1
|
Hashemi E, McCarthy C, Rao S, Malarkannan S. Transcriptomic diversity of innate lymphoid cells in human lymph nodes compared to BM and spleen. Commun Biol 2024; 7:769. [PMID: 38918571 PMCID: PMC11199704 DOI: 10.1038/s42003-024-06450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Innate lymphoid cells (ILCs) are largely tissue-resident, mostly described within the mucosal tissues. However, their presence and functions in the human draining lymph nodes (LNs) are unknown. Our study unravels the tissue-specific transcriptional profiles of 47,287 CD127+ ILCs within the human abdominal and thoracic LNs. LNs contain a higher frequency of CD127+ ILCs than in BM or spleen. We define independent stages of ILC development, including EILP and pILC in the BM. These progenitors exist in LNs in addition to naïve ILCs (nILCs) that can differentiate into mature ILCs. We define three ILC1 and four ILC3 sub-clusters in the LNs. ILC1 and ILC3 subsets have clusters with high heat shock protein-encoding genes. We identify previously unrecognized regulons, including the BACH2 family for ILC1 and the ATF family for ILC3. Our study is the comprehensive characterization of ILCs in LNs, providing an in-depth understanding of ILC-mediated immunity in humans.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA
| | | | - Sridhar Rao
- Blood Research Institute, Versiti, Milwaukee, WI, USA
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, MCW, Milwaukee, WI, USA
- Department of Cell Biology, Neurobiology, and Anatomy, MCW, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Blood Research Institute, Versiti, Milwaukee, WI, USA.
- Department of Microbiology and Immunology, Medical College of Wisconsin (MCW), Milwaukee, WI, USA.
- Division of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, MCW, Milwaukee, WI, USA.
- Division of Hematology and Oncology, Department of Medicine, MCW, Milwaukee, WI, USA.
| |
Collapse
|
2
|
Gutiérrez-Vera C, García-Betancourt R, Palacios PA, Müller M, Montero DA, Verdugo C, Ortiz F, Simon F, Kalergis AM, González PA, Saavedra-Avila NA, Porcelli SA, Carreño LJ. Natural killer T cells in allergic asthma: implications for the development of novel immunotherapeutical strategies. Front Immunol 2024; 15:1364774. [PMID: 38629075 PMCID: PMC11018981 DOI: 10.3389/fimmu.2024.1364774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
Allergic asthma has emerged as a prevalent allergic disease worldwide, affecting most prominently both young individuals and lower-income populations in developing and developed countries. To devise effective and curative immunotherapy, it is crucial to comprehend the intricate nature of this condition, characterized by an immune response imbalance that favors a proinflammatory profile orchestrated by diverse subsets of immune cells. Although the involvement of Natural Killer T (NKT) cells in asthma pathology is frequently implied, their specific contributions to disease onset and progression remain incompletely understood. Given their remarkable ability to modulate the immune response through the rapid secretion of various cytokines, NKT cells represent a promising target for the development of effective immunotherapy against allergic asthma. This review provides a comprehensive summary of the current understanding of NKT cells in the context of allergic asthma, along with novel therapeutic approaches that leverage the functional response of these cells.
Collapse
Affiliation(s)
- Cristián Gutiérrez-Vera
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Richard García-Betancourt
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo A. Palacios
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marioly Müller
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - David A. Montero
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carlos Verdugo
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Francisca Ortiz
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noemi A. Saavedra-Avila
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Leandro J. Carreño
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
- Programa de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
3
|
Teunissen MBM, Pilgaard Møller LB, Løvendorf MB, Skov L, Bonefeld CM, Bekkenk MW, Clark RA, Mann M, Dyring-Andersen B. In-Depth Proteomic Map of Innate Lymphoid Cells from Healthy Human Skin and Blood. J Invest Dermatol 2024; 144:316-330.e3. [PMID: 37544588 DOI: 10.1016/j.jid.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023]
Abstract
Innate lymphoid cells (ILCs) are essential players in the skin-associated immune system, nevertheless little is known about their proteomes and proteomic diversity. In this study, we describe about 6,600 proteins constitutively expressed by ILC2s and ILC3s from healthy human skin and blood using state-of-the-art proteomics. Although the vast majority of proteins was expressed by both ILC subsets and in both compartments, the skin ILC2s and ILC3s were more distinct than their counterparts in blood. Only skin ILC3s expressed uniquely detected proteins. Our in-depth proteomic dataset allowed us to define the cluster of differentiation marker profiles of the ILC subsets, explore distribution and abundance of proteins known to have immunological functions, as well as identify subset-specific proteins that have not previously been implicated in ILC biology. Taken together, our analyses substantially expand understanding of the protein expression signatures of ILC subsets. Going forward, these proteomic datasets will serve as valuable resources for future studies of ILC biology.
Collapse
Affiliation(s)
- Marcel B M Teunissen
- Department of Dermatology and Amsterdam institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Line B Pilgaard Møller
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marianne B Løvendorf
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte Hospital, Hellerup, Denmark; The Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte Hospital, Hellerup, Denmark
| | - Charlotte M Bonefeld
- The Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcel W Bekkenk
- Department of Dermatology and Amsterdam institute for Infection and Immunity, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Rachael A Clark
- Department of Dermatology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Mann
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Beatrice Dyring-Andersen
- Novo Nordisk Foundation (NNF) Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Dermatology and Allergy, Copenhagen University Hospital - Herlev and Gentofte Hospital, Hellerup, Denmark; The Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Gao X, Zuo S. Immune landscape and immunotherapy of hepatocellular carcinoma: focus on innate and adaptive immune cells. Clin Exp Med 2023; 23:1881-1899. [PMID: 36773210 PMCID: PMC10543580 DOI: 10.1007/s10238-023-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 02/12/2023]
Abstract
Hepatocellular carcinoma (HCC) is responsible for roughly 90% of all cases of primary liver cancer, and the cases are on the rise. The treatment of advanced HCC is a serious challenge. Immune checkpoint inhibitor (ICI) therapy has marked a watershed moment in the history of HCC systemic treatment. Atezolizumab in combination with bevacizumab has been approved as a first-line treatment for advanced HCC since 2020; however, the combination therapy is only effective in a limited percentage of patients. Considering that the tumor immune microenvironment (TIME) has a great impact on immunotherapies for HCC, an in-depth understanding of the immune landscape in tumors and the current immunotherapeutic approaches is extremely necessary. We elaborate on the features, functions, and cross talk of the innate and adaptive immune cells in HCC and highlight the benefits and drawbacks of various immunotherapies for advanced HCC, as well as future projections. HCC consists of a heterogeneous group of cancers with distinct etiologies and immune microenvironments. Almost all the components of innate and adaptive immune cells in HCC have altered, showing a decreasing trend in the number of tumor suppressor cells and an increasing trend in the pro-cancer cells, and there is also cross talk between various cell types. Various immunotherapies for HCC have also shown promising efficacy and application prospect. There are multilayered interwoven webs among various immune cell types in HCC, and emerging evidence demonstrates the promising prospect of immunotherapeutic approaches for HCC.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyi Street, Guiyang, 550000, Guizhou, China.
- Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
5
|
Thio CLP, Chang YJ. The modulation of pulmonary group 2 innate lymphoid cell function in asthma: from inflammatory mediators to environmental and metabolic factors. Exp Mol Med 2023; 55:1872-1884. [PMID: 37696890 PMCID: PMC10545775 DOI: 10.1038/s12276-023-01021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 09/13/2023] Open
Abstract
A dysregulated type 2 immune response is one of the fundamental causes of allergic asthma. Although Th2 cells are undoubtedly central to the pathogenesis of allergic asthma, the discovery of group 2 innate lymphoid cells (ILC2s) has added another layer of complexity to the etiology of this chronic disease. Through their inherent innate type 2 responses, ILC2s not only contribute to the initiation of airway inflammation but also orchestrate the recruitment and activation of other members of innate and adaptive immunity, further amplifying the inflammatory response. Moreover, ILC2s exhibit substantial cytokine plasticity, as evidenced by their ability to produce type 1- or type 17-associated cytokines under appropriate conditions, underscoring their potential contribution to nonallergic, neutrophilic asthma. Thus, understanding the mechanisms of ILC2 functions is pertinent. In this review, we present an overview of the current knowledge on ILC2s in asthma and the regulatory factors that modulate lung ILC2 functions in various experimental mouse models of asthma and in humans.
Collapse
Affiliation(s)
| | - Ya-Jen Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, 115, Taiwan.
- Institute of Translational Medicine and New Drug Development, China Medical University, Taichung City, 404, Taiwan.
| |
Collapse
|
6
|
Han J, Liu N, Jin W, Zanvit P, Zhang D, Xu J, Bynum A, Kazmi R, Zhang J, He W, Chen W. TGF-β controls development of TCRγδ +CD8αα + intestinal intraepithelial lymphocytes. Cell Discov 2023; 9:52. [PMID: 37253786 DOI: 10.1038/s41421-023-00542-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/11/2023] [Indexed: 06/01/2023] Open
Abstract
γδ intestinal intraepithelial lymphocytes (IELs) constitute the majority of IELs with unique CD8αα+ homodimers that are distinct from γδT cells in other tissues. However, it remains largely unclear how those cells develop. Here we show that transforming growth factor beta (TGF-β) signaling controls the development of TCRγδ+CD8αα+ IELs. Deletion of TGF-β receptors or Smad3 and Smad2 in bone marrow stem cells caused a deficiency of TCRγδ+CD8αα+ IELs in mixed bone marrow chimeric mice. Mechanistically, TGF-β is required for the development of TCRγδ+CD8αα+ IELs thymic precursors (CD44-CD25- γδ thymocytes). In addition, TGF-β signaling induced CD8α in thymic γδT cells and maintained CD8α expression and survival in TCRγδ+CD8αα+ IELs. Moreover, TGF-β also indirectly controls TCRγδ+CD8αα+ IELs by modulating the function of intestinal epithelial cells (IECs). Importantly, TGF-β signaling in TCRγδ+CD8αα+ IELs safeguarded the integrity of the intestinal barrier in dextran sulfate sodium (DSS)-induced colitis.
Collapse
Affiliation(s)
- Jiajia Han
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Na Liu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Peter Zanvit
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Dunfang Zhang
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Junji Xu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Bynum
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Rida Kazmi
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - Jianmin Zhang
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Wei He
- CAMS Key Laboratory for T Cell and Immunotherapy, State Key Laboratory of Medical Molecular Biology, Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Deng K, Liu Z, Li X, Zhang Z, Fan Y, Huang Q, Zhang Y, Wang F. Targeted Demethylation of the TGFβ1 mRNA Promotes Myoblast Proliferation via Activating the SMAD2 Signaling Pathway. Cells 2023; 12:cells12071005. [PMID: 37048078 PMCID: PMC10093215 DOI: 10.3390/cells12071005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recent evidence suggested that N6-methyladenosine (m6A) methylation can determine m6A-modified mRNA fate and play an important role in skeletal muscle development. It was well known that transforming growth factor beta 1 (TGFβ1) is involved in a variety of cellular processes, such as proliferation, differentiation, and apoptosis. However, little is known about the m6A-mediated TGFβ1 regulation in myogenesis. Here, we observed an increase in endogenous TGFβ1 expression and activity during myotube differentiation. However, the knockdown of TGFβ1 inhibits the proliferation and induces cell apoptosis of myoblast. Moreover, we found that m6A in 5′-untranslated regions (5′UTR) of TGFβ1 promote its decay and inhibit its expression, leading to the blockage of the TGFβ1/SMAD2 signaling pathway. Furthermore, the targeted specific demethylation of TGFβ1 m6A using dCas13b-FTO significantly increased the TGFβ1-mediated activity of the SMAD2 signaling pathway, promoting myoblast proliferation. These findings suggest that TGFβ1 is an essential regulator of myoblast growth that is negatively regulated by m6A. Overall, these results highlight the critical role of m6A-mediated post-transcriptional regulation in myogenesis.
Collapse
|
8
|
Donnelly RP. Cytokines 2022: 10th Annual Meeting of the International Cytokine & Interferon Society. J Interferon Cytokine Res 2023; 43:55-58. [PMID: 36695718 DOI: 10.1089/jir.2022.29050.rad] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- Raymond P Donnelly
- Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Zhao M, Shao F, Yu D, Zhang J, Liu Z, Ma J, Xia P, Wang S. Maturation and specialization of group 2 innate lymphoid cells through the lung-gut axis. Nat Commun 2022; 13:7600. [PMID: 36494354 PMCID: PMC9734379 DOI: 10.1038/s41467-022-35347-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILC) are abundant in mucosal tissues. They serve critical functions in anti-pathogen response and tissue homeostasis. However, the heterogenous composition of ILCs in mucosal sites and their various maturation trajectories are less well known. In this study, we characterize ILC types and functions from both the lung and the small intestine, and identify their tissue-specific markers. We find that ILC2s residing in the lung express CCR2, whereas intestinal ILC2s express CCR4. Through the use of CCR2 and CCR4 reporter mice, we show that ILC2s undergo translocation via the lung-gut axis upon IL-33 treatment. This trajectory of ILC2s is also observed at the postnatal stage. Allergen-induced activation of lung ILC2s affects the homeostasis of gut ILC2s. Together, our findings implicate that ILCs display tissue-specific features in both the lung and gut, and ILC2s mature along the lung-gut axis in particular homeostatic and inflammatory conditions.
Collapse
Affiliation(s)
- Min Zhao
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Fei Shao
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Dou Yu
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiaqi Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhen Liu
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Jiangwen Ma
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Pengyan Xia
- grid.11135.370000 0001 2256 9319Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Shuo Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
10
|
Furci F, Murdaca G, Allegra A, Gammeri L, Senna G, Gangemi S. IL-33 and the Cytokine Storm in COVID-19: From a Potential Immunological Relationship towards Precision Medicine. Int J Mol Sci 2022; 23:14532. [PMID: 36498859 PMCID: PMC9740753 DOI: 10.3390/ijms232314532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
Coronavirus SARS-CoV-2 has represented, and still represents, a real challenge from a clinical, diagnostic and therapeutic point of view. During acute infection, the increased levels of pro-inflammatory cytokines, which are involved in the pathology of disease and the development of SARS-CoV-2-induced acute respiratory disease syndrome, the life-threatening form of this infection, are correlated with patient survival and disease severity. IL-33, a key cytokine involved in both innate and adaptive immune responses in mucosal organs, can increase airway inflammation, mucus secretion and Th2 cytokine synthesis in the lungs, following respiratory infections. Similar to cases of exposure to known respiratory virus infections, exposure to SARS-CoV-2 induces the expression of IL-33, correlating with T-cell activation and lung disease severity. In this work, we analyse current evidence regarding the immunological role of IL-33 in patients affected by COVID-19, to evaluate not only the clinical impact correlated to its production but also to identify possible future immunological therapies that can block the most expressed inflammatory molecules, preventing worsening of the disease and saving patient lives.
