1
|
Shukla C, Datta B. G-quadruplexes in long non-coding RNAs and their interactions with proteins. Int J Biol Macromol 2024; 278:134946. [PMID: 39187110 DOI: 10.1016/j.ijbiomac.2024.134946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators of cellular processes, with their dysregulation linked to various disease states. Among the structural motifs in lncRNAs, RNA G-quadruplexes (rG4s) have gained increasing attention due to their diverse roles in cellular function and disease pathogenesis. This review provides an updated and comprehensive overview of rG4s in lncRNAs, elucidating their formation, interaction with proteins, and distinctive roles in cellular processes. We discuss current methodologies for experimentally probing RNA G4s, including the use of specific small molecules, biomolecular ligands and fluorescent probes. The commonly found RNA G4-interacting protein domains are summarised along with potential strategies for disrupting lncRNA G4-protein interactions from a therapeutic perspective.
Collapse
Affiliation(s)
- Chinmayee Shukla
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India
| | - Bhaskar Datta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India; Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
2
|
Xie F, Xu J, Yan L, Xiao X, Liu L. The AC010247.2/miR-125b-5p axis triggers the malignant progression of acute myelocytic leukemia by IL-6R. Heliyon 2024; 10:e37715. [PMID: 39315204 PMCID: PMC11417210 DOI: 10.1016/j.heliyon.2024.e37715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
AML is a malignant tumor derived from the hematopoietic system, which has a poor prognosis and its incidence is increasing recent years. LncRNAs bind to miRNAs as competitive endogenous RNAs to regulate the occurrence and progression of AML, with IL-6R playing a crucial role in hematological malignancies. However, the mechanism by which noncoding RNAs regulate IL6R expression in AML remains unclear. This study found that the AC010247.2/miR-125b-5p axis promotes AML progression by regulating IL-6R expression. Specifically, knocking down or inhibiting AC010247.2 and miR-125b-5p affected IL6R and its downstream genes. Mechanistically, AC010247.2 acts as a ceRNA for miR-125b-5p, influencing IL-6R expression. Additionally, AC010247.2's regulation of AML progression partially depends on miR-125b-5p. Notably, the AC010247.2/miR-125b-5p/IL6R axis serves as a better polygenic diagnostic marker for AML. Our study identifies a key ceRNA regulatory axis that modulates IL6R expression in AML, providing a reliable multigene diagnostic method and potential therapeutic target.
Collapse
Affiliation(s)
- Fang Xie
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, The Second Hospital of Dalian Medical University, Dalian, 116027, China
| | - Jialu Xu
- College of Biology, Hunan University, Changsha, China
| | - Lina Yan
- Department of Respiration, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Xia Xiao
- Department of Emergency ICU, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Liang Liu
- Department of Emergency ICU, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| |
Collapse
|
3
|
Leisegang MS, Warwick T, Stötzel J, Brandes RP. RNA-DNA triplexes: molecular mechanisms and functional relevance. Trends Biochem Sci 2024; 49:532-544. [PMID: 38582689 DOI: 10.1016/j.tibs.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Interactions of RNA with DNA are principles of gene expression control that have recently gained considerable attention. Among RNA-DNA interactions are R-loops and RNA-DNA hybrid G-quadruplexes, as well as RNA-DNA triplexes. It is proposed that RNA-DNA triplexes guide RNA-associated regulatory proteins to specific genomic locations, influencing transcription and epigenetic decision making. Although triplex formation initially was considered solely an in vitro event, recent progress in computational, biochemical, and biophysical methods support in vivo functionality with relevance for gene expression control. Here, we review the central methodology and biology of triplexes, outline paradigms required for triplex function, and provide examples of physiologically important triplex-forming long non-coding RNAs.
Collapse
Affiliation(s)
- Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany.
| | - Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Julia Stötzel
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University Frankfurt, Frankfurt, Germany; German Centre of Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt, Germany
| |
Collapse
|
4
|
Wu X, Chen X, Liu X, Jin B, Zhang Y, Wang Y, Xu H, Wan X, Zheng Y, Xu L, Xiao Y, Chen Z, Wang H, Mao Y, Lu X, Sang X, Zhao L, Du S. LINC02257 regulates colorectal cancer liver metastases through JNK pathway. Heliyon 2024; 10:e30841. [PMID: 38826728 PMCID: PMC11141284 DOI: 10.1016/j.heliyon.2024.e30841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 06/04/2024] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have emerged as critical regulators of colorectal cancer (CRC) progression, but their roles and underlying mechanisms in colorectal cancer liver metastases (CRLMs) remain poorly understood. Methods To explore the expression patterns and functions of lncRNAs in CRLMs, we analyzed the expression profiles of lncRNAs in CRC tissues using the TCGA database and examined the expression patterns of lncRNAs in matched normal, CRC, and CRLM tissues using clinical samples. We further investigated the biological roles of LINC02257 in CRLM using in vitro and in vivo assays, and verified its therapeutic potential in a mouse model of CRLM. Results Our findings showed that LINC02257 was highly expressed in metastatic CRC tissues and its expression was negatively associated with overall survival. Functionally, LINC02257 promoted CRC cell growth, migration, metastasis, and inhibited cell apoptosis in vitro, and enhanced liver metastasis in vivo. Mechanistically, LINC02257 up-regulated phosphorylated c-Jun N-terminal kinase (JNK) to promote CRLM. Conclusions Our study revealed that LINC02257 played a key role in the proliferation and metastasis of CRC cells through the LINC02257/JNK axis. Targeting this axis may represent a promising therapeutic strategy for the treatment of liver metastases in patients with CRC.
Collapse
Affiliation(s)
- Xiangan Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaokun Chen
- Department of Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuke Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxin Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lai Xu
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengju Chen
- Pooling Medical Research Institutes, Beijing, China
| | - Haiwen Wang
- Pooling Medical Research Institutes, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Zhao
- Department of Medical Oncology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Merici G, Amidani D, Dieci G, Rivetti C. A New Strategy to Investigate RNA:DNA Triplex Using Atomic Force Microscopy. Int J Mol Sci 2024; 25:3035. [PMID: 38474280 DOI: 10.3390/ijms25053035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Over the past decade, long non-coding RNAs (lncRNAs) have been recognized as key players in gene regulation, influencing genome organization and expression. The locus-specific binding of these non-coding RNAs (ncRNAs) to DNA involves either a non-covalent interaction with DNA-bound proteins or a direct sequence-specific interaction through the formation of RNA:DNA triplexes. In an effort to develop a novel strategy for characterizing a triple-helix formation, we employed atomic force microscopy (AFM) to visualize and study a regulatory RNA:DNA triplex formed between the Khps1 lncRNA and the enhancer of the proto-oncogene SPHK1. The analysis demonstrates the successful formation of RNA:DNA triplexes under various conditions of pH and temperature, indicating the effectiveness of the AFM strategy. Despite challenges in discriminating between the triple-helix and R-loop configurations, this approach opens new perspectives for investigating the role of lncRNAs in gene regulation at the single-molecule level.
Collapse
Affiliation(s)
- Giovanni Merici
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Davide Amidani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
6
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
7
|
Yu L, Zhou Y, Sun S, Wang R, Yu W, Xiao H, Yu Z, Luo C. Tumor-suppressive effect of Reg3A in COAD is mediated by T cell activation in nude mice. Biomed Pharmacother 2023; 169:115922. [PMID: 38011786 DOI: 10.1016/j.biopha.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
Regenerating family protein 3 A (Reg3A) is highly expressed in a variety of organs and inflammatory tissues, and is closely related to tumorigenesis and cancer progression. However, clinical statistics show that high expression of Reg3A is associated with better prognosis in colorectal cancer (CRC) patients, suggesting a tumor-suppressive effect. The precise action and underlying mechanism of Reg3A in CRC remain controversial. The present study sought to investigate the relationship among Reg3A expression, CRC development, and immune cell alteration in patients using the TCGA, GEPIA, PrognoScan, TIMER and TISIDB databases. Reg3A-overexpressing LoVo cell line (LoVo-Reg3A), a representative of colon adenocarcinoma (COAD), was constructed and the action of Reg3A was assessed in a xenograft nude mouse model. Our bioinformatical analyses revealed that Reg3A upregulation is highly associated with CRC, along with increased frequency of immune cell infiltration. In the xenograft nude mice, Reg3A overexpression offered a tumor-suppressive effect by inhibiting cell proliferation and promoting apoptosis. The result of RNA-seq suggested a positive regulation of leukocytes and an upregulation of T cells in LoVo-Reg3A tumor tissue. CD4+ and CD8+ T cells in tumors, splenic Reg3A-reactive IFN-γ+/CD4+ T cells, and serum TNF-α, IFN-γ and IL-17 were significantly increased by Reg3A overexpression. In the ex vivo co-culture experiment, elevated cytotoxic effect, increased proportion of CD3ε+ T cells, and upregulated expressions of TNF-α, IFN-γ and IL-17 were detected in the PBMCs isolated from LoVo-Reg3A cell-xenografted nude mice. In conclusion, high expression of Reg3A could activate and recruit T cells in COAD leading to the cytotoxic tumor-suppressive effect.
