1
|
Suzuki M, Kobayashi H, Hanaoka H. Near-infrared photoimmunotherapy for osteosarcoma targeting epidermal growth factor receptor. Transl Oncol 2024; 50:102132. [PMID: 39357464 PMCID: PMC11471228 DOI: 10.1016/j.tranon.2024.102132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Osteosarcoma is the most common bone tumor, and it possesses high metastatic propensity. Although systemic chemotherapy has improved its prognosis, improvements in survival rates have stalled in recent years. Moreover, the prognosis of patients with metastatic osteosarcoma remains poor. Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective cancer therapy that induces immunogenic cell death (ICD), and the therapeutic effects spread to distant metastatic sites. Therefore, NIR-PIT could be useful in both primary and metastatic osteosarcoma treatment. In this study, we investigated the efficacy of