1
|
Faheem A, Lawrence MC, Bushra GA, Meli MV, Blight BA. Metal-organic frameworks as anchors for giant unilamellar vesicle immobilization. J Mater Chem B 2025. [PMID: 39840848 DOI: 10.1039/d4tb02055c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Giant unilamellar vesicles (GUVs) are ideal for studying cellular mechanisms due to their cell-mimicking morphology and size. The formation, stability, and immobilization of these vesicles are crucial for drug delivery and bioimaging studies. Separately, metal-organic frameworks (MOFs) are actively researched owing to their unique and varied properties, yet little is known about the interaction between MOFs and phospholipids. This study investigates the influence of the metal-phosphate interface on the formation, size distribution, and stability of GUVs with different lipid compositions. GUVs were electroformed in the presence of a series of MOFs. The results show Al, Zn, Cu, Fe, Zr, and Ca metal centers of MOFs can coordinate to phospholipids on the surface of GUVs, leading to the formation of functional GUV@MOF constructs, with stablilities over 12 hours. Macroscopically, society has seen biology (people, plants, microbes) interacting with inorganic materials regularly. We now explore how microscopic biological models behave in the presence of inorganic constructs. This research opens new avenues for advanced biomedical applications interacting tailored frameworks with liposomes.
Collapse
Affiliation(s)
- Aroosha Faheem
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | - Mason C Lawrence
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | - Gazi A Bushra
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
| | - M-Vicki Meli
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Barry A Blight
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick, Canada.
| |
Collapse
|
2
|
Holler S, Casiraghi F, Hanczyc MM. Internal State of Vesicles Affects Higher Order State of Vesicle Assembly and Interaction. ACS OMEGA 2024; 9:49316-49322. [PMID: 39713690 PMCID: PMC11656350 DOI: 10.1021/acsomega.4c06037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Dynamic soft matter systems composed of functionalized vesicles and liposomes are typically produced and then manipulated through external means, including the addition of exogenous molecules. In biology, natural cells possess greater autonomy, as their internal states are continuously updated, enabling them to effect higher order properties of the system. Therefore, a conceptual and technical gap exists between the natural and artificial systems. We engineered functionalized vesicles to form multicore aggregates capable of self-assembly due to the presence of complementary ssDNA strands. A dynamic process was then triggered through an exogenously triggered on-demand release of an endogenously produced displacer molecule, resulting in multicore aggregate disassembly. This approach explores how internal states of vesicles can affect the external organization, demonstrating a very simple programmable strategy for assembly and then endogenous disassembly. This framework supports the exploration of larger and more complex multicore entities, opening a path toward community behavior and a higher degree of autonomy.
Collapse
Affiliation(s)
- Silvia Holler
- Cellular
Computational and Biology Department, CIBIO, Laboratory for Artificial
Biology, University of Trento, Via Sommarive 9, Povo 38123, Italy
| | - Federica Casiraghi
- Cellular
Computational and Biology Department, CIBIO, Laboratory for Artificial
Biology, University of Trento, Via Sommarive 9, Povo 38123, Italy
| | - Martin Michael Hanczyc
- Cellular
Computational and Biology Department, CIBIO, Laboratory for Artificial
Biology, University of Trento, Via Sommarive 9, Povo 38123, Italy
- Chemical
and Biological Engineering, University of
New Mexico, Albuquerque, New Mexico 87106, United States
| |
Collapse
|
3
|
Peng H, Zhao M, Liu X, Tong T, Zhang W, Gong C, Chowdhury R, Wang Q. Biomimetic Materials to Fabricate Artificial Cells. Chem Rev 2024; 124:13178-13215. [PMID: 39591535 PMCID: PMC11671219 DOI: 10.1021/acs.chemrev.4c00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
As the foundation of life, a cell is generally considered an advanced microreactor with a complicated structure and function. Undeniably, this fascinating complexity motivates scientists to try to extricate themselves from natural living matter and work toward rebuilding artificial cells in vitro. Driven by synthetic biology and bionic technology, the research of artificial cells has gradually become a subclass. It is not only held import in many disciplines but also of great interest in its synthesis. Therefore, in this review, we have reviewed the development of cell and bionic strategies and focused on the efforts of bottom-up strategies in artificial cell construction. Different from starting with existing living organisms, we have also discussed the construction of artificial cells based on biomimetic materials, from simple cell scaffolds to multiple compartment systems, from the construction of functional modules to the simulation of crucial metabolism behaviors, or even to the biomimetic of communication networks. All of them could represent an exciting advance in the field. In addition, we will make a rough analysis of the bottlenecks in this field. Meanwhile, the future development of this field has been prospecting. This review may bridge the gap between materials engineering and life sciences, forming a theoretical basis for developing various life-inspired assembly materials.
Collapse
Affiliation(s)
- Haisheng Peng
- Department of Pharmacology, Medical College of Shaoxing University, 508 Huancheng Western Road, Shaoxing 312099, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Tianjian Tong
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Wenyuan Zhang
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Chen Gong
- Department of Pharmaceutics, Daqing Branch, Harbin Medical University, Research and Development of Natural Products Key Laboratory of Harbin Medical University, 39 Xin Yang Road, Daqing 163319, China
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Qun Wang
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Cooper A, Subramaniam AB. Ultrahigh yields of giant vesicles obtained through mesophase evolution and breakup. SOFT MATTER 2024; 20:9547-9561. [PMID: 39618312 DOI: 10.1039/d4sm01109k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Self-assembly of dry amphiphilic lipid films on surfaces upon hydration is a crucial step in the formation of cell-like giant unilamellar vesicles (GUVs). GUVs are useful as biophysical models, as soft materials, as chassis for bottom-up synthetic biology, and in biomedical applications. Here via combined quantitative measurements of the molar yield and distributions of sizes and high-resolution imaging of the evolution of thin lipid films on surfaces, we report the discovery of a previously unknown pathway of lipid self-assembly which can lead to ultrahigh yields of GUVs of >50%. This yield is about 60% higher than any GUV yield reported to date. The "shear-induced fragmentation" pathway occurs in membranes containing 3 mol% of the poly(ethylene glycol) modified lipid PEG2000-DSPE (1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000]), when a lipid-dense foam-like mesophase forms upon hydration. The membranes in the mesophase fragment and close to form GUVs upon application of fluid shear. Experiments with varying mol% of PEG2000-DSPE and with lipids with partial molecular similarity to PEG2000-DSPE show that ultrahigh yields are only achievable under conditions where the lipid-dense mesophase forms. The increased yield of GUVs compared to mixtures without PEG2000-DSPE was general to flat supporting surfaces such as stainless steel sheets and to various lipid mixtures. In addition to increasing their accessibility as soft materials, these results demonstrate a route to obtaining ultrahigh yields of cell-sized liposomes using longstanding clinically-approved lipid formulations that could be useful for biomedical applications.
Collapse
Affiliation(s)
- Alexis Cooper
- Department of Chemistry and Biochemistry, University of California, Merced, CA 95343, USA
| | | |
Collapse
|
5
|
Valente S, Galanti A, Maghin E, Najdi N, Piccoli M, Gobbo P. Matching Together Living Cells and Prototissues: Will There Be Chemistry? Chembiochem 2024; 25:e202400378. [PMID: 39031571 DOI: 10.1002/cbic.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/04/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Scientific advancements in bottom-up synthetic biology have led to the development of numerous models of synthetic cells, or protocells. To date, research has mainly focused on increasing the (bio)chemical complexity of these bioinspired micro-compartmentalized systems, yet the successful integration of protocells with living cells remains one of the major challenges in bottom-up synthetic biology. In this review, we aim to summarize the current state of the art in hybrid protocell/living cell and prototissue/living cell systems. Inspired by recent breakthroughs in tissue engineering, we review the chemical, bio-chemical, and mechano-chemical aspects that hold promise for achieving an effective integration of non-living and living matter. The future production of fully integrated protocell/living cell systems and increasingly complex prototissue/living tissue systems not only has the potential to revolutionize the field of tissue engineering, but also paves the way for new technologies in (bio)sensing, personalized therapy, and drug delivery.
Collapse
Affiliation(s)
- Stefano Valente
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Agostino Galanti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Edoardo Maghin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Nahid Najdi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Martina Piccoli
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35127, Padova, Italy
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology, Unit of Trieste, Via G. Giusti 9, 50121, Firenze, Italy
| |
Collapse
|
6
|
Kojima T, Noguchi Y, Terasaka K, Asakura K, Banno T. Engineering pH-Responsive, Self-Healing Vesicle-Type Artificial Tissues with Higher-Order Cooperative Functionalities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311255. [PMID: 38415816 DOI: 10.1002/smll.202311255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/30/2024] [Indexed: 02/29/2024]
Abstract
Multicellular organisms demonstrate a hierarchical organization where multiple cells collectively form tissues, thereby enabling higher-order cooperative functionalities beyond the capabilities of individual cells. Drawing inspiration from this biological organization, assemblies of multiple protocells are developed to create novel functional materials with emergent higher-order cooperative functionalities. This paper presents new artificial tissues derived from multiple vesicles, which serve as protocellular models. These tissues are formed and manipulated through non-covalent interactions triggered by a salt bridge. Exhibiting pH-sensitive reversible formation and destruction under neutral conditions, these artificial vesicle tissues demonstrate three distinct higher-order cooperative functionalities: transportation of large cargoes, photo-induced contractions, and enhanced survivability against external threats. The rapid assembly and disassembly of these artificial tissues in response to pH variations enable controlled mechanical task performance. Additionally, the self-healing property of these artificial tissues indicates robustness against external mechanical damage. The research suggests that these vesicles can detect specific pH environments and spontaneously assemble into artificial tissues with advanced functionalities. This leads to the possibility of developing intelligent materials with high environmental specificity, particularly for applications in soft robotics.