Collapse
Affiliation(s)
- Luting Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China; School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Yihan Zhou
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Shaozheng Sun
- College of Science, Northeastern University, Boston, United States
| | - Runlin Wang
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Weihong Yu
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Hanyu Xiao
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China
| | - Zhuxi Yu
- Department of critical care medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Chen Luo
- School of Life Science & Technology, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
8
|
Li W, Lv Y, Sun Y. Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP. Platelets 2023; 34:2157382. [PMID: 36550091 DOI: 10.1080/09537104.2022.2157382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot encode proteins, and a better understanding of the complex interaction networks coordinated by ncRNAs will provide a theoretical basis for the development of therapeutics targeting the regulatory effects of ncRNAs. Platelets are produced upon the differentiation of hematopoietic stem cells into megakaryocytes, 1011 per day, and are renewed every 8-9 days. The process of thrombopoiesis is affected by multiple factors, in which ncRNAs also exert a significant regulatory role. This article reviewed the regulatory roles of ncRNAs, mainly microRNAs (miRNAs), circRNAs (circular RNAs), and long non-coding RNAs (lncRNAs), in thrombopoiesis in recent years as well as their roles in primary immune thrombocytopenia (ITP).
Collapse
Affiliation(s)
- Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lv
- College of Life Science, Yantai University, Yantai, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
9
|
Sun Y, Zhang H, Ma R, Guo X, Zhang G, Liu S, Zhu W, Liu H, Gao P. ETS-1-activated LINC01016 over-expression promotes tumor progression via suppression of RFFL-mediated DHX9 ubiquitination degradation in breast cancers. Cell Death Dis 2023; 14:507. [PMID: 37550275 PMCID: PMC10406855 DOI: 10.1038/s41419-023-06016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 08/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) are key regulators during the development of breast cancer (BC) and thus may be viable treatment targets. In this study, we found that the expression of the long intergenic non-coding RNA 01016 (LINC01016) was significantly higher in BC tissue samples with positive lymph node metastasis. LINC01016, which is activated by the transcription factor ETS-1, contributes to the overt promotion of cell proliferation activity, enhanced cell migratory ability, S phase cell cycle arrest, and decreased apoptosis rate. By RNA pull-down assays and mass spectrometry analyses, we determined that LINC01016 competitively bound and stabilized DHX9 protein by preventing the E3 ubiquitin ligase RFFL from binding to DHX9, thereby inhibiting DHX9 proteasomal degradation. This ultimately led to an increase in intracellular DHX9 expression and activated PI3K/AKT signaling, with p-AKT, Bcl-2, and MMP-9 involvement. This is the first study to reveal that the LINC01016/DHX9/PI3K/AKT axis plays a critical role in the progression of BC, and thus, LINC01016 may serve as a potential therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Ying Sun
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
- Department of Medical Oncology, Qilu Hospital of Shandong University (Qingdao), Qingdao, Shandong, PR China
| | - Hui Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Ranran Ma
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Xiangyu Guo
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Guohao Zhang
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Sen Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China
| | - Wenjie Zhu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Haiting Liu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| | - Peng Gao
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
10
|
Warwick T, Brandes RP, Leisegang MS. Computational Methods to Study DNA:DNA:RNA Triplex Formation by lncRNAs. Noncoding RNA 2023; 9:ncrna9010010. [PMID: 36827543 PMCID: PMC9965544 DOI: 10.3390/ncrna9010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) impact cell function via numerous mechanisms. In the nucleus, interactions between lncRNAs and DNA and the consequent formation of non-canonical nucleic acid structures seems to be particularly relevant. Along with interactions between single-stranded RNA (ssRNA) and single-stranded DNA (ssDNA), such as R-loops, ssRNA can also interact with double-stranded DNA (dsDNA) to form DNA:DNA:RNA triplexes. A major challenge in the study of DNA:DNA:RNA triplexes is the identification of the precise RNA component interacting with specific regions of the dsDNA. As this is a crucial step towards understanding lncRNA function, there exist several computational methods designed to predict these sequences. This review summarises the recent progress in the prediction of triplex formation and highlights important DNA:DNA:RNA triplexes. In particular, different prediction tools (Triplexator, LongTarget, TRIPLEXES, Triplex Domain Finder, TriplexFFP, TriplexAligner and Fasim-LongTarget) will be discussed and their use exemplified by selected lncRNAs, whose DNA:DNA:RNA triplex forming potential was validated experimentally. Collectively, these tools revealed that DNA:DNA:RNA triplexes are likely to be numerous and make important contributions to gene expression regulation.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology, Goethe University, 60590 Frankfurt, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site RheinMain, 60590 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-6301-6996; Fax: +49-69-6301-7668
| |
Collapse
|
11
|
Identification of Long Noncoding RNAs That Exert Transcriptional Regulation by Forming RNA-DNA Triplexes in Prostate Cancer. Int J Mol Sci 2023; 24:ijms24032035. [PMID: 36768359 PMCID: PMC9916442 DOI: 10.3390/ijms24032035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are involved in transcriptional regulation, and their deregulation is associated with the development of various human cancers, including prostate cancer (PCa). However, their underlying mechanisms remain unclear. In this study, lncRNAs that interact with DNA and regulate mRNA transcription in PCa were screened and identified to promote PCa development. First, 4195 protein-coding genes (PCGs, mRNAs) were obtained from the The Cancer Genome Atlas (TCGA) database, in which 1148 lncRNAs were differentially expressed in PCa. Then, 44,270 pairs of co-expression relationships were calculated between 612 lncRNAs and 2742 mRNAs, of which 42,596 (96%) were positively correlated. Among the 612 lncRNAs, 392 had the potential to interact with the promoter region to form DNA:DNA:RNA triplexes, from which lncRNA AD000684.2(AC002128.1) was selected for further validation. AC002128.1 was highly expressed in PCa. Furthermore, AD000684.2 positively regulated the expression of the correlated genes. In addition, AD000684.2 formed RNA-DNA triplexes with the promoter region of the regulated genes. Functional assays also demonstrated that lncRNA AD000684.2 promotes cell proliferation and motility, as well as inhibits apoptosis, in PCa cell lines. The results suggest that AD000684.2 could positively regulate the transcription of target genes via triplex structures and serve as a candidate prognostic biomarker and target for new therapies in human PCa.
Collapse
|
12
|
HIF1α-AS1 is a DNA:DNA:RNA triplex-forming lncRNA interacting with the HUSH complex. Nat Commun 2022; 13:6563. [PMID: 36323673 PMCID: PMC9630315 DOI: 10.1038/s41467-022-34252-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
DNA:DNA:RNA triplexes that are formed through Hoogsteen base-pairing of the RNA in the major groove of the DNA duplex have been observed in vitro, but the extent to which these interactions occur in cells and how they impact cellular functions remains elusive. Using a combination of bioinformatic techniques, RNA/DNA pulldown and biophysical studies, we set out to identify functionally important DNA:DNA:RNA triplex-forming long non-coding RNAs (lncRNA) in human endothelial cells. The lncRNA HIF1α-AS1 was retrieved as a top hit. Endogenous HIF1α-AS1 reduces the expression of numerous genes, including EPH Receptor A2 and Adrenomedullin through DNA:DNA:RNA triplex formation by acting as an adapter for the repressive human silencing hub complex (HUSH). Moreover, the oxygen-sensitive HIF1α-AS1 is down-regulated in pulmonary hypertension and loss-of-function approaches not only result in gene de-repression but also enhance angiogenic capacity. As exemplified here with HIF1α-AS1, DNA:DNA:RNA triplex formation is a functionally important mechanism of trans-acting gene expression control.
Collapse
|
13
|
Guo WH, Guo Q, Liu YL, Yan DD, Jin L, Zhang R, Yan J, Luo XH, Yang M. Mutated lncRNA increase the risk of type 2 diabetes by promoting β cell dysfunction and insulin resistance. Cell Death Dis 2022; 13:904. [PMID: 36302749 PMCID: PMC9613878 DOI: 10.1038/s41419-022-05348-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Islet β cell dysfunction and insulin resistance are the main pathogenesis of type 2 diabetes (T2D), but the mechanism remains unclear. Here we identify a rs3819316 C > T mutation in lncRNA Reg1cp mainly expressed in islets associated with an increased risk of T2D. Analyses in 16,113 Chinese adults reveal that Mut-Reg1cp individuals had higher incidence of T2D and presented impaired insulin secretion as well as increased insulin resistance. Mice with islet β cell specific Mut-Reg1cp knock-in have more severe β cell dysfunction and insulin resistance. Mass spectrometry assay of proteins after RNA pulldown demonstrate that Mut-Reg1cp directly binds to polypyrimidine tract binding protein 1 (PTBP1), further immunofluorescence staining, western blot analysis, qPCR analysis and glucose stimulated insulin secretion test reveal that Mut-Reg1cp disrupts the stabilization of insulin mRNA by inhibiting the phosphorylation of PTBP1 in β cells. Furthermore, islet derived exosomes transfer Mut-Reg1cp into peripheral tissue, which then promote insulin resistance by inhibiting AdipoR1 translation and adiponectin signaling. Our findings identify a novel mutation in lncRNA involved in the pathogenesis of T2D, and reveal a new mechanism for the development of T2D.
