1
|
Lupi M, Avanzato D, Confalonieri S, Martino F, Pennisi R, Pupo E, Audrito V, Freddi S, Bertalot G, Montani F, Matoskova B, Sigismund S, Di Fiore PP, Lanzetti L. TBC1 domain-containing proteins are frequently involved in triple-negative breast cancers in connection with the induction of a glycolytic phenotype. Cell Death Dis 2024; 15:647. [PMID: 39231952 PMCID: PMC11375060 DOI: 10.1038/s41419-024-07037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Metabolic plasticity is a hallmark of cancer, and metabolic alterations represent a promising therapeutic target. Since cellular metabolism is controlled by membrane traffic at multiple levels, we investigated the involvement of TBC1 domain-containing proteins (TBC1Ds) in the regulation of cancer metabolism. These proteins are characterized by the presence of a RAB-GAP domain, the TBC1 domain, and typically function as attenuators of RABs, the master switches of membrane traffic. However, a number of TBC1Ds harbor mutations in their catalytic residues, predicting biological functions different from direct regulation of RAB activities. Herein, we report that several genes encoding for TBC1Ds are expressed at higher levels in triple-negative breast cancers (TNBC) vs. other subtypes of breast cancers (BC), and predict prognosis. Orthogonal transcriptomics/metabolomics analysis revealed that the expression of prognostic TBC1Ds correlates with elevated glycolytic metabolism in BC cell lines. In-depth investigations of the three top hits from the previous analyses (TBC1D31, TBC1D22B and TBC1D7) revealed that their elevated expression is causal in determining a glycolytic phenotype in TNBC cell lines. We further showed that the impact of TBC1D7 on glycolytic metabolism of BC cells is independent of its known participation in the TSC1/TSC2 complex and consequent downregulation of mTORC1 activity. Since TBC1D7 behaves as an independent prognostic biomarker in TNBC, it could be used to distinguish good prognosis patients who could be spared aggressive therapy from those with a poor prognosis who might benefit from anti-glycolytic targeted therapies. Together, our results highlight how TBC1Ds connect disease aggressiveness with metabolic alterations in TNBC. Given the high level of heterogeneity among this BC subtype, TBC1Ds could represent important tools in predicting prognosis and guiding therapy decision-making.
Collapse
Grants
- IG #22811 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- MFAG-2021 #26004 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #24415 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- IG #23060 Associazione Italiana per la Ricerca sul Cancro (Italian Association for Cancer Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2022 Prot. 2022W93FTW Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2020 Prot. 2020R2BP2E Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Finalizzata RF-2021-12373957 Ministero della Salute (Ministry of Health, Italy)
- Ricerca Corrente 2023-2024 Ministero della Salute (Ministry of Health, Italy)
- 5x1000 Ministero della Salute (Ministry of Health, Italy)
Collapse
Affiliation(s)
- Mariadomenica Lupi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Daniele Avanzato
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Department of Veterinary Sciences, Infectious Diseases Unit, University of Torino, Turin, Italy
| | | | - Flavia Martino
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Rosa Pennisi
- Department of Oncology, University of Torino Medical School, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | | | - Valentina Audrito
- Department of Science and Technological Innovation (DISIT), University of Eastern Piedmont, Alessandria, Italy
| | - Stefano Freddi
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Giovanni Bertalot
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Unità Operativa Multizonale di Anatomia Patologica, APSS, Trento, Italy, and Centre for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | | | | | - Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy.
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy.
| |
Collapse
|
2
|
Hoffmann ME, Jacomin AC, Popovic D, Kalina D, Covarrubias-Pinto A, Dikic I. TBC1D2B undergoes phase separation and mediates autophagy initiation. J Cell Biochem 2024; 125:e30481. [PMID: 38226533 DOI: 10.1002/jcb.30481] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/28/2023] [Accepted: 09/17/2023] [Indexed: 01/17/2024]
Abstract
Small ubiquitin-like modifiers from the ATG8 family regulate autophagy initiation and progression in mammalian cells. Their interaction with LC3-interacting region (LIR) containing proteins promotes cargo sequestration, phagophore assembly, or even fusion between autophagosomes and lysosomes. Previously, we have shown that RabGAP proteins from the TBC family directly bind to LC3/GABARAP proteins. In the present study, we focus on the function of TBC1D2B. We show that TBC1D2B contains a functional canonical LIR motif and acts at an early stage of autophagy by binding to both LC3/GABARAP and ATG12 conjugation complexes. Subsequently, TBC1D2B is degraded by autophagy. TBC1D2B condensates into liquid droplets upon autophagy induction. Our study suggests that phase separation is an underlying mechanism of TBC1D2B-dependent autophagy induction.
Collapse
Affiliation(s)
- Marina E Hoffmann
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Anne-Claire Jacomin
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Doris Popovic
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Kalina
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
- Biomedical Research Laboratory, Department of Internal Medicine, Goethe University Clinic Frankfurt, Frankfurt, Germany
| | - Adriana Covarrubias-Pinto
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Ivan Dikic
- Molecular Signaling Group, Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
- Molecular Signaling Group, Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, Frankfurt, Germany
- Branch for Translational Medicine and Pharmacology, Fraunhofer Institute of Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
3
|
Iibushi J, Nozawa T, Toh H, Nakagawa I. ATG9B regulates bacterial internalization via actin rearrangement. iScience 2024; 27:109623. [PMID: 38706859 PMCID: PMC11066431 DOI: 10.1016/j.isci.2024.109623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Invasive bacterial pathogens are internalized by host cells through endocytosis, which is regulated by a cascade of actin rearrangement signals triggered by host cell receptors or bacterial proteins delivered into host cells. However, the molecular mechanisms that mediate actin rearrangement to promote bacterial invasion are not fully understood. Here, we show that the autophagy-related (ATG) protein ATG9B regulates the internalization of various bacteria by controlling actin rearrangement. ATG knockout screening and knockdown experiments in HeLa cells identified ATG9B as a critical factor for bacterial internalization. In particular, cells with ATG9B knockdown exhibited an accumulation of actin filaments and phosphorylated LIM kinase and cofilin, suggesting that ATG9B is involved in actin depolymerization. Furthermore, the kinase activity of Unc-51-like autophagy-activating kinase 1 was found to regulate ATG9B localization and actin remodeling. These findings revealed a newly discovered function of ATG proteins in bacterial infection rather than autophagy-mediated immunity.
Collapse
Affiliation(s)
- Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku 606-8501, Kyoto, Japan
| |
Collapse
|
4
|
Liu L, Matsumoto M, Watanabe-Matsui M, Nakagawa T, Nagasawa Y, Pang J, Callens BKK, Muto A, Ochiai K, Takekawa H, Alam M, Nishizawa H, Shirouzu M, Shima H, Nakayama K, Igarashi K. TANK Binding Kinase 1 Promotes BACH1 Degradation through Both Phosphorylation-Dependent and -Independent Mechanisms without Relying on Heme and FBXO22. Int J Mol Sci 2024; 25:4141. [PMID: 38673728 PMCID: PMC11050367 DOI: 10.3390/ijms25084141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species. While BACH1 is rapidly degraded when it is bound to heme, it remains unclear how BACH1 degradation is regulated under other conditions. We found that FBXO22, a ubiquitin ligase previously reported to promote BACH1 degradation, polyubiquitinated BACH1 only in the presence of heme in a highly purified reconstitution assay. In parallel to this regulatory mechanism, TANK binding kinase 1 (TBK1), a protein kinase that activates innate immune response and regulates iron metabolism via ferritinophagy, was found to promote BACH1 degradation when overexpressed in 293T cells. While TBK1 phosphorylated BACH1 at multiple serine and threonine residues, BACH1 degradation was observed with not only the wild-type TBK1 but also catalytically impaired TBK1. The BACH1 degradation in response to catalytically impaired TBK1 was not dependent on FBXO22 but involved both autophagy-lysosome and ubiquitin-proteasome pathways judging from its suppression by using inhibitors of lysosome and proteasome. Chemical inhibition of TBK1 in hepatoma Hepa1 cells showed that TBK1 was not required for the heme-induced BACH1 degradation. Its inhibition in Namalwa B lymphoma cells increased endogenous BACH1 protein. These results suggest that TBK1 promotes BACH1 degradation in parallel to the FBXO22- and heme-dependent pathway, placing BACH1 as a downstream effector of TBK1 in iron metabolism or innate immune response.
Collapse
Affiliation(s)
- Liang Liu
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mitsuyo Matsumoto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Miki Watanabe-Matsui
- Department of Neurochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Tadashi Nakagawa
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan; (T.N.); (K.N.)
