs). Comprehensive genomic annotation revealed that all GBS strains encode paratox, a protein that prevents the uptake of DNA in Streptococcus, either on the chromosome, on the prophage, or both, and each prophage genome has at least one toxin-antitoxin system.
Collapse
Affiliation(s)
- Caitlin S. Wiafe-Kwakye
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Andrew Fournier
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Hannah Maurais
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Katie J. Southworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Sally D. Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
- The Honors College, University of Maine, Orono, ME 04469, USA
| | - Melody N. Neely
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| |
Collapse
|
7
|
Cossart P, Hacker J, Holden DH, Normark S, Vogel J. Meeting report 'Microbiology 2023: from single cell to microbiome and host', an international interacademy conference in Würzburg. MICROLIFE 2024; 5:uqae008. [PMID: 38665235 PMCID: PMC11044969 DOI: 10.1093/femsml/uqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
On September 20-22 September 2023, the international conference 'Microbiology 2023: from single cell to microbiome and host' convened microbiologists from across the globe for a very successful symposium, showcasing cutting-edge research in the field. Invited lecturers delivered exceptional presentations covering a wide range of topics, with a major emphasis on phages and microbiomes, on the relevant bacteria within these ecosystems, and their multifaceted roles in diverse environments. Discussions also spanned the intricate analysis of fundamental bacterial processes, such as cell division, stress resistance, and interactions with phages. Organized by four renowned Academies, the German Leopoldina, the French Académie des sciences, the Royal Society UK, and the Royal Swedish Academy of Sciences, the symposium provided a dynamic platform for experts to share insights and discoveries, leaving participants inspired and eager to integrate new knowledge into their respective projects. The success of Microbiology 2023 prompted the decision to host the next quadrennial academic meeting in Sweden. This choice underscores the commitment to fostering international collaboration and advancing the frontiers of microbiological knowledge. The transition to Sweden promises to be an exciting step in the ongoing global dialogue and specific collaborations on microbiology, a field where researchers will continue to push the boundaries of knowledge, understanding, and innovation not only in health and disease but also in ecology.
Collapse
Affiliation(s)
| | - Jörg Hacker
- German National Academy of Science Leopoldina, Jägerberg 1, D-06108 Halle, Germany
| | - David H Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Flowers Building, South Kensington Campus, Exhibition Road, Imperial College London, London SW7 2AZ, United Kingdom
| | - Staffan Normark
- Karolinska Institute, Tumor-och-cellbiologi, C1 Microbial Pathogenesis, 17177 Stockholm, Sweden
| | - Jörg Vogel
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str2/Gebaude D15; É. D-97080 Würzburg, Germany
| |
Collapse
|
8
|
Shan J, Jia Y, Mijatovic T. Use of Specific Borrelia Phages as a New Strategy for Improved Diagnostic Tests. Methods Mol Biol 2024; 2742:99-104. [PMID: 38165618 DOI: 10.1007/978-1-0716-3561-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The high failure rate of tick-borne infection (TBI)-related testing underscores the need for novel approaches that do not rely on serology and two-tier testing. Delayed diagnosis of TBIs, especially Borrelia infections, results in high healthcare costs and great suffering. There is a significant need for a reliable blood test that can aid in the diagnosis of Lyme disease, particularly when the current FDA-approved serological test is not sensitive enough to detect early Lyme patients who have not yet produced antibodies against Borrelia. Bacteriophages are viruses that specifically associate with their bacterial hosts, particularly prophages, bacteriophages residing in bacteria, and have proven to be tightly correlated with their bacterial hosts. They are poised to have wider applications as markers to detect bacteria, particularly in infectious disease. The gene of choice depends on the prevalence of phages within a particular group of bacteria. Phage genes that have been used as molecular markers to examine phage diversity include structural genes encoding the major capsid protein, the portal protein, the DNA polymerase, and the terminase. Borrelia species carry specific phage sequences that can be used as a proxy to identify the bacteria. Using phages as a proxy for bacteria is beneficial, as phages can be detected more easily than bacteria and can be used to bypass the cryptic and tissue-bound feature that typifies human Borrelia infections.We explored a completely new way of detecting Borrelia using Borrelia-specific bacteriophages as a diagnostic tool. Our detection method, patented by Phelix R&D and Leicester University (WO2018083491A1), could potentially transform infectious disease diagnostics through the innovative use of real-time PCR to target circulating bacteriophage DNA in blood from patients with Lyme disease. Firstly, this bacteriophage-based approach offers increased sensitivity since bacteriophages are typically present in five- to tenfold excess over bacterial cells, making it more accurate and sensitive than conventional bacteria-targeting PCR tests. One of the reasons bacteria-based PCR tests are frequently negative is due to the low bacterial concentration in the blood. Bacteriophage-based PCR surpasses this barrier and offers a direct test, as phages are part of bacteria's own genetic material, in contrast to all existing indirect tests (ELISA, Western BLOT, LTT/ELISPOT test). Secondly, a phage-based test can differentiate between different Lyme disease-causing and relapsing fever-causing Borrelia subtypes (B. burgdorferi s. l., B. miyamotoi, etc.), given that bacteriophages are indicators of bacterial identity. Finally, this test can detect Lyme disease in both early and late stages.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| | - Ying Jia
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | |
Collapse
|
9
|
Guérin M, Shawky M, Zedan A, Octave S, Avalle B, Maffucci I, Padiolleau-Lefèvre S. Lyme borreliosis diagnosis: state of the art of improvements and innovations. BMC Microbiol 2023; 23:204. [PMID: 37528399 PMCID: PMC10392007 DOI: 10.1186/s12866-023-02935-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 08/03/2023] Open
Abstract
With almost 700 000 estimated cases each year in the United States and Europe, Lyme borreliosis (LB), also called Lyme disease, is the most common tick-borne illness in the world. Transmitted by ticks of the genus Ixodes and caused by bacteria Borrelia burgdorferi sensu lato, LB occurs with various symptoms, such as erythema migrans, which is characteristic, whereas others involve blurred clinical features such as fatigue, headaches, arthralgia, and myalgia. The diagnosis of Lyme borreliosis, based on a standard two-tiered serology, is the subject of many debates and controversies, since it relies on an indirect approach which suffers from a low sensitivity depending on the stage of the disease. Above all, early detection of the disease raises some issues. Inappropriate diagnosis of Lyme borreliosis leads to therapeutic wandering, inducing potential chronic infection with a strong antibody response that fails to clear the infection. Early and proper detection of Lyme disease is essential to propose an adequate treatment to patients and avoid the persistence of the pathogen. This review presents the available tests, with an emphasis on the improvements of the current diagnosis, the innovative methods and ideas which, ultimately, will allow more precise detection of LB.