Collapse
Affiliation(s)
- Wan-Hui Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Qi Guo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Ya-Lin Liu
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China
| | - Dan-Dan Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Li Jin
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Rong Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Jing Yan
- grid.16821.3c0000 0004 0368 8293Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine, 200233 Shanghai, P.R. China
| | - Xiang-Hang Luo
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| | - Mi Yang
- grid.452223.00000 0004 1757 7615Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 410008 Changsha, Hunan P.R. China ,grid.452223.00000 0004 1757 7615National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, 410008 Changsha, Hunan P.R. China
| |
Collapse
|
14
|
Khan A, Zhang X. Function of the Long Noncoding RNAs in Hepatocellular Carcinoma: Classification, Molecular Mechanisms, and Significant Therapeutic Potentials. Bioengineering (Basel) 2022; 9:406. [PMID: 36004931 PMCID: PMC9405066 DOI: 10.3390/bioengineering9080406] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common and serious type of primary liver cancer. HCC patients have a high death rate and poor prognosis due to the lack of clear signs and inadequate treatment interventions. However, the molecular pathways that underpin HCC pathogenesis remain unclear. Long non-coding RNAs (lncRNAs), a new type of RNAs, have been found to play important roles in HCC. LncRNAs have the ability to influence gene expression and protein activity. Dysregulation of lncRNAs has been linked to a growing number of liver disorders, including HCC. As a result, improved understanding of lncRNAs could lead to new insights into HCC etiology, as well as new approaches for the early detection and treatment of HCC. The latest results with respect to the role of lncRNAs in controlling multiple pathways of HCC were summarized in this study. The processes by which lncRNAs influence HCC advancement by interacting with chromatin, RNAs, and proteins at the epigenetic, transcriptional, and post-transcriptional levels were examined. This critical review also highlights recent breakthroughs in lncRNA signaling pathways in HCC progression, shedding light on the potential applications of lncRNAs for HCC diagnosis and therapy.
Collapse
Affiliation(s)
| | - Xiaobo Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. Signaling by LncRNAs: Structure, Cellular Homeostasis, and Disease Pathology. Cells 2022; 11:2517. [PMID: 36010595 PMCID: PMC9406440 DOI: 10.3390/cells11162517] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 12/11/2022] Open
Abstract
The cellular signaling network involves co-ordinated regulation of numerous signaling molecules that aid the maintenance of cellular as well as organismal homeostasis. Aberrant signaling plays a major role in the pathophysiology of many diseases. Recent studies have unraveled the superfamily of long non-coding RNAs (lncRNAs) as critical signaling nodes in diverse signaling networks. Defective signaling by lncRNAs is emerging as a causative factor underlying the pathophysiology of many diseases. LncRNAs have been shown to be involved in the multiplexed regulation of diverse pathways through both genetic and epigenetic mechanisms. They can serve as decoys, guides, scaffolds, and effector molecules to regulate cell signaling. In comparison with the other classes of RNAs, lncRNAs possess unique structural modifications that contribute to their diversity in modes of action within the nucleus and cytoplasm. In this review, we summarize the structure and function of lncRNAs as well as their vivid mechanisms of action. Further, we provide insights into the role of lncRNAs in the pathogenesis of four major disease paradigms, namely cardiovascular diseases, neurological disorders, cancers, and the metabolic disease, diabetes mellitus. This review serves as a succinct treatise that could open windows to investigate the role of lncRNAs as novel therapeutic targets.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul 151-921, Korea
| | - Danny N. Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
16
|
Non-coding RNAs as emerging regulators and biomarkers in colorectal cancer. Mol Cell Biochem 2022; 477:1817-1828. [PMID: 35332394 DOI: 10.1007/s11010-022-04412-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/10/2022] [Indexed: 11/09/2022]
Abstract
CRC is the third most common cancer occurring worldwide and the second leading cause of cancer deaths. In the year 2020, 1,931,590 new cases of CRC and 935,173 deaths were reported. The last two decades have witnessed an intensive study of noncoding RNAs and their implications in various pathological conditions including cancer. Noncoding RNAs such as miRNAs, tsRNAs, piRNAs, lncRNAs, pseudogenes, and circRNAs have emerged as promising prognostic and diagnostic biomarkers in preclinical studies of cancer. Some of these noncoding RNAs have also been shown as promising therapeutic targets for cancer treatment. In this review, we have discussed the emerging roles of various types of noncoding RNAs in CRC and their future implications in colorectal cancer management and research.
Collapse
|
17
|
Wang B, Wang M, Jia S, Li T, Yang M, Ge F. Systematic Survey of the Regulatory Networks of the Long Noncoding RNA BANCR in Cervical Cancer Cells. J Proteome Res 2022; 21:1137-1152. [DOI: 10.1021/acs.jproteome.2c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shuzhao Jia
- The Analysis and Testing Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Tao Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
A feedforward circuit between KLF5 and lncRNA KPRT4 contributes to basal-like breast cancer. Cancer Lett 2022; 534:215618. [PMID: 35259457 DOI: 10.1016/j.canlet.2022.215618] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive subtype of breast cancer with a poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in human cancers. Krüppel-like Factor 5 (KLF5) is a key oncogenic transcription factor in BLBC. However, the underlying mechanism of mutual regulation between KLF5 and lncRNA remains largely unknown. Here, we demonstrate that lncRNA KPRT4 promotes BLBC cell proliferation in vitro and in vivo. Mechanistically, KLF5 directly binds to the promoter of KPRT4 to promote KPRT4 transcription. Reciprocally, KPRT4 recruits the YB-1 transcription factor to the KLF5 promoter by interacting with YB-1 at its 5' domain and forming an RNA-DNA-DNA triplex structure at its 3' domain, resulting in enhanced transcription of KLF5 and ultimately establishing a feedforward circuit to promote cell proliferation. Moreover, the antisense oligonucleotide (ASO)-based therapy targeting KPRT4 substantially attenuated tumor growth in vivo. Clinically, the expression levels of YB-1, KLF5 and KPRT4 are positively correlated in clinical breast specimens. Together, our data suggest that KPRT4 is a major molecule for BLBC progression and that the feedforward circuit between KLF5 and KPRT4 may represent a potential therapeutic target in BLBC.
Collapse
|
19
|
Talotta R, Bahrami S, Laska MJ. Sequence complementarity between human noncoding RNAs and SARS-CoV-2 genes: What are the implications for human health? Biochim Biophys Acta Mol Basis Dis 2022; 1868:166291. [PMID: 34662705 PMCID: PMC8518135 DOI: 10.1016/j.bbadis.2021.166291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022]
Abstract
Objectives To investigate in silico the presence of nucleotide sequence complementarity between the RNA genome of Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-CoV-2) and human non-coding (nc)RNA genes. Methods The FASTA sequence (NC_045512.2) of each of the 11 SARS-CoV-2 isolate Wuhan-Hu-1 genes was retrieved from NCBI.nlm.nih.gov/gene and the Ensembl.org library interrogated for any base-pair match with human ncRNA genes. SARS-CoV-2 gene-matched human ncRNAs were screened for functional activity using bioinformatic analysis. Finally, associations between identified ncRNAs and human diseases were searched in GWAS databases. Results A total of 252 matches were found between the nucleotide sequence of SARS-CoV-2 genes and human ncRNAs. With the exception of two small nuclear RNAs, all of them were long non-coding (lnc)RNAs expressed mainly in testis and central nervous system under physiological conditions. The percentage of alignment ranged from 91.30% to 100% with a mean nucleotide alignment length of 17.5 ± 2.4. Thirty-three (13.09%) of them contained predicted R-loop forming sequences, but none of these intersected the complementary sequences of SARS-CoV-2. However, in 31 cases matches fell on ncRNA regulatory sites, whose adjacent coding genes are mostly involved in cancer, immunological and neurological pathways. Similarly, several polymorphic variants of detected non-coding genes have been associated with neuropsychiatric and proliferative disorders. Conclusion This pivotal in silico study shows that SARS-CoV-2 genes have Watson-Crick nucleotide complementarity to human ncRNA sequences, potentially disrupting ncRNA epigenetic control of target genes. It remains to be elucidated whether this could result in the development of human disease in the long term.
Collapse
Affiliation(s)
- Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, Messina, Italy.
| | - Shervin Bahrami
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
20
|
Stasiak M, Kolenda T, Kozłowska-Masłoń J, Sobocińska J, Poter P, Guglas K, Paszkowska A, Bliźniak R, Teresiak A, Kazimierczak U, Lamperska K. The World of Pseudogenes: New Diagnostic and Therapeutic Targets in Cancers or Still Mystery Molecules? Life (Basel) 2021; 11:life11121354. [PMID: 34947885 PMCID: PMC8705536 DOI: 10.3390/life11121354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
Abstract
Pseudogenes were once considered as “junk DNA”, due to loss of their functions as a result of the accumulation of mutations, such as frameshift and presence of premature stop-codons and relocation of genes to inactive heterochromatin regions of the genome. Pseudogenes are divided into two large groups, processed and unprocessed, according to their primary structure and origin. Only 10% of all pseudogenes are transcribed into RNAs and participate in the regulation of parental gene expression at both transcriptional and translational levels through senseRNA (sRNA) and antisense RNA (asRNA). In this review, about 150 pseudogenes in the different types of cancers were analyzed. Part of these pseudogenes seem to be useful in molecular diagnostics and can be detected in various types of biological material including tissue as well as biological fluids (liquid biopsy) using different detection methods. The number of pseudogenes, as well as their function in the human genome, is still unknown. However, thanks to the development of various technologies and bioinformatic tools, it was revealed so far that pseudogenes are involved in the development and progression of certain diseases, especially in cancer.