Collapse
Affiliation(s)
- Fabiana Furci
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, 37124 Verona, Italy
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genoa, 16126 Genoa, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98122 Messina, Italy
| | - Luca Gammeri
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| | - Gianenrico Senna
- Asthma Centre and Allergy Unit, University of Verona and Verona University Hospital, 37124 Verona, Italy
- Department of Medicine, University of Verona and Verona University Hospital, 37124 Verona, Italy
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical Immunology, Policlinico G. Martino, University of Messina, 98100 Messina, Italy
| |
Collapse
|
11
|
Seyran M, Melanie S, Philip S, Amiq G, Fabian B. Allies or enemies? The effect of regulatory T cells and related T lymphocytes on the profibrotic environment in bleomycin-injured lung mouse models. Clin Exp Med 2022:10.1007/s10238-022-00945-7. [PMID: 36403186 PMCID: PMC10390389 DOI: 10.1007/s10238-022-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
AbstractIdiopathic pulmonary fibrosis (IPF) is characterized by permanent scarring of lung tissue and declining lung function, and is an incurable disease with increase in prevalence over the past decade. The current consensus is that aberrant wound healing following repeated injuries to the pulmonary epithelium is the most probable cause of IPF, with various immune inflammatory pathways having been reported to impact disease pathogenesis. While the role of immune cells, specifically T lymphocytes and regulatory T cells (Treg), in IPF pathogenesis has been reported and discussed recently, the pathogenic or beneficial roles of these cells in inducing or preventing lung fibrosis is still debated. This lack of understanding could be due in part to the difficulty in obtaining diseased human lung tissue for research purposes. For this reason, many animal models have been developed over the years to attempt to mimic the main clinical hallmarks of IPF: among these, inducing lung injury in rodents with the anti-cancer agent bleomycin has now become the most commonly studied animal model of IPF. Pulmonary fibrosis is the major side effect when bleomycin is administered for cancer treatment in human patients, and a similar effect can be observed after intra-tracheal administration of bleomycin to rodents. Despite many pathophysiological pathways of lung fibrosis having been investigated in bleomycin-injured animal models, one central facet still remains controversial, namely the involvement of specific T lymphocyte subsets, and in particular Treg, in disease pathogenesis. This review aims to summarize the major findings and conclusions regarding the involvement of immune cells and their receptors in the pathogenesis of IPF, and to elaborate on important parallels between animal models and the human disease. A more detailed understanding of the role of Treg and other immune cell subsets in lung injury and fibrosis derived from animal models is a critical basis for translating this knowledge to the development of new immune-based therapies for the treatment of human IPF.
Collapse
|
12
|
Schumacher MA, Liu CY, Katada K, Thai MH, Hsieh JJ, Hansten BJ, Waddell A, Rosen MJ, Frey MR. Deep Crypt Secretory Cell Differentiation in the Colonic Epithelium Is Regulated by Sprouty2 and Interleukin 13. Cell Mol Gastroenterol Hepatol 2022; 15:971-984. [PMID: 36414210 PMCID: PMC9982040 DOI: 10.1016/j.jcmgh.2022.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND & AIMS Deep crypt secretory (DCS) cells are a critical component of the colonic stem cell niche. However, the regulatory mechanisms controlling DCS cell numbers and function are not well understood. Sprouty2 is an inflammation-responsive regulator of intracellular signaling that influences colonic secretory cell numbers in colitis via an epithelial-stromal interleukin (IL)33/IL13 signaling loop. Here, we tested the hypothesis that IL13, induced by epithelial Sprouty2 down-regulation, promotes DCS cell differentiation and function. METHODS Distal colons from mice with an intestinal epithelial-specific Sprouty2 deletion (Spry2ΔIE) and littermate controls were analyzed by in situ hybridization for Reg4+ DCS cells. Single-cell RNA sequencing and immunostaining were used to identify DCS cell-derived host defense peptides (HDPs) and localization of IL13 and IL13 receptor; bulk RNA sequencing and quantitative polymerase chain reaction were used to quantify changes in expression of identified HDPs. Cytokine-treated colonoids were assessed for DCS cells. A requirement for an IL33/IL13 signaling loop in the regulation of DCS cells was assessed in vivo using IL13 null mice. RESULTS Reg4+ DCS cell numbers were increased 2-fold in distal colons of Spry2ΔIE mice with a concomitant overall increase in DCS cell marker expression (Reg4, Spink4, and Agr2). Single-cell transcriptomics showed the HDP Retnlb/Resistin Like Beta (RELMβ) is highly enriched in DCS cells. Retnlb/RELMβ expression was increased in Spry2ΔIE colons. IL13, but not IL33, induced Reg4 and Retnlb expression in colonic epithelial organoids, and IL33-mediated expansion of the DCS cell population in vivo was dependent on IL13, which was expressed predominantly by type II innate lymphoid cells in the colonic mucosa. CONCLUSIONS Sprouty2 limits colonic DCS cell differentiation through suppression of IL13 signaling. At homeostasis, DCS cells are marked by high levels of the HDP RELMβ. Loss of epithelial Sprouty2 activates type II innate lymphoid cells to release IL13, promoting expansion of the DCS cell population and increased colonic RELMβ levels.
Collapse
Affiliation(s)
- Michael A Schumacher
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California.
| | - Cambrian Y Liu
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Kay Katada
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Megan H Thai
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Jonathan J Hsieh
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Britany J Hansten
- The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Amanda Waddell
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael J Rosen
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Mark R Frey
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, California; The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California; Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, California.
| |
Collapse
|
13
|
Liu N, He J, Fan D, Gu Y, Wang J, Li H, Zhu X, Du Y, Tian Y, Liu B, Fan Z. Circular RNA circTmem241 drives group III innate lymphoid cell differentiation via initiation of Elk3 transcription. Nat Commun 2022; 13:4711. [PMID: 35953472 PMCID: PMC9372085 DOI: 10.1038/s41467-022-32322-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) exert important roles in host defense, tissue repair and inflammatory diseases. However, how ILC lineage specification is regulated remains largely elusive. Here we identify that circular RNA circTmem241 is highly expressed in group III innate lymphoid cells (ILC3s) and their progenitor cells. CircTmem241 deficiency impairs ILC3 commitment and attenuates anti-bacterial immunity. Mechanistically, circTmem241 interacts with Nono protein to recruit histone methyltransferase Ash1l onto Elk3 promoter in ILC progenitor cells (ILCPs). Ash1l-mediated histone modifications on Elk3 promoter enhance chromatin accessibility to initiate Elk3 transcription. Of note, circTmem241-/-, Nono-/- and Ash1l-/- ILCPs display impaired ILC3 differentiation, while Elk3 overexpression rescues ILC3 commitment ability. Finally, circTmem241-/-Elk3-/- mice show lower numbers of ILC3s and are more susceptible to bacterial infection. We reveal that the circTmem241-Nono-Ash1l-Elk3 axis is required for the ILCP differentiation into ILC3P and ILC3 maturation, which is important to manipulate this axis for ILC development on treatment of infectious diseases.