Collapse
Affiliation(s)
- Mickaël Guérin
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Marc Shawky
- Connaissance Organisation Et Systèmes TECHniques (COSTECH), EA 2223, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Ahed Zedan
- Polyclinique Saint Côme, 7 Rue Jean Jacques Bernard, 60204, Compiègne, France
| | - Stéphane Octave
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Bérangère Avalle
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Irene Maffucci
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France
| | - Séverine Padiolleau-Lefèvre
- Unité de Génie Enzymatique Et Cellulaire (GEC), CNRS UMR 7025, Université de Technologie de Compiègne, 60203, Compiègne, France.
| |
Collapse
|
10
|
Lamy-Besnier Q, Bignaud A, Garneau JR, Titecat M, Conti DE, Von Strempel A, Monot M, Stecher B, Koszul R, Debarbieux L, Marbouty M. Chromosome folding and prophage activation reveal specific genomic architecture for intestinal bacteria. MICROBIOME 2023; 11:111. [PMID: 37208714 PMCID: PMC10197239 DOI: 10.1186/s40168-023-01541-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Bacteria and their viruses, bacteriophages, are the most abundant entities of the gut microbiota, a complex community of microorganisms associated with human health and disease. In this ecosystem, the interactions between these two key components are still largely unknown. In particular, the impact of the gut environment on bacteria and their associated prophages is yet to be deciphered. RESULTS To gain insight into the activity of lysogenic bacteriophages within the context of their host genomes, we performed proximity ligation-based sequencing (Hi-C) in both in vitro and in vivo conditions on the 12 bacterial strains of the OMM12 synthetic bacterial community stably associated within mice gut (gnotobiotic mouse line OMM12). High-resolution contact maps of the chromosome 3D organization of the bacterial genomes revealed a wide diversity of architectures, differences between environments, and an overall stability over time in the gut of mice. The DNA contacts pointed at 3D signatures of prophages leading to 16 of them being predicted as functional. We also identified circularization signals and observed different 3D patterns between in vitro and in vivo conditions. Concurrent virome analysis showed that 11 of these prophages produced viral particles and that OMM12 mice do not carry other intestinal viruses. CONCLUSIONS The precise identification by Hi-C of functional and active prophages within bacterial communities will unlock the study of interactions between bacteriophages and bacteria across conditions (healthy vs disease). Video Abstract.
Collapse
Affiliation(s)
- Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Julian R Garneau
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Marie Titecat
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, Lille, 59000, France
| | - Devon E Conti
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Alexandra Von Strempel
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-Forme Technologique Biomics, 75015, Paris, France
| | - Bärbel Stecher
- Max Von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site LMU Munich, Munich, Germany
| | - Romain Koszul
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, 25-28 Rue du Dr Roux, 75015, Paris, France.
| | - Martial Marbouty
- Institut Pasteur, Université Paris Cité, Spatial Regulation of Genomes Group, CNRS UMR 3525, 25-28 Rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
11
|
Silpe JE, Duddy OP, Bassler BL. Induction mechanisms and strategies underlying interprophage competition during polylysogeny. PLoS Pathog 2023; 19:e1011363. [PMID: 37200239 PMCID: PMC10194989 DOI: 10.1371/journal.ppat.1011363] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Affiliation(s)
- Justin E. Silpe
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Olivia P. Duddy
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
12
|
Pavlin A, Lovše A, Bajc G, Otoničar J, Kujović A, Lengar Ž, Gutierrez-Aguirre I, Kostanjšek R, Konc J, Fornelos N, Butala M. A small bacteriophage protein determines the hierarchy over co-residential jumbo phage in Bacillus thuringiensis serovar israelensis. Commun Biol 2022; 5:1286. [PMID: 36434275 PMCID: PMC9700832 DOI: 10.1038/s42003-022-04238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/08/2022] [Indexed: 11/26/2022] Open
Abstract
Bacillus thuringiensis serovar israelensis is the most widely used biopesticide against insects, including vectors of animal and human diseases. Among several extrachromosomal elements, this endospore-forming entomopathogen harbors two bacteriophages: a linear DNA replicon named GIL01 that does not integrate into the chromosome during lysogeny and a circular-jumbo prophage known as pBtic235. Here, we show that GIL01 hinders the induction of cohabiting prophage pBtic235. The GIL01-encoded small protein, gp7, which interacts with the host LexA repressor, is a global transcription regulator and represses the induction of pBtic235 after DNA damage to presumably allow GIL01 to multiply first. In a complex with host LexA in stressed cells, gp7 down-regulates the expression of more than 250 host and pBtic235 genes, many of which are involved in the cellular functions of genome maintenance, cell-wall transport, and membrane and protein stability. We show that gp7 homologs that are found exclusively in bacteriophages act in a similar fashion to enhance LexA's binding to DNA, while likely also affecting host gene expression. Our results provide evidence that GIL01 influences both its host and its co-resident bacteriophage.