Collapse
Affiliation(s)
- Tomoya Kojima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Yutaro Noguchi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Koichi Terasaka
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Kouichi Asakura
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| | - Taisuke Banno
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
| |
Collapse
|
7
|
Zhao J, Han X. Investigation of artificial cells containing the Par system for bacterial plasmid segregation and inheritance mimicry. Nat Commun 2024; 15:4956. [PMID: 38858376 PMCID: PMC11164925 DOI: 10.1038/s41467-024-49412-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/05/2024] [Indexed: 06/12/2024] Open
Abstract
A crucial step in life processes is the transfer of accurate and correct genetic material to offspring. During the construction of autonomous artificial cells, a very important step is the inheritance of genetic information in divided artificial cells. The ParMRC system, as one of the most representative systems for DNA segregation in bacteria, can be purified and reconstituted into GUVs to form artificial cells. In this study, we demonstrate that the eGFP gene is segregated into two poles by a ParM filament with ParR as the intermediate linker to bind ParM and parC-eGFP DNA in artificial cells. After the ParM filament splits, the cells are externally induced to divide into two daughter cells that contain parC-eGFP DNA by osmotic pressure and laser irradiation. Using a PURE system, we translate eGFP DNA into enhanced green fluorescent proteins in daughter cells, and bacterial plasmid segregation and inheritance are successfully mimicked in artificial cells. Our results could lead to the construction of more sophisticated artificial cells that can reproduce with genetic information.
Collapse
Affiliation(s)
- Jingjing Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
8
|
Naz M, Zhang L, Chen C, Yang S, Dou H, Mann S, Li J. Self-assembly of stabilized droplets from liquid-liquid phase separation for higher-order structures and functions. Commun Chem 2024; 7:79. [PMID: 38594355 PMCID: PMC11004187 DOI: 10.1038/s42004-024-01168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dynamic microscale droplets produced by liquid-liquid phase separation (LLPS) have emerged as appealing biomaterials due to their remarkable features. However, the instability of droplets limits the construction of population-level structures with collective behaviors. Here we first provide a brief background of droplets in the context of materials properties. Subsequently, we discuss current strategies for stabilizing droplets including physical separation and chemical modulation. We also discuss the recent development of LLPS droplets for various applications such as synthetic cells and biomedical materials. Finally, we give insights on how stabilized droplets can self-assemble into higher-order structures displaying coordinated functions to fully exploit their potentials in bottom-up synthetic biology and biomedical applications.
Collapse
Affiliation(s)
- Mehwish Naz
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Lin Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Chong Chen
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland
| | - Shuo Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China.
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, UK.
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jianwei Li
- MediCity Research Laboratory, University of Turku, Tykistökatu 6, Turku, 20520, Finland.
| |
Collapse
|
9
|
Waeterschoot J, Gosselé W, Lemež Š, Casadevall I Solvas X. Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nat Commun 2024; 15:2504. [PMID: 38509073 PMCID: PMC10954685 DOI: 10.1038/s41467-024-46732-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/08/2024] [Indexed: 03/22/2024] Open
Abstract
Recent research in artificial cell production holds promise for the development of delivery agents with therapeutic effects akin to real cells. To succeed in these applications, these systems need to survive the circulatory conditions. In this review we present strategies that, inspired by the endurance of red blood cells, have enhanced the viability of large, cell-like vehicles for in vivo therapeutic use, particularly focusing on giant unilamellar vesicles. Insights from red blood cells can guide modifications that could transform these platforms into advanced drug delivery vehicles, showcasing biomimicry's potential in shaping the future of therapeutic applications.
Collapse
Affiliation(s)
- Jorik Waeterschoot
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium.
| | - Willemien Gosselé
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | - Špela Lemež
- Department of Biosystems - MeBioS, KU Leuven, Willem de Croylaan 42, 3001, Leuven, Belgium
| | | |
Collapse
|
10
|
Pearce S, Lin C, Pérez-Mercader J. Adaptive and Dissipative Hierarchical Population Crowding of Synthetic Protocells through Click-PISA under Gradient Energy Inputs. NANO LETTERS 2024; 24:2457-2464. [PMID: 38373157 PMCID: PMC10906081 DOI: 10.1021/acs.nanolett.3c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
The ability of living objects to respond rapidly en masse to various stimuli or stress is an important function in response to externally applied changes in the local environment. This occurs across many length scales, for instance, bacteria swarming in response to different stimuli or stress and macromolecular crowding within cells. Currently there are few mechanisms to induce similar autonomous behaviors within populations of synthetic protocells. Herein, we report a system in which populations of individual objects behave in a coordinated manner in response to changes in the energetic environment by the emergent self-organization of large object swarms. These swarms contain protocell populations of approximately 60 000 individuals. We demonstrate the dissipative nature of the hierarchical constructs, which persist under appropriate UV stimulation. Finally, we identify the ability of the object populations to change behaviors in an adaptive population-wide response to the local energetic environment.
Collapse
Affiliation(s)
- Samuel Pearce
- Department
of Earth and Planetary Sciences, Origins of Life Initiative, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Chenyu Lin
- Department
of Earth and Planetary Sciences, Origins of Life Initiative, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Juan Pérez-Mercader
- Department
of Earth and Planetary Sciences, Origins of Life Initiative, Harvard University, Cambridge, Massachusetts 02138, United States
- The
Santa Fe Institute, Santa Fe, New Mexico 87501, United States
| |
Collapse
|
11
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
12
|
Liu S, Zhang C, Li L, Deng X, Hu C, Yang F, Liu Q, Tan W. Organization of an Artificial Multicellular System with a Tunable DNA Patch on a Membrane Surface. NANO LETTERS 2024; 24:433-440. [PMID: 38112415 DOI: 10.1021/acs.nanolett.3c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Coordinating multiple artificial cellular compartments into a well-organized artificial multicellular system (AMS) is of great interest in bottom-up synthetic biology. However, developing a facile strategy for fabricating an AMS with a controlled arrangement remains a challenge. Herein, utilizing in situ DNA hybridization chain reaction on the membrane surface, we developed a DNA patch-based strategy to direct the interconnection of vesicles. By tuning the DNA patch that generates heterotrophic adhesion for the attachment of vesicles, we could produce an AMS with higher-order structures straightforwardly and effectively. Furthermore, a hybrid AMS comprising live cells and vesicles was fabricated, and we found the hybrid AMS with higher-order structures arouses efficient molecular transportation from vesicles to living cells. In brief, our work provides a versatile strategy for modulating the self-assembly of AMSs, which could expand our capability to engineer synthetic biological systems and benefit synthetic cell research in programmable manipulation of intercellular communications.
Collapse
Affiliation(s)
- Shuang Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lexun Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiaodan Deng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Canqiong Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Fan Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, FuRong Laboratory, College of Biology, Hunan University, Changsha, Hunan 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- School of Materials Science and Engineering, Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
13
|
Wang X, Qiao X, Chen H, Wang L, Liu X, Huang X. Synthetic-Cell-Based Multi-Compartmentalized Hierarchical Systems. SMALL METHODS 2023; 7:e2201712. [PMID: 37069779 DOI: 10.1002/smtd.202201712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/14/2023] [Indexed: 06/19/2023]
Abstract
In the extant lifeforms, the self-sustaining behaviors refer to various well-organized biochemical reactions in spatial confinement, which rely on compartmentalization to integrate and coordinate the molecularly crowded intracellular environment and complicated reaction networks in living/synthetic cells. Therefore, the biological phenomenon of compartmentalization has become an essential theme in the field of synthetic cell engineering. Recent progress in the state-of-the-art of synthetic cells has indicated that multi-compartmentalized synthetic cells should be developed to obtain more advanced structures and functions. Herein, two ways of developing multi-compartmentalized hierarchical systems, namely interior compartmentalization of synthetic cells (organelles) and integration of synthetic cell communities (synthetic tissues), are summarized. Examples are provided for different construction strategies employed in the above-mentioned engineering ways, including spontaneous compartmentalization in vesicles, host-guest nesting, phase separation mediated multiphase, adhesion-mediated assembly, programmed arrays, and 3D printing. Apart from exhibiting advanced structures and functions, synthetic cells are also applied as biomimetic materials. Finally, key challenges and future directions regarding the development of multi-compartmentalized hierarchical systems are summarized; these are expected to lay the foundation for the creation of a "living" synthetic cell as well as provide a larger platform for developing new biomimetic materials in the future.