Collapse
Affiliation(s)
- Nian Liu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiacheng He
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongdong Fan
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yang Gu
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianyi Wang
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimu Li
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxiao Zhu
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Du
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yong Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China. .,Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Benyu Liu
- Research Center of Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zusen Fan
- Key Laboratory of Infection and Immunity of CAS, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Lin EC, Hong CH. IL-33 Enhances ACE2 Expression on Epidermal Keratinocytes in Atopic Dermatitis: A Plausible Issue for SARS-CoV-2 Transmission in Inflamed Atopic Skin. Biomedicines 2022; 10:biomedicines10051183. [PMID: 35625919 PMCID: PMC9138833 DOI: 10.3390/biomedicines10051183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Interleukin-33 (IL-33) is an important cytokine in the pathophysiology of atopic dermatitis (AD) and in the progression of COVID-19. Angiotensin converting enzyme 2 (ACE2), the entry receptor for SARS-CoV-2, is expressed in epidermal keratinocytes. Whether IL-33 could regulate the expression of ACE2 mechanistically in keratinocytes warrants investigation. Objective: We questioned whether the ACE2 expression is increased in AD skin. We also questioned whether ACE2 is expressed in keratinocytes; if so, would its expression be enhanced mechanistically by IL-33. Methods: We measured and compared the expression of ACE2 in skin from patients with AD, patients with psoriasis, and healthy controls using immunohistochemistry. Flow cytometry, immunofluorescent exam, and quantitative RT-PCR were used for measuring the ACE2 expression in cultured keratinocytes treated with IL-33 and IL-17. Blocking antibodies were utilized to study the intracellular signaling pathways governing the ACE2 expression using cytokines. Results: The results showed that the ACE2 expression is increased in AD compared with that in healthy skin and psoriasis. In primary epidermal keratinocytes, ACE2 is constitutively expressed. IL-33 induces a time-dependent increase in ACE2 expression in cultured keratinocytes through quantitative PCR, flow cytometry, and immunofluorescent examinations. Furthermore, pretreatment of an ERK inhibitor, but not a STAT3 inhibitor, eliminated the increases in ACE2 by IL-33 in keratinocytes, indicating that IL-33 enhances ACE2 expression through ERK on epidermal keratinocytes. Conclusion: This is the first study to reveal that IL-33 enhances ACE2 expression on keratinocytes via ERK. Although further mechanistic studies are required, the increased ACE2 expression in IL-33 might have a biological implication on the transmission of SARS-CoV-2 in patients with AD.
Collapse
Affiliation(s)
- En-Cheng Lin
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
| | - Chien-Hui Hong
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Department of Dermatology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence:
| |
Collapse
|
15
|
Krammer S, Yang Z, Zimmermann T, Xepapadaki P, Geppert CI, Papadopoulos NG, Finotto S. An Immunoregulatory Role of Interleukin-3 in Allergic Asthma. Front Immunol 2022; 13:821658. [PMID: 35281014 PMCID: PMC8904351 DOI: 10.3389/fimmu.2022.821658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 01/31/2023] Open
Abstract
Background Allergic asthma is a chronic airway inflammatory disease associated with airway mucus hyper-production. ILC2 cells, which express the Th2 transcription factor GATA3, have been associated with allergic asthma. The cytokine IL-3 is known to support eosinophil, basophil and mucosal mast cell differentiation and survival; however, its role on T regulatory cells as well as on lung ILC2 and in pediatric asthma needs further investigation. Objectives To investigate the role of IL-3 in preschool children and to explore its therapeutic role in experimental asthma. Methods In a cohort of preschool children with and without asthma, we analyzed the secretion of IL-3 in nasopharyngeal fluid (NPF) and IL-3 receptor (R) alpha chain mRNA expression in peripheral blood mononuclear cells (PBMCs). In a murine model of allergic asthma, we analyzed the phenotype of wild-type untreated and rIL-3 intranasally treated asthmatic mice. Results IL-3 was found downregulated in the nasopharyngeal fluid of children with partially controlled asthma, as compared to control children. Moreover, IL-3 was found induced in phytohemagglutinin (PHA)-stimulated PBMCs from children with asthma and treated with steroids. Finally, IL-3 in NPF directly correlated with the anti-inflammatory molecule sST2 in steroid-treated asthmatic children. Intranasal rIL-3 delivery in vivo during the challenge phase decreased airway mucus production and inflammatory eosinophils. Moreover, rIL-3 given during the challenge phase, reduced lung ST2intGATA3+ILC2, accompanied by an induction of T regulatory cells in the airways. Conclusions IL-3 was found associated with steroid-resolved asthma. Moreover, treatment with rIL-3 resulted in amelioration of airway eosinophilia and mucus production, two main pathophysiological conditions associated with asthma in a murine model of allergic asthma. Thus, rIL-3 opens new strategies for immunotherapy of this disease.
Collapse
Affiliation(s)
- Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Theodor Zimmermann
- Children's Hospital, Department of Allergy and Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Paraskevi Xepapadaki
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Carol I Geppert
- Institute of Pathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Centre for Respiratory Medicine & Allergy, Division of Infection, Immunity & Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
Clottu AS, Humbel M, Fluder N, Karampetsou MP, Comte D. Innate Lymphoid Cells in Autoimmune Diseases. Front Immunol 2022; 12:789788. [PMID: 35069567 PMCID: PMC8777080 DOI: 10.3389/fimmu.2021.789788] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/22/2021] [Indexed: 12/29/2022] Open
Abstract
Innate lymphoid cells (ILC) are a heterogeneous group of immune cells characterized by lymphoid morphology and cytokine profile similar to T cells but which do not express clonally distributed diverse antigen receptors. These particular cells express transcription factors and cytokines reflecting their similarities to T helper (Th)1, Th2, and Th17 cells and are therefore referred to as ILC1, ILC2, and ILC3. Other members of the ILC subsets include lymphoid tissue inducer (LTi) and regulatory ILC (ILCreg). Natural killer (NK) cells share a common progenitor with ILC and also exhibit a lymphoid phenotype without antigen specificity. ILC are found in low numbers in peripheral blood but are much more abundant at barrier sites such as the skin, liver, airways, lymph nodes, and the gastrointestinal tract. They play an important role in innate immunity due to their capacity to respond rapidly to pathogens through the production of cytokines. Recent evidence has shown that ILC also play a key role in autoimmunity, as alterations in their number or function have been identified in systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis. Here, we review recent advances in the understanding of the role of ILC in the pathogenesis of autoimmune diseases, with particular emphasis on their role as a potential diagnostic biomarker and as therapeutic targets.
Collapse
Affiliation(s)
- Aurelie S Clottu
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Morgane Humbel
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Natalia Fluder
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | | | - Denis Comte
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Zhang X, Chen Z, Zuo S, Sun H, Li X, Lu X, Xing Z, Chen M, Liu J, Xiao G, He Y. Endothelin-A Receptor Antagonist Alleviates Allergic Airway Inflammation via the Inhibition of ILC2 Function. Front Immunol 2022; 13:835953. [PMID: 35222426 PMCID: PMC8873101 DOI: 10.3389/fimmu.2022.835953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Allergic airway inflammation is a universal airway disease that is driven by hyperresponsiveness to inhaled allergens. Group 2 innate lymphoid cells (ILC2s) produce copious amounts of type 2 cytokines, which lead to allergic airway inflammation. Here, we discovered that both peripheral blood of human and mouse lung ILC2s express the endothelin-A receptor (ETAR), and the expression level of ETAR was dramatically induced upon interleukin-33 (IL-33) treatment. Subsequently, both preventive and therapeutic effects of BQ123, an ETAR antagonist, on allergic airway inflammation were observed, which were associated with decreased proliferation and type 2 cytokine productions by ILC2s. Furthermore, ILC2s from BQ123 treatment were found to be functionally impaired in response to an interleukin IL-33 challenged. And BQ123 treatment also affected the phosphorylation level of the extracellular signal-regulated kinase (ERK), as well as the level of GATA binding protein 3 (GATA3) in activated ILC2s. Interestingly, after BQ123 treatment, both mouse and human ILC2s in vitro exhibited decreased function and downregulation of ERK signaling and GATA3 stability. These observations imply that ETAR is an important regulator of ILC2 function and may be involved in ILC2-driven pulmonary inflammation. Therefore, blocking ETAR may be a promising therapeutic strategy for allergic airway inflammation.