Collapse
Affiliation(s)
- Anja Pavlin
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Lovše
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia ,Genialis, Inc., Boston, MA USA
| | - Gregor Bajc
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Jan Otoničar
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Amela Kujović
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Lengar
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Ion Gutierrez-Aguirre
- grid.419523.80000 0004 0637 0790Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Rok Kostanjšek
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Janez Konc
- grid.454324.00000 0001 0661 0844Theory Department, National Institute of Chemistry, Ljubljana, Slovenia
| | - Nadine Fornelos
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Matej Butala
- grid.8954.00000 0001 0721 6013Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
13
|
Lu Y, Zhao J, Yan Q, Zhao Y, Wang F. Identification of iron-responsive genes in Proteus vulgaris. Can J Microbiol 2022; 68:703-710. [PMID: 36214343 DOI: 10.1139/cjm-2021-0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron is essential for almost all bacteria, and iron homeostasis is precisely controlled by the ferric uptake regulator (Fur). The Fur regulons have been well characterized in some model bacteria, yet little is known in the common opportunistic pathogen Proteus vulgaris. In this study, Fur regulon and iron-responsive genes in P. vulgaris were mainly defined by in silico and proteomic analyses. The results showed that about 250 potential Fur-regulated operons including 14 transcriptional factors were predicted, while 559 proteins exhibited differential expression in response to iron deficiency, not all being directly regulated by Fur, such as transcriptional factors lexA, recA, narL, and arcA. Collectively, these results demonstrated that Fur functioned as a global regulatory protein to repress or activate expression of a large repertoire of genes in P. vulgaris; besides, not all the iron-responsive genes were directly regulated by Fur, whereas indirectly regulated through other mechanisms such as additional transcriptional regulatory proteins.
Collapse
Affiliation(s)
- Yongzhong Lu
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, No. 398, Donghai Road, Quanzhou362000, China.,Biology Department, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao266042, China
| | - Junkui Zhao
- Biology Department, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao266042, China
| | - Qingdan Yan
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, No. 398, Donghai Road, Quanzhou362000, China
| | - Yuqi Zhao
- Biology Department, Qingdao University of Science and Technology, No. 53, Zhengzhou Road, Qingdao266042, China
| | - Fang Wang
- Key Laboratory of Inshore Resources Biotechnology (Quanzhou Normal University), Fujian Province University, No. 398, Donghai Road, Quanzhou362000, China
| |
Collapse
|
14
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
15
|
Hoque MN, Rahman MS, Islam T, Sultana M, Crandall KA, Hossain MA. Induction of mastitis by cow-to-mouse fecal and milk microbiota transplantation causes microbiome dysbiosis and genomic functional perturbation in mice. Anim Microbiome 2022; 4:43. [PMID: 35794639 PMCID: PMC9258091 DOI: 10.1186/s42523-022-00193-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/28/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mastitis pathogenesis involves a wide range of opportunistic and apparently resident microorganims including bacteria, viruses and archaea. In dairy animals, microbes reside in the host, interact with environment and evade the host immune system, providing a potential for host-tropism to favor mastitis pathogenesis. To understand the host-tropism phenomena of bovine-tropic mastitis microbiomes, we developed a cow-to-mouse mastitis model. METHODS A cow-to-mouse mastitis model was established by fecal microbiota transplantation (FMT) and milk microbiota transplantation (MMT) to pregnant mice to assess microbiome dysbiosis and genomic functional perturbations through shotgun whole metagenome sequencing (WMS) along with histopathological changes in mice mammary gland and colon tissues. RESULTS The cow-to-mouse FMT and MMT from clinical mastitis (CM) cows induced mastitis syndromes in mice as evidenced by histopathological changes in mammary gland and colon tissues. The WMS of 24 samples including six milk (CM = 3, healthy; H = 3), six fecal (CM = 4, H = 2) samples from cows, and six fecal (CM = 4, H = 2) and six mammary tissue (CM = 3, H = 3) samples from mice generating 517.14 million reads (average: 21.55 million reads/sample) mapped to 2191 bacterial, 94 viral and 54 archaeal genomes. The Kruskal-Wallis test revealed significant differences (p = 0.009) in diversity, composition, and relative abundances in microbiomes between CM- and H-metagenomes. These differences in microbiome composition were mostly represented by Pseudomonas aeruginosa, Lactobacillus crispatus, Klebsiella oxytoca, Enterococcus faecalis, Pantoea dispersa in CM-cows (feces and milk), and Muribaculum spp., Duncaniella spp., Muribaculum intestinale, Bifidobacterium animalis, Escherichia coli, Staphylococcus aureus, Massilia oculi, Ralstonia pickettii in CM-mice (feces and mammary tissues). Different species of Clostridia, Bacteroida, Actinobacteria, Flavobacteriia and Betaproteobacteria had a strong co-occurrence and positive correlation as the indicator species of murine mastitis. However, both CM cows and mice shared few mastitis-associated microbial taxa (1.14%) and functional pathways regardless of conservation of mastitis syndromes, indicating the higher discrepancy in mastitis-associated microbiomes among lactating mammals. CONCLUSIONS We successfully induced mastitis by FMT and MMT that resulted in microbiome dysbiosis and genomic functional perturbations in mice. This study induced mastitis in a mouse model through FMT and MMT, which might be useful for further studies- focused on pathogen(s) involved in mastitis, their cross-talk among themselves and the host.