Collapse
Affiliation(s)
- Xiaoliang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Qiao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Haixu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
14
|
Yu X, Mukwaya V, Mann S, Dou H. Signal Transduction in Artificial Cells. SMALL METHODS 2023; 7:e2300231. [PMID: 37116092 DOI: 10.1002/smtd.202300231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/06/2023] [Indexed: 06/19/2023]
Abstract
In recent years, significant progress has been made in the emerging field of constructing biomimetic soft compartments with life-like behaviors. Given that biological activities occur under a flux of energy and matter exchange, the implementation of rudimentary signaling pathways in artificial cells (protocells) is a prerequisite for the development of adaptive sense-response phenotypes in cytomimetic models. Herein, recent approaches to the integration of signal transduction modules in model protocells prepared by bottom-up construction are discussed. The approaches are classified into two categories involving invasive biochemical signals or non-invasive physical stimuli. In the former mechanism, transducers with intrinsic recognition capability respond with high specificity, while in the latter, artificial cells respond through intra-protocellular energy transduction. Although major challenges remain in the pursuit of a sophisticated artificial signaling network for the orchestration of higher-order cytomimetic models, significant advances have been made in establishing rudimentary protocell communication networks, providing novel organizational models for the development of life-like microsystems and new avenues in protoliving technologies.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Vincent Mukwaya
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Stephen Mann
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
- Max Planck Bristol Centre for Minimal Biology and Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
15
|
Wang Z, Zhang M, Zhou Y, Zhang Y, Wang K, Liu J. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications. SMALL METHODS 2023; 7:e2300042. [PMID: 36908048 DOI: 10.1002/smtd.202300042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Synthetic protocells are minimal systems that mimic certain properties of natural cells and are used to research the emergence of life from a nonliving chemical network. Currently, coacervate microdroplets, which are formed via liquid-liquid phase separation, are receiving wide attention in the context of cell biology and protocell research; these microdroplets are notable because they can provide liquid-like compartment structures for biochemical reactions by creating highly macromolecular crowded local environments. In this review, an overview of recent research on the formation of coacervate microdroplets through phase separation; the design of coacervate-based stimuli-responsive protocells, multichamber protocells, and membranized protocells; and their cell mimic behaviors, is provided. The simplified protocell models with precisely defined and tunable compositions advance the understanding of the requirements for cellular structure and function. Efforts are then discussed to establish signal communication systems in protocell and protocell consortia, as communication is a fundamental feature of life that coordinates matter exchanges and energy fluxes dynamically in space and time. Finally, some perspectives on the challenges and future developments of synthetic protocell research in biomimetic science and biomedical applications are provided.
Collapse
Affiliation(s)
- Zefeng Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Min Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Yanwen Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
16
|
Sümbelli Y, Mason AF, van Hest JCM. Toward Artificial Cell-Mediated Tissue Engineering: A New Perspective. Adv Biol (Weinh) 2023; 7:e2300149. [PMID: 37565690 DOI: 10.1002/adbi.202300149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/12/2023]
Abstract
The fast-growing pace of regenerative medicine research has allowed the development of a range of novel approaches to tissue engineering applications. Until recently, the main points of interest in the majority of studies have been to combine different materials to control cellular behavior and use different techniques to optimize tissue formation, from 3-D bioprinting to in situ regeneration. However, with the increase of the understanding of the fundamentals of cellular organization, tissue development, and regeneration, has also come the realization that for the next step in tissue engineering, a higher level of spatiotemporal control on cell-matrix interactions is required. It is proposed that the combination of artificial cell research with tissue engineering could provide a route toward control over complex tissue development. By equipping artificial cells with the underlying mechanisms of cellular functions, such as communication mechanisms, migration behavior, or the coherent behavior of cells depending on the surrounding matrix properties, they can be applied in instructing native cells into desired differentiation behavior at a resolution not to be attained with traditional matrix materials.
Collapse
Affiliation(s)
- Yiğitcan Sümbelli
- Department of Biomedical Engineering, Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| | - Alexander F Mason
- School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jan C M van Hest
- Department of Biomedical Engineering, Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600MB, The Netherlands
| |
Collapse
|
17
|
Xu Q, Zhang Z, Lui PPY, Lu L, Li X, Zhang X. Preparation and biomedical applications of artificial cells. Mater Today Bio 2023; 23:100877. [PMID: 38075249 PMCID: PMC10701372 DOI: 10.1016/j.mtbio.2023.100877] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 10/16/2024] Open
Abstract
Artificial cells have received much attention in recent years as cell mimics with typical biological functions that can be adapted for therapeutic and diagnostic applications, as well as having an unlimited supply. Although remarkable progress has been made to construct complex multifunctional artificial cells, there are still significant differences between artificial cells and natural cells. It is therefore important to understand the techniques and challenges for the fabrication of artificial cells and their applications for further technological advancement. The key concepts of top-down and bottom-up methods for preparing artificial cells are summarized, and the advantages and disadvantages of the bottom-up methods are compared and critically discussed in this review. Potential applications of artificial cells as drug carriers (microcapsules), as signaling regulators for coordinating cellular communication and as bioreactors for biomolecule fabrication, are further discussed. The challenges and future trends for the development of artificial cells simulating the real activities of natural cells are finally described.
Collapse
Affiliation(s)
- Qian Xu
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
| | - Zeping Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, 999077, Hong Kong
| | - Liang Lu
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaowu Li
- Department of Materials Physics and Chemistry, School of Materials Science and Engineering, Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, Northeastern University, Shenyang, Liaoning, 110819, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
18
|
Li S, Zhao Y, Wu S, Zhang X, Yang B, Tian L, Han X. Regulation of species metabolism in synthetic community systems by environmental pH oscillations. Nat Commun 2023; 14:7507. [PMID: 37980410 PMCID: PMC10657449 DOI: 10.1038/s41467-023-43398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Constructing a synthetic community system helps scientist understand the complex interactions among species in a community and its environment. Herein, a two-species community is constructed with species A (artificial cells encapsulating pH-responsive molecules and sucrose) and species B (Saccharomyces cerevisiae), which causes the environment to exhibit pH oscillation behaviour due to the generation and dissipation of CO2. In addition, a three-species community is constructed with species A' (artificial cells containing sucrose and G6P), species B, and species C (artificial cells containing NAD+ and G6PDH). The solution pH oscillation regulates the periodical release of G6P from species A'; G6P then enters species C to promote the metabolic reaction that converts NAD+ to NADH. The location of species A' and B determines the metabolism behaviour in species C in the spatially coded three-species communities with CA'B, CBA', and A'CB patterns. The proposed synthetic community system provides a foundation to construct a more complicated microecosystem.
Collapse
Affiliation(s)
- Shubin Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yingming Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuqi Wu
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
19
|
Qi C, Ma X, Zhong J, Fang J, Huang Y, Deng X, Kong T, Liu Z. Facile and Programmable Capillary-Induced Assembly of Prototissues via Hanging Drop Arrays. ACS NANO 2023; 17:16787-16797. [PMID: 37639562 DOI: 10.1021/acsnano.3c03516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
An important goal for bottom-up synthetic biology is to construct tissue-like structures from artificial cells. The key is the ability to control the assembly of the individual artificial cells. Unlike most methods resorting to external fields or sophisticated devices, inspired by the hanging drop method used for culturing spheroids of biological cells, we employ a capillary-driven approach to assemble giant unilamellar vesicles (GUVs)-based protocells into colonized prototissue arrays by means of a coverslip with patterned wettability. By spatially confining and controllably merging a mixed population of lipid-coated double-emulsion droplets that hang on a water/oil interface, an array of synthetic tissue-like constructs can be obtained. Each prototissue module in the array comprises multiple tightly packed droplet compartments where interfacial lipid bilayers are self-assembled at the interfaces both between two neighboring droplets and between the droplet and the external aqueous environment. The number, shape, and composition of the interconnected droplet compartments can be precisely controlled. Each prototissue module functions as a processer, in which fast signal transports of molecules via cell-cell and cell-environment communications have been demonstrated by molecular diffusions and cascade enzyme reactions, exhibiting the ability to be used as biochemical sensing and microreactor arrays. Our work provides a simple yet scalable and programmable method to form arrays of prototissues for synthetic biology, tissue engineering, and high-throughput assays.
Collapse
Affiliation(s)
- Cheng Qi
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Xudong Ma
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Junfeng Zhong
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Jiangyu Fang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Yuanding Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Xiaokang Deng
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong 518000, China
- Department of Urology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518000, China
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518000, China
| |
Collapse
|
20
|
Luo C, Liu X, Zhang Y, Dai H, Ci H, Mou S, Zhou M, Chen L, Wang Z, Russell TP, Sun J. Reconfigurable Magnetic Liquid Building Blocks for Constructing Artificial Spinal Column Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300694. [PMID: 37409801 PMCID: PMC10477840 DOI: 10.1002/advs.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/02/2023] [Indexed: 07/07/2023]
Abstract
All-liquid molding can be used to transform a liquid into free-form solid constructs, while maintaining internal fluidity. Traditional biological scaffolds, such as cured pre-gels, are normally processed in solid state, sacrificing flowability and permeability. However, it is essential to maintain the fluidity of the scaffold to truly mimic the complexity and heterogeneity of natural human tissues. Here, this work molds an aqueous biomaterial ink into liquid building blocks with rigid shapes while preserving internal fluidity. The molded ink blocks for bone-like vertebrae and cartilaginous-intervertebral-disc shapes, are magnetically manipulated to assemble into hierarchical structures as a scaffold for subsequent spinal column tissue growth. It is also possible to join separate ink blocks by interfacial coalescence, different from bridging solid blocks by interfacial fixation. Generally, aqueous biomaterial inks are molded into shapes with high fidelity by the interfacial jamming of alginate surfactants. The molded liquid blocks can be reconfigured using induced magnetic dipoles, that dictated the magnetic assembly behavior of liquid blocks. The implanted spinal column tissue exhibits a biocompatibility based on in vitro seeding and in vivo cultivating results, showing potential physiological function such as bending of the spinal column.