Collapse
Affiliation(s)
- Xiaogang Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ziyang Chen
- Department of Neurosurgery Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shaowen Zuo
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hengbiao Sun
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Xinyao Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhe Xing
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiqi Chen
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingping Liu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Gang Xiao
- Department of Clinical Laboratory, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China
| | - Yumei He
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Affiliation(s)
- Hergen Spits
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Neuropilin-1 mediates lung tissue-specific control of ILC2 function in type 2 immunity. Nat Immunol 2022; 23:237-250. [PMID: 35075279 DOI: 10.1038/s41590-021-01097-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/18/2021] [Indexed: 12/17/2022]
Abstract
Group 2 innate lymphoid cells (ILC2s) are highly heterogeneous tissue-resident lymphocytes that regulate inflammation and tissue homeostasis in health and disease. However, how these cells integrate into the tissue microenvironment to perform tissue-specific functions is unclear. Here, we show neuropilin-1 (Nrp1), which is induced postnatally and sustained by lung-derived transforming growth factor beta-1 (TGFβ1), is a tissue-specific marker of lung ILC2s. Genetic ablation or pharmacological inhibition of Nrp1 suppresses IL-5 and IL-13 production by ILC2s and protects mice from the development of pulmonary fibrosis. Mechanistically, TGFβ1-Nrp1 signaling enhances ILC2 function and type 2 immunity by upregulating IL-33 receptor ST2 expression. These findings identify Nrp1 as a tissue-specific regulator of lung-resident ILC2s and highlight Nrp1 as a potential therapeutic target for pulmonary fibrosis.
Collapse
|
20
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
21
|
Hsu AT, Gottschalk TA, Tsantikos E, Hibbs ML. The Role of Innate Lymphoid Cells in Chronic Respiratory Diseases. Front Immunol 2021; 12:733324. [PMID: 34630416 PMCID: PMC8492945 DOI: 10.3389/fimmu.2021.733324] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/02/2021] [Indexed: 01/08/2023] Open
Abstract
The lung is a vital mucosal organ that is constantly exposed to the external environment, and as such, its defenses are continuously under threat. The pulmonary immune system has evolved to sense and respond to these danger signals while remaining silent to innocuous aeroantigens. The origin of the defense system is the respiratory epithelium, which responds rapidly to insults by the production of an array of mediators that initiate protection by directly killing microbes, activating tissue-resident immune cells and recruiting leukocytes from the blood. At the steady-state, the lung comprises a large collection of leukocytes, amongst which are specialized cells of lymphoid origin known as innate lymphoid cells (ILCs). ILCs are divided into three major helper-like subsets, ILC1, ILC2 and ILC3, which are considered the innate counterparts of type 1, 2 and 17 T helper cells, respectively, in addition to natural killer cells and lymphoid tissue inducer cells. Although ILCs represent a small fraction of the pulmonary immune system, they play an important role in early responses to pathogens and facilitate the acquisition of adaptive immunity. However, it is now also emerging that these cells are active participants in the development of chronic lung diseases. In this mini-review, we provide an update on our current understanding of the role of ILCs and their regulation in the lung. We summarise how these cells and their mediators initiate, sustain and potentially control pulmonary inflammation, and their contribution to the respiratory diseases chronic obstructive pulmonary disease (COPD) and asthma.
Collapse
Affiliation(s)
- Amy T Hsu
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Timothy A Gottschalk
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Evelyn Tsantikos
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
22
|
Abstract
Interleukin-4 (IL-4) is a four-α-helical bundle type I cytokine with broad pleiotropic actions on multiple lineages. Major actions of IL-4 were initially discovered for B and T cells, but this cytokine acts on more than a dozen different target cells spanning the innate and adaptive immune systems and is produced by multiple different cellular sources. While IL-4 was discovered just under 40 years ago in 1982, the interest in and discoveries related to this cytokine continue to markedly expand. There are important new advances related to its biological actions and to its mechanisms of signaling, including critical genes and downstream targets in a range of cell types. IL-4 is critical not only for careful control of immunoglobulin production but also related to inflammation, fibrosis, allergic reactions, and antitumor activity, with actions of IL-4 occurring through two different types of receptors, one of which is also used by IL-13, a closely related cytokine with partially overlapping actions. In this review, we cover critical older information but also highlight newer advances. An area of evolving interest relates to the therapeutic blockade of IL-4 signaling pathway to treat atopic dermatitis and asthma. Thus, this cytokine is historically important, and research in this area has both elucidated major biological pathways and led to therapeutic advances for diseases that affect millions of individuals.
Collapse
Affiliation(s)
- Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
23
|
miR-2337 induces TGF-β1 production in granulosa cells by acting as an endogenous small activating RNA. Cell Death Discov 2021; 7:253. [PMID: 34537818 PMCID: PMC8449777 DOI: 10.1038/s41420-021-00644-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/16/2021] [Accepted: 09/07/2021] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) is essential for ovarian function and female fertility in mammals. Herein, we identified three completely linked variants, including two known variants referred to as c.1583A > G and c.1587A > G and the novel variant c.2074A > C in the porcine TGF-β1 3′-UTR. An important role of these variants in Yorkshire sow fertility was revealed. Variants c.1583A > G and c.1587A > G were located at the miRNA response element (MRE) of miR-2337 and affected miR-2337 regulation of TGF-β1 3′-UTR activity. Interestingly, miR-2337 induces, not reduces the transcription and production of TGF-β1 in granulosa cells (GCs). Mechanistically, miR-2337 enhances TGF-β1 promoter activity via the MRE motif in the core promoter region and alters histone modifications, including H3K4me2, H3K4me3, H3K9me2, and H3K9ac. In addition, miR-2337 controls TGF-β1-mediated activity of the TGF-β signaling pathway and GC apoptosis. Taken together, our findings identify miR-2337 as an endogenous small activating RNA (saRNA) of TGF-β1 in GCs, while miR-2337 is identified as a small activator of the TGF-β signaling pathway which is expected to be a new target for rescuing GC apoptosis and treating low fertility.
Collapse
|
24
|
Nagashima R, Iyoda M. The Roles of Kidney-Resident ILC2 in Renal Inflammation and Fibrosis. Front Immunol 2021; 12:688647. [PMID: 34381446 PMCID: PMC8350317 DOI: 10.3389/fimmu.2021.688647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 12/24/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a recently discovered lymphocyte population with high cytokine productive capacity. Type-2 ILCs (ILC2s) are the most studied, and they exert a rapid type-2 immune response to eliminate helminth infections. Massive and sustainable ILC2 activation induces allergic tissue inflammation, so it is important to maintain correct ILC2 activity for immune homeostasis. The ILC2-activating cytokine IL-33 is released from epithelial cells upon tissue damage, and it is upregulated in various kidney disease mouse models and in kidney disease patients. Various kidney diseases eventually lead to renal fibrosis, which is a common pathway leading to end-stage renal disease and is a chronic kidney disease symptom. The progression of renal fibrosis is affected by the innate immune system, including renal-resident ILC2s; however, the roles of ILC2s in renal fibrosis are not well understood. In this review, we summarize renal ILC2 function and characterization in various kidney diseases and highlight the known and potential contributions of ILC2s to kidney fibrosis.