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Japan
| | - Yuko Nagasawa
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan; (T.N.); (K.N.)
| | - Jingyao Pang
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Bert K. K. Callens
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Faculty of Health, Medicine and Life Sciences, Maastricht University, 6229 GT Maastricht, The Netherlands
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Kyoko Ochiai
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Hirotaka Takekawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Mahabub Alam
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Department of Animal Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram 4225, Bangladesh
| | - Hironari Nishizawa
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama 305-0074, Japan
| | - Hiroki Shima
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| | - Keiko Nakayama
- Division of Cell Proliferation, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan; (T.N.); (K.N.)
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan (H.T.); (M.A.)
- Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8576, Japan
| |
Collapse
|
5
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
6
|
Phelan JD, Scheich S, Choi J, Wright GW, Häupl B, Young RM, Rieke SA, Pape M, Ji Y, Urlaub H, Bolomsky A, Doebele C, Zindel A, Wotapek T, Kasbekar M, Collinge B, Huang DW, Coulibaly ZA, Morris VM, Zhuang X, Enssle JC, Yu X, Xu W, Yang Y, Zhao H, Wang Z, Tran AD, Shoemaker CJ, Shevchenko G, Hodson DJ, Shaffer AL, Staudt LM, Oellerich T. Response to Bruton's tyrosine kinase inhibitors in aggressive lymphomas linked to chronic selective autophagy. Cancer Cell 2024; 42:238-252.e9. [PMID: 38215749 PMCID: PMC11256978 DOI: 10.1016/j.ccell.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/10/2023] [Accepted: 12/20/2023] [Indexed: 01/14/2024]
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive, profoundly heterogeneous cancer, presenting a challenge for precision medicine. Bruton's tyrosine kinase (BTK) inhibitors block B cell receptor (BCR) signaling and are particularly effective in certain molecular subtypes of DLBCL that rely on chronic active BCR signaling to promote oncogenic NF-κB. The MCD genetic subtype, which often acquires mutations in the BCR subunit, CD79B, and in the innate immune adapter, MYD88L265P, typically resists chemotherapy but responds exceptionally to BTK inhibitors. However, the underlying mechanisms of response to BTK inhibitors are poorly understood. Herein, we find a non-canonical form of chronic selective autophagy in MCD DLBCL that targets ubiquitinated MYD88L265P for degradation in a TBK1-dependent manner. MCD tumors acquire genetic and epigenetic alterations that attenuate this autophagic tumor suppressive pathway. In contrast, BTK inhibitors promote autophagic degradation of MYD88L265P, thus explaining their exceptional clinical benefit in MCD DLBCL.
Collapse
Affiliation(s)
- James D Phelan
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sebastian Scheich
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Jaewoo Choi
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - George W Wright
- Biometric Research Branch, Division of Cancer Diagnosis and Treatment, National Cancer Institute, Bethesda, MD 20850, USA
| | - Björn Häupl
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Ryan M Young
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sara A Rieke
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Martine Pape
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Yanlong Ji
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany; Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics, Institute of Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Arnold Bolomsky
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Carmen Doebele
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Alena Zindel
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Tanja Wotapek
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Monica Kasbekar
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brett Collinge
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Centre for Lymphoid Cancer, BC Cancer, Vancouver, BC V5Z 4E6, Canada
| | - Da Wei Huang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zana A Coulibaly
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vivian M Morris
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xiaoxuan Zhuang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julius C Enssle
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany
| | - Xin Yu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Weihong Xu
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yandan Yang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Zhao
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuo Wang
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andy D Tran
- CCR Microscopy Core, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher J Shoemaker
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Galina Shevchenko
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Daniel J Hodson
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Arthur L Shaffer
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Louis M Staudt
- Lymphoid Malignancies Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Thomas Oellerich
- Goethe University Frankfurt, University Hospital, 60590 Frankfurt am Main, Germany; German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60528 Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital, Goethe University, 60590 Frankfurt am Main, Germany; Frankfurt Cancer Institute, Goethe University, 60596 Frankfurt am Main, Germany.
| |
Collapse
|
7
|
Oh SJ, Park K, Sonn SK, Oh GT, Lee MS. Pancreatic β-cell mitophagy as an adaptive response to metabolic stress and the underlying mechanism that involves lysosomal Ca 2+ release. Exp Mol Med 2023; 55:1922-1932. [PMID: 37653033 PMCID: PMC10545665 DOI: 10.1038/s12276-023-01055-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 09/02/2023] Open
Abstract
Mitophagy is an excellent example of selective autophagy that eliminates damaged or dysfunctional mitochondria, and it is crucial for the maintenance of mitochondrial integrity and function. The critical roles of autophagy in pancreatic β-cell structure and function have been clearly shown. Furthermore, morphological abnormalities and decreased function of mitochondria have been observed in autophagy-deficient β-cells, suggesting the importance of β-cell mitophagy. However, the role of authentic mitophagy in β-cell function has not been clearly demonstrated, as mice with pancreatic β-cell-specific disruption of Parkin, one of the most important players in mitophagy, did not exhibit apparent abnormalities in β-cell function or glucose homeostasis. Instead, the role of mitophagy in pancreatic β-cells has been investigated using β-cell-specific Tfeb-knockout mice (TfebΔβ-cell mice); Tfeb is a master regulator of lysosomal biogenesis or autophagy gene expression and participates in mitophagy. TfebΔβ-cell mice were unable to adaptively increase mitophagy or mitochondrial complex activity in response to high-fat diet (HFD)-induced metabolic stress. Consequently, TfebΔβ-cell mice exhibited impaired β-cell responses and further exacerbated metabolic deterioration after HFD feeding. TFEB was activated by mitochondrial or metabolic stress-induced lysosomal Ca2+ release, which led to calcineurin activation and mitophagy. After lysosomal Ca2+ release, depleted lysosomal Ca2+ stores were replenished by ER Ca2+ through ER→lysosomal Ca2+ refilling, which supplemented the low lysosomal Ca2+ capacity. The importance of mitophagy in β-cell function was also demonstrated in mice that developed β-cell dysfunction and glucose intolerance after treatment with a calcineurin inhibitor that hampered TFEB activation and mitophagy.
Collapse
Affiliation(s)
- Soo-Jin Oh
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Kihyoun Park
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea
| | - Seong Keun Sonn
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Goo Taeg Oh
- Heart-Immune-Brain Network Research Center, Department of Life Science, Ewha Womans University, Seoul, 03767, Korea
| | - Myung-Shik Lee
- Soonchunhyang Institute of Medi-bio Science and Division of Endocrinology, Department of Internal Medicine, Soonchunhyang University College of Medicine, Cheonan, 31151, Korea.
| |
Collapse
|
8
|
Hu Z, Xie Y, Lu J, Yang J, Zhang J, Jiang H, Li H, Zhang Y, Wu D, Zeng K, Bai X, Yu X. VANGL2 inhibits antiviral IFN-I signaling by targeting TBK1 for autophagic degradation. SCIENCE ADVANCES 2023; 9:eadg2339. [PMID: 37352355 PMCID: PMC10289648 DOI: 10.1126/sciadv.adg2339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/18/2023] [Indexed: 06/25/2023]
Abstract
Stringent control of type I interferon (IFN-I) signaling is critical to potent innate immune responses against viral infection, yet the underlying molecular mechanisms are still elusive. Here, we found that Van Gogh-like 2 (VANGL2) acts as an IFN-inducible negative feedback regulator to suppress IFN-I signaling during vesicular stomatitis virus (VSV) infection. Mechanistically, VANGL2 interacted with TBK1 and promoted the selective autophagic degradation of TBK1 via K48-linked polyubiquitination at Lys372 by the E3 ligase TRIP, which serves as a recognition signal for the cargo receptor OPTN. Furthermore, myeloid-specific deletion of VANGL2 in mice showed enhanced IFN-I production against VSV infection and improved survival. In general, these findings revealed a negative feedback loop of IFN-I signaling through the VANGL2-TRIP-TBK1-OPTN axis and highlighted the cross-talk between IFN-I and autophagy in preventing viral infection. VANGL2 could be a potential clinical therapeutic target for viral infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingchao Xie
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiansen Lu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Department of Joint Surgery, the Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Jianwu Yang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
- Laboratory Medicine, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Huaji Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yufeng Zhang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Dan Wu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ke Zeng
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Kannan MP, Sreeraman S, Somala CS, Kushwah RB, Mani SK, Sundaram V, Thirunavukarasou A. Advancement of targeted protein degradation strategies as therapeutics for undruggable disease targets. Future Med Chem 2023; 15:867-883. [PMID: 37254917 DOI: 10.4155/fmc-2023-0072] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Targeted protein degradation (TPD) aids in developing novel bifunctional small-molecule degraders and eliminates proteins of interest. The TPD approach shows promising results in oncological, neurogenerative, cardiovascular and gynecological drug development. We provide an overview of technology advancements in TPD, including molecular glues, proteolysis-targeting chimeras (PROTACs), lysosome-targeting chimeras, antibody-based PROTAC, GlueBody PROTAC, autophagy-targeting chimera, autophagosome-tethering compound, autophagy-targeting chimera and chaperone-mediated autophagy-based degraders. Here we discuss the development and evolution of the TPD field, the variety of proteins that PROTACs target and the biological repercussions of their degradation. We particularly highlight the recent improvements in TPD research that utilize autophagy or the endolysosomal pathway, which enables the targeting of undruggable targets.