Collapse
Affiliation(s)
- Maciej Stasiak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Tomasz Kolenda
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Correspondence: or (T.K.); or (K.L.)
| | - Joanna Kozłowska-Masłoń
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Joanna Sobocińska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Paulina Poter
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Greater Poland Cancer Center, Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Garbary 15, 61-866 Poznan, Poland
- Department of Pathology, Pomeranian Medical University, Rybacka 1, 70-204 Szczecin, Poland
| | - Kacper Guglas
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, 61 Zwirki and Wigury, 02-091 Warsaw, Poland
| | - Anna Paszkowska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | - Renata Bliźniak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Anna Teresiak
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland;
| | - Katarzyna Lamperska
- Greater Poland Cancer Centre, Laboratory of Cancer Genetics, Garbary 15, 61-866 Poznan, Poland; (M.S.); (J.K.-M.); (J.S.); (K.G.); (A.P.); (R.B.); (A.T.)
- Greater Poland Cancer Centre, Research and Implementation Unit, Garbary 15, 61-866 Poznan, Poland;
- Correspondence: or (T.K.); or (K.L.)
| |
Collapse
|
21
|
Wang L, Quan Y, Zhu Y, Xie X, Wang Z, Wang L, Wei X, Che F. The regenerating protein 3A: a crucial molecular with dual roles in cancer. Mol Biol Rep 2021; 49:1491-1500. [PMID: 34811636 PMCID: PMC8825409 DOI: 10.1007/s11033-021-06904-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/29/2021] [Indexed: 12/20/2022]
Abstract
Introduction REG3A, a member of the third subclass of the Reg family, has been found in a variety of tissues but is not detected in immune cells. In the past decade, it has been determined that REG3A expression is regulated by injury, infection, inflammatory stimuli, and pro-cytokines via different signaling pathways, and it acts as a tissue-repair, bactericidal, and anti-inflammatory molecule in human diseases. Recently, the role of REG3A in cancer has received increasing attention. The present article aims to investigate the structure, expression, regulation, function of REG3A, and to highlight the potential role of REG3A in tumors. Methods A detailed literature search and data organization were conducted to find information about the role of REG3A in variety of physiological functions and tumors. Results Contradictory roles of REG3A have been reported in different tumor models. Some studies have demonstrated that high expression of REG3A in cancers can be oncogenic. Other studies have shown decreased REG3A expression in cancer cells as well as suppressed tumor growth. Conclusions Taken together, better understanding of REG3A may lead to new insights that make it a potentially useful target for cancer therapy.
Collapse
Affiliation(s)
- Liying Wang
- Department of Clinlical Medicine, Weifang Medical College, Weifang, China.,Department of Neurology, Linyi People's Hospital, Linyi, China
| | - Yanchun Quan
- Central Laboratory, Linyi People's Hospital, Linyi, China. .,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China. .,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China.
| | - Yanxi Zhu
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiaoli Xie
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Zhiqiang Wang
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Long Wang
- Central Laboratory, Linyi People's Hospital, Linyi, China.,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China.,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China
| | - Xiuhong Wei
- Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Linyi, China. .,Central Laboratory, Linyi People's Hospital, Linyi, China. .,Key Laboratory of Neurophysiology, Linyi People's Hospital, Linyi, Shandong, China. .,Key Laboratory of Tumor Biology, Linyi People's Hospital, Linyi, Shandong, China.
| |
Collapse
|
22
|
EGR1 modulated LncRNA HNF1A-AS1 drives glioblastoma progression via miR-22-3p/ENO1 axis. Cell Death Dis 2021; 7:350. [PMID: 34772911 PMCID: PMC8590016 DOI: 10.1038/s41420-021-00734-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/30/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
Accumulating evidences revealed that long noncoding RNAs (lncRNAs) have been participated in cancer malignant progression, including glioblastoma multiforme (GBM). Despite much studies have found the precise biological role in the regulatory mechanisms of GBM, however the molecular mechanisms, particularly upstream mechanisms still need further elucidated. RT-QPCR, cell transfection, western blotting and bioinformatic analysis were executed to detect the expression of EGR1, HNF1A-AS1, miR-22-3p and ENO1 in GBM. Cell proliferation assay, colony formation assay, wound healing, migration and invasion assays were performed to detect the malignant characters of GBM cells. The molecular regulation mechanism was confirmed by luciferase reporter assay, ChIP and RIP. Finally, orthotopic mouse models were established to examine the effect of HNF1A-AS1 in vivo. In the current study, we analyzed clinical samples to show that the HNF1A-AS1 expression is upregulated and associated with poor patient survival in GBM. Functional studies revealed that HNF1A-AS1 knockdown markedly inhibits malignant phenotypes of GBM cells, whereas overexpression of HNF1A-AS1 exerts opposite effect. Mechanistically, the transcription factor EGR1 forced the HNF1A-AS1 expression by directly binding the promoter region of HNF1A-AS1. Furthermore, combined bioinformatics analysis with our mechanistic work, using luciferase reporter assays and RIP, we first demonstrated that HNF1A-AS1 functions as a competing endogenous RNA (ceRNA) with miR-22-3p to regulate ENO1 expression in GBM cells. HNF1A-AS1 directly binds to miR-22-3p and significantly inhibits miR-22-3p expression, while ENO1 expression was increased. miR-22-3p inhibitor offsets the HNF1A-AS1 silencing induced suppression in malignant behaviors of GBM cells. ENO1 was verified as a direct target of miR-22-3p and its expression levels was negatively with the prognosis in GBM patients. Taken together, our study illuminated the definite mechanism of HNF1A-AS1 in promoting GBM malignancy, and provided a novel therapeutic target for further clinical application.
Collapse
|
23
|
Fasolo F, Jin H, Winski G, Chernogubova E, Pauli J, Winter H, Li DY, Glukha N, Bauer S, Metschl S, Wu Z, Koschinsky ML, Reilly M, Pelisek J, Kempf W, Eckstein HH, Soehnlein O, Matic L, Hedin U, Bäcklund A, Bergmark C, Paloschi V, Maegdefessel L. Long Noncoding RNA MIAT Controls Advanced Atherosclerotic Lesion Formation and Plaque Destabilization. Circulation 2021; 144:1567-1583. [PMID: 34647815 PMCID: PMC8570347 DOI: 10.1161/circulationaha.120.052023] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Supplemental Digital Content is available in the text. Long noncoding RNAs (lncRNAs) are important regulators of biological processes involved in vascular tissue homeostasis and disease development. The present study assessed the functional contribution of the lncRNA myocardial infarction-associated transcript (MIAT) to atherosclerosis and carotid artery disease.
Collapse
Affiliation(s)
- Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hong Jin
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Greg Winski
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Ekaterina Chernogubova
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Jessica Pauli
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hanna Winter
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Daniel Y Li
- Department of Cardiology, Columbia University Medical Center, New York, NY (D.Y.L., M.R.)
| | - Nadiya Glukha
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Sabine Bauer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Susanne Metschl
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Zhiyuan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | | | - Muredach Reilly
- Department of Cardiology, Columbia University Medical Center, New York, NY (D.Y.L., M.R.)
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich, Switzerland (J. Pelisek)
| | - Wolfgang Kempf
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Oliver Soehnlein
- Department of Experimental Pathology, Westphalian Wilhelms University, Munster, Germany (O.S.).,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (O.S.).,Institute for Cardiovascular Prevention, Ludwig Maximilian University of Munich, Germany (O.S.)
| | - Ljubica Matic
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Alexandra Bäcklund
- Department of Medicine (H.J., G.W., E.C., A.B.), Karolinska Institutet, Stockholm, Sweden
| | - Claes Bergmark
- Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| | - Valentina Paloschi
- German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel)
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University Munich, Germany (F.F., J. Pauli, H.W., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,German Center for Cardiovascular Research (DZHK), Berlin, Germany; partner site Munich Heart Alliance (F.F., J. Pauli, H.W., F.F., N.G., S.B., S.M., Z.W., W.K., H.-H.E., V.P., L. Maegdefessel).,Department of Molecular Medicine and Surgery (H.J., L. Matic, U.H., C.B., L. Maegdefessel), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Lu Y, Wan X, Huang W, Zhang L, Luo J, Li D, Huang Y, Li Y, Xu Y. AC016745.3 Regulates the Transcription of AR Target Genes by Antagonizing NONO. Life (Basel) 2021; 11:life11111208. [PMID: 34833084 PMCID: PMC8625561 DOI: 10.3390/life11111208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023] Open
Abstract
The androgen receptor (AR) and its related signaling pathways play an important role in the development of prostate cancer (PCa). Long non-coding RNAs (lncRNAs) are involved in the regulation of tumorigenesis and development, but their specific mechanism of action remains unclear. This study examines the function and mechanisms of action of lncRNA AC016745.3 in the development of PCa. It shows that dihydrotestosterone (DHT) results in the AR-dependent suppression of AC016745.3 expression in the LNCaP androgen-sensitive human prostate adenocarcinoma cell line. In addition, overexpression of AC016745.3 inhibits the proliferation and migration of PCa cells, and suppresses the expression of AR target genes. This research also demonstrates that the protein NONO interacts with AR and functions as an AR co-activator, promoting AR transcriptional activity. Furthermore, using RNA immunoprecipitation (RIP)-PCR experiments, the study demonstrates that both NONO and AR can bind AC016745.3. Moreover, cell phenotypic experiments reveal that NONO can promote cellular proliferation and migration, and that AC016745.3 can partially antagonize the pro-oncogenic functions of NONO in PCa cells. In summary, the results indicate that AC016745.3 can bind NONO, suppressing its ability to promote AR-dependent transcriptional activity. Furthermore, DHT-dependent suppression of AC016745.3 expression can enhance NONO's promotion effect on AR.
Collapse
Affiliation(s)
- Yali Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Xuechao Wan
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Wenhua Huang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Lu Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Jun Luo
- Department of Urology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China; (J.L.); (D.L.)
| | - Dujian Li
- Department of Urology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China; (J.L.); (D.L.)
| | - Yan Huang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China; (Y.L.); (X.W.); (W.H.); (L.Z.); (Y.H.)
- Correspondence: (Y.L.); (Y.X.)
| | - Yaoting Xu
- Department of Urology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai 200434, China; (J.L.); (D.L.)
- Correspondence: (Y.L.); (Y.X.)
| |
Collapse
|
25
|
La T, Chen S, Guo T, Zhao XH, Teng L, Li D, Carnell M, Zhang YY, Feng YC, Cole N, Brown AC, Zhang D, Dong Q, Wang JY, Cao H, Liu T, Thorne RF, Shao FM, Zhang XD, Jin L. Visualization of endogenous p27 and Ki67 reveals the importance of a c-Myc-driven metabolic switch in promoting survival of quiescent cancer cells. Am J Cancer Res 2021; 11:9605-9622. [PMID: 34646389 PMCID: PMC8490506 DOI: 10.7150/thno.63763] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/07/2021] [Indexed: 12/11/2022] Open
Abstract
Rationale: Recurrent and metastatic cancers often undergo a period of dormancy, which is closely associated with cellular quiescence, a state whereby cells exit the cell cycle and are reversibly arrested in G0 phase. Curative cancer treatment thus requires therapies that either sustain the dormant state of quiescent cancer cells, or preferentially, eliminate them. However, the mechanisms responsible for the survival of quiescent cancer cells remain obscure. Methods: Dual genome-editing was carried out using a CRISPR/Cas9-based system to label endogenous p27 and Ki67 with the green and red fluorescent proteins EGFP and mCherry, respectively, in melanoma cells. Analysis of transcriptomes of isolated EGFP-p27highmCherry-Ki67low quiescent cells was conducted at bulk and single cell levels using RNA-sequencing. The extracellular acidification rate and oxygen consumption rate were measured to define metabolic phenotypes. SiRNA and inducible shRNA knockdown, chromatin immunoprecipitation and luciferase reporter assays were employed to elucidate mechanisms of the metabolic switch in quiescent cells. Results: Dual labelling of endogenous p27 and Ki67 with differentiable fluorescent probes allowed for visualization, isolation, and analysis of viable p27highKi67low quiescent cells. Paradoxically, the proto-oncoprotein c-Myc, which commonly drives malignant cell cycle progression, was expressed at relatively high levels in p27highKi67low quiescent cells and supported their survival through promoting mitochondrial oxidative phosphorylation (OXPHOS). In this context, c-Myc selectively transactivated genes encoding OXPHOS enzymes, including subunits of isocitric dehydrogenase 3 (IDH3), whereas its binding to cell cycle progression gene promoters was decreased in quiescent cells. Silencing of c-Myc or the catalytic subunit of IDH3, IDH3α, preferentially killed quiescent cells, recapitulating the effect of treatment with OXPHOS inhibitors. Conclusion: These results establish a rigorous experimental system for investigating cellular quiescence, uncover the high selectivity of c-Myc in activating OXPHOS genes in quiescent cells, and propose OXPHOS targeting as a potential therapeutic avenue to counter cancer cells in quiescence.
Collapse
|
26
|
Wang L, Tuo H, Song Z, Li W, Peng Y. Reg3A (regenerating family member 3 alpha) acts as a tumor suppressor by targeting DMBT1 (deleted in malignant brain tumors 1) in gastric cancer. Bioengineered 2021; 12:7644-7655. [PMID: 34605357 PMCID: PMC8806639 DOI: 10.1080/21655979.2021.1981800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Regenerating family member 3 alpha (Reg3A) encodes a pancreatic secretory protein that may be involved in cell proliferation or differentiation. However, the function and downstream regulatory mechanism of Reg3A in gastric cancer (GC) remains elusive. This study aimed to clarify the function and mechanism of Reg3A regulating cell proliferation in GC. The expression levels of Reg3A were confirmed in GC patients and cells using qRT-PCR and western blotting. TCGA datasets and clinical samples were used to explore the correlation between Reg3A and clinicopathologic features in GC. Cell viability, colony formation, and xenograft tumorigenesis assays were performed to detect the function of Reg3A on cell proliferation. Besides, we predicted the correlated genes of Reg3A by analyzing TCGA datasets, and further investigated the downstream regulatory mechanism of Reg3A in GC. Our results demonstrated that Reg3A is down-regulated in vitro and vivo (P < 0.05). Reg3A expression are negatively correlated with TNM classification (P < 0.001), lymph node (P < 0.001) in GC. Reg3A significantly suppresses cell proliferation in GC (P < 0.05). Bioinformatic analysis and experimental results confirmed that Reg3A positively regulates the expression of deleted in malignant brain tumor 1 (DMBT1, P < 0.05). Besides, Reg3A and DMBT1 all prolong the overall survival (OS, P < 0.01), post-progression survival (PPS, P < 0.05), and first progression survival (FP, P < 0.01). The function of Reg3A inhibiting cell proliferation is abolished by DMBT1 siRNA in GC (P < 0.05). In conclusion, Reg3A may act as a novel tumor suppressor by promoting DMBT1 expression, which may be a potential therapeutic target in patients with GC.
Collapse
Affiliation(s)
- Liang Wang
- Department of Surgery, Hebei Medical University, Shijiazhuang, China
| | - Hongfang Tuo
- Department of Surgery, Hebei Medical University, Shijiazhuang, China.,Department of Surgery, Hebei General Hospital, Shijiazhuang, China
| | - Zhe Song
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Wei Li
- The Second Department of General Surgery, Cangzhou Central Hospital, Cangzhou, China
| | - Yanhui Peng
- Department of Surgery, Hebei Medical University, Shijiazhuang, China.,Department of Surgery, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
27
|
He Y, Xu Y, Yu X, Sun Z, Guo W. The Vital Roles of LINC00662 in Human Cancers. Front Cell Dev Biol 2021; 9:711352. [PMID: 34354995 PMCID: PMC8329443 DOI: 10.3389/fcell.2021.711352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in many human diseases, particularly in tumorigenicity and progression. Although lncRNA research studies are increasing rapidly, our understanding of lncRNA mechanisms is still incomplete. The long intergenic non-protein coding RNA 662 (LINC00662) is a novel lncRNA, and accumulating evidence suggests that it is related to a variety of tumors in multiple systems, including the respiratory, reproductive, nervous, and digestive systems. LINC00662 has been shown to be upregulated in malignant tumors and has been confirmed to promote the development of malignant tumors. LINC00662 has also been reported to facilitate a variety of cellular events, such as tumor-cell proliferation, invasion, and migration, and its expression has been correlated to clinicopathological characteristics in patients with tumors. In terms of mechanisms, LINC00662 regulates gene expression by interacting with both proteins and with RNAs, so it may be a potential biomarker for cancer diagnosis, prognosis, and treatment. This article reviews the expression patterns, biological functions, and underlying molecular mechanisms of LINC00662 in tumors.
Collapse
Affiliation(s)
- Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ, Transplantation at Henan Universities, Zhengzhou, China.,Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
28
|
Teng L, Feng YC, Guo ST, Wang PL, Qi TF, Yue YM, Wang SX, Zhang SN, Tang CX, La T, Zhang YY, Zhao XH, Gao JN, Wei LY, Zhang D, Wang JY, Shi Y, Liu XY, Li JM, Cao H, Liu T, Thorne RF, Jin L, Shao FM, Zhang XD. The pan-cancer lncRNA PLANE regulates an alternative splicing program to promote cancer pathogenesis. Nat Commun 2021; 12:3734. [PMID: 34145290 PMCID: PMC8213729 DOI: 10.1038/s41467-021-24099-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
Genomic amplification of the distal portion of chromosome 3q, which encodes a number of oncogenic proteins, is one of the most frequent chromosomal abnormalities in malignancy. Here we functionally characterise a non-protein product of the 3q region, the long noncoding RNA (lncRNA) PLANE, which is upregulated in diverse cancer types through copy number gain as well as E2F1-mediated transcriptional activation. PLANE forms an RNA-RNA duplex with the nuclear receptor co-repressor 2 (NCOR2) pre-mRNA at intron 45, binds to heterogeneous ribonucleoprotein M (hnRNPM) and facilitates the association of hnRNPM with the intron, thus leading to repression of the alternative splicing (AS) event generating NCOR2-202, a major protein-coding NCOR2 AS variant. This is, at least in part, responsible for PLANE-mediated promotion of cancer cell proliferation and tumorigenicity. These results uncover the function and regulation of PLANE and suggest that PLANE may constitute a therapeutic target in the pan-cancer context.
Collapse
Affiliation(s)
- Liu Teng
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Yu Chen Feng
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia
| | - Su Tang Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Shanxi, China
| | - Pei Lin Wang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Teng Fei Qi
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Yi Meng Yue
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Shi Xing Wang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Sheng Nan Zhang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Cai Xia Tang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Xiao Hong Zhao
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Jin Nan Gao
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi, China
| | - Li Yuan Wei
- Department of Breast Surgery, Shanxi Bethune Hospital, Shanxi, China
| | - Didi Zhang
- Orthopaedics Department, John Hunter Hospital, Hunter New England Health, New Lambton, NSW, Australia
| | - Jenny Y Wang
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, Australia
| | - Yujie Shi
- Department of Pathology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China
| | - Xiao Ying Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Jin Ming Li
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
| | - Huixia Cao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China
| | - Tao Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, NSW, Australia
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Lei Jin
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China.
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW, Australia.
| | - Feng-Min Shao
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan, China.
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Henan, China.
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
| |
Collapse
|
29
|
lncRNA GAU1 Induces GALNT8 Overexpression and Potentiates Colorectal Cancer Progression. Gastroenterol Res Pract 2021; 2021:5960821. [PMID: 34239555 PMCID: PMC8233076 DOI: 10.1155/2021/5960821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
lncRNA is a key epigenetic regulator in biological processes. In the human cancer transcriptome library MiTranscriptome, we identified GAU1 as the top upregulated lncRNA in colorectal cancer (CRC) by sample set enrichment analysis (overexpression ranking percentile = 99.75%, P < 10-50), which is coexpressed with the potential oncogene GALNT8 (Spearman rho = 0.67, P = 2.44 × 10-23, TCGA dataset n = 184). Experimental data revealed that GAU1 regulates the expression of GALNT8. The overexpression of either GAU1 or GALNT8 significantly promotes the cell cycle and proliferation of CRC cell lines and correlates with poor prognosis in patients with CRC (P = 3.04 × 10-2), while silencing of GAU1 or GALNT8 suppressed the cancer cell proliferation and induced the CRC cell line resistance to oxaliplatin in vitro treatment. Our results suggested that the previously less studied GAU1 and GALNT8 may play as CRC prognosis markers and potential targets for chemotherapy treatment.
Collapse
|
30
|
Shang B, Li Z, Li M, Jiang S, Feng Z, Cao Z, Wang H. Silencing LINC01116 suppresses the development of lung adenocarcinoma via the AKT signaling pathway. Thorac Cancer 2021; 12:2093-2103. [PMID: 34061456 PMCID: PMC8287011 DOI: 10.1111/1759-7714.14042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
Background A growing body of evidence has proven that long noncoding ribonucleic acids (lncRNAs) are important epigenetic regulators that play crucial parts in the pathogenesis of human cancers. Previous studies have shown that long intergenic nonprotein coding RNA 01116 (LINC01116) is a carcinogen in several carcinomas; however, its function in lung adenocarcinoma (LUAD) has not been clarified. Here, we aimed to investigate the role of LINC01116 in LUAD. Methods The relative expression levels of LINC01116 in LUAD cell lines and tissues were detected by quantitative reverse transcription polymerase chain reaction. A Kaplan–Meier survival analysis was performed using patient information from the Gene Expression Profiling Interactive Analysis (GEPIA) database. LUAD proliferation, invasion, migration, and apoptosis were measured by performing cell counting kit‐8, colony formation, transwell, wound healing, and flow cytometric assays. A xenograft animal experiment was performed to investigate the effect of LINC01116 in vivo. Protein kinase B (AKT) signaling pathway‐related protein expressions were tested by Western blot assay. Results LINC01116 expression was upregulated in LUAD cells and tissues. The loss‐of‐function experiments on LUAD cells revealed that silencing LINC01116 expression could decrease cell viability both in vitro and in vivo. Furthermore, silencing LINC01116 inhibited LUAD cell invasion and migration and induced cell apoptosis. Mechanically, silencing LINC01116 significantly decreased p‐AKT protein levels, and an AKT pathway stimulator could rescue the suppressive effects of small interfering LINC011116‐specific RNAs on LUAD development. Conclusions Our study demonstrated that silencing LINC01116 suppresses the development of LUAD via the AKT signaling pathway.
Collapse
Affiliation(s)
- Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Meng Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Feng
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhixin Cao
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
31
|
Lang C, Yin C, Lin K, Li Y, Yang Q, Wu Z, Du H, Ren D, Dai Y, Peng X. m 6 A modification of lncRNA PCAT6 promotes bone metastasis in prostate cancer through IGF2BP2-mediated IGF1R mRNA stabilization. Clin Transl Med 2021; 11:e426. [PMID: 34185427 PMCID: PMC8181202 DOI: 10.1002/ctm2.426] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Bone metastasis is the leading cause of tumor-related death in prostate cancer (PCa) patients. Long noncoding RNAs (lncRNAs) have been well documented to be involved in the progression of multiple cancers. Nevertheless, the role of lncRNAs in PCa bone metastasis remains largely unclear. METHODS The expression of prostate cancer-associated transcripts was analyzed in published datasets and further verified in clinical samples and cell lines by RT-qPCR and in situ hybridization assays. Colony formation assay, MTT assay, cell cycle analysis, EdU assay, Transwell migration and invasion assays, wound healing assay, and in vivo experiments were carried out to investigate the function of prostate cancer-associated transcript 6 (PCAT6) in bone metastasis and tumor growth of PCa. Bioinformatic analysis, RNA pull-down, and RIP assays were conducted to identify the proteins binding to PCAT6 and the potential targets of PCAT6. The therapeutic potential of targeting PCAT6 by antisense oligonucleotides (ASO) was further explored in vivo. RESULTS PCAT6 was upregulated in PCa tissues with bone metastasis and increased PCAT6 expression predicted poor prognosis in PCa patients. Functional experiments found that PCAT6 knockdown significantly inhibited PCa cell invasion, migration, and proliferation in vitro, as well as bone metastasis and tumor growth in vivo. Mechanistically, METTL3-mediated m6 A modification contributed to PCAT6 upregulation in an IGF2BP2-dependent manner. Furthermore, PCAT6 upregulated IGF1R expression by enhancing IGF1R mRNA stability through the PCAT6/IGF2BP2/IGF1R RNA-protein three-dimensional complex. Importantly, PCAT6 inhibition by ASO in vivo showed therapeutic potential against bone metastasis in PCa. Finally, the clinical correlation of METTL3, IGF2BP2, IGF1R, and PCAT6 was further demonstrated in PCa tissues and cells. CONCLUSIONS Our study uncovers a novel molecular mechanism by which the m6 A-induced PCAT6/IGF2BP2/IGF1R axis promotes PCa bone metastasis and tumor growth, suggesting that PCAT6 may serve as a promising prognostic marker and therapeutic target against bone-metastatic PCa.
Collapse
MESH Headings
- Adenosine/analogs & derivatives
- Adenosine/chemistry
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/secondary
- Cell Cycle
- Cell Movement
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- RNA Stability
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Receptor, IGF Type 1/genetics
- Receptor, IGF Type 1/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chuandong Lang
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Chi Yin
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Kaiyuan Lin
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Yue Li
- Department of Experimental ResearchState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qing Yang
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Zhengquan Wu
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Hong Du
- Department of Pathologythe First People's Hospital of Guangzhou CityGuangzhouChina
| | - Dong Ren
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Yuhu Dai
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| | - Xinsheng Peng
- Department of Orthopaedic Surgerythe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Orthopedics and TraumatologyGuangzhouChina
| |
Collapse
|
32
|
Tassinari M, Richter SN, Gandellini P. Biological relevance and therapeutic potential of G-quadruplex structures in the human noncoding transcriptome. Nucleic Acids Res 2021; 49:3617-3633. [PMID: 33721024 PMCID: PMC8053107 DOI: 10.1093/nar/gkab127] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are functional transcripts that are not translated into proteins. They represent the largest portion of the human transcriptome and have been shown to regulate gene expression networks in both physiological and pathological cell conditions. Research in this field has made remarkable progress in the comprehension of how aberrations in noncoding RNA drive relevant disease-associated phenotypes; however, the biological role and mechanism of action of several noncoding RNAs still need full understanding. Besides fulfilling its function through sequence-based mechanisms, RNA can form complex secondary and tertiary structures which allow non-canonical interactions with proteins and/or other nucleic acids. In this context, the presence of G-quadruplexes in microRNAs and long noncoding RNAs is increasingly being reported. This evidence suggests a role for RNA G-quadruplexes in controlling microRNA biogenesis and mediating noncoding RNA interaction with biological partners, thus ultimately regulating gene expression. Here, we review the state of the art of G-quadruplexes in the noncoding transcriptome, with their structural and functional characterization. In light of the existence and further possible development of G-quadruplex binders that modulate G-quadruplex conformation and protein interactions, we also discuss the therapeutic potential of G-quadruplexes as targets to interfere with disease-associated noncoding RNAs.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133 Milano, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padova, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133 Milano, Italy
| |
Collapse
|
33
|
RNA:DNA triple helices: from peculiar structures to pervasive chromatin regulators. Essays Biochem 2021; 65:731-740. [PMID: 33835128 DOI: 10.1042/ebc20200089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 11/17/2022]
Abstract
The genomes of complex eukaryotes largely contain non-protein-coding DNA, which is pervasively transcribed into a plethora of non-coding RNAs (ncRNAs). The functional importance of many of these ncRNAs has been investigated in the last two decades, revealing their crucial and multifaceted roles in chromatin regulation. A common mode of action of ncRNAs is the recruitment of chromatin modifiers to specific regions in the genome. Whereas many ncRNA-protein interactions have been characterised in detail, binding of ncRNAs to their DNA target sites is much less understood. Recently developed RNA-centric methods have mapped the genome-wide distribution of ncRNAs, however, how ncRNAs achieve locus-specificity remains mainly unresolved. In terms of direct RNA-DNA interactions, two kinds of triple-stranded structures can be formed: R-loops consisting of an RNA:DNA hybrid and a looped out DNA strand, and RNA:DNA triple helices (triplexes), in which the RNA binds to the major groove of the DNA double helix by sequence-specific Hoogsteen base pairing. In this essay, we will review the current knowledge about RNA:DNA triplexes, summarising triplex formation rules, detection methods, and ncRNAs reported to engage in triplexes. While the functional characterisation of RNA:DNA triplexes is still anecdotal, recent advances in high-throughput and computational analyses indicate their widespread distribution in the genome. Thus, we are witnessing a paradigm shift in the appreciation of RNA:DNA triplexes, away from exotic structures towards a prominent mode of ncRNA-chromatin interactions.
Collapse
|
34
|
Guiducci G, Stojic L. Long Noncoding RNAs at the Crossroads of Cell Cycle and Genome Integrity. Trends Genet 2021; 37:528-546. [PMID: 33685661 DOI: 10.1016/j.tig.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
The cell cycle is controlled by guardian proteins that coordinate the process of cell growth and cell division. Alterations in these processes lead to genome instability, which has a causal link to many human diseases. Beyond their well-characterized role of influencing protein-coding genes, an increasing body of evidence has revealed that long noncoding RNAs (lncRNAs) actively participate in regulation of the cell cycle and safeguarding of genome integrity. LncRNAs are versatile molecules that act via a wide array of mechanisms. In this review, we discuss how lncRNAs are implicated in control of the cell cycle and maintenance of genome stability and how changes in lncRNA-regulatory networks lead to proliferative diseases such as cancer.
Collapse
Affiliation(s)
- Giulia Guiducci
- Barts Cancer Institute, Centre for Cancer Cell and Molecular Biology, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lovorka Stojic
- Barts Cancer Institute, Centre for Cancer Cell and Molecular Biology, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
35
|
Abstract
While the processing of mRNA is essential for gene expression, recent findings have highlighted that RNA processing is systematically altered in cancer. Mutations in RNA splicing factor genes and the shortening of 3' untranslated regions are widely observed. Moreover, evidence is accumulating that other types of RNAs, including circular RNAs, can contribute to tumorigenesis. In this Review, we highlight how altered processing or activity of coding and non-coding RNAs contributes to cancer. We introduce the regulation of gene expression by coding and non-coding RNA and discuss both established roles (microRNAs and long non-coding RNAs) and emerging roles (selective mRNA processing and circular RNAs) for RNAs, highlighting the potential mechanisms by which these RNA subtypes contribute to cancer. The widespread alteration of coding and non-coding RNA demonstrates that altered RNA biogenesis contributes to multiple hallmarks of cancer.
Collapse
Affiliation(s)
- Gregory J Goodall
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia.
- Department of Medicine, University of Adelaide, Adelaide, SA, Australia.
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia.
| | - Vihandha O Wickramasinghe
- RNA Biology and Cancer Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
36
|
Abstract
Pseudogenes are commonly labeled as "junk DNA" given their perceived nonfunctional status. However, the advent of large-scale genomics projects prompted a revisit of pseudogene biology, highlighting their key functional and regulatory roles in numerous diseases, including cancers. Integrative analyses of cancer data have shown that pseudogenes can be transcribed and even translated, and that pseudogenic DNA, RNA, and proteins can interfere with the activity and function of key protein coding genes, acting as regulators of oncogenes and tumor suppressors. Capitalizing on the available clinical research, we are able to get an insight into the spread and variety of pseudogene biomarker and therapeutic potential. In this chapter, we describe pseudogenes that fulfill their role as diagnostic or prognostic biomarkers, both as unique elements and in collaboration with other genes or pseudogenes. We also report that the majority of prognostic pseudogenes are overexpressed and exert an oncogenic role in colorectal, liver, lung, and gastric cancers. Finally, we highlight a number of pseudogenes that can establish future therapeutic avenues.
Collapse
|
37
|
Zhu H, Tang JH, Zhang SM, Qian JP, Ling X, Wu XY, Yang LX. Long Noncoding RNA LINC00963 Promotes CDC5L-Mediated Malignant Progression in Gastric Cancer. Onco Targets Ther 2020; 13:12999-13013. [PMID: 33376349 PMCID: PMC7764734 DOI: 10.2147/ott.s274708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
Background Gastric cancer (GC) is a common cancer with high incidence and mortality worldwide. In recent years, accumulating evidence has shown that long noncoding RNAs (lncRNAs) exert critical roles in the development and progression of cancer by acting as a tumor initiator or suppressor. LINC00963 is a newly reported lncRNA related to cancer, and its role in GC remains unclear. Materials and Methods The expression levels of LINC00963, miR-612, and cell division cycle 5-like protein (CDC5L) were measured using quantitative real-time PCR or Western blot. The biological functions of LINC00963, miR-612, and CDC5L in GC cells were analyzed by transwell and proliferation experiments. The expression of CDC5L in patients with GC was evaluated using the Oncomine database. Bone marrow-derived dendritic cells (DCs) were derived from C57BL/6 mice. Results LINC00963 expression was higher in GC tissues than in adjacent normal tissues. Similar results were found in GC cell lines and normal human gastric epithelial cells. Upregulation of LINC00963 was related to the poor prognosis of patients with GC. Knockdown of LINC00963 inhibited the proliferation, invasion, and metastasis but promoted the apoptosis of GC cells. Furthermore, silencing of LINC00963 in GC cells significantly suppressed the tumor growth of GC. Bioinformatics analysis indicated that LINC00963 could target miR-612 by functioning as a competing endogenous RNA. The expression of miR-612 decreased in GC tissues and cell lines. Meanwhile, LINC00963 expression was negatively associated with miR-612. CDC5L was a direct target of miR-612. miR-612 suppressed the expression of CDC5L in GC tissues and cells. Moreover, LINC00963 inhibited the differentiation and maturation of DCs by regulating miR-612 expression in DCs. Conclusion LINC00963 promoted the progression of GC by competitively binding to miR-612 to regulate the expression of CDC5L and mediated DC-related anti-tumor immune response. Thus, targeting LINC00963 may be a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Jin-Hai Tang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Shi-Meng Zhang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Jia-Ping Qian
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Xin Ling
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Xiao-Ying Wu
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| | - Ling-Xia Yang
- Department of Gastroenterology, Suzhou Ninth People's Hospital, Suzhou, Jiangsu Province, People's Republic of China
| |
Collapse
|
38
|
LncRNA MNX1-AS1 promotes progression of intrahepatic cholangiocarcinoma through the MNX1/Hippo axis. Cell Death Dis 2020; 11:894. [PMID: 33093444 PMCID: PMC7581777 DOI: 10.1038/s41419-020-03029-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/13/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) have extremely complex roles in the progression of intrahepatic cholangiocarcinoma (ICC) and remain to be elucidated. By cytological and animal model experiments, this study demonstrated that the expression of lncRNA MNX1-AS1 was remarkably elevated in ICC cell lines and tissues, and was highly and positively correlated with motor neuron and pancreas homeobox protein 1 (MNX1) expression. MNX1-AS1 significantly facilitated the proliferation, migration, invasion, and angiogenesis in ICC cells in vitro, and remarkably promoted tumor growth and metastasis in vivo. Further study revealed that MNX1-AS1 promoted the expression of MNX1 via recruiting transcription factors c-Myc and myc-associated zinc finger protein (MAZ). Furthermore, MNX1 upregulated the expression of Ajuba protein via binding to its promoter region, and subsequently, Ajuba protein suppressed the Hippo signaling pathway. Taken together, our results uncovered that MNX1-AS1 can facilitate ICC progression via MNX1-AS1/c-Myc and MAZ/MNX1/Ajuba/Hippo pathway, suggesting that MNX1-AS1 may be able to serve as a potential target for ICC treatment.
Collapse
|
39
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
40
|
LncRNA LL22NC03-N14H11.1 promoted hepatocellular carcinoma progression through activating MAPK pathway to induce mitochondrial fission. Cell Death Dis 2020; 11:832. [PMID: 33028809 PMCID: PMC7542152 DOI: 10.1038/s41419-020-2584-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
Abstract
Involvement of long non-coding RNAs (lncRNAs) in hepatocarcinogenesis has been largely documented. Mitochondrial dynamics is identified to impact survival and metastasis in tumors including hepatocellular carcinoma (HCC), but the underlying mechanism remains poorly understood. This study planned to explore the regulation of lncRNA LL22NC03-N14H11.1 on HCC progression and mitochondrial fission. Dysregulated lncRNAs in HCC are identified through circlncRNAnet and GEPIA bioinformatics tools. Biological function of LL22NC03-N14H11.1 in HCC was detected by CCK-8 assay, flow cytometry analysis, transwell invasion, and wound healing assays. Molecular interactions were determined by RNA immunoprecipitation, RNA pull-down, and co-immunoprecipitation assays. Results showed that LL22NC03-N14H11.1 was upregulated in HCC tissues and cells. Functionally, LL22NC03-N14H11.1 contributed to cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) in HCC. Moreover, LL22NC03-N14H11.1 facilitated mitochondrial fission in HCC cells. Mechanistically, LL22NC03-N14H11.1 recruited Myb proto-oncogene (c-Myb) to repress the transcription of leucine zipper-like transcription regulator 1 (LZTR1), so as to inhibit LZTR1-mediated ubiquitination of H-RAS (G12V), leading to the activation of mitogen-activated protein kinase (MAPK) signaling and induction of p-DRP1 (Serine 616). In conclusion, this study firstly revealed that lncRNA LL22NC03-N14H11.1 promoted HCC progression through activating H-RAS/MAPK pathway to induce mitochondrial fission, indicating LL22NC03-N14H11.1 as a novel potential biomarker for HCC treatment.
Collapse
|
41
|
Feng YC, Liu XY, Teng L, Ji Q, Wu Y, Li JM, Gao W, Zhang YY, La T, Tabatabaee H, Yan XG, Jamaluddin MFB, Zhang D, Guo ST, Scott RJ, Liu T, Thorne RF, Zhang XD, Jin L. c-Myc inactivation of p53 through the pan-cancer lncRNA MILIP drives cancer pathogenesis. Nat Commun 2020; 11:4980. [PMID: 33020477 PMCID: PMC7536215 DOI: 10.1038/s41467-020-18735-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
The functions of the proto-oncoprotein c-Myc and the tumor suppressor p53 in controlling cell survival and proliferation are inextricably linked as “Yin and Yang” partners in normal cells to maintain tissue homeostasis: c-Myc induces the expression of ARF tumor suppressor (p14ARF in human and p19ARF in mouse) that binds to and inhibits mouse double minute 2 homolog (MDM2) leading to p53 activation, whereas p53 suppresses c-Myc through a combination of mechanisms involving transcriptional inactivation and microRNA-mediated repression. Nonetheless, the regulatory interactions between c-Myc and p53 are not retained by cancer cells as is evident from the often-imbalanced expression of c-Myc over wildtype p53. Although p53 repression in cancer cells is frequently associated with the loss of ARF, we disclose here an alternate mechanism whereby c-Myc inactivates p53 through the actions of the c-Myc-Inducible Long noncoding RNA Inactivating P53 (MILIP). MILIP functions to promote p53 polyubiquitination and turnover by reducing p53 SUMOylation through suppressing tripartite-motif family-like 2 (TRIML2). MILIP upregulation is observed amongst diverse cancer types and is shown to support cell survival, division and tumourigenicity. Thus our results uncover an inhibitory axis targeting p53 through a pan-cancer expressed RNA accomplice that links c-Myc to suppression of p53. c-Myc and p53 operate in a negative feedback manner to maintain cellular homeostasis. Here, the authors report a long noncoding RNA, MILIP as a downstream target of c-Myc and that MILIP represses p53 to support tumorigenicity.
Collapse
Affiliation(s)
- Yu Chen Feng
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Xiao Ying Liu
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Liu Teng
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Qiang Ji
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Yongyan Wu
- Department of Otolaryngology, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, the first affiliated hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jin Ming Li
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Wei Gao
- Department of Otolaryngology, Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, the first affiliated hospital, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Yuan Yuan Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Ting La
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Hessam Tabatabaee
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Xu Guang Yan
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - M Fairuz B Jamaluddin
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Didi Zhang
- Department of Orthopaedics, John Hunter Hospital, Hunter New England Health, Newcastle, 2305, NSW, Australia
| | - Su Tang Guo
- Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Taiyuan, 030013, Shanxi, China
| | - Rodney J Scott
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia
| | - Tao Liu
- Children's Cancer Institute Australia for Medical Research, University of New South Wales, Sydney, 2750, NSW, Australia
| | - Rick F Thorne
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia.,Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China
| | - Xu Dong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, 2308, NSW, Australia. .,Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China.
| | - Lei Jin
- Translational Research Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Academy of Medical Science, Zhengzhou University, Zhengzhou, 450053, Henan, China. .,School of Medicine and Public Health, The University of Newcastle, Newcastle, 2308, NSW, Australia.
| |
Collapse
|
42
|
Li M, Xie Z, Li J, Lin J, Zheng G, Liu W, Tang S, Cen S, Ye G, Li Z, Yu W, Wang P, Wu Y, Shen H. GAS5 protects against osteoporosis by targeting UPF1/SMAD7 axis in osteoblast differentiation. eLife 2020; 9:e59079. [PMID: 33006314 PMCID: PMC7609060 DOI: 10.7554/elife.59079] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/30/2020] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis is a common systemic skeletal disorder resulting in bone fragility and increased fracture risk. It is still necessary to explore its detailed mechanisms and identify novel targets for the treatment of osteoporosis. Previously, we found that a lncRNA named GAS5 in human could negatively regulate the lipoblast/adipocyte differentiation. However, it is still unclear whether GAS5 affects osteoblast differentiation and whether GAS5 is associated with osteoporosis. Our current research found that GAS5 was decreased in the bones and BMSCs, a major origin of osteoblast, of osteoporosis patients. Mechanistically, GAS5 promotes the osteoblast differentiation by interacting with UPF1 to degrade SMAD7 mRNA. Moreover, a decreased bone mass and impaired bone repair ability were observed in Gas5 heterozygous mice, manifesting in osteoporosis. The systemic supplement of Gas5-overexpressing adenoviruses significantly ameliorated bone loss in an osteoporosis mouse model. In conclusion, GAS5 promotes osteoblast differentiation by targeting the UPF1/SMAD7 axis and protects against osteoporosis.
Collapse
Affiliation(s)
- Ming Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Wenjie Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Su'an Tang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Shuizhong Cen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
- Department of Orthopedics, Zhujiang Hospital, Southern Medical UniversityGuangzhouChina
| | - Guiwen Ye
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Zhaofeng Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
| | - Yanfeng Wu
- Center for Biotherapy,The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Center for Biotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen UniversityShenzhenChina
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen UniversityGuangzhouChina
| |
Collapse
|
43
|
Wang N, Hao F, Ren J, Fei X, Chen Y, Xu W, Wang J. Positive feedback loop of AKR1B10P1/miR-138/SOX4 promotes cell growth in hepatocellular carcinoma cells. Am J Transl Res 2020; 12:5465-5480. [PMID: 33042431 PMCID: PMC7540089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Potential functions of pseudogenes on tumorigenesis and development of human malignancies have been gradually revealed recently. However, the specific regulation and intracellular events associated with pseudogenes have not been illustrated clearly in hepatocellular carcinoma (HCC). AKR1B10P1 is an isoform pseudogene of oncogenic AKR1B10, and is barely transcribed in normal hepatocytes. In this study, anomalous transcript of AKR1B10P1 was detected in both HCC tissues and cell lines, and is positively correlated with its parental genes. High level of AKR1B10P1 transcript is correlated with dismal clinicopathologic features, including large tumor dimension, high level of serum Alpha-fetoprotein (AFP), advanced TNM stages, tumor microsatellite formation and venous invasion. Loss-of and gain-of function assays demonstrated the exact impact of AKR1B10P1 on promoting HCC cell proliferation. Furthermore, transcription factor SOX4 was discovered facilitating the activation of AKR1B10P1 transcription, and was validated as a down-stream target degraded by tumor-suppressing miR-138. Meanwhile, we discovered the existence of a positive feedback from AKR1B10P1, by which miR-138 interacts with AKR1B10P1 via a competing endogenous RNA (ceRNA) way. Thus, we suggest a positive feedback loop of AKR1B10P1/miR-138/SOX4, promoting HCC cell proliferation. In summary, the AKR1B10P1/miR-138/SOX4 loop in HCC cells provides us potential and probable targets contributing to HCC prevention and therapeutic treatment.
Collapse
Affiliation(s)
- Nan Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197, Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Fengjie Hao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197, Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Jiajun Ren
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197, Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197, Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197, Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and TechnologyShanghai 200237, People’s Republic of China
| | - Junqing Wang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197, Rui Jin Er Road, Shanghai 200025, People’s Republic of China
- Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine197, Rui Jin Er Road, Shanghai 200025, People’s Republic of China
| |
Collapse
|
44
|
Zhang L, Li P, Liu E, Xing C, Zhu D, Zhang J, Wang W, Jiang G. Prognostic value of a five-lncRNA signature in esophageal squamous cell carcinoma. Cancer Cell Int 2020; 20:386. [PMID: 32831646 PMCID: PMC7419219 DOI: 10.1186/s12935-020-01480-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
Background The aim of this study was to identify prognostic long non-coding RNAs (lncRNAs) and develop a multi-lncRNA signature for suvival prediction in esophageal squamous cell carcinoma (ESCC). Methods The clinical and gene expression data from Gene Expression Omnibus database (GSE53624, n = 119) were obtianed as training set. A total of 98 paired ESCC tumor and normal tissues were detected by RNA sequencing and used as test set. Another 84 ESCC tissues were used for real-time quantitative PCR(qRT-PCR) and as an independent validation cohort. Survival analysis, Cox regression and Kaplan–Meier analysis were performed. Results We screened a prognostic marker of ESCC from the GSE53624 dataset and named it as the five-lncRNA signature including AC007179.1, MORF4L2-AS1, RP11-488I20.9, RP13-30A9.2, RP4-735C1.6, which could classify patients into high- and low-risk groups with significantly different survival(median survival: 1.75 years vs. 4.01 years, log rank P < 0.05). Then test dataset and validation dataset confirmed that the five-lncRNA signature can determine the prognosis of ESCC patients. Predictive independence of the prognostic marker was proved by multivariable Cox regression analyses in the three datasets (P < 0.05). In addition, the signature was found to be better than TNM stage in terms of prognosis. Conclusion The five-lncRNA signature could be a good prognostic biomarker for ESCC patients and has important clinical value.
Collapse
Affiliation(s)
- Lan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Pan Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chenju Xing
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Di Zhu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jianying Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Guozhong Jiang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|