Collapse
Affiliation(s)
- M Nazmul Hoque
- Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Keith A Crandall
- Computational Biology Institute and Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, 20052, USA
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
16
|
Azulay G, Pasechnek A, Stadnyuk O, Ran-Sapir S, Fleisacher AM, Borovok I, Sigal N, Herskovits AA. A dual-function phage regulator controls the response of cohabiting phage elements via regulation of the bacterial SOS response. Cell Rep 2022; 39:110723. [PMID: 35443160 PMCID: PMC9043618 DOI: 10.1016/j.celrep.2022.110723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome; one produces infective virions and the other tailocins. It was previously demonstrated that induction of the two elements is coordinated, as they are regulated by the same anti-repressor. In this study, we identified AriS as another phage regulator that controls the two elements, bearing the capacity to inhibit their lytic induction under SOS conditions. AriS is a two-domain protein that possesses two distinct activities, one regulating the genes of its encoding phage and the other downregulating the bacterial SOS response. While the first activity associates with the AriS N-terminal AntA/AntB domain, the second associates with its C-terminal ANT/KilAC domain. The ANT/KilAC domain is conserved in many AriS-like proteins of listerial and non-listerial prophages, suggesting that temperate phages acquired such dual-function regulators to align their response with the other phage elements that cohabit the genome. Listeria monocytogenes strain 10403S harbors two phage elements in its chromosome The lytic response of the phage elements is synchronized under SOS conditions AriS, a dual-function phage regulator, fine-tunes the elements’ response under SOS Aris regulates both its encoding phage and the bacterial SOS response
Collapse
Affiliation(s)
- Gil Azulay
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Anna Pasechnek
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Olga Stadnyuk
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Shai Ran-Sapir
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ana Mejia Fleisacher
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Ilya Borovok
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Nadejda Sigal
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
| | - Anat A Herskovits
- The Shmunis School of Biomedicine and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
| |
Collapse
|
17
|
Boichis E, Sigal N, Borovok I, Herskovits AA. A Metzincin and TIMP-Like Protein Pair of a Phage Origin Sensitize Listeria monocytogenes to Phage Lysins and Other Cell Wall Targeting Agents. Microorganisms 2021; 9:1323. [PMID: 34207021 PMCID: PMC8235301 DOI: 10.3390/microorganisms9061323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Infection of mammalian cells by Listeria monocytogenes (Lm) was shown to be facilitated by its phage elements. In a search for additional phage remnants that play a role in Lm's lifecycle, we identified a conserved locus containing two XRE regulators and a pair of genes encoding a secreted metzincin protease and a lipoprotein structurally similar to a TIMP-family metzincin inhibitor. We found that the XRE regulators act as a classic CI/Cro regulatory switch that regulates the expression of the metzincin and TIMP-like genes under intracellular growth conditions. We established that when these genes are expressed, their products alter Lm morphology and increase its sensitivity to phage mediated lysis, thereby enhancing virion release. Expression of these proteins also sensitized the bacteria to cell wall targeting compounds, implying that they modulate the cell wall structure. Our data indicate that these effects are mediated by the cleavage of the TIMP-like protein by the metzincin, and its subsequent release to the extracellular milieu. While the importance of this locus to Lm pathogenicity remains unclear, the observation that this phage-associated protein pair act upon the bacterial cell wall may hold promise in the field of antibiotic potentiation to combat antibiotic resistant bacterial pathogens.
Collapse
Affiliation(s)
| | | | | | - Anat A. Herskovits
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel; (E.B.); (N.S.); (I.B.)
| |
Collapse
|
18
|
Sklyar T, Kurahina N, Lavrentieva K, Burlaka V, Lykholat T, Lykholat O. Autonomic (Mobile) Genetic Elements of Bacteria and Their Hierarchy. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Vallino M, Rossi M, Ottati S, Martino G, Galetto L, Marzachì C, Abbà S. Bacteriophage-Host Association in the Phytoplasma Insect Vector Euscelidius variegatus. Pathogens 2021; 10:pathogens10050612. [PMID: 34067814 PMCID: PMC8156552 DOI: 10.3390/pathogens10050612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022] Open
Abstract
Insect vectors transmit viruses and bacteria that can cause severe diseases in plants and economic losses due to a decrease in crop production. Insect vectors, like all other organisms, are colonized by a community of various microorganisms, which can influence their physiology, ecology, evolution, and also their competence as vectors. The important ecological meaning of bacteriophages in various ecosystems and their role in microbial communities has emerged in the past decade. However, only a few phages have been described so far in insect microbiomes. The leafhopper Euscelidius variegatus is a laboratory vector of the phytoplasma causing Flavescence dorée, a severe grapevine disease that threatens viticulture in Europe. Here, the presence of a temperate bacteriophage in E. variegatus (named Euscelidius variegatus phage 1, EVP-1) was revealed through both insect transcriptome analyses and electron microscopic observations. The bacterial host was isolated in axenic culture and identified as the bacterial endosymbiont of E. variegatus (BEV), recently assigned to the genus Candidatus Symbiopectobacterium. BEV harbors multiple prophages that become active in culture, suggesting that different environments can trigger different mechanisms, finely regulating the interactions among phages. Understanding the complex relationships within insect vector microbiomes may help in revealing possible microbe influences on pathogen transmission, and it is a crucial step toward innovative sustainable strategies for disease management in agriculture.