Collapse
Affiliation(s)
- Chao Luo
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xubo Liu
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720USA
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yifan Zhang
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Haoyu Dai
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceTechnical Institute of Physics and ChemistryChinese Academy of SciencesBeijing100190China
| | - Hai Ci
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shan Mou
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Muran Zhou
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Lifeng Chen
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zhenxing Wang
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Thomas P. Russell
- Materials Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCalifornia94720USA
- Polymer Science and Engineering DepartmentUniversity of MassachusettsAmherstMassachusetts01003USA
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Jiaming Sun
- Department of Plastic SurgeryUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
21
|
Hu H, Krishaa L, Fong ELS. Magnetic force-based cell manipulation for in vitro tissue engineering. APL Bioeng 2023; 7:031504. [PMID: 37736016 PMCID: PMC10511261 DOI: 10.1063/5.0138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 08/22/2023] [Indexed: 09/23/2023] Open
Abstract
Cell manipulation techniques such as those based on three-dimensional (3D) bioprinting and microfluidic systems have recently been developed to reconstruct complex 3D tissue structures in vitro. Compared to these technologies, magnetic force-based cell manipulation is a simpler, scaffold- and label-free method that minimally affects cell viability and can rapidly manipulate cells into 3D tissue constructs. As such, there is increasing interest in leveraging this technology for cell assembly in tissue engineering. Cell manipulation using magnetic forces primarily involves two key approaches. The first method, positive magnetophoresis, uses magnetic nanoparticles (MNPs) which are either attached to the cell surface or integrated within the cell. These MNPs enable the deliberate positioning of cells into designated configurations when an external magnetic field is applied. The second method, known as negative magnetophoresis, manipulates diamagnetic entities, such as cells, in a paramagnetic environment using an external magnetic field. Unlike the first method, this technique does not require the use of MNPs for cell manipulation. Instead, it leverages the magnetic field and the motion of paramagnetic agents like paramagnetic salts (Gadobutrol, MnCl2, etc.) to propel cells toward the field minimum, resulting in the assembly of cells into the desired geometrical arrangement. In this Review, we will first describe the major approaches used to assemble cells in vitro-3D bioprinting and microfluidics-based platforms-and then discuss the use of magnetic forces for cell manipulation. Finally, we will highlight recent research in which these magnetic force-based approaches have been applied and outline challenges to mature this technology for in vitro tissue engineering.
Collapse
Affiliation(s)
- Huiqian Hu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - L. Krishaa
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Eliza Li Shan Fong
- Present address: Translational Tumor Engineering Laboratory, 15 Kent Ridge Cres, E7, 06-01G, Singapore 119276, Singapore. Author to whom correspondence should be addressed:
| |
Collapse
|
22
|
Xu L, Jia H, Zhang C, Yin B, Yao J. Magnetically controlled assembly: a new approach to organic integrated photonics. Chem Sci 2023; 14:8723-8742. [PMID: 37621424 PMCID: PMC10445431 DOI: 10.1039/d3sc01779f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Hierarchical self-assembly of organic molecules or assemblies is of great importance for organic photonics to move from fundamental research to integrated and practical applications. Magnetic fields with the advantages of high controllability, non-contact manipulation, and instantaneous response have emerged as an elegant way to prepare organic hierarchical nanostructures. In this perspective, we outline the development history of organic photonic materials and highlight the importance of organic hierarchical nanostructures for a wide range of applications, including microlasers, optical displays, information encoding, sensing, and beyond. Then, we will discuss recent advances in magnetically controlled assembly for creating organic hierarchical nanostructures, with a particular focus on their potential for enabling the development of integrated photonic devices with unprecedented functionality and performance. Finally, we present several perspectives on the further development of magnetically controlled assembly strategies from the perspective of performance optimization and functional design of organic integrated photonics.
Collapse
Affiliation(s)
- Lixin Xu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Jia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Baipeng Yin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
23
|
Lin AJ, Sihorwala AZ, Belardi B. Engineering Tissue-Scale Properties with Synthetic Cells: Forging One from Many. ACS Synth Biol 2023; 12:1889-1907. [PMID: 37417657 PMCID: PMC11017731 DOI: 10.1021/acssynbio.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
In metazoans, living cells achieve capabilities beyond individual cell functionality by assembling into multicellular tissue structures. These higher-order structures represent dynamic, heterogeneous, and responsive systems that have evolved to regenerate and coordinate their actions over large distances. Recent advances in constructing micrometer-sized vesicles, or synthetic cells, now point to a future where construction of synthetic tissue can be pursued, a boon to pressing material needs in biomedical implants, drug delivery systems, adhesives, filters, and storage devices, among others. To fully realize the potential of synthetic tissue, inspiration has been and will continue to be drawn from new molecular findings on its natural counterpart. In this review, we describe advances in introducing tissue-scale features into synthetic cell assemblies. Beyond mere complexation, synthetic cells have been fashioned with a variety of natural and engineered molecular components that serve as initial steps toward morphological control and patterning, intercellular communication, replication, and responsiveness in synthetic tissue. Particular attention has been paid to the dynamics, spatial constraints, and mechanical strengths of interactions that drive the synthesis of this next-generation material, describing how multiple synthetic cells can act as one.
Collapse
Affiliation(s)
- Alexander J Lin
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Ahmed Z Sihorwala
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Ren T, Maitusong M, Zhou X, Hong X, Cheng S, Lin Y, Xue J, Xu D, Chen J, Qian Y, Lu Y, Liu X, Zhu Y, Wang J. Programing Cell Assembly via Ink-Free, Label-Free Magneto-Archimedes Based Strategy. ACS NANO 2023; 17:12072-12086. [PMID: 37363813 DOI: 10.1021/acsnano.2c10704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering raised a high requirement to control cell distribution in defined materials and structures. In "ink"-based bioprintings, such as 3D printing and photolithography, cells were associated with inks for spatial orientation; the conditions suitable for one ink are hard to apply on other inks, which increases the obstacle in their universalization. The Magneto-Archimedes effect based (Mag-Arch) strategy can modulate cell locomotion directly without impelling inks. In a paramagnetic medium, cells were repelled from high magnetic strength zones due to their innate diamagnetism, which is independent of substrate properties. However, Mag-Arch has not been developed into a powerful bioprinting strategy as its precision, complexity, and throughput are limited by magnetic field distribution. By controlling the paramagnetic reagent concentration in the medium and the gaps between magnets, which decide the cell repelling scope of magnets, we created simultaneously more than a hundred micrometer scale identical assemblies into designed patterns (such as alphabets) with single/multiple cell types. Cell patterning models for cell migration and immune cell adhesion studies were conveniently created by Mag-Arch. As a proof of concept, we patterned a tumor/endothelial coculture model within a covered microfluidic channel to mimic epithelial-mesenchymal transition (EMT) under shear stress in a cancer pathological environment, which gave a potential solution to pattern multiple cell types in a confined space without any premodification. Overall, our Mag-Arch patterning presents an alternative strategy for the biofabrication and biohybrid assembly of cells with biomaterials featured in controlled distribution and organization, which can be broadly employed in tissue engineering, regenerative medicine, and cell biology research.
Collapse
Affiliation(s)
- Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Miribani Maitusong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xuhao Zhou
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Xiaoqian Hong
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yin Lin
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Junhui Xue
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Dilin Xu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yuwen Lu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| | - Yang Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, P.R. China
- Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, 310029, P.R. China
| |
Collapse
|
25
|
Yin Z, Gao N, Xu C, Li M, Mann S. Autonomic Integration in Nested Protocell Communities. J Am Chem Soc 2023. [PMID: 37369121 DOI: 10.1021/jacs.3c02816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The self-driven organization of model protocells into higher-order nested cytomimetic systems with coordinated structural and functional relationships offers a step toward the autonomic implementation of artificial multicellularity. Here, we describe an endosymbiotic-like pathway in which proteinosomes are captured within membranized alginate/silk fibroin coacervate vesicles by guest-mediated reconfiguration of the host protocells. We demonstrate that interchange of coacervate vesicle and droplet morphologies through proteinosome-mediated urease/glucose oxidase activity produces discrete nested communities capable of integrated catalytic activity and selective disintegration. The self-driving capacity is modulated by an internalized fuel-driven process using starch hydrolases sequestered within the host coacervate phase, and structural stabilization of the integrated protocell populations can be achieved by on-site enzyme-mediated matrix reinforcement involving dipeptide supramolecular assembly or tyramine-alginate covalent cross-linking. Our work highlights a semi-autonomous mechanism for constructing symbiotic cell-like nested communities and provides opportunities for the development of reconfigurable cytomimetic materials with structural, functional, and organizational complexity.