Collapse
Affiliation(s)
- Ryuichi Nagashima
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo, Japan
- Division of Nephrology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
25
|
de Jong E, Lauzon-Joset JF, Leffler J, Serralha M, Larcombe AN, Christophersen CT, Holt PG, Strickland DH, Bosco A. IRF7-Associated Immunophenotypes Have Dichotomous Responses to Virus/Allergen Coexposure and OM-85-Induced Reprogramming. Front Immunol 2021; 12:699633. [PMID: 34367159 PMCID: PMC8339879 DOI: 10.3389/fimmu.2021.699633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
High risk for virus-induced asthma exacerbations in children is associated with an IRF7lo immunophenotype, but the underlying mechanisms are unclear. Here, we applied a Systems Biology approach to an animal model comprising rat strains manifesting high (BN) versus low susceptibility (PVG) to experimental asthma, induced by virus/allergen coexposure, to elucidate the mechanism(s)-of-action of the high-risk asthma immunophenotype. We also investigated potential risk mitigation via pretreatment with the immune training agent OM-85. Virus/allergen coexposure in low-risk PVG rats resulted in rapid and transient airways inflammation alongside IRF7 gene network formation. In contrast, responses in high-risk BN rats were characterized by severe airways eosinophilia and exaggerated proinflammatory responses that failed to resolve, and complete absence of IRF7 gene networks. OM-85 had more profound effects in high-risk BN rats, inducing immune-related gene expression changes in lung at baseline and reducing exaggerated airway inflammatory responses to virus/allergen coexposure. In low-risk PVG rats, OM-85 boosted IRF7 gene networks in the lung but did not alter baseline gene expression or cellular influx. Distinct IRF7-associated asthma risk immunophenotypes have dichotomous responses to virus/allergen coexposure and respond differentially to OM-85 pretreatment. Extrapolating to humans, our findings suggest that the beneficial effects OM-85 pretreatment may preferentially target those in high-risk subgroups.
Collapse
Affiliation(s)
- Emma de Jong
- Telethon Kids Institute, Perth, WA, Australia.,University of Western Australia, Nedlands, WA, Australia
| | - Jean-Francois Lauzon-Joset
- Telethon Kids Institute, Perth, WA, Australia.,Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, QC, Canada
| | - Jonatan Leffler
- Telethon Kids Institute, Perth, WA, Australia.,University of Western Australia, Nedlands, WA, Australia
| | | | - Alexander N Larcombe
- Telethon Kids Institute, Perth, WA, Australia.,School of Public Health, Curtin University, Perth, WA, Australia
| | - Claus T Christophersen
- WA Human Microbiome Collaboration Centre, School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia.,Centre for Integrative Metabolomics and Computational Biology, School of Medical & Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | | | | | - Anthony Bosco
- Telethon Kids Institute, Perth, WA, Australia.,University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
26
|
Perkins TN, Oury TD. The perplexing role of RAGE in pulmonary fibrosis: causality or casualty? Ther Adv Respir Dis 2021; 15:17534666211016071. [PMID: 34275342 PMCID: PMC8293846 DOI: 10.1177/17534666211016071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease in which most patients die within 3 years of diagnosis. With an unknown etiology, IPF results in progressive fibrosis of the lung parenchyma, diminishing normal lung function, which results in respiratory failure, and eventually, death. While few therapies are available to reduce disease progression, patients continue to advance toward respiratory failure, leaving lung transplantation the only viable option for survival. As incidence and mortality rates steadily increase, the need for novel therapeutics is imperative. The receptor for advanced glycation endproducts (RAGE) is most highly expressed in the lungs and plays a significant role in a number of chronic lung diseases. RAGE has long been linked to IPF; however, confounding data from both human and experimental studies have left an incomplete and perplexing story. This review examines the present understanding of the role of RAGE in human and experimental models of IPF, drawing parallels to recent advances in RAGE biology. Moreover, this review discusses the role of RAGE in lung injury response, type 2 immunity, and cellular senescence, and how such mechanisms may relate to RAGE as both a biomarker of disease progression and potential therapeutic target in IPF.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Timothy N Perkins
- Department of Pathology, University of Pittsburgh School of Medicine, 3550 Terrace Street, S-784 Scaife Hall, Pittsburgh, PA 15261, USA
| | - Tim D Oury
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Roberts LB, Jowett GM, Read E, Zabinski T, Berkachy R, Selkirk ME, Jackson I, Niazi U, Anandagoda N, Araki M, Araki K, Kasturiarachchi J, James C, Enver T, Nimmo R, Reis R, Howard JK, Neves JF, Lord GM. MicroRNA-142 Critically Regulates Group 2 Innate Lymphoid Cell Homeostasis and Function. THE JOURNAL OF IMMUNOLOGY 2021; 206:2725-2739. [PMID: 34021046 PMCID: PMC7610861 DOI: 10.4049/jimmunol.2000647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023]
Abstract
MicroRNA-142 isoforms critically regulate ILC2 homeostasis and effector functions. MicroRNA-142 isoforms regulate the ILC2 lineage cell intrinsically. Socs1 and Gfi1 are miR-142 isoform regulated targets in ILC2s.
Innate lymphoid cells are central to the regulation of immunity at mucosal barrier sites, with group 2 innate lymphoid cells (ILC2s) being particularly important in type 2 immunity. In this study, we demonstrate that microRNA(miR)-142 plays a critical, cell-intrinsic role in the homeostasis and function of ILC2s. Mice deficient for miR-142 expression demonstrate an ILC2 progenitor–biased development in the bone marrow, and along with peripheral ILC2s at mucosal sites, these cells display a greatly altered phenotype based on surface marker expression. ILC2 proliferative and effector functions are severely dysfunctional following Nippostrongylus brasiliensis infection, revealing a critical role for miR-142 isoforms in ILC2-mediated immune responses. Mechanistically, Socs1 and Gfi1 expression are regulated by miR-142 isoforms in ILC2s, impacting ILC2 phenotypes as well as the proliferative and effector capacity of these cells. The identification of these novel pathways opens potential new avenues to modulate ILC2-dependent immune functions.
Collapse
Affiliation(s)
- Luke B Roberts
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Geraldine M Jowett
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom.,Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom.,Wellcome Trust Cell Therapies and Regenerative Medicine PhD program, London, United Kingdom
| | - Emily Read
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom.,Wellcome Trust Cell Therapies and Regenerative Medicine PhD program, London, United Kingdom
| | - Tomas Zabinski
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Murray E Selkirk
- Department of Life Sciences, Imperial College London, United Kingdom
| | - Ian Jackson
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Umar Niazi
- Guy's and St Thomas' National Health Service Foundation Trust and King's College London National Institute for Health Research Biomedical Research Centre Translational Bioinformatics Platform, Guy's Hospital, London, United Kingdom
| | - Nelomi Anandagoda
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Masatake Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Jagath Kasturiarachchi
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Chela James
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Tariq Enver
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Rachael Nimmo
- University College London Cancer Institute, University College London, London, United Kingdom
| | - Rita Reis
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Jane K Howard
- School of Life Course Sciences, King's College London, London, United Kingdom; and
| | - Joana F Neves
- Centre for Host-Microbiome Interactions, King's College London, London, United Kingdom
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, United Kingdom; .,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
28
|
de Lucía Finkel P, Xia W, Jefferies WA. Beyond Unconventional: What Do We Really Know about Group 2 Innate Lymphoid Cells? THE JOURNAL OF IMMUNOLOGY 2021; 206:1409-1417. [PMID: 33753565 DOI: 10.4049/jimmunol.2000812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/24/2020] [Indexed: 01/20/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are a set of effectors that mediate the expulsion of helminthic parasites but also drive allergic lung inflammation. As innate agents, they do not recognize Ag, instead, they are sensitive to alarmin engagement, upon which they produce type 2 cytokines that amplify adaptive immunity. Their lymphoid identity appoints them as an intriguing group of unconventional cells; however, increasing evidence is unraveling a series of unprecedented functions that <5 years ago were unthinkable for ILC2s, such as acquiring a proinflammatory identity that enables them to support TH1 immune responses. Their plastic nature has allowed the characterization of ILC2s in more detail than ever; however, the novelty of ILC2 biology requires constant updates and recapitulations. This review provides an overview of ILC2s and describes memory ILC2, regulatory ILC2, inflammatory ILC2, and type 1 ILC2 subsets based on activation status, tissue environments, and function.
Collapse
Affiliation(s)
- Pablo de Lucía Finkel
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wenjing Xia
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; .,The Vancouver Prostate Centre, Vancouver General Hospital, Vancouver, British Columbia V6H 3Z6, Canada.,Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Centre for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; and.,Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| |
Collapse
|
29
|
Froidure A, Crestani B. Regulation of immune cells in lung fibrosis: the reign of regnase-1? Eur Respir J 2021; 57:57/3/2004029. [PMID: 33707169 DOI: 10.1183/13993003.04029-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Antoine Froidure
- Service de pneumologie, Cliniques universitaires Saint-Luc et Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Bruno Crestani
- Université de Paris, Inserm U1152, Labex Inflamex, Paris, France.,APHP, Service de Pneumologie A, Reference center for rare pulmonary diseases, DHU APOLLO, Hôpital Bichat, Paris, France
| |
Collapse
|
30
|
Royer DJ, Cook DN. Regulation of Immune Responses by Nonhematopoietic Cells in Asthma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:292-301. [PMID: 33397743 PMCID: PMC8581969 DOI: 10.4049/jimmunol.2000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
Nonhematopoietic cells are emerging as important contributors to many inflammatory diseases, including allergic asthma. Recent advances have led to a deeper understanding of how these cells interact with traditional immune cells, thereby modulating their activities in both homeostasis and disease. In addition to their well-established roles in gas exchange and barrier function, lung epithelial cells express an armament of innate sensors that can be triggered by various inhaled environmental agents, leading to the production of proinflammatory molecules. Advances in cell lineage tracing and single-cell RNA sequencing have expanded our knowledge of rare, but immunologically important nonhematopoietic cell populations. In parallel with these advances, novel reverse genetic approaches are revealing how individual genes in different lung-resident nonhematopoietic cell populations contribute to the initiation and maintenance of asthma. This knowledge is already revealing new pathways that can be selectively targeted to treat distinct forms of asthma.
Collapse
Affiliation(s)
- Derek J Royer
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
31
|
De Martinis M, Ginaldi L, Sirufo MM, Bassino EM, De Pietro F, Pioggia G, Gangemi S. IL-33/Vitamin D Crosstalk in Psoriasis-Associated Osteoporosis. Front Immunol 2021; 11:604055. [PMID: 33488605 PMCID: PMC7819870 DOI: 10.3389/fimmu.2020.604055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Patients with psoriasis (Pso) and, in particular, psoriatic arthritis (PsoA) have an increased risk of developing osteoporosis (OP). It has been shown that OP is among the more common pathologies associated with Pso, mainly due to the well-known osteopenizing conditions coexisting in these patients. Pso and OP share common risk factors, such as vitamin D deficiency and chronic inflammation. Interestingly, the interleukin (IL)-33/ST2 axis, together with vitamin D, is closely related to both Pso and OP. Vitamin D and the IL-33/ST2 signaling pathways are closely involved in bone remodeling, as well as in skin barrier pathophysiology. The production of anti-osteoclastogenic cytokines, e.g., IL-4 and IL-10, is promoted by IL-33 and vitamin D, which are stimulators of both regulatory and Th2 cells. IL-33, together with other Th2 cytokines, shifts osteoclast precursor differentiation towards macrophage and dendritic cells and inhibits receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis by regulating the expression of anti-osteoclastic genes. However, while the vitamin D protective functions in OP and Pso have been definitively ascertained, the overall effect of IL-33 on bone and skin homeostasis, because of its pleiotropic action, is still controversial. Emerging evidence suggests a functional link between vitamin D and the IL-33/ST2 axis, which acts through hormonal influences and immune-mediated effects, as well as cellular and metabolic functions. Based on the actions of vitamin D and IL-33 in Pso and OP, here, we hypothesize the role of their crosstalk in the pathogenesis of both these pathologies.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Enrica Maria Bassino
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Francesca De Pietro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), Messina, Italy
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| |
Collapse
|
32
|
Role of TGF-Beta and Smad7 in Gut Inflammation, Fibrosis and Cancer. Biomolecules 2020; 11:biom11010017. [PMID: 33375423 PMCID: PMC7823508 DOI: 10.3390/biom11010017] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract contains the largest population of immune cells in the body and this is a reflection of the fact that it is continuously exposed to a myriad of dietary and bacterial antigens. Although these cells produce a variety of inflammatory cytokines that could potentially promote tissue damage, in normal conditions the mucosal immune response is tightly controlled by counter-regulatory factors, which help induce and maintain gut homeostasis and tolerance. One such factor is transforming growth factor (TGF)-β1, a cytokine produced by multiple lineages of leukocytes, stromal cells and epithelial cells, and virtually targets all the gut mucosal cell types. Indeed, studies in animals and humans have shown that defects in TGF-β1 production and/or signaling can lead to the development of immune-inflammatory pathologies, fibrosis and cancer in the gut. Here, we review and discuss the available evidence about the role of TGF-β1 and Smad7, an inhibitor of TGF-β1 activity, in gut inflammation, fibrosis and cancer with particular regard to the contribution of these two molecules in the pathogenesis of inflammatory bowel diseases and colon cancer.
Collapse
|
33
|
Zizzo G, Cohen PL. Imperfect storm: is interleukin-33 the Achilles heel of COVID-19? THE LANCET. RHEUMATOLOGY 2020; 2:e779-e790. [PMID: 33073244 PMCID: PMC7546716 DOI: 10.1016/s2665-9913(20)30340-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unique cytokine signature of COVID-19 might provide clues to disease mechanisms and possible future therapies. Here, we propose a pathogenic model in which the alarmin cytokine, interleukin (IL)-33, is a key player in driving all stages of COVID-19 disease (ie, asymptomatic, mild-moderate, severe-critical, and chronic-fibrotic). In susceptible individuals, IL-33 release by damaged lower respiratory cells might induce dysregulated GATA-binding factor 3-expressing regulatory T cells, thereby breaking immune tolerance and eliciting severe acute respiratory syndrome coronavirus 2-induced autoinflammatory lung disease. Such disease might be initially sustained by IL-33-differentiated type-2 innate lymphoid cells and locally expanded γδ T cells. In severe COVID-19 cases, the IL-33-ST2 axis might act to expand the number of pathogenic granulocyte-macrophage colony-stimulating factor-expressing T cells, dampen antiviral interferon responses, elicit hyperinflammation, and favour thromboses. In patients who survive severe COVID-19, IL-33 might drive pulmonary fibrosis by inducing myofibroblasts and epithelial-mesenchymal transition. We discuss the therapeutic implications of these hypothetical pathways, including use of therapies that target IL-33 (eg, anti-ST2), T helper 17-like γδ T cells, immune cell homing, and cytokine balance.
Collapse
Affiliation(s)
- Gaetano Zizzo
- Temple Autoimmunity Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Unit of Rheumatology, Department of Internal Medicine, ASST Ovest Milanese, Milan, Italy
| | - Philip L Cohen
- Temple Autoimmunity Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
- Section of Rheumatology, Department of Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
34
|
Akama Y, Satoh-Takayama N, Kawamoto E, Ito A, Gaowa A, Park EJ, Imai H, Shimaoka M. The Role of Innate Lymphoid Cells in the Regulation of Immune Homeostasis in Sepsis-Mediated Lung Inflammation. Diagnostics (Basel) 2020; 10:diagnostics10100808. [PMID: 33053762 PMCID: PMC7600279 DOI: 10.3390/diagnostics10100808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Septic shock/severe sepsis is a deregulated host immune system response to infection that leads to life-threatening organ dysfunction. Lung inflammation as a form of acute lung injury (ALI) is often induced in septic shock. Whereas macrophages and neutrophils have been implicated as the principal immune cells regulating lung inflammation, group two innate lymphoid cells (ILC2s) have recently been identified as a new player regulating immune homeostasis. ILC2 is one of the three major ILC subsets (ILC1s, ILC2s, and ILC3s) comprised of newly identified innate immune cells. These cells are characterized by their ability to rapidly produce type 2 cytokines. ILC2s are predominant resident ILCs and, thereby, have the ability to respond to signals from damaged tissues. ILC2s regulate the immune response, and ILC2-derived type 2 cytokines may exert protective roles against sepsis-induced lung injury. This focused review not only provides readers with new insights into the signaling mechanisms by which ILC2s modulate sepsis-induced lung inflammation, but also proposes ILC2 as a novel therapeutic target for sepsis-induced ALI.
Collapse
Affiliation(s)
- Yuichi Akama
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
- Department of Emergency and Disaster Medicine, Faculty, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan;
- Correspondence: (Y.A.); (M.S.)
| | - Naoko Satoh-Takayama
- Laboratory for Intestinal Ecosystem, Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan;
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Eiji Kawamoto
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
- Department of Emergency and Disaster Medicine, Faculty, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan;
| | - Atsushi Ito
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
- Department of Thoracic and Cardiovascular Surgery, Faculty, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan
| | - Arong Gaowa
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
| | - Eun Jeong Park
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
| | - Hiroshi Imai
- Department of Emergency and Disaster Medicine, Faculty, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan;
| | - Motomu Shimaoka
- Department of Molecular Pathobiology and Cell Adhesion Biology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu City, Mie 514-8507, Japan; (E.K.); (A.I.); (A.G.); (E.J.P.)
- Correspondence: (Y.A.); (M.S.)
| |
Collapse
|
35
|
Lymphocyte Immunosuppression and Dysfunction Contributing to Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS). Shock 2020; 55:723-741. [PMID: 33021569 DOI: 10.1097/shk.0000000000001675] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABSTRACT Persistent Inflammation, Immune Suppression, and Catabolism Syndrome (PICS) is a disease state affecting patients who have a prolonged recovery after the acute phase of a large inflammatory insult. Trauma and sepsis are two pathologies after which such an insult evolves. In this review, we will focus on the key clinical determinants of PICS: Immunosuppression and cellular dysfunction. Currently, relevant immunosuppressive functions have been attributed to both innate and adaptive immune cells. However, there are significant gaps in our knowledge, as for trauma and sepsis the immunosuppressive functions of these cells have mostly been described in acute phase of inflammation so far, and their clinical relevance for the development of prolonged immunosuppression is mostly unknown. It is suggested that the initial immune imbalance determines the development of PCIS. Additionally, it remains unclear what distinguishes the onset of immune dysfunction in trauma and sepsis and how this drives immunosuppression in these cells. In this review, we will discuss how regulatory T cells (Tregs), innate lymphoid cells, natural killer T cells (NKT cells), TCR-a CD4- CD8- double-negative T cells (DN T cells), and B cells can contribute to the development of post-traumatic and septic immunosuppression. Altogether, we seek to fill a gap in the understanding of the contribution of lymphocyte immunosuppression and dysfunction to the development of chronic immune disbalance. Further, we will provide an overview of promising diagnostic and therapeutic interventions, whose potential to overcome the detrimental immunosuppression after trauma and sepsis is currently being tested.
Collapse
|
36
|
Elk-1 transcriptionally regulates ZC3H4 expression to promote silica-induced epithelial-mesenchymal transition. J Transl Med 2020; 100:959-973. [PMID: 32218530 DOI: 10.1038/s41374-020-0419-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial-mesenchymal transition (EMT) process is a key priming activity of fibroblasts in pulmonary fibrosis during silicosis. Ets-like protein-1 (Elk-1) is a critical modulator that promotes functional changes in cells, and the effects are mediated by oxidative stress (OS). However, whether ELK-1 is involved in EMT of silicosis remains unclear. In addition, researchers have found that Elk-1 is involved in the expression of the gene zc3h12a, which encodes the protein MCPIP1, and MCPIP1 is a member of the zinc finger Cys-Cys-Cys-His (CCCH)-type protein family. A previous study from our lab showed that ZC3H4, which is also a member of the CCCH-type protein family, critically affected the regulation of EMT during silicosis. However, it has not yet been elucidated if ELK-1 acts at the promoter for zc3h4 to increase its expression in a mechanism that is similar to that of the zc3h12a gene and whether such regulation ultimately controls EMT. Therefore, we explored the correlation between ELK-1 and ZC3H4 expression and tested the underlying mechanisms affecting ELK-1 activation induced by silica. Our study identifies that SiO2-mediated EMT via ELK-1, with the upstream activity of OS and the downstream signaling of ZC3H4 expression resulting in enhanced EMT. These findings suggest that the nuclear transcription factor ELK-1 may be useful as a novel target for the treatment of pulmonary fibrosis.
Collapse
|
37
|
De Martinis M, Sirufo MM, Suppa M, Ginaldi L. IL-33/IL-31 Axis in Osteoporosis. Int J Mol Sci 2020; 21:E1239. [PMID: 32069819 PMCID: PMC7072890 DOI: 10.3390/ijms21041239] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/08/2020] [Accepted: 02/11/2020] [Indexed: 12/11/2022] Open
Abstract
The study of the immunoskeletal interface has led to the discovery of numerous cytokines involved in the regulation of bone remodeling, providing valuable information on the pathogenesis of osteoporosis. The role of inflammatory cytokines of the Th1 and Th17 profile in osteoporosis is well known. Here we focus on two newly discovered Th2 cytokines, IL-31 and IL-33, whose implications in osteoporosis are recently emerging. Clinical and experimental observations suggest an important role of the IL-33/IL-31 axis in osteoporosis. IL-33 induces IL-31 secretion by Th2 cells and inhibits RANKL-dependent osteoclastogenesis, thus counteracting bone loss. IL-31 influences Th1/Th17 osteoclastogenetic inflammation and limits Th2 osteoprotective processes, thus favoring osteoporosis. Better knowledge of the role of IL-31 and IL-33 and their receptor complexes in osteoporosis could provide an interesting perspective for the development of new and more effective therapies, possibly with less side effects.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| | - Mariano Suppa
- Department of Dermatology, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 64100 Teramo, Italy
| |
Collapse
|