Collapse
Affiliation(s)
- Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
- Correspondence:
| | - Marika Rossi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
| | - Sara Ottati
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Gabriele Martino
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
- Dipartimento di Scienze Agrarie, Forestali ed Alimentari DISAFA, Università degli Studi di Torino, Largo Paolo Braccini 2, 10095 Grugliasco, Italy
| | - Luciana Galetto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
| | - Cristina Marzachì
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
| | - Simona Abbà
- Institute for Sustainable Plant Protection, National Research Council of Italy, Strada delle Cacce 73, 10135 Torino, Italy; (M.R.); (S.O.); (G.M.); (L.G.); (C.M.); (S.A.)
| |
Collapse
|
20
|
Pasechnek A, Rabinovich L, Stadnyuk O, Azulay G, Mioduser J, Argov T, Borovok I, Sigal N, Herskovits AA. Active Lysogeny in Listeria Monocytogenes Is a Bacteria-Phage Adaptive Response in the Mammalian Environment. Cell Rep 2021; 32:107956. [PMID: 32726621 PMCID: PMC7397523 DOI: 10.1016/j.celrep.2020.107956] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/05/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
Some Listeria monocytogenes (Lm) strains harbor a prophage within the comK gene, which renders it inactive. During Lm infection of macrophage cells, the prophage turns into a molecular switch, promoting comK gene expression and therefore Lm intracellular growth. During this process, the prophage does not produce infective phages or cause bacterial lysis, suggesting it has acquired an adaptive behavior suited to the pathogenic lifestyle of its host. In this study, we demonstrate that this non-classical phage behavior, named active lysogeny, relies on a transcriptional response that is specific to the intracellular niche. While the prophage undergoes lytic induction, the process is arrested midway, preventing the transcription of the late genes. Further, we demonstrate key phage factors, such as LlgA transcription regulator and a DNA replicase, that support the phage adaptive behavior. This study provides molecular insights into the adaptation of phages to their pathogenic hosts, uncovering unusual cooperative interactions.
Collapse
Affiliation(s)
- Anna Pasechnek
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Lev Rabinovich
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Olga Stadnyuk
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Gil Azulay
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Jessica Mioduser
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Tal Argov
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Ilya Borovok
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Nadejda Sigal
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel
| | - Anat A Herskovits
- The School of Molecular Cell Biology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel- Aviv 69978, Israel.
| |
Collapse
|
21
|
Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Cells 2021; 10:cells10040924. [PMID: 33923690 PMCID: PMC8072749 DOI: 10.3390/cells10040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022] Open
Abstract
Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.
Collapse
|
22
|
Benler S, Yutin N, Antipov D, Rayko M, Shmakov S, Gussow AB, Pevzner P, Koonin EV. Thousands of previously unknown phages discovered in whole-community human gut metagenomes. MICROBIOME 2021; 9:78. [PMID: 33781338 PMCID: PMC8008677 DOI: 10.1186/s40168-021-01017-w] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/02/2021] [Indexed: 05/07/2023]
Abstract
BACKGROUND Double-stranded DNA bacteriophages (dsDNA phages) play pivotal roles in structuring human gut microbiomes; yet, the gut virome is far from being fully characterized, and additional groups of phages, including highly abundant ones, continue to be discovered by metagenome mining. A multilevel framework for taxonomic classification of viruses was recently adopted, facilitating the classification of phages into evolutionary informative taxonomic units based on hallmark genes. Together with advanced approaches for sequence assembly and powerful methods of sequence analysis, this revised framework offers the opportunity to discover and classify unknown phage taxa in the human gut. RESULTS A search of human gut metagenomes for circular contigs encoding phage hallmark genes resulted in the identification of 3738 apparently complete phage genomes that represent 451 putative genera. Several of these phage genera are only distantly related to previously identified phages and are likely to found new families. Two of the candidate families, "Flandersviridae" and "Quimbyviridae", include some of the most common and abundant members of the human gut virome that infect Bacteroides, Parabacteroides, and Prevotella. The third proposed family, "Gratiaviridae," consists of less abundant phages that are distantly related to the families Autographiviridae, Drexlerviridae, and Chaseviridae. Analysis of CRISPR spacers indicates that phages of all three putative families infect bacteria of the phylum Bacteroidetes. Comparative genomic analysis of the three candidate phage families revealed features without precedent in phage genomes. Some "Quimbyviridae" phages possess Diversity-Generating Retroelements (DGRs) that generate hypervariable target genes nested within defense-related genes, whereas the previously known targets of phage-encoded DGRs are structural genes. Several "Flandersviridae" phages encode enzymes of the isoprenoid pathway, a lipid biosynthesis pathway that so far has not been known to be manipulated by phages. The "Gratiaviridae" phages encode a HipA-family protein kinase and glycosyltransferase, suggesting these phages modify the host cell wall, preventing superinfection by other phages. Hundreds of phages in these three and other families are shown to encode catalases and iron-sequestering enzymes that can be predicted to enhance cellular tolerance to reactive oxygen species. CONCLUSIONS Analysis of phage genomes identified in whole-community human gut metagenomes resulted in the delineation of at least three new candidate families of Caudovirales and revealed diverse putative mechanisms underlying phage-host interactions in the human gut. Addition of these phylogenetically classified, diverse, and distinct phages to public databases will facilitate taxonomic decomposition and functional characterization of human gut viromes. Video abstract.
Collapse
Affiliation(s)
- Sean Benler
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Dmitry Antipov
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
| | - Mikhail Rayko
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
| | - Sergey Shmakov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Ayal B. Gussow
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| | - Pavel Pevzner
- Center for Algorithmic Biotechnology, Institute for Translational Biomedicine, St. Petersburg State University, St. Petersburg, 199004 Russia
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093 USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland 20894 USA
| |
Collapse
|
23
|
Genome Sequence of the Bacteriophage CL31 and Interaction with the Host Strain Corynebacterium glutamicum ATCC 13032. Viruses 2021; 13:v13030495. [PMID: 33802915 PMCID: PMC8002715 DOI: 10.3390/v13030495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/13/2022] Open
Abstract
In this study, we provide a comprehensive analysis of the genomic features of the phage CL31 and the infection dynamics with the biotechnologically relevant host strain Corynebacterium glutamicum ATCC 13032. Genome sequencing and annotation of CL31 revealed a 45-kbp genome composed of 72 open reading frames, mimicking the GC content of its host strain (54.4%). An ANI-based distance matrix showed the highest similarity of CL31 to the temperate corynephage Φ16. While the C. glutamicum ATCC 13032 wild type strain showed only mild propagation of CL31, a strain lacking the cglIR-cglIIR-cglIM restriction-modification system was efficiently infected by this phage. Interestingly, the prophage-free strain C. glutamicum MB001 featured an even accelerated amplification of CL31 compared to the ∆resmod strain suggesting a role of cryptic prophage elements in phage defense. Proteome analysis of purified phage particles and transcriptome analysis provide important insights into structural components of the phage and the response of C. glutamicum to CL31 infection. Isolation and sequencing of CL31-resistant strains revealed SNPs in genes involved in mycolic acid biosynthesis suggesting a role of this cell envelope component in phage adsorption. Altogether, these results provide an important basis for further investigation of phage-host interactions in this important biotechnological model organism.
Collapse
|
24
|
Shan J, Jia Y, Teulières L, Patel F, Clokie MRJ. Targeting Multicopy Prophage Genes for the Increased Detection of Borrelia burgdorferi Sensu Lato (s.l.), the Causative Agents of Lyme Disease, in Blood. Front Microbiol 2021; 12:651217. [PMID: 33790883 PMCID: PMC8005754 DOI: 10.3389/fmicb.2021.651217] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
The successful treatment of Lyme disease (LD) is contingent on accurate diagnosis. However, current laboratory detection assays lack sensitivity in the early stages of the disease. Because delayed diagnosis of LD incurs high healthcare costs and great suffering, new highly sensitive tests are in need. To overcome these challenges, we developed an internally controlled quantitative PCR (Ter-qPCR) that targets the multicopy terminase large subunit (terL) gene encoded by prophages that are only found in LD-causing bacteria. The terL protein helps phages pack their DNA. Strikingly, the detection limit of the Ter-qPCR was analytically estimated to be 22 copies and one bacterial cell in bacteria spiked blood. Furthermore, significant quantitative differences was observed in terms of the amount of terL detected in healthy individuals and patients with either early or late disease. Together, the data suggests that the prophage-targeting PCR has significant power to improve success detection for LD. After rigorous clinical validation, this new test could deliver a step-change in the detection of LD. Prophage encoded markers are prevalent in many other pathogenic bacteria rendering this approach highly applicable to bacterial identification in general.
Collapse
Affiliation(s)
- Jinyu Shan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Ying Jia
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Louis Teulières
- PhelixRD Charity 230 Rue du Faubourg St Honoré, Paris, France
| | - Faizal Patel
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha R. J. Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
25
|
Redox signaling through zinc activates the radiation response in Deinococcus bacteria. Sci Rep 2021; 11:4528. [PMID: 33633226 PMCID: PMC7907104 DOI: 10.1038/s41598-021-84026-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Deinococcus bacteria are extremely resistant to radiation and other DNA damage- and oxidative stress-generating conditions. An efficient SOS-independent response mechanism inducing expression of several DNA repair genes is essential for this resistance, and is controlled by metalloprotease IrrE that cleaves and inactivates transcriptional repressor DdrO. Here, we identify the molecular signaling mechanism that triggers DdrO cleavage. We show that reactive oxygen species (ROS) stimulate the zinc-dependent metalloprotease activity of IrrE in Deinococcus. Sudden exposure of Deinococcus to zinc excess also rapidly induces DdrO cleavage, but is not accompanied by ROS production and DNA damage. Further, oxidative treatment leads to an increase of intracellular free zinc, indicating that IrrE activity is very likely stimulated directly by elevated levels of available zinc ions. We conclude that radiation and oxidative stress induce changes in redox homeostasis that result in IrrE activation by zinc in Deinococcus. We propose that a part of the zinc pool coordinated with cysteine thiolates is released due to their oxidation. Predicted regulation systems involving IrrE- and DdrO-like proteins are present in many bacteria, including pathogens, suggesting that such a redox signaling pathway including zinc as a second messenger is widespread and participates in various stress responses.
Collapse
|
26
|
Duru IC, Bucur FI, Andreevskaya M, Nikparvar B, Ylinen A, Grigore-Gurgu L, Rode TM, Crauwels P, Laine P, Paulin L, Løvdal T, Riedel CU, Bar N, Borda D, Nicolau AI, Auvinen P. High-pressure processing-induced transcriptome response during recovery of Listeria monocytogenes. BMC Genomics 2021; 22:117. [PMID: 33579201 PMCID: PMC7881616 DOI: 10.1186/s12864-021-07407-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Background High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). Results The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. Conclusions We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07407-6.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Florentina Ionela Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | | | - Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Anne Ylinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Tone Mari Rode
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Peter Crauwels
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Trond Løvdal
- Department of Process Technology, Nofima - Norwegian Institute of Food, Fisheries and Aquaculture Research, N-4068, Stavanger, Norway
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm, University, Albert-Einstein-Allee 11, D-89081, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca Ioana Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Bodner K, Melkonian AL, Covert MW. The Enemy of My Enemy: New Insights Regarding Bacteriophage-Mammalian Cell Interactions. Trends Microbiol 2020; 29:528-541. [PMID: 33243546 DOI: 10.1016/j.tim.2020.10.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/19/2020] [Accepted: 10/29/2020] [Indexed: 12/22/2022]
Abstract
Bacteriophages (phages) are the most abundant biological entity in the human body, but until recently the role that phages play in human health was not well characterized. Although phages do not cause infections in human cells, phages can alter the severity of bacterial infections by the dissemination of virulence factors amongst bacterial hosts. Recent studies, made possible with advances in genome engineering and microscopy, have uncovered a novel role for phages in the human body - the ability to modulate the physiology of the mammalian cells that can harbor intracellular bacteria. In this review, we synthesize key results on how phages traverse through mammalian cells - including uptake, distribution, and interaction with intracellular receptors - highlighting how these steps in turn influence host cell killing of bacteria. We discuss the implications of the growing field of phage-mammalian cell interactions for phage therapy.
Collapse
Affiliation(s)
- Katie Bodner
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Allen Discovery Center for Systems Modeling of Infection, Stanford University, Stanford, CA, 94305, USA
| | - Arin L Melkonian
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Allen Discovery Center for Systems Modeling of Infection, Stanford University, Stanford, CA, 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Allen Discovery Center for Systems Modeling of Infection, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
28
|
Benler S, Koonin EV. Phage lysis‐lysogeny switches and programmed cell death: Danse macabre. Bioessays 2020; 42:e2000114. [DOI: 10.1002/bies.202000114] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/25/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Sean Benler
- National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda Maryland USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information National Library of Medicine National Institutes of Health Bethesda Maryland USA
| |
Collapse
|
29
|
Microbiome dynamics and genomic determinants of bovine mastitis. Genomics 2020; 112:5188-5203. [PMID: 32966856 DOI: 10.1016/j.ygeno.2020.09.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 09/19/2020] [Indexed: 01/21/2023]
Abstract
The milk of lactating cows presents a complex ecosystem of interconnected microbial communities which can influence the pathophysiology of mastitis. We hypothesized possible dynamic shifts of microbiome composition and genomic features with different pathological conditions of mastitis (Clinical Mastitis; CM, Recurrent CM; RCM, Subclinical Mastitis; SCM). To evaluate this hypothesis, we employed whole metagenome sequencing (WMS) in 20 milk samples (CM, 5; RCM, 6; SCM, 4; H, 5) to unravel the microbiome dynamics, interrelation, and relevant metabolic functions. The WMS data mapped to 442 bacterial, 58 archaeal and 48 viral genomes with distinct variation in microbiome composition (CM > H > RCM > SCM). Furthermore, we identified a number of microbial genomic features, including 333, 304, 183 and 50 virulence factors-associated genes (VFGs) and 48, 31, 11 and 6 antibiotic resistance genes (ARGs) in CM, RCM, SCM, and H-microbiomes, respectively. We also detected different metabolic pathway and functional genes associated with mastitis pathogenesis. Therefore, profiling microbiome dynamics in different conditions of mastitis and associated microbial genomic features contributes to developing microbiome-based diagnostics and therapeutics for bovine mastitis.
Collapse
|
30
|
Role of GlnR in Controlling Expression of Nitrogen Metabolism Genes in Listeria monocytogenes. J Bacteriol 2020; 202:JB.00209-20. [PMID: 32690554 DOI: 10.1128/jb.00209-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023] Open
Abstract
Listeria monocytogenes is a fastidious bacterial pathogen that can utilize only a limited number of nitrogen sources for growth. Both glutamine and ammonium are common nitrogen sources used in listerial defined growth media, but little is known about the regulation of their uptake or utilization. The functional role of L. monocytogenes GlnR, the transcriptional regulator of nitrogen metabolism genes in low-G+C Gram-positive bacteria, was determined using transcriptome sequencing and real-time reverse transcription-PCR experiments. The GlnR regulon included transcriptional units involved in ammonium transport (amtB glnK) and biosynthesis of glutamine (glnRA) and glutamate (gdhA) from ammonium. As in other bacteria, GlnR proved to be an autoregulatory repressor of the glnRA operon. Unexpectedly, GlnR was most active during growth with ammonium as the nitrogen source and less active in the glutamine medium, apparently because listerial cells perceive growth with glutamine as a nitrogen-limiting condition. Therefore, paradoxically, expression of the glnA gene, encoding glutamine synthetase, was highest in the glutamine medium. For the amtB glnK operon, GlnR served as both a negative regulator in the presence of ammonium and a positive regulator in the glutamine medium. The gdhA gene was subject to a third mode of regulation that apparently required an elevated level of GlnR for repression. Finally, activity of glutamate dehydrogenase encoded by the gdhA gene appeared to correlate inversely with expression of gltAB, the operon that encodes the other major glutamate-synthesizing enzyme, glutamate synthase. Both gdhA and amtB were also regulated, in a negative manner, by the global transcriptional regulator CodY.IMPORTANCE L. monocytogenes is a widespread foodborne pathogen. Nitrogen-containing compounds, such as the glutamate-containing tripeptide, glutathione, and glutamine, have been shown to be important for expression of L. monocytogenes virulence genes. In this work, we showed that a transcriptional regulator, GlnR, controls expression of critical listerial genes of nitrogen metabolism that are involved in ammonium uptake and biosynthesis of glutamine and glutamate. A different mode of GlnR-mediated regulation was found for each of these three pathways.
Collapse
|
31
|
Friedersdorff JCA, Kingston-Smith AH, Pachebat JA, Cookson AR, Rooke D, Creevey CJ. The Isolation and Genome Sequencing of Five Novel Bacteriophages From the Rumen Active Against Butyrivibrio fibrisolvens. Front Microbiol 2020; 11:1588. [PMID: 32760371 PMCID: PMC7372960 DOI: 10.3389/fmicb.2020.01588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/17/2020] [Indexed: 01/21/2023] Open
Abstract
Although the prokaryotic communities of the rumen microbiome are being uncovered through genome sequencing, little is known about the resident viral populations. Whilst temperate phages can be predicted as integrated prophages when analyzing bacterial and archaeal genomes, the genetics underpinning lytic phages remain poorly characterized. To the five genomes of bacteriophages isolated from rumen-associated samples sequenced and analyzed previously, this study adds a further five novel genomes and predictions gleaned from them to further the understanding of the rumen phage population. Lytic bacteriophages isolated from fresh ovine and bovine fecal and rumen fluid samples were active against the predominant fibrolytic ruminal bacterium Butyrivibrio fibrisolvens. The double stranded DNA genomes were sequenced and reconstructed into single circular complete contigs. Based on sequence similarity and genome distances, the five phages represent four species from three separate genera, consisting of: (1) Butyrivibrio phages Arian and Bo-Finn; (2) Butyrivibrio phages Idris and Arawn; and (3) Butyrivibrio phage Ceridwen. They were predicted to all belong to the Siphoviridae family, based on evidence in the genomes such as size, the presence of the tail morphogenesis module, genes that share similarity to those in other siphovirus isolates and phylogenetic analysis using phage proteomes. Yet, phylogenomic analysis and sequence similarity of the entire phage genomes revealed that these five phages are unique and novel. These phages have only been observed undergoing the lytic lifecycle, but there is evidence in the genomes of phages Arawn and Idris for the potential to be temperate. However, there is no evidence in the genome of the bacterial host Butyrivibrio fibrisolvens of prophage genes or genes that share similarity with the phage genomes.
Collapse
Affiliation(s)
- Jessica C A Friedersdorff
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom.,Institute for Global Food Security (IGFS), Queen's University, Belfast, United Kingdom
| | - Alison H Kingston-Smith
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Justin A Pachebat
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Alan R Cookson
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - David Rooke
- Dynamic Extractions Ltd., Tredegar, United Kingdom
| | - Christopher J Creevey
- Institute for Global Food Security (IGFS), Queen's University, Belfast, United Kingdom
| |
Collapse
|
32
|
The transcriptome of Listeria monocytogenes during co-cultivation with cheese rind bacteria suggests adaptation by induction of ethanolamine and 1,2-propanediol catabolism pathway genes. PLoS One 2020; 15:e0233945. [PMID: 32701964 PMCID: PMC7377500 DOI: 10.1371/journal.pone.0233945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
The survival of Listeria (L.) monocytogenes in foods and food production environments (FPE) is dependent on several genes that increase tolerance to stressors; this includes competing with intrinsic bacteria. We aimed to uncover genes that are differentially expressed (DE) in L. monocytogenes sequence type (ST) 121 strain 6179 when co-cultured with cheese rind bacteria. L. monocytogenes was cultivated in broth or on plates with either a Psychrobacter or Brevibacterium isolate from cheese rinds. RNA was extracted from co-cultures in broth after two or 12 hours and from plates after 24 and 72 hours. Broth co-cultivations with Brevibacterium or Psychrobacter yielded up to 392 and 601 DE genes, while plate co-cultivations significantly affected the expression of up to 190 and 485 L. monocytogenes genes, respectively. Notably, the transcription of virulence genes encoding the Listeria adhesion protein and Listeriolysin O were induced during plate and broth co-cultivations. The expression of several systems under the control of the global stress gene regulator, σB, increased during co-cultivation. A cobalamin-dependent gene cluster, responsible for the catabolism of ethanolamine and 1,2-propanediol, was upregulated in both broth and plate co-cultures conditions. Finally, a small non-coding (nc)RNA, Rli47, was induced after 72 hours of co-cultivation on plates and accounted for 50-90% of the total reads mapped to L. monocytogenes. A recent study has shown that Rli47 may contribute to L. monocytogenes stress survival by slowing growth during stress conditions through the suppression of branch-chained amino acid biosynthesis. We hypothesize that Rli47 may have an impactful role in the response of L. monocytogenes to co-cultivation by regulating a complex network of metabolic and virulence mechanisms.
Collapse
|
33
|
Tan D, Hansen MF, de Carvalho LN, Røder HL, Burmølle M, Middelboe M, Svenningsen SL. High cell densities favor lysogeny: induction of an H20 prophage is repressed by quorum sensing and enhances biofilm formation in Vibrio anguillarum. THE ISME JOURNAL 2020; 14:1731-1742. [PMID: 32269377 PMCID: PMC7305317 DOI: 10.1038/s41396-020-0641-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 11/09/2022]
Abstract
Temperate ϕH20-like phages are repeatedly identified at geographically distinct areas as free phage particles or as prophages of the fish pathogen Vibrio anguillarum. We studied mutants of a lysogenic isolate of V. anguillarum locked in the quorum-sensing regulatory modes of low (ΔvanT) and high (ΔvanO) cell densities by in-frame deletion of key regulators of the quorum-sensing pathway. Remarkably, we find that induction of the H20-like prophage is controlled by the quorum-sensing state of the host, with an eightfold increase in phage particles per cell in high-cell-density cultures of the quorum-sensing-deficient ΔvanT mutant. Comparative studies with prophage-free strains show that biofilm formation is promoted at low cell density and that the H20-like prophage stimulates this behavior. In contrast, the high-cell-density state is associated with reduced prophage induction, increased proteolytic activity, and repression of biofilm. The proteolytic activity may dually function to disperse the biofilm and as a quorum-sensing-mediated antiphage strategy. We demonstrate an intertwined regulation of phage-host interactions and biofilm formation, which is orchestrated by host quorum-sensing signaling, suggesting that increased lysogeny at high cell density is not solely a strategy for phages to piggy-back the successful bacterial hosts but is also a host strategy evolved to take control of the lysis-lysogeny switch to promote host fitness.
Collapse
Affiliation(s)
- Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Dalian SEM Bio-Engineering Technology Co. Ltd, Dalian, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Frederik Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | | | - Mette Burmølle
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mathias Middelboe
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|