Collapse
Affiliation(s)
- Zhuping Yin
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Ning Gao
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Can Xu
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Stephen Mann
- Centre for Protolife Research, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Zhangjiang Institute for Advanced Study (ZIAS), Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai 201203, P. R. China
| |
Collapse
|
26
|
Cui M, Dutcher S, Bayly P, Meacham J. Robust acoustic trapping and perturbation of single-cell microswimmers illuminate three-dimensional swimming and ciliary coordination. Proc Natl Acad Sci U S A 2023; 120:e2218951120. [PMID: 37307440 PMCID: PMC10290211 DOI: 10.1073/pnas.2218951120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 04/18/2023] [Indexed: 06/14/2023] Open
Abstract
We report a label-free acoustic microfluidic method to confine single, cilia-driven swimming cells in space without limiting their rotational degrees of freedom. Our platform integrates a surface acoustic wave (SAW) actuator and bulk acoustic wave (BAW) trapping array to enable multiplexed analysis with high spatial resolution and trapping forces that are strong enough to hold individual microswimmers. The hybrid BAW/SAW acoustic tweezers employ high-efficiency mode conversion to achieve submicron image resolution while compensating for parasitic system losses to immersion oil in contact with the microfluidic chip. We use the platform to quantify cilia and cell body motion for wildtype biciliate cells, investigating effects of environmental variables like temperature and viscosity on ciliary beating, synchronization, and three-dimensional helical swimming. We confirm and expand upon the existing understanding of these phenomena, for example determining that increasing viscosity promotes asynchronous beating. Motile cilia are subcellular organelles that propel microorganisms or direct fluid and particulate flow. Thus, cilia are critical to cell survival and human health. The unicellular alga Chlamydomonas reinhardtii is widely used to investigate the mechanisms underlying ciliary beating and coordination. However, freely swimming cells are difficult to image with sufficient resolution to capture cilia motion, necessitating that the cell body be held during experiments. Acoustic confinement is a compelling alternative to use of a micropipette, or to magnetic, electrical, and optical trapping that may modify the cells and affect their behavior. Beyond establishing our approach to studying microswimmers, we demonstrate a unique ability to mechanically perturb cells via rapid acoustic positioning.
Collapse
Affiliation(s)
- Mingyang Cui
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO63110
| | - Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| | - J. Mark Meacham
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO63130
| |
Collapse
|
27
|
Zhang Y, Obuchi H, Toyota T. A Practical Guide to Preparation and Applications of Giant Unilamellar Vesicles Formed via Centrifugation of Water-in-Oil Emulsion Droplets. MEMBRANES 2023; 13:440. [PMID: 37103867 PMCID: PMC10144487 DOI: 10.3390/membranes13040440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 06/19/2023]
Abstract
Giant vesicles (GVs), which are closed lipid bilayer membranes with a diameter of more than 1 μm, have attracted attention not only as model cell membranes but also for the construction of artificial cells. For encapsulating water-soluble materials and/or water-dispersible particles or functionalizing membrane proteins and/or other synthesized amphiphiles, giant unilamellar vesicles (GUVs) have been applied in various fields, such as supramolecular chemistry, soft matter physics, life sciences, and bioengineering. In this review, we focus on a preparation technique for GUVs that encapsulate water-soluble materials and/or water-dispersible particles. It is based on the centrifugation of a water-in-oil emulsion layered on water and does not require special equipment other than a centrifuge, which makes it the first choice for laboratory use. Furthermore, we review recent studies on GUV-based artificial cells prepared using this technique and discuss their future applications.
Collapse
Affiliation(s)
- Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Haruto Obuchi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
28
|
Cooper A, Girish V, Subramaniam AB. Osmotic Pressure Enables High-Yield Assembly of Giant Vesicles in Solutions of Physiological Ionic Strengths. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5579-5590. [PMID: 37021722 PMCID: PMC10116648 DOI: 10.1021/acs.langmuir.3c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Giant unilamellar vesicles (GUVs) are micrometer-scale minimal cellular mimics that are useful for bottom-up synthetic biology and drug delivery. Unlike assembly in low-salt solutions, assembly of GUVs in solutions with ionic concentrations of 100-150 mM Na/KCl (salty solutions) is challenging. Chemical compounds deposited on the substrate or incorporated into the lipid mixture could assist in the assembly of GUVs. Here, we investigate quantitatively the effects of temperature and chemical identity of six polymeric compounds and one small molecule compound on the molar yields of GUVs composed of three different lipid mixtures using high-resolution confocal microscopy and large data set image analysis. All the polymers moderately increased the yields of GUVs either at 22 or 37 °C, whereas the small molecule compound was ineffective. Low-gelling temperature agarose is the singular compound that consistently produces yields of GUVs of greater than 10%. We propose a free energy model of budding to explain the effects of polymers in assisting the assembly of GUVs. The osmotic pressure exerted on the membranes by the dissolved polymer balances the increased adhesion between the membranes, thus reducing the free energy for bud formation. Data obtained by modulating the ionic strength and ion valency of the solution shows that the evolution of the yield of GUVs supports our model's prediction. In addition, polymer-specific interactions with the substrate and the lipid mixture affects yields. The uncovered mechanistic insights provide a quantitative experimental and theoretical framework to guide future studies. Additionally, this work shows a facile means for obtaining GUVs in solutions of physiological ionic strengths.
Collapse
Affiliation(s)
- Alexis Cooper
- Department
of Chemistry and Biochemistry, University
of California, Merced, Merced, California 95343, United States
| | - Vaishnavi Girish
- Department
of Bioengineering, University of California,
Merced, Merced, California 95343, United States
| | - Anand Bala Subramaniam
- Department
of Bioengineering, University of California,
Merced, Merced, California 95343, United States
| |
Collapse
|
29
|
Huang Y, Huang J, Yin W, Xie F, Coleman B, Cao Y, Aya S, Zhu W, Yang Z, Jiang L. Encoding Coacervate Droplets with Paramagnetism for Dynamical Reconfigurability and Spatial Addressability. ACS NANO 2023; 17:6234-6246. [PMID: 36951305 DOI: 10.1021/acsnano.2c09617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
It is an ongoing endeavor in chemistry and materials science to regulate coacervate droplets on a physiologically relevant spatiotemporal scale to ultimately match or even surpass living cells' precision, complexity, and functionality. Herein, we develop a magnetic strategy orthogonal to the thermal, pH, light, or chemical counterparts that are commonly employed by biotic or artificial systems; its successful implementation thus adds a missing piece to the current arsenal of manipulative methodologies. Specifically, we paramagnetize the otherwise diamagnetic coacervate droplets by cooperatively combining paramagnetic ingredients (including organic radicals, metal ions, and Fe3O4 nanoparticles) and coacervate ingredients to obtain "MagCoa" droplets. A simple model is derived theoretically to account for migration and division of MagCoa droplets in an uneven magnetic field. Experimentally, we produce an array of compartmentalized and monodispersed droplets using microfluidics and magnetically steer them with uniformity and synchronicity. We design and fabricate spatial magnetic modulators to engineer the landscape of a magnetic field that, in turn, directs the MagCoa droplets into predesigned patterns in a reconfigurable fashion. These programmable liquid patterns can be potentially extended to dynamic assembly and information encryption. We envision that the toolbox established here is of generality and multitudes to serve as a practical guide to control droplets magnetically.
Collapse
Affiliation(s)
- Yangkun Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jinpeng Huang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wenxiang Yin
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Fei Xie
- Institute of Information Technology, Handan University, Handan 056005, China
| | - Benjamin Coleman
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005-1892, United States
| | - Yaoyu Cao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511443, China
| | - Satoshi Aya
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lingxiang Jiang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Arulkumaran N, Singer M, Howorka S, Burns JR. Creating complex protocells and prototissues using simple DNA building blocks. Nat Commun 2023; 14:1314. [PMID: 36898984 PMCID: PMC10006096 DOI: 10.1038/s41467-023-36875-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Building synthetic protocells and prototissues hinges on the formation of biomimetic skeletal frameworks. Recreating the complexity of cytoskeletal and exoskeletal fibers, with their widely varying dimensions, cellular locations and functions, represents a major material hurdle and intellectual challenge which is compounded by the additional demand of using simple building blocks to ease fabrication and control. Here we harness simplicity to create complexity by assembling structural frameworks from subunits that can support membrane-based protocells and prototissues. We show that five oligonucleotides can anneal into nanotubes or fibers whose tunable thicknesses and lengths spans four orders of magnitude. We demonstrate that the assemblies' location inside protocells is controllable to enhance their mechanical, functional and osmolar stability. Furthermore, the macrostructures can coat the outside of protocells to mimic exoskeletons and support the formation of millimeter-scale prototissues. Our strategy could be exploited in the bottom-up design of synthetic cells and tissues, to the generation of smart material devices in medicine.
Collapse
Affiliation(s)
- Nishkantha Arulkumaran
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, WC1E 6BT, UK
| | - Stefan Howorka
- Department of Chemistry, Institute of Structural and Molecular Biology, University Collegfige London, London, WC1H 0AJ, UK
| | - Jonathan R Burns
- Department of Chemistry, Institute of Structural and Molecular Biology, University Collegfige London, London, WC1H 0AJ, UK.
| |
Collapse
|
31
|
Li H, Yan Y, Chen J, Shi K, Song C, Ji Y, Jia L, Li J, Qiao Y, Lin Y. Artificial receptor-mediated phototransduction toward protocellular subcompartmentalization and signaling-encoded logic gates. SCIENCE ADVANCES 2023; 9:eade5853. [PMID: 36857444 PMCID: PMC9977178 DOI: 10.1126/sciadv.ade5853] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Engineering artificial cellular systems capable of perceiving and transmitting external signals across membranes to activate downstream targets and coordinate protocellular responses is key to build cell-cell communications and protolife. Here, we report a synthetic photoreceptor-mediated signaling pathway with the integration of light harvesting, photo-to-chemical energy conversion, signal transmission, and amplification in synthetic cells, which ultimately resulted in protocell subcompartmentalization. Key to our design is a ruthenium-bipyridine complex that acts as a membrane-anchored photoreceptor to convert visible light into chemical information and transduce signals across the lipid membrane via flip-flop motion. By coupling receptor-mediated phototransduction with biological recognition and enzymatic cascade reactions, we further develop protocell signaling-encoded Boolean logic gates. Our results illustrate a minimal cell model to mimic the photoreceptor cells that can transduce the energy of light into intracellular responses and pave the way to modular control over the flow of information for complex metabolic and signaling pathways.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chuwen Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanglimin Ji
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liyan Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
32
|
Katke C, Pedrueza-Villalmanzo E, Spustova K, Ryskulov R, Kaplan CN, Gözen I. Colony-like Protocell Superstructures. ACS NANO 2023; 17:3368-3382. [PMID: 36795609 PMCID: PMC9979656 DOI: 10.1021/acsnano.2c08093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
We report the formation, growth, and dynamics of model protocell superstructures on solid surfaces, resembling single cell colonies. These structures, consisting of several layers of lipidic compartments enveloped in a dome-shaped outer lipid bilayer, emerged as a result of spontaneous shape transformation of lipid agglomerates deposited on thin film aluminum surfaces. Collective protocell structures were observed to be mechanically more stable compared to isolated spherical compartments. We show that the model colonies encapsulate DNA and accommodate nonenzymatic, strand displacement DNA reactions. The membrane envelope is able to disassemble and expose individual daughter protocells, which can migrate and attach via nanotethers to distant surface locations, while maintaining their encapsulated contents. Some colonies feature "exocompartments", which spontaneously extend out of the enveloping bilayer, internalize DNA, and merge again with the superstructure. A continuum elastohydrodynamic theory that we developed suggests that a plausible driving force behind subcompartment formation is attractive van der Waals (vdW) interactions between the membrane and surface. The balance between membrane bending and vdW interactions yields a critical length scale of 236 nm, above which the membrane invaginations can form subcompartments. The findings support our hypotheses that in extension of the "lipid world hypothesis", protocells may have existed in the form of colonies, potentially benefiting from the increased mechanical stability provided by a superstructure.
Collapse
Affiliation(s)
- Chinmay Katke
- Department
of Physics, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Esteban Pedrueza-Villalmanzo
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Göteborg SE-412 96, Sweden
- Department
of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg 405 30, Sweden
| | - Karolina Spustova
- Centre
for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| | - Ruslan Ryskulov
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, Göteborg SE-412 96, Sweden
| | - C. Nadir Kaplan
- Department
of Physics, Virginia Polytechnic Institute
and State University, Blacksburg, Virginia 24061, United States
- Center
for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Irep Gözen
- Centre
for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, 0318 Oslo, Norway
| |
Collapse
|
33
|
Yin B, Jia H, Wang H, Chen R, Xu L, Zhao YS, Zhang C, Yao J. Magnetic-Field-Driven Reconfigurable Microsphere Arrays for Laser Display Pixels. ACS NANO 2022; 17:1187-1195. [PMID: 36410359 DOI: 10.1021/acsnano.2c08766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reconfigurable microlaser arrays are essential to the construction of display panels where the individual pixel should be highly tunable in resonance mode, optical polarization, and lasing wavelength upon external control signals. Here we demonstrate a facile yet reliable approach to fabrication of organic microlaser pixels, in which the assembly of microsphere arrays on each pixel is controlled according to the near-field magnetostatic confinement. The geometrical configuration of diamagnetic microspheres could be readily modulated with the near-field potential traps by using the external field to alternate the saturation magnetization of the underneath micromagnet. The motion of microspheres can be modulated among several states upon applied field, and the reconfigurable microsphere array is thus achieved with high spatial precision and rapid temporal response. Moreover, both isolated and coupled spheres serve as low-threshold microlasers with tunable optical resonance modes, whereas the switching between the vertical and horizontal alignments of coupled spheres manipulates the polarization of lasing outputs. By repeating the magnetostatic confinement on the same substrate, the full-color laser display pixels with magnetically tunable color expression capability are successfully achieved.
Collapse
Affiliation(s)
- Baipeng Yin
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Jia
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Xu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuang Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Signal processing and generation of bioactive nitric oxide in a model prototissue. Nat Commun 2022; 13:5254. [PMID: 36068269 PMCID: PMC9448809 DOI: 10.1038/s41467-022-32941-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/24/2022] [Indexed: 11/08/2022] Open
Abstract
The design and construction of synthetic prototissues from integrated assemblies of artificial protocells is an important challenge for synthetic biology and bioengineering. Here we spatially segregate chemically communicating populations of enzyme-decorated phospholipid-enveloped polymer/DNA coacervate protocells in hydrogel modules to construct a tubular prototissue-like vessel capable of modulating the output of bioactive nitric oxide (NO). By decorating the protocells with glucose oxidase, horseradish peroxidase or catalase and arranging different modules concentrically, a glucose/hydroxyurea dual input leads to logic-gate signal processing under reaction-diffusion conditions, which results in a distinct NO output in the internal lumen of the model prototissue. The NO output is exploited to inhibit platelet activation and blood clot formation in samples of plasma and whole blood located in the internal channel of the device, thereby demonstrating proof-of-concept use of the prototissue-like vessel for anticoagulation applications. Our results highlight opportunities for the development of spatially organized synthetic prototissue modules from assemblages of artificial protocells and provide a step towards the organization of biochemical processes in integrated micro-compartmentalized media, micro-reactor technology and soft functional materials. A challenge for synthetic biology is the design and construction of prototissue. Here, the authors spatially segregate layers of enzyme-decorated coacervate protocells as a model prototissue capable of chemical signal processing and modulating outputs of nitric oxide to inhibit blood clot formation.
Collapse
|
35
|
Li C, Zhang X, Yang B, Wei F, Ren Y, Mu W, Han X. Reversible Deformation of Artificial Cell Colonies Triggered by Actin Polymerization for Muscle Behavior Mimicry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204039. [PMID: 35765153 DOI: 10.1002/adma.202204039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The use of artificial cells to mimic living tissues is beneficial for understanding the mechanism of interaction among cells. Artificial cells hold immense potential in the field of tissue engineering. Self-powered artificial cells capable of reversible deformation are developed by encapsulating living mitochondria, actins, and methylcellulose. Upon addition of pyruvate molecules, the mitochondria produce adenosine triphosphate (ATP), which acts as an energy source to trigger actin polymerization. The reversible deformation of artificial cells occurs with a spindle shape resulting from the polymerization of actins to form filaments adjacent to the lipid bilayer that subsequently returns to a spherical shape resulting from the depolymerization of actin filaments upon laser irradiation. The linear colonies composed of these artificial cells exhibit collective contraction and relaxation to mimic muscle tissues. At maximum contraction, the long axis of each giant unilamellar vesicle (GUV) is parallel to each other. All the colonies are synchronized in the contraction phase. The deformation of each GUV in the colonies is influenced by its adjacent GUVs. The muscle-like artificial cell colonies described here pave the way to develop sustainably self-powered artificial tissues.
Collapse
Affiliation(s)
- Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiangxiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Boyu Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Feng Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Yongshuo Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Wei Mu
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 92 West Da-Zhi Street, Harbin, 150001, China
| |
Collapse
|
36
|
Wang J, Soto F, Ma P, Ahmed R, Yang H, Chen S, Wang J, Liu C, Akin D, Fu K, Cao X, Chen P, Hsu EC, Soh HT, Stoyanova T, Wu JC, Demirci U. Acoustic Fabrication of Living Cardiomyocyte-based Hybrid Biorobots. ACS NANO 2022; 16:10219-10230. [PMID: 35671037 DOI: 10.1021/acsnano.2c01908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Organized assemblies of cells have demonstrated promise as bioinspired actuators and devices; still, the fabrication of such "biorobots" has predominantly relied on passive assembly methods that reduce design capabilities. To address this, we have developed a strategy for the rapid formation of functional biorobots composed of live cardiomyocytes. We employ tunable acoustic fields to facilitate the efficient aggregation of millions of cells into high-density macroscopic architectures with directed cell orientation and enhanced cell-cell interaction. These biorobots can perform actuation functions both through naturally occurring contraction-relaxation cycles and through external control with chemical and electrical stimuli. We demonstrate that these biorobots can be used to achieve controlled actuation of a soft skeleton and pumping of microparticles. The biocompatible acoustic assembly strategy described here should prove generally useful for cellular manipulation in the context of tissue engineering, soft robotics, and other applications.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Fernando Soto
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Peng Ma
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Rajib Ahmed
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Sihan Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Jibo Wang
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - Chun Liu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Demir Akin
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Kaiyu Fu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xu Cao
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Pu Chen
- Department of Biomedical Engineering, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan, Hubei 430071, China
| | - En-Chi Hsu
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Hyongsok Tom Soh
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Tanya Stoyanova
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Palo Alto, California 94304-5427, United States
| | - Utkan Demirci
- Bio-Acoutic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California 94304-5427, United States
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, United States
| |
Collapse
|
37
|
Karoui H, Patwal PS, Pavan Kumar BVVS, Martin N. Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges. Front Mol Biosci 2022; 9:880525. [PMID: 35720123 PMCID: PMC9199989 DOI: 10.3389/fmolb.2022.880525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, the focus of bottom-up synthetic biology has shifted from the design of complex artificial cell architectures to the design of interactions between artificial cells mediated by physical and chemical cues. Engineering communication between artificial cells is crucial for the realization of coordinated dynamic behaviours in artificial cell populations, which would have implications for biotechnology, advanced colloidal materials and regenerative medicine. In this review, we focus our discussion on molecular communication between artificial cells. We cover basic concepts such as the importance of compartmentalization, the metabolic machinery driving signaling across cell boundaries and the different modes of communication used. The various studies in artificial cell signaling have been classified based on the distance between sender and receiver cells, just like in biology into autocrine, juxtacrine, paracrine and endocrine signaling. Emerging tools available for the design of dynamic and adaptive signaling are highlighted and some recent advances of signaling-enabled collective behaviours, such as quorum sensing, travelling pulses and predator-prey behaviour, are also discussed.
Collapse
Affiliation(s)
- Hedi Karoui
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| | - Pankaj Singh Patwal
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | | | - Nicolas Martin
- Univ. Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR 5031, Pessac, France
| |
Collapse
|
38
|
Gözen I, Köksal ES, Põldsalu I, Xue L, Spustova K, Pedrueza-Villalmanzo E, Ryskulov R, Meng F, Jesorka A. Protocells: Milestones and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106624. [PMID: 35322554 DOI: 10.1002/smll.202106624] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The origin of life is still one of humankind's great mysteries. At the transition between nonliving and living matter, protocells, initially featureless aggregates of abiotic matter, gain the structure and functions necessary to fulfill the criteria of life. Research addressing protocells as a central element in this transition is diverse and increasingly interdisciplinary. The authors review current protocell concepts and research directions, address milestones, challenges and existing hypotheses in the context of conditions on the early Earth, and provide a concise overview of current protocell research methods.
Collapse
Affiliation(s)
- Irep Gözen
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Elif Senem Köksal
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Inga Põldsalu
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Lin Xue
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Karolina Spustova
- Centre for Molecular Medicine Norway, Faculty of Medicine, University of Oslo, Oslo, 0318, Norway
| | - Esteban Pedrueza-Villalmanzo
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- Department of Physics, University of Gothenburg, Universitetsplatsen 1, Gothenburg, 40530, Sweden
| | - Ruslan Ryskulov
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Fanda Meng
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
39
|
Yu X, Zhou L, Wang G, Wang L, Dou H. Hierarchical Structures in Macromolecule-assembled Synthetic Cells. Macromol Rapid Commun 2022; 43:e2100926. [PMID: 35445490 DOI: 10.1002/marc.202100926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/12/2022] [Indexed: 11/07/2022]
Abstract
Various models of synthetic cells have been developed as researchers have sought to explore the origin of life. Based on the fact that structural complexity is the foundation of higher-order functions, this review will focus on hierarchical structures in synthetic cell models that are inspired by living systems, in which macromolecules are the dominant participants. We discuss the underlying advantages and functions provided by biomimetic higher-order structures from four perspectives, including hierarchical structures in membranes, in the composite construction of membrane-coated artificial cytoplasm, in organelle-like subcellular compartments, as well as in synthetic cell-cell assembled synthetic tissues. In parallel, various feasible driving forces and approaches for the fabrication of such higher-order structures are showcased. Furthermore, we highlight both the implemented and potential applications of biomimetic systems, bottom-up biosynthesis, biomedical tissue engineering, and disease therapy. This thriving field is gradually narrowing the gap between fundamental research and applied science. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaolei Yu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Long Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Gangyang Wang
- Gangyang Wang, Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 85 Wujin Road, Shanghai, 200080, P. R. China
| | - Lei Wang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
40
|
High-throughput production of functional prototissues capable of producing NO for vasodilation. Nat Commun 2022; 13:2148. [PMID: 35444179 PMCID: PMC9021269 DOI: 10.1038/s41467-022-29571-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/18/2022] [Indexed: 11/08/2022] Open
Abstract
Bottom-up synthesis of prototissues helps us to understand the internal cellular communications in the natural tissues and their functions, as well as to improve or repair the damaged tissues. The existed prototissues are rarely used to improve the function of living tissues. We demonstrate a methodology to produce spatially programmable prototissues based on the magneto-Archimedes effect in a high-throughput manner. More than 2000 prototissues are produced once within 2 h. Two-component and three-component spatial coded prototissues are fabricated by varying the addition giant unilamellar vesicles order/number, and the magnetic field distributions. Two-step and three-step signal communications in the prototissues are realized using cascade enzyme reactions. More importantly, the two-component prototissues capable of producing nitric oxide cause vasodilation of rat blood vessels in the presence of glucose and hydroxyurea. The tension force decreases 2.59 g, meanwhile the blood vessel relaxation is of 31.2%. Our works pave the path to fabricate complicated programmable prototissues, and hold great potential in the biomedical field.
Collapse
|
41
|
Nomura SM, Shimizu R, Archer RJ, Hayase G, Toyota T, Mayne R, Adamatzky A. Spontaneous and Driven Growth of Multicellular Lipid Compartments to Millimeter Size from Porous Polymer Structures**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shin‐ichiro M. Nomura
- Molecular Robotics Laboratory, Department of Robotics Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
- Unconventional Computing Laboratory University of the West of England Bristol BS16 1QY United Kingdom
| | - Ryo Shimizu
- Molecular Robotics Laboratory, Department of Robotics Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| | - Richard James Archer
- Molecular Robotics Laboratory, Department of Robotics Graduate School of Engineering Tohoku University Sendai 980-8579 Japan
| | - Gen Hayase
- International Center for Materials Nanoarchitectonics National Institute for Materials Science 1-1 Namiki Tsukuba Ibaraki, 305-0044 Japan
| | - Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences The University of Tokyo Komaba, 3-8-1 Komaba Meguro Tokyo 153-8902 Japan)
| | - Richard Mayne
- Unconventional Computing Laboratory University of the West of England Bristol BS16 1QY United Kingdom
| | - Andrew Adamatzky
- Unconventional Computing Laboratory University of the West of England Bristol BS16 1QY United Kingdom
| |
Collapse
|
42
|
Toyota T, Zhang Y. Identifying and Manipulating Giant Vesicles: Review of Recent Approaches. MICROMACHINES 2022; 13:644. [PMID: 35630111 PMCID: PMC9144095 DOI: 10.3390/mi13050644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
Abstract
Giant vesicles (GVs) are closed bilayer membranes that primarily comprise amphiphiles with diameters of more than 1 μm. Compared with regular vesicles (several tens of nanometers in size), GVs are of greater scientific interest as model cell membranes and protocells because of their structure and size, which are similar to those of biological systems. Biopolymers and nano-/microparticles can be encapsulated in GVs at high concentrations, and their application as artificial cell bodies has piqued interest. It is essential to develop methods for investigating and manipulating the properties of GVs toward engineering applications. In this review, we discuss current improvements in microscopy, micromanipulation, and microfabrication technologies for progress in GV identification and engineering tools. Combined with the advancement of GV preparation technologies, these technological advancements can aid the development of artificial cell systems such as alternative tissues and GV-based chemical signal processing systems.
Collapse
Affiliation(s)
- Taro Toyota
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
- Universal Biology Institute, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yiting Zhang
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan;
| |
Collapse
|
43
|
Harraq A, Choudhury BD, Bharti B. Field-Induced Assembly and Propulsion of Colloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3001-3016. [PMID: 35238204 PMCID: PMC8928473 DOI: 10.1021/acs.langmuir.1c02581] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/19/2022] [Indexed: 05/07/2023]
Abstract
Electric and magnetic fields have enabled both technological applications and fundamental discoveries in the areas of bottom-up material synthesis, dynamic phase transitions, and biophysics of living matter. Electric and magnetic fields are versatile external sources of energy that power the assembly and self-propulsion of colloidal particles. In this Invited Feature Article, we classify the mechanisms by which external fields impact the structure and dynamics in colloidal dispersions and augment their nonequilibrium behavior. The paper is purposely intended to highlight the similarities between electrically and magnetically actuated phenomena, providing a brief treatment of the origin of the two fields to understand the intrinsic analogies and differences. We survey the progress made in the static and dynamic assembly of colloids and the self-propulsion of active particles. Recent reports of assembly-driven propulsion and propulsion-driven assembly have blurred the conceptual boundaries and suggest an evolution in the research of nonequilibrium colloidal materials. We highlight the emergence of colloids powered by external fields as model systems to understand living matter and provide a perspective on future challenges in the area of field-induced colloidal phenomena.
Collapse
Affiliation(s)
- Ahmed
Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Brishty Deb Choudhury
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
44
|
Spatial Manipulation of Particles and Cells at Micro- and Nanoscale via Magnetic Forces. Cells 2022; 11:cells11060950. [PMID: 35326401 PMCID: PMC8946034 DOI: 10.3390/cells11060950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
The importance of magnetic micro- and nanoparticles for applications in biomedical technology is widely recognised. Many of these applications, including tissue engineering, cell sorting, biosensors, drug delivery, and lab-on-chip devices, require remote manipulation of magnetic objects. High-gradient magnetic fields generated by micromagnets in the range of 103–105 T/m are sufficient for magnetic forces to overcome other forces caused by viscosity, gravity, and thermal fluctuations. In this paper, various magnetic systems capable of generating magnetic fields with required spatial gradients are analysed. Starting from simple systems of individual magnets and methods of field computation, more advanced magnetic microarrays obtained by lithography patterning of permanent magnets are introduced. More flexible field configurations can be formed with the use of soft magnetic materials magnetised by an external field, which allows control over both temporal and spatial field distributions. As an example, soft magnetic microwires are considered. A very attractive method of field generation is utilising tuneable domain configurations. In this review, we discuss the force requirements and constraints for different areas of application, emphasising the current challenges and how to overcome them.
Collapse
|
45
|
Yin B, Jia H, Chen R, Chang Q, Feng J, Gao H, Wu Y, Jiang L, Zhang C. Magnetic Domain Confined Printing of Programmable Organic Microcrystal Assemblies for Information Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108279. [PMID: 35023586 DOI: 10.1002/adma.202108279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Large-scale assembly of organic micro/nanocrystals into well-defined patterns with programmable structures is essential for applications such as information encryption at both high data density and high security level. Here, a magnetic-field-assisted approach that produces programmable assemblies of organic microcrystals with various shapes and orientations, using the magnetic domains of the underlying ferromagnetic metal microarrays as the printing templates, is developed. The diamagnetic microcrystals tend to aggregate in the regions of minimal field strength, and thus their assembly behavior is precisely controlled by the local field distribution on top of magnetic domains on substrate. The dynamic assembly process of microcrystal assemblies can be programmed upon the sequence of applied field, and their shape changes are ≈100% reproducible on a large scale (>20 000 sites over 1 cm2 ). These features of magnetically programmable assemblies are ideally suited for information encryption, for which the encryption-decryption-erasing of multilevel information from a QR-code pattern based on the microcrystal assemblies under magnetic field is demonstrated.
Collapse
Affiliation(s)
- Baipeng Yin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Jia
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Chen
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingda Chang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiangang Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Hanfei Gao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Yuchen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Lei Jiang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Ji Hua Laboratory, Foshan, Guangdong, 528000, P. R. China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
46
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Grimes PJ, Galanti A, Gobbo P. Bioinspired Networks of Communicating Synthetic Protocells. Front Mol Biosci 2021; 8:804717. [PMID: 35004855 PMCID: PMC8740067 DOI: 10.3389/fmolb.2021.804717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
The bottom-up synthesis of cell-like entities or protocells from inanimate molecules and materials is one of the grand challenges of our time. In the past decade, researchers in the emerging field of bottom-up synthetic biology have developed different protocell models and engineered them to mimic one or more abilities of biological cells, such as information transcription and translation, adhesion, and enzyme-mediated metabolism. Whilst thus far efforts have focused on increasing the biochemical complexity of individual protocells, an emerging challenge in bottom-up synthetic biology is the development of networks of communicating synthetic protocells. The possibility of engineering multi-protocellular systems capable of sending and receiving chemical signals to trigger individual or collective programmed cell-like behaviours or for communicating with living cells and tissues would lead to major scientific breakthroughs with important applications in biotechnology, tissue engineering and regenerative medicine. This mini-review will discuss this new, emerging area of bottom-up synthetic biology and will introduce three types of bioinspired networks of communicating synthetic protocells that have recently emerged.
Collapse
Affiliation(s)
- Patrick J. Grimes
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
| | - Agostino Galanti
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Pierangelo Gobbo
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol, United Kingdom
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
48
|
Chen C, Wang X, Wang Y, Tian L, Cao J. Construction of protocell-based artificial signal transduction pathways. Chem Commun (Camb) 2021; 57:12754-12763. [PMID: 34755716 DOI: 10.1039/d1cc03775g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The maintenance of an orderly and controllable multicellular society depends on the communication and signal regulation between various types of biological cells. How to replicate complicated signal transduction pathways in synthetic protocellular communities remains a key challenge in bottom-up synthetic biology. Herein, we review recent advances in the design and construction of interactive protocell communities, or protocell communities and biological communities, and explore the ways of designing and constructing artificial paracrine-like signaling pathways and juxtacrine-like signaling pathways. Key molecules involved in the signaling pathways that can be used to connect two or more spatially separated communities, and diverse signal outputs generated by the communication are summarized. We also propose the limitations, challenges and opportunities in this field.
Collapse
Affiliation(s)
- Chong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Xuejing Wang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ying Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China. .,Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou, 310053, China
| | - Jinxuan Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
49
|
Ramsay K, Levy J, Gobbo P, Elvira KS. Programmed assembly of bespoke prototissues on a microfluidic platform. LAB ON A CHIP 2021; 21:4574-4585. [PMID: 34723291 DOI: 10.1039/d1lc00602a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise assembly of protocell building blocks into prototissues that are stable in water, capable of sensing the external environment and which display collective behaviours remains a considerable challenge in prototissue engineering. We have designed a microfluidic platform that enables us to build bespoke prototissues from predetermined compositions of two types of protein-polymer protocells. We can accurately control their size, composition and create unique Janus configurations in a way that is not possible with traditional methods. Because we can control the number and type of the protocells that compose the prototissue, we can hence modulate the collective behaviours of this biomaterial. We show control over both the amplitude of thermally induced contractions in the biomaterial and its collective endogenous biochemical reactivity. Our results show that microfluidic technologies enable a new route to the precise and high-throughput fabrication of tissue-like materials with programmable collective properties that can be tuned through careful assembly of protocell building blocks of different types. We anticipate that our bespoke prototissues will be a starting point for the development of more sophisticated artificial tissues for use in medicine, soft robotics, and environmentally beneficial bioreactor technologies.
Collapse
Affiliation(s)
- Kaitlyn Ramsay
- Department of Chemistry, University of Victoria, Victoria, Canada.
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada
| | - Jae Levy
- Department of Chemistry, University of Victoria, Victoria, Canada.
| | | | - Katherine S Elvira
- Department of Chemistry, University of Victoria, Victoria, Canada.
- The Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, Canada
| |
Collapse
|
50
|
Garcia IM, Balhaddad AA, Lan Y, Simionato A, Ibrahim MS, Weir MD, Masri R, Xu HHK, Collares FM, Melo MAS. Magnetic motion of superparamagnetic iron oxide nanoparticles- loaded dental adhesives: physicochemical/biological properties, and dentin bonding performance studied through the tooth pulpal pressure model. Acta Biomater 2021; 134:337-347. [PMID: 34303014 DOI: 10.1016/j.actbio.2021.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022]
Abstract
The limited durability of dentin bonding harshly shortens the lifespan of resin composites restorations. The controlled, dynamic movement of materials through non-contacting forces provides exciting opportunities in adhesive dentistry. We, herein, describe comprehensive investigations of a new dental adhesive with superparamagnetic iron oxide nanoparticles (SPIONs) sensitive to magnetic fields for bonding optimization. This contribution outlines a roadmap of (1) designing and tuning of an adhesive formulation containing SPIONs to enhance penetrability into etched dentin guided by magnetic-field; (2) employing a clinically relevant model of simulated hydrostatic pulpal pressure on the microtensile bond to dentin; and (3) investigating a potential antibacterial effect of the formulated adhesives, and their biocompatibility. SPION-concentration-dependency chemical and mechanical behavior was shown via the degree of conversion, ultimate tensile strength, and micro shear bond strength to dentin. The effects of SPIONs carried on a dental adhesive on the bonding strength to dentin are studied in depth by combining experiments with in vitro simulated model. The results show that under the guided magnetic field, 0.07 wt.% of SPIONs-doped adhesive increased the bond strength that surpasses the reduction caused by hydrostatic pulpal pressure. Using a magnetic guide workflow during the bonding procedures, SPIONs-doped adhesives improved dentin's adhesion without changing adhesives' physicochemical properties. This outcome addresses the key challenge of poor resin infiltration of dentin's conventional total etching during the bonding procedure. The real-time magnetic motion of dental adhesives may open new paths to enhance resin-based restorations' longevity. STATEMENT OF SIGNIFICANCE: In this study, dental adhesives containing superparamagnetic iron oxide nanoparticles (SPIONs) were developed to enhance penetrability into dentin guided by a magnetic field. The adhesives were screened for physical, chemical, antibacterial properties, and cytotoxicity. For the first time, simulated pulpal pressure was used concurrently with the magnetic field to simulate a clinical setting. This approach showed that it is feasible to overcome pulpal pressure jeopardization on bond strength when SPIONs and a magnetic field are applied. The magnetic-responsive adhesives had great potential to improve bond strength, opening new paths to enhance resin-based restorations' longevity without affecting adhesives' biological properties. The use of magnetic-responsive particles and magnetically assisted motion is a promising strategy to improve the sealing ability of dental adhesives.
Collapse
Affiliation(s)
- Isadora Martini Garcia
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Dental Materials Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251, USA
| | - Andressa Simionato
- Dental Materials Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Maria Salem Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Radi Masri
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; Biomaterials and Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.
| | - Fabrício Mezzomo Collares
- Dental Materials Department, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Mary Anne Samapio Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; University of Maryland Dental School, General Dentistry, 650 West Baltimore Street, Baltimore, MD 21201, USA.
| |
Collapse
|