Collapse
Affiliation(s)
- Mayuri P Kannan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
| | - Sarojini Sreeraman
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
- SRIIC Lab, Sri Ramachandra Institute for Higher Education & Research, Chennai, Tamil Nadu, 600116, India
| | - Chaitanya S Somala
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
| | - Raja Bs Kushwah
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- Department of Entomology and Agrilife Research, Texas A&M University, College Station, TX 77843, USA
| | - Saravanan K Mani
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Vickram Sundaram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical & Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| | - Anand Thirunavukarasou
- B-Aatral Biosciences Private Limited, Bangalore, Karnataka, 560091, India
- SRIIC Lab, Sri Ramachandra Institute for Higher Education & Research, Chennai, Tamil Nadu, 600116, India
| |
Collapse
|
10
|
Lu SL, Omori H, Zhou Y, Lin YS, Liu CC, Wu JJ, Noda T. VEGF-Mediated Augmentation of Autophagic and Lysosomal Activity in Endothelial Cells Defends against Intracellular Streptococcus pyogenes. mBio 2022; 13:e0123322. [PMID: 35862783 PMCID: PMC9426552 DOI: 10.1128/mbio.01233-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/17/2022] [Indexed: 12/30/2022] Open
Abstract
Group A Streptococcus (GAS), a deleterious human-pathogenic bacterium, causes life-threatening diseases such as sepsis and necrotic fasciitis. We recently reported that GAS survives and replicates within blood vessel endothelial cells because these cells are intrinsically defective in xenophagy. Because blood vessel endothelial cells are relatively germfree environments, specific stimulation may be required to sufficiently induce xenophagy. Here, we explored how vascular endothelial growth factor (VEGF) promoted xenophagy and lysosomal activity in endothelial cells. These effects were achieved by amplifying the activation of TFEB, a transcriptional factor crucial for lysosome/autophagy biogenesis, via cAMP-mediated calcium release. In a mouse model of local infection with GAS, the VEGF level was significantly elevated at the infection site. Interestingly, low serum VEGF levels were found in a mouse model of invasive bacteremia and in patients with severe GAS-induced sepsis. Moreover, the administration of VEGF improved the survival of GAS-infected mice. We propose a novel theory regarding GAS infection in endothelial cells, wherein VEGF concentrations in the systemic circulation play a critical role. IMPORTANCE Sepsis caused by Streptococcus pyogenes is a life-threatening condition. Blood vessel endothelial cells should serve as a barrier to infection, although we recently reported that endothelial cells allow intracellular GAS proliferation due to defective xenophagy. In this study, we revealed that administration of VEGF augmented both xenophagy and lysosomal activity in these cells, leading to the efficient killing of intracellular GAS. By comparison, the opposite relationship was observed in vivo, as low serum VEGF concentrations were accompanied by high-severity sepsis in both a mouse model and in human patients. Administration of VEGF reduced mortality in the GAS sepsis model. Based on these findings, we hypothesize that during acute infection, strong VEGF stimulation boosts the intracellular defense system of the endothelium to provide a stronger blood vessel barrier, thereby helping to prevent bacterial dissemination.
Collapse
Affiliation(s)
- Shiou-Ling Lu
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka Universitygrid.136593.b, Osaka, Japan
| | - Hiroko Omori
- Research Institute for Microbial Disease, Osaka Universitygrid.136593.b, Osaka, Japan
| | - Yi Zhou
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka Universitygrid.136593.b, Osaka, Japan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung Universitygrid.64523.36, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung Universitygrid.64523.36, Tainan, Taiwan
| | - Ching-Chuan Liu
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung Universitygrid.64523.36, Tainan, Taiwan
- Department of Pediatrics, College of Medicine, National Cheng Kung Universitygrid.64523.36, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Takeshi Noda
- Center for Frontier Oral Science, Graduate School of Dentistry, Osaka Universitygrid.136593.b, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka Universitygrid.136593.b, Osaka, Japan
| |
Collapse
|
11
|
de Souza FG, Cavalcante GC. Mitochondria in Mycobacterium Infection: From the Immune System to Mitochondrial Haplogroups. Int J Mol Sci 2022; 23:ijms23179511. [PMID: 36076909 PMCID: PMC9455157 DOI: 10.3390/ijms23179511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/23/2022] Open
Abstract
In humans, mitochondria play key roles in the regulation of cellular functions, such as the regulation of the innate immune response and are targets of several pathogenic viruses and bacteria. Mycobacteria are intracellular pathogens that infect cells important to the immune system of organisms and target mitochondria to meet their energy demands. In this review, we discuss the main mechanisms by which mitochondria regulate the innate immune response of humans to mycobacterial infection, especially those that cause tuberculosis and leprosy. Notably, the importance of mitochondrial haplogroups and ancestry studies for mycobacterial diseases is also discussed.
Collapse
|
12
|
Liu H, Li H, Zhang J, Meng Q, Ma L. Correlation of TBK1, AR, and other serum cancer-related biomarkers in breast cancer patients: An observational study. Medicine (Baltimore) 2022; 101:e29996. [PMID: 35984205 PMCID: PMC9387973 DOI: 10.1097/md.0000000000029996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Breast cancer (BC) ranks first for incidence and mortality in gynecological malignant tumors. This study aims to investigate the diagnostic value of Tank-binding kinase 1 (TBK1) and its correlation with androgen receptor (AR) and other serum cancer-related biomarkers in BC patient. The present observational study included 451 female BC patients and 451 healthy controls. Serum levels of TBK1, AR and other cancer-related biomarkers were detected in all the patients and healthy controls. Patients' demographic data and clinical data including age, body mass index (BMI), tumor node Metastasis (TNM), pathological type, tumor size and lymph node metastasis were collected. The follow-up lasted for 5 years. The deceased group had higher rate of patients with TNM III~IV, lymph node metastasis or tumor diameter >2. Deceased group had much higher rate of patients with negative ER and positive Ki67. Besides, increased TBK1 was found in BC patients with positive correlation with AR, CA15-3, CA125, CEA, and CA19-9. Serum TBK1 was associated with the clinic outcomes of BC patients and those with high TBK1 had lower 5-year survival rate. Moreover, cutoff value of 13.95 ng/mL TBK1 showed AUC of 0.981 (93.6% for sensitivity and 86.3% for specificity) for diagnosing BC, and cutoff value of 22.65 ng/mL TBK1 had AUC of 0.996 (97.7% for sensitivity and 96.3% for specificity) for diagnosing the death of BC patients. Serum TBK1 was positively correlated with AR and other serum cancer-related biomarkers. In addition, high TBK1 predicted the poor prognosis and might be used for the diagnosis of BC.
Collapse
Affiliation(s)
- HanCheng Liu
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
| | - HuiMing Li
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
| | - Jie Zhang
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
| | - QingLai Meng
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
| | - LiHui Ma
- Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Chengde City, Hebei, 067000, China
- * Correspondence: LiHui Ma, Department of Breast Surgery, Affiliated Hospital of ChengDe Medical College, Feng Yingzi town, Shuangqiao, Chengde City, Hebei, 067000, China (e-mail: )
| |
Collapse
|
13
|
BACH1 Expression Is Promoted by Tank Binding Kinase 1 (TBK1) in Pancreatic Cancer Cells to Increase Iron and Reduce the Expression of E-Cadherin. Antioxidants (Basel) 2022; 11:antiox11081460. [PMID: 36009179 PMCID: PMC9405201 DOI: 10.3390/antiox11081460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species and promotes metastasis of various cancers including pancreatic ductal adenocarcinoma (PDAC). However, it is not clear how BACH1 is regulated in PDAC cells. Knockdown of Tank binding kinase 1 (TBK1) led to reductions of BACH1 mRNA and protein amounts in AsPC−1 human PDAC cells. Gene expression analysis of PDAC cells with knockdown of TBK1 or BACH1 suggested the involvement of TBK1 and BACH1 in the regulation of iron homeostasis. Ferritin mRNA and proteins were both increased upon BACH1 knockdown in AsPC−1 cells. Flow cytometry analysis showed that AsPC−1 cells with BACH1 knockout or knockdown contained lower labile iron than control cells, suggesting that BACH1 increased labile iron by repressing the expression of ferritin genes. We further found that the expression of E-cadherin was upregulated upon the chelation of intracellular iron content. These results suggest that the TBK1-BACH1 pathway promotes cancer cell metastasis by increasing labile iron within cells.
Collapse
|
14
|
TBK1 is part of a galectin 8 dependent membrane damage recognition complex and drives autophagy upon Adenovirus endosomal escape. PLoS Pathog 2022; 18:e1010736. [PMID: 35857795 PMCID: PMC9342788 DOI: 10.1371/journal.ppat.1010736] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/01/2022] [Accepted: 07/11/2022] [Indexed: 12/09/2022] Open
Abstract
Intracellular pathogens cause membrane distortion and damage as they enter host cells. Cells perceive these membrane alterations as danger signals and respond by activating autophagy. This response has primarily been studied during bacterial invasion, and only rarely in viral infections. Here, we investigate the cellular response to membrane damage during adenoviral entry. Adenoviruses and their vector derivatives, that are an important vaccine platform against SARS-CoV-2, enter the host cell by endocytosis followed by lysis of the endosomal membrane. We previously showed that cells mount a locally confined autophagy response at the site of endosomal membrane lysis. Here we describe the mechanism of autophagy induction: endosomal membrane damage activates the kinase TBK1 that accumulates in its phosphorylated form at the penetration site. Activation and recruitment of TBK1 require detection of membrane damage by galectin 8 but occur independently of classical autophagy receptors or functional autophagy. Instead, TBK1 itself promotes subsequent autophagy that adenoviruses need to take control of. Deletion of TBK1 reduces LC3 lipidation during adenovirus infection and restores the infectivity of an adenovirus mutant that is restricted by autophagy. By comparing adenovirus-induced membrane damage to sterile lysosomal damage, we implicate TBK1 in the response to a broader range of types of membrane damage. Our study thus highlights an important role for TBK1 in the cellular response to adenoviral endosome penetration and places TBK1 early in the pathway leading to autophagy in response to membrane damage. Rapid detection of invading pathogens is crucial for cell survival. Membrane alterations in this process are detected by cells but are rarely studied in the context of viral infections. TBK1 is an important kinase driving innate immunity and autophagy in response to pathogen invasion. Here we report that TBK1 promotes autophagy in response to membrane penetration by adenoviruses. We demonstrate that TBK1 is rapidly activated and recruited to virus membrane penetration sites, and promotes autophagy through its kinase activity. We show that TBK1 recruitment depends on membrane damage recognition via galectin 8 but occurs independently of classical autophagy receptors or functional autophagy. Moreover, we demonstrate that TBK1 activation is part of a wider cellular response to endo-lysosomal damage. Our work highlights a prominent role for TBK1 in the swift cellular response to membrane damage and the downstream activation of autophagy.
Collapse
|
15
|
Deretic V, Lazarou M. A guide to membrane atg8ylation and autophagy with reflections on immunity. J Cell Biol 2022; 221:e202203083. [PMID: 35699692 PMCID: PMC9202678 DOI: 10.1083/jcb.202203083] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/26/2022] [Indexed: 12/11/2022] Open
Abstract
The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.
Collapse
Affiliation(s)
- Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | - Michael Lazarou
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
Wang DK, Zheng HL, Zhou WS, Duan ZW, Jiang SD, Li B, Zheng XF, Jiang LS. Mitochondrial Dysfunction in Oxidative Stress-Mediated Intervertebral Disc Degeneration. Orthop Surg 2022; 14:1569-1582. [PMID: 35673928 PMCID: PMC9363752 DOI: 10.1111/os.13302] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Intervertebral disc degeneration (IVDD) is the most common contributor to low back pain (LBP). Recent studies have found that oxidative stress and reactive oxygen species (ROS) play an important role in IVDD. As a by‐product of aerobic respiration, ROS is mainly produced in the mitochondria by the electron transport chain and other mitochondrial located proteins. With the excessive accumulation of ROS, mitochondria are also the primary target of ROS attack in disc cells. A disrupted balance between intracellular ROS production and antioxidant capacity will lead to oxidative stress, which is the key contributor to cell apoptosis, cell senescence, excessive autophagy, and mitochondrial dysfunction. As the pivotal ingredient of oxidative stress, mitochondrial dysfunction manifests as imbalanced mitochondrial dynamics and dysregulated mitophagy. Mitochondria can alter their own dynamics through the process of fusion and fission, so that disabled mitochondria can be separated from the mitochondrial pool. Moreover, mitophagy participates by clearing these dysfunctional mitochondria. Abnormality in any of these processes either increases the production or decreases the clearance of ROS, leading to a vicious cycle that results in the death of intervertebral disc cells in large quantities, combined with degradation of the extracellular matrix and overproduction of matrix metalloproteinase. In this review, we explain the changes in mitochondrial morphology and function during oxidative stress‐mediated IVDD and highlight the important role of mitochondria in this process. Eventually, we summarize the IVDD therapeutic strategies targeting mitochondrial dysfunction based on current understanding of the role of oxidative stress in IVDD.
Collapse
Affiliation(s)
- Dian-Kai Wang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huo-Liang Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-Sheng Zhou
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Wei Duan
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng-Dan Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Li
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin-Feng Zheng
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei-Sheng Jiang
- Department of Spine Centre, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Zou L, Liao M, Zhen Y, Zhu S, Chen X, Zhang J, Hao Y, Liu B. Autophagy and beyond: Unraveling the complexity of UNC-51-like kinase 1 (ULK1) from biological functions to therapeutic implications. Acta Pharm Sin B 2022; 12:3743-3782. [PMID: 36213540 PMCID: PMC9532564 DOI: 10.1016/j.apsb.2022.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/27/2022] [Accepted: 06/02/2022] [Indexed: 12/13/2022] Open
Abstract
UNC-51-like kinase 1 (ULK1), as a serine/threonine kinase, is an autophagic initiator in mammals and a homologous protein of autophagy related protein (Atg) 1 in yeast and of UNC-51 in Caenorhabditis elegans. ULK1 is well-known for autophagy activation, which is evolutionarily conserved in protein transport and indispensable to maintain cell homeostasis. As the direct target of energy and nutrition-sensing kinase, ULK1 may contribute to the distribution and utilization of cellular resources in response to metabolism and is closely associated with multiple pathophysiological processes. Moreover, ULK1 has been widely reported to play a crucial role in human diseases, including cancer, neurodegenerative diseases, cardiovascular disease, and infections, and subsequently targeted small-molecule inhibitors or activators are also demonstrated. Interestingly, the non-autophagy function of ULK1 has been emerging, indicating that non-autophagy-relevant ULK1 signaling network is also linked with diseases under some specific contexts. Therefore, in this review, we summarized the structure and functions of ULK1 as an autophagic initiator, with a focus on some new approaches, and further elucidated the key roles of ULK1 in autophagy and non-autophagy. Additionally, we also discussed the relationships between ULK1 and human diseases, as well as illustrated a rapid progress for better understanding of the discovery of more candidate small-molecule drugs targeting ULK1, which will provide a clue on novel ULK1-targeted therapeutics in the future.
Collapse
Affiliation(s)
- Ling Zou
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minru Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongqi Zhen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shiou Zhu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen 518060, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Corresponding authors. Tel./fax: +86 28 85503817.
| |
Collapse
|
18
|
Guanylate-Binding Protein 1 Regulates Infection-Induced Autophagy through TBK1 Phosphorylation. Cell Microbiol 2022. [DOI: 10.1155/2022/8612113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Invading bacteria can be degraded by selective autophagy, known as xenophagy. Recent studies have shown that the recruitment of autophagy adaptor proteins such as p62 to bacteria and its regulation by activated TANK-binding kinase 1 (TBK1) are required to overcome bacterial infection. However, the detailed molecular mechanisms behind this are not yet fully understood. Here, we show that the human guanylate-binding protein (GBP) family, especially GBP1, directs xenophagy against invading Group A Streptococcus (GAS) by promoting TBK1 phosphorylation. GBP1 exhibits a GAS-surrounding localization response to bacterially caused membrane damage mediated by the membrane damage sensor galectin-3. We found that GBP1 knockout attenuated TBK1 activation, followed by reduced p62 recruitment and lower bactericidal activity by xenophagy. Furthermore, GBP1-TBK1 interaction was detected by immunoprecipitation. Our findings collectively indicate that GBP1 contributes to GAS-targeted autophagy initiated by membrane damage detection by galectin-3 via TBK1 phosphorylation.
Collapse
|
19
|
Runde AP, Mack R, S J PB, Zhang J. The role of TBK1 in cancer pathogenesis and anticancer immunity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:135. [PMID: 35395857 PMCID: PMC8994244 DOI: 10.1186/s13046-022-02352-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
Abstract
The TANK-binding kinase 1 (TBK1) is a serine/threonine kinase belonging to the non-canonical inhibitor of nuclear factor-κB (IκB) kinase (IKK) family. TBK1 can be activated by pathogen-associated molecular patterns (PAMPs), inflammatory cytokines, and oncogenic kinases, including activated K-RAS/N-RAS mutants. TBK1 primarily mediates IRF3/7 activation and NF-κB signaling to regulate inflammatory cytokine production and the activation of innate immunity. TBK1 is also involved in the regulation of several other cellular activities, including autophagy, mitochondrial metabolism, and cellular proliferation. Although TBK1 mutations have not been reported in human cancers, aberrant TBK1 activation has been implicated in the oncogenesis of several types of cancer, including leukemia and solid tumors with KRAS-activating mutations. As such, TBK1 has been proposed to be a feasible target for pharmacological treatment of these types of cancer. Studies suggest that TBK1 inhibition suppresses cancer development not only by directly suppressing the proliferation and survival of cancer cells but also by activating antitumor T-cell immunity. Several small molecule inhibitors of TBK1 have been identified and interrogated. However, to this point, only momelotinib (MMB)/CYT387 has been evaluated as a cancer therapy in clinical trials, while amlexanox (AMX) has been evaluated clinically for treatment of type II diabetes, nonalcoholic fatty liver disease, and obesity. In this review, we summarize advances in research into TBK1 signaling pathways and regulation, as well as recent studies on TBK1 in cancer pathogenesis. We also discuss the potential molecular mechanisms of targeting TBK1 for cancer treatment. We hope that our effort can help to stimulate the development of novel strategies for targeting TBK1 signaling in future approaches to cancer therapy.
Collapse
Affiliation(s)
- Austin P Runde
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Ryan Mack
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Peter Breslin S J
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA.,Departments of Molecular/Cellular Physiology and Biology, Loyola University Medical Center and Loyola University Chicago, Chicago, IL, 60660, USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL, 60153, USA. .,Departments of Pathology and Radiation Oncology, Loyola University Medical Center, Maywood, IL, 60153, USA.
| |
Collapse
|
20
|
Li N, Li Y, Hu J, Wu Y, Yang J, Fan H, Li L, Luo D, Ye Y, Gao Y, Xu H, Hai W, Jiang L. A Link Between Mitochondrial Dysfunction and the Immune Microenvironment of Salivary Glands in Primary Sjogren’s Syndrome. Front Immunol 2022; 13:845209. [PMID: 35359935 PMCID: PMC8964148 DOI: 10.3389/fimmu.2022.845209] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/09/2022] [Indexed: 12/17/2022] Open
Abstract
Background Primary Sjogren’s syndrome (pSS) is a slowly progressive, inflammatory autoimmune disease characterized by lymphocytic infiltration into salivary and lacrimal glands. It becomes more recognized that morphology alterations of epithelial mitochondria are involved in altered cellular bioenergetics in pSS patients. The integrated analysis of the mitochondrial role in the pathogenesis and aberrant immune microenvironment in pSS remains unknown. Methods The mitochondria-related genes and gene expression data were downloaded from the MitoMiner, MitoCarta, and NCBI GEO databases. We performed novel transcriptomic analysis and constructed a network between the mitochondrial function and immune microenvironment in pSS-salivary glands by computer-aided algorithms. Subsequently, real-time PCR was performed in clinical samples in order to validate the bioinformatics results. Histological staining and transmission electron microscopy (TEM) were further studied on labial salivary gland samples of non-pSS and pSS patients characterized for mitochondria-related phenotypic observation in the different stages of the disease. Results The bioinformatic analysis revealed that the expression of several mitochondria-related genes was altered in pSS. Quantitative real-time PCR showed that four hub genes, CD38, CMPK2, TBC1D9, and PYCR1, were differentially expressed in the pSS clinical samples. These hub genes were associated with the degree of immune cell infiltration in salivary glands, the mitochondrial respiratory chain complexes, mitochondrial metabolic pathway in gluconeogenesis, TCA cycle, and pyruvate/ketone/lipid/amino acid metabolism in pSS. Clinical data revealed that the gene expression of fission (Fis1, DRP1, and MFF) and fusion (MFN1, MFN2, and OPA1) was downregulated in pSS samples, consistent with the results from the public validation database. As the disease progressed, cytochrome c and Bcl-2 proteins were regionally distributed in salivary glands from pSS patients. TEM revealed cytoplasmic lipid droplets and progressively swollen mitochondria in salivary epithelial cells. Conclusion Our study revealed cross talk between mitochondrial dysfunction and the immune microenvironment in salivary glands of pSS patients, which may provide important insights into SS clinical management based on modulation of mitochondrial function.
Collapse
Affiliation(s)
- Ning Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yusi Li
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Wu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Yang
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Fan
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yulin Ye
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yiming Gao, ; Haimin Xu, ; Wangxi Hai, ; Liting Jiang,
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yiming Gao, ; Haimin Xu, ; Wangxi Hai, ; Liting Jiang,
| | - Wangxi Hai
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yiming Gao, ; Haimin Xu, ; Wangxi Hai, ; Liting Jiang,
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Yiming Gao, ; Haimin Xu, ; Wangxi Hai, ; Liting Jiang,
| |
Collapse
|
21
|
Jensch A, Lopes MB, Vinga S, Radde N. ROSIE: RObust Sparse ensemble for outlIEr detection and gene selection in cancer omics data. Stat Methods Med Res 2022; 31:947-958. [PMID: 35072570 PMCID: PMC9014683 DOI: 10.1177/09622802211072456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The extraction of novel information from omics data is a challenging task, in
particular, since the number of features (e.g. genes) often far exceeds the
number of samples. In such a setting, conventional parameter estimation leads to
ill-posed optimization problems, and regularization may be required. In
addition, outliers can largely impact classification accuracy. Here we introduce ROSIE, an ensemble classification approach, which combines
three sparse and robust classification methods for outlier detection and feature
selection and further performs a bootstrap-based validity check. Outliers of
ROSIE are determined by the rank product test using outlier rankings of all
three methods, and important features are selected as features commonly selected
by all methods. We apply ROSIE to RNA-Seq data from The Cancer Genome Atlas (TCGA) to classify
observations into Triple-Negative Breast Cancer (TNBC) and non-TNBC tissue
samples. The pre-processed dataset consists of 16,600 genes and more than 1,000 samples. We demonstrate that ROSIE selects important features
and outliers in a robust way. Identified outliers are concordant with the
distribution of the commonly selected genes by the three methods, and results
are in line with other independent studies. Furthermore, we discuss the
association of some of the selected genes with the TNBC subtype in other
investigations. In summary, ROSIE constitutes a robust and sparse procedure to
identify outliers and important genes through binary classification. Our
approach is ad hoc applicable to other datasets, fulfilling the overall goal of
simultaneously identifying outliers and candidate disease biomarkers to the
targeted in therapy research and personalized medicine frameworks.
Collapse
Affiliation(s)
- Antje Jensch
- Institute for Systems Theory and Automatic Control, 9149University of Stuttgart, Germany
| | - Marta B Lopes
- Center for Mathematics and Applications (CMA), NOVA School of Science and Technology, Caparica, Portugal.,NOVA Laboratory for Computer Science and Informatics (NOVA LINCS), NOVA School of Science and Technology, Caparica, Portugal
| | - Susana Vinga
- INESC-ID, Instituto Superior Técnico, 72971Universidade de Lisboa, Portugal.,IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Portugal
| | - Nicole Radde
- Institute for Systems Theory and Automatic Control, 9149University of Stuttgart, Germany
| |
Collapse
|
22
|
Kong F, You H, Zheng K, Tang R, Zheng C. The crosstalk between pattern-recognition receptor signaling and calcium signaling. Int J Biol Macromol 2021; 192:745-756. [PMID: 34634335 DOI: 10.1016/j.ijbiomac.2021.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
The innate immune system is the first line of host defense, and it is capable of resisting both exogenous pathogenic challenges and endogenous danger signals via different pattern recognition receptors (PRRs), including Toll-like receptors, retinoic acid-inducible gene-1 (RIG-1)-like receptors, cytosolic DNA sensors, as well as nucleotide-binding oligomerization domain (NOD)-like receptors. After recognizing the pathogen-associated molecular patterns from exogenous microbes or the damage-associated molecular patterns from endogenous immune-stimulatory signals, these PRRs signaling pathways can induce the expression of interferons and inflammatory factors against microbial pathogen invasion and endogenous stresses. Calcium (Ca2+) is a second messenger that participates in the modulation of various biological processes, including survival, proliferation, apoptosis, and immune response, and is involved in diverse diseases, such as autoimmune diseases and virus infection. To date, accumulating evidence elucidated that the PRR signaling exhibited a regulatory effect on Ca2+ signaling. Meanwhile, Ca2+ signaling also played a critical role in controlling biological processes mediated by the PRR adaptors. Since the importance of these two signalings, it would be interesting to clarify the deeper biological implications of their interplays. This review focuses on the crosstalk between Ca2+ signaling and PRR signaling to regulate innate immune responses.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
23
|
Heat Shock-Related Protein Responses and Inflammatory Protein Changes Are Associated with Mild Prolonged Hypoglycemia. Cells 2021; 10:cells10113109. [PMID: 34831332 PMCID: PMC8618421 DOI: 10.3390/cells10113109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Mild hypoglycemia is common in clinical practice. Severe hypoglycemia results in heat shock protein and associate co-chaperone changes. Whether mild prolonged hypoglycemia elicits a similar response with inflammatory and oxidative-stress responses compared with a severe hypoglycemic event is unclear; therefore, this pilot exploratory study was undertaken. We performed a case–control induced hypoglycemia clamp study, maintaining blood glucose at 2.8 mmol/L (50 mg/dL) for 1 h in 17 subjects (T2D (n = 10); controls (n = 7)). Blood sampling was performed at baseline, hypoglycemia, and 24 h; slow off-rate modified aptamer (SOMA)-scan plasma protein analysis of HSP-related proteins, inflammatory stress markers, and oxidative stress markers was performed. In total, 16 HSPs were analyzed. At baseline, TLR4:MD-2 complex was elevated (p = 0.01), whilst HSPA8 was lower (p < 0.05) in T2D. At hypoglycemia, UBE2N, STIP1, and UBE2L3 increased (all p < 0.05), whilst TLR4:MD-2 and HSPA8 decreased (p < 0.05) in T2D versus baseline. In follow-up after hypoglycemia, HSPs normalized to baseline by 24 h, except UBE2L3 (p < 0.05), which was decreased in controls versus baseline. Correlation of altered inflammatory markers with HSPs revealed the following: at baseline, TLR4:MD-2 correlated with CXCL10 (p < 0.01) and SIGLEC1 (p < 0.05) in controls; HSPA8 negatively correlated with IL5 (p < 0.05) in T2D. A negative correlation between urinary isoprostane 8-iso PGF2α, a marker of oxidative stress, and HSPA1A was seen at 24 h in T2D only (p < 0.05). In conclusion, the HSP changes seen for mild prolonged hypoglycemia were similar to those previously reported for a severe event. However, mild prolonged hypoglycemia appeared to elicit an increased inflammatory response that was associated with heat shock and related proteins.
Collapse
|
24
|
Yamada A, Hikichi M, Nozawa T, Nakagawa I. FBXO2/SCF ubiquitin ligase complex directs xenophagy through recognizing bacterial surface glycan. EMBO Rep 2021; 22:e52584. [PMID: 34515398 DOI: 10.15252/embr.202152584] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/26/2021] [Accepted: 08/20/2021] [Indexed: 11/09/2022] Open
Abstract
Xenophagy, also known as antibacterial selective autophagy, degrades invading bacterial pathogens such as group A Streptococcus (GAS) to defend cells. Although invading bacteria are known to be marked with ubiquitin and selectively targeted by xenophagy, how ubiquitin ligases recognize invading bacteria is poorly understood. Here, we show that FBXO2, a glycoprotein-specific receptor for substrate in the SKP1/CUL1/F-box protein (SCF) ubiquitin ligase complex, mediates recognition of GlcNAc side chains of the GAS surface carbohydrate structure and promotes ubiquitin-mediated xenophagy against GAS. FBXO2 targets cytosolic GAS through its sugar-binding motif and GlcNAc expression on the GAS surface. FBXO2 knockout resulted in decreased ubiquitin accumulation on intracellular GAS and xenophagic degradation of bacteria. Furthermore, SCF components such as SKP1, CUL1, and ROC1 are required for ubiquitin-mediated xenophagy against GAS. Thus, SCFFBXO2 recognizes GlcNAc residues of GAS surface carbohydrates and functions in ubiquitination during xenophagy.
Collapse
Affiliation(s)
- Akihiro Yamada
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyako Hikichi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Lv F, Shao T, Xue Y, Miao X, Guo Y, Wang Y, Xu Y. Dual Regulation of Tank Binding Kinase 1 by BRG1 in Hepatocytes Contributes to Reactive Oxygen Species Production. Front Cell Dev Biol 2021; 9:745985. [PMID: 34660604 PMCID: PMC8517266 DOI: 10.3389/fcell.2021.745985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 01/14/2023] Open
Abstract
Excessive accumulation of reactive oxygen species (ROS) is considered a major culprit for the pathogenesis of non-alcoholic fatty liver disease (NAFLD). We have previously shown that deletion of Brahma related gene 1 (BRG1) mitigated NAFLD in mice in part by attenuating ROS production in hepatocyte. Here we report that BRG1 deletion led to simultaneous down-regulation in expression and phosphorylation of tank binding kinase 1 (TBK1) in vivo and in vitro. On the one hand, BRG1 interacted with AP-1 to bind to the TBK1 promoter and directly activated TBK1 transcription in hepatocytes. On the other hand, BRG1 interacted with Sp1 to activate the transcription of c-SRC, a tyrosine kinase essential for TBK1 phosphorylation. Over-expression of c-SRC and TBK1 corrected the deficiency in ROS production in BRG1-null hepatocytes whereas depletion of TBK1 or c-SRC attenuated ROS production. In conclusion, our data suggest that dual regulation of TBK1 activity, at the transcription level and the post-transcriptional level, by BRG1 may constitute an important mechanism underlying excessive ROS production in hepatocytes.
Collapse
Affiliation(s)
- Fangqiao Lv
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yujia Xue
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiulian Miao
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yan Guo
- College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yutong Wang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,College of Life Sciences and Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
26
|
Eapen VV, Swarup S, Hoyer MJ, Paulo JA, Harper JW. Quantitative proteomics reveals the selectivity of ubiquitin-binding autophagy receptors in the turnover of damaged lysosomes by lysophagy. eLife 2021; 10:e72328. [PMID: 34585663 PMCID: PMC8523161 DOI: 10.7554/elife.72328] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022] Open
Abstract
Removal of damaged organelles via the process of selective autophagy constitutes a major form of cellular quality control. Damaged organelles are recognized by a dedicated surveillance machinery, leading to the assembly of an autophagosome around the damaged organelle, prior to fusion with the degradative lysosomal compartment. Lysosomes themselves are also prone to damage and are degraded through the process of lysophagy. While early steps involve recognition of ruptured lysosomal membranes by glycan-binding galectins and ubiquitylation of transmembrane lysosomal proteins, many steps in the process, and their interrelationships, remain poorly understood, including the role and identity of cargo receptors required for completion of lysophagy. Here, we employ quantitative organelle capture and proximity biotinylation proteomics of autophagy adaptors, cargo receptors, and galectins in response to acute lysosomal damage, thereby revealing the landscape of lysosome-associated proteome remodeling during lysophagy. Among the proteins dynamically recruited to damaged lysosomes were ubiquitin-binding autophagic cargo receptors. Using newly developed lysophagic flux reporters including Lyso-Keima, we demonstrate that TAX1BP1, together with its associated kinase TBK1, are both necessary and sufficient to promote lysophagic flux in both HeLa cells and induced neurons (iNeurons). While the related receptor Optineurin (OPTN) can drive damage-dependent lysophagy when overexpressed, cells lacking either OPTN or CALCOCO2 still maintain significant lysophagic flux in HeLa cells. Mechanistically, TAX1BP1-driven lysophagy requires its N-terminal SKICH domain, which binds both TBK1 and the autophagy regulatory factor RB1CC1, and requires upstream ubiquitylation events for efficient recruitment and lysophagic flux. These results identify TAX1BP1 as a central component in the lysophagy pathway and provide a proteomic resource for future studies of the lysophagy process.
Collapse
Affiliation(s)
- Vinay V Eapen
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Sharan Swarup
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Melissa J Hoyer
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, BostonBostonUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| |
Collapse
|
27
|
Kothari C, Clemenceau A, Ouellette G, Ennour-Idrissi K, Michaud A, C.-Gaudreault R, Diorio C, Durocher F. TBC1D9: An Important Modulator of Tumorigenesis in Breast Cancer. Cancers (Basel) 2021; 13:3557. [PMID: 34298771 PMCID: PMC8304074 DOI: 10.3390/cancers13143557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a major concern among the different subtypes of breast cancer (BC) due to the lack of effective treatment. In a previous study by our group aimed at understanding the difference between TNBC and non-TNBC tumors, we identified the gene TBC1 domain family member 9 (TBC1D9), the expression of which was lower in TNBC as compared to non-TNBC tumors. In the present study, analysis of TBC1D9 expression in TNBC (n = 58) and non-TNBC (n = 25) patient tumor samples validated that TBC1D9 expression can differentiate TNBC (low) from non-TNBC (high) samples and that expression of TBC1D9 was inversely correlated with grade and proliferative index. Moreover, we found that downregulation of the TBC1D9 gene decreases the proliferation marginally in non-TNBC and was associated with increased migratory and tumorigenic potential in both TNBC and luminal BC cell lines. This increase was mediated by the upregulation of ARL8A, ARL8B, PLK1, HIF1α, STAT3, and SPP1 expression in TBC1D9 knockdown cells. Our results suggest that TBC1D9 expression might limit tumor aggressiveness and that it has a differential expression in TNBC vs. non-TNBC tumors.
Collapse
Affiliation(s)
- Charu Kothari
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| | - Alisson Clemenceau
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| | - Geneviève Ouellette
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| | - Kaoutar Ennour-Idrissi
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
- Département de Biologie Moléculaire, de Biochimie Médicale et de Pathologie, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada
| | - Annick Michaud
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| | - René C.-Gaudreault
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
- Laboratoire de Chimie Médicinale, l’Hôpital Saint-François d’Assise, Université Laval, Québec City, QC G1L 3L5, Canada
| | - Caroline Diorio
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
- Département de Médecine Sociale et Préventive, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada
- Centre des Maladies du Sein, Hôpital du Saint-Sacrement, Québec City, QC G1S 4L8, Canada
| | - Francine Durocher
- Département de Médecine Moléculaire, Faculté de Médecine, Université Laval, Québec City, QC G1T 1C2, Canada; (C.K.); (A.C.); (G.O.); (R.C.-G.)
- Centre de Recherche sur le Cancer, Centre de Recherche du CHU de Québec-Université Laval, Québec City, QC G1V 4G2, Canada; (K.E.-I.); (A.M.); (C.D.)
| |
Collapse
|
28
|
Umair M, Khan S, Mohammad T, Shafie A, Anjum F, Islam A, Hassan MI. Impact of single amino acid substitution on the structure and function of TANK-binding kinase-1. J Cell Biochem 2021; 122:1475-1490. [PMID: 34237165 DOI: 10.1002/jcb.30070] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022]
Abstract
Tank-binding kinase 1 (TBK1) is a serine/threonine protein kinase involved in various signaling pathways and subsequently regulates cell proliferation, apoptosis, autophagy, antiviral and antitumor immunity. Dysfunction of TBK1 can cause many complex diseases, including autoimmunity, neurodegeneration, and cancer. This dysfunction of TBK1 may result from single amino acid substitutions and subsequent structural alterations. This study analyzed the effect of substituting amino acids on TBK1 structure, function, and subsequent disease using advanced computational methods and various tools. In the initial assessment, a total of 467 mutations were found to be deleterious. After that, in detailed structural and sequential analyses, 13 mutations were found to be pathogenic. Finally, based on the functional importance, two variants (K38D and S172A) of the TBK1 kinase domain were selected and studied in detail by utilizing all-atom molecular dynamics (MD) simulation for 200 ns. MD simulation, including correlation matrix and principal component analysis, helps to get deeper insights into the TBK1 structure at the atomic level. We observed a substantial change in variants' conformation, which may be possible for structural alteration and subsequent TBK1 dysfunction. However, substitution S172A shows a significant conformational change in TBK1 structure as compared to K38D. Thus, this study provides a structural basis to understand the effect of mutations on the kinase domain of TBK1 and its function associated with disease progression.
Collapse
Affiliation(s)
- Mohd Umair
- Department of Computer Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Shama Khan
- Drug Discovery and Development Centre (H3D), University of Cape Town, Rondebosch, South Africa
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
29
|
Herhaus L. TBK1 (TANK-binding kinase 1)-mediated regulation of autophagy in health and disease. Matrix Biol 2021; 100-101:84-98. [DOI: 10.1016/j.matbio.2021.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/12/2022]
|
30
|
Johnston KJA, Ward J, Ray PR, Adams MJ, McIntosh AM, Smith BH, Strawbridge RJ, Price TJ, Smith DJ, Nicholl BI, Bailey MES. Sex-stratified genome-wide association study of multisite chronic pain in UK Biobank. PLoS Genet 2021; 17:e1009428. [PMID: 33830993 PMCID: PMC8031124 DOI: 10.1371/journal.pgen.1009428] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Chronic pain is highly prevalent worldwide and imparts a significant socioeconomic and public health burden. Factors influencing susceptibility to, and mechanisms of, chronic pain development, are not fully understood, but sex is thought to play a significant role, and chronic pain is more prevalent in women than in men. To investigate sex differences in chronic pain, we carried out a sex-stratified genome-wide association study of Multisite Chronic Pain (MCP), a derived chronic pain phenotype, in UK Biobank on 178,556 men and 209,093 women, as well as investigating sex-specific genetic correlations with a range of psychiatric, autoimmune and anthropometric phenotypes and the relationship between sex-specific polygenic risk scores for MCP and chronic widespread pain. We also assessed whether MCP-associated genes showed expression pattern enrichment across tissues. A total of 123 SNPs at five independent loci were significantly associated with MCP in men. In women, a total of 286 genome-wide significant SNPs at ten independent loci were discovered. Meta-analysis of sex-stratified GWAS outputs revealed a further 87 independent associated SNPs. Gene-level analyses revealed sex-specific MCP associations, with 31 genes significantly associated in females, 37 genes associated in males, and a single gene, DCC, associated in both sexes. We found evidence for sex-specific pleiotropy and risk for MCP was found to be associated with chronic widespread pain in a sex-differential manner. Male and female MCP were highly genetically correlated, but at an rg of significantly less than 1 (0.92). All 37 male MCP-associated genes and all but one of 31 female MCP-associated genes were found to be expressed in the dorsal root ganglion, and there was a degree of enrichment for expression in sex-specific tissues. Overall, the findings indicate that sex differences in chronic pain exist at the SNP, gene and transcript abundance level, and highlight possible sex-specific pleiotropy for MCP. Results support the proposition of a strong central nervous-system component to chronic pain in both sexes, additionally highlighting a potential role for the DRG and nociception.
Collapse
Affiliation(s)
- Keira J. A. Johnston
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Joey Ward
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Pradipta R. Ray
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Mark J. Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew M. McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Blair H. Smith
- Division of Population Health Sciences, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, United Kingdom
| | - Rona J. Strawbridge
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
- Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Theodore J. Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
| | - Daniel J. Smith
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Barbara I. Nicholl
- Institute of Health and Wellbeing, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Mark E. S. Bailey
- School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
31
|
Onishi M, Okamoto K. Mitochondrial clearance: mechanisms and roles in cellular fitness. FEBS Lett 2021; 595:1239-1263. [PMID: 33615465 DOI: 10.1002/1873-3468.14060] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
Mitophagy is one of the selective autophagy pathways that catabolizes dysfunctional or superfluous mitochondria. Under mitophagy-inducing conditions, mitochondria are labeled with specific molecular landmarks that recruit the autophagy machinery to the surface of mitochondria, enclosed into autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degradation. As damaged mitochondria are the major sources of reactive oxygen species, mitophagy is critical for mitochondrial quality control and cellular health. Moreover, appropriate control of mitochondrial quantity via mitophagy is vital for the energy supply-demand balance in cells and whole organisms, cell differentiation, and developmental programs. Thus, it seems conceivable that defects in mitophagy could elicit pleiotropic pathologies such as excess inflammation, tissue injury, neurodegeneration, and aging. In this review, we will focus on the molecular basis and physiological relevance of mitophagy, and potential of mitophagy as a therapeutic target to overcome such disorders.
Collapse
Affiliation(s)
- Mashun Onishi
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Koji Okamoto
- Laboratory of Mitochondrial Dynamics, Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
32
|
Lin CY, Nozawa T, Minowa-Nozawa A, Toh H, Hikichi M, Iibushi J, Nakagawa I. Autophagy Receptor Tollip Facilitates Bacterial Autophagy by Recruiting Galectin-7 in Response to Group A Streptococcus Infection. Front Cell Infect Microbiol 2021; 10:583137. [PMID: 33425778 PMCID: PMC7786282 DOI: 10.3389/fcimb.2020.583137] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/19/2020] [Indexed: 01/09/2023] Open
Abstract
Bacterial autophagy—a type of macroautophagy that is also termed xenophagy—selectively targets intracellular bacteria such as group A Streptococcus (GAS), a ubiquitous pathogen that causes numerous serious diseases, including pharyngitis, skin infections, and invasive life-threatening infections. Although bacterial autophagy is known to eliminate invading bacteria via the action of autophagy receptors, the underlying mechanism remains unclear. Herein, we elucidated that Tollip functions as a bacterial-autophagy receptor in addition to participating involved in the intracellular immunity mechanism that defends against bacterial infection. Tollip was recruited to GAS-containing endosomal vacuoles prior to the escape of GAS into the cytosol; additionally, Tollip knockout disrupted the recruitment of other autophagy receptors, such as NBR1, TAX1BP1, and NDP52, to GAS-containing autophagosomes and led to prolonged intracellular survival of GAS. Furthermore, Tollip was found to be required for the recruitment of galectin-1 and -7 to GAS-containing autophagosomes, and immunoprecipitation results indicated that Tollip interacts with galectin-7. Lastly, our data also revealed that galectin-1 and -7 are involved in the restriction of GAS replication in cells. These results demonstrated that Tollip modulates bacterial autophagy by recruiting other autophagy receptors and galectins.
Collapse
Affiliation(s)
- Ching-Yu Lin
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuko Minowa-Nozawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Toh
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miyako Hikichi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junpei Iibushi
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ichiro Nakagawa
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
33
|
Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun 2020; 8:189. [PMID: 33168089 PMCID: PMC7654589 DOI: 10.1186/s40478-020-01062-w] [Citation(s) in RCA: 238] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the PTEN-induced kinase 1 (PINK1) and Parkin RBR E3 ubiquitin-protein ligase (PARKIN) genes are associated with familial forms of Parkinson’s disease (PD). PINK1, a protein kinase, and PARKIN, an E3 ubiquitin ligase, control the specific elimination of dysfunctional or superfluous mitochondria, thus fine-tuning mitochondrial network and preserving energy metabolism. PINK1 regulates PARKIN translocation in impaired mitochondria and drives their removal via selective autophagy, a process known as mitophagy. As knowledge obtained using different PINK1 and PARKIN transgenic animal models is being gathered, growing evidence supports the contribution of mitophagy impairment to several human pathologies, including PD and Alzheimer’s diseases (AD). Therefore, therapeutic interventions aiming to modulate PINK1/PARKIN signalling might have the potential to treat these diseases. In this review, we will start by discussing how the interplay of PINK1 and PARKIN signalling helps mediate mitochondrial physiology. We will continue by debating the role of mitochondrial dysfunction in disorders such as amyotrophic lateral sclerosis, Alzheimer’s, Huntington’s and Parkinson’s diseases, as well as eye diseases such as age-related macular degeneration and glaucoma, and the causative factors leading to PINK1/PARKIN-mediated neurodegeneration and neuroinflammation. Finally, we will discuss PINK1/PARKIN gene augmentation possibilities with a particular focus on AD, PD and glaucoma.
Collapse
|
34
|
Mingione A, Ottaviano E, Barcella M, Merelli I, Rosso L, Armeni T, Cirilli N, Ghidoni R, Borghi E, Signorelli P. Cystic Fibrosis Defective Response to Infection Involves Autophagy and Lipid Metabolism. Cells 2020; 9:cells9081845. [PMID: 32781626 PMCID: PMC7463682 DOI: 10.3390/cells9081845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis (CF) is a hereditary disease, with 70% of patients developing a proteinopathy related to the deletion of phenylalanine 508. CF is associated with multiple organ dysfunction, chronic inflammation, and recurrent lung infections. CF is characterized by defective autophagy, lipid metabolism, and immune response. Intracellular lipid accumulation favors microbial infection, and autophagy deficiency impairs internalized pathogen clearance. Myriocin, an inhibitor of sphingolipid synthesis, significantly reduces inflammation, promotes microbial clearance in the lungs, and induces autophagy and lipid oxidation. RNA-seq was performed in Aspergillusfumigatus-infected and myriocin-treated CF patients’ derived monocytes and in a CF bronchial epithelial cell line. Fungal clearance was also evaluated in CF monocytes. Myriocin enhanced CF patients’ monocytes killing of A. fumigatus. CF patients’ monocytes and cell line responded to infection with a profound transcriptional change; myriocin regulates genes that are involved in inflammation, autophagy, lipid storage, and metabolism, including histones and heat shock proteins whose activity is related to the response to infection. We conclude that the regulation of sphingolipid synthesis induces a metabolism drift by promoting autophagy and lipid consumption. This process is driven by a transcriptional program that corrects part of the differences between CF and control samples, therefore ameliorating the infection response and pathogen clearance in the CF cell line and in CF peripheral blood monocytes.
Collapse
Affiliation(s)
- Alessandra Mingione
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
| | - Emerenziana Ottaviano
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Matteo Barcella
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Ivan Merelli
- National Research Council of Italy, Institute for Biomedical Technologies, Via Fratelli Cervi 93, 20090 Milan, Italy;
| | - Lorenzo Rosso
- Health Sciences Department, University of Milan, Thoracic surgery and transplantation Unit, Fondazione IRCCS Ca Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Tatiana Armeni
- Department of Clinical Sciences, Section of Biochemistry, Biology and Physics, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Natalia Cirilli
- Cystic Fibrosis Referral Care Center, Mother-Child Department, United Hospitals Le Torrette, 60126 Ancona, Italy;
| | - Riccardo Ghidoni
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, via Antonio di Rudinì 8, 20142 Milan, Italy
| | - Elisa Borghi
- Laboratory of Clinical Microbiology, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (E.O.); (M.B.); (E.B.)
| | - Paola Signorelli
- Biochemistry and Molecular Biology Laboratory, Health Science Department, University of Milan, San Paolo Hospital, 20142 Milan, Italy; (A.M.); (R.G.)
- Correspondence:
| |
Collapse
|
35
|
Ke PY. Mitophagy in the Pathogenesis of Liver Diseases. Cells 2020; 9:cells9040831. [PMID: 32235615 PMCID: PMC7226805 DOI: 10.3390/cells9040831] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic process involving vacuolar sequestration of intracellular components and their targeting to lysosomes for degradation, thus supporting nutrient recycling and energy regeneration. Accumulating evidence indicates that in addition to being a bulk, nonselective degradation mechanism, autophagy may selectively eliminate damaged mitochondria to promote mitochondrial turnover, a process termed “mitophagy”. Mitophagy sequesters dysfunctional mitochondria via ubiquitination and cargo receptor recognition and has emerged as an important event in the regulation of liver physiology. Recent studies have shown that mitophagy may participate in the pathogenesis of various liver diseases, such as liver injury, liver steatosis/fatty liver disease, hepatocellular carcinoma, viral hepatitis, and hepatic fibrosis. This review summarizes the current knowledge on the molecular regulations and functions of mitophagy in liver physiology and the roles of mitophagy in the development of liver-related diseases. Furthermore, the therapeutic implications of targeting hepatic mitophagy to design a new strategy to cure liver diseases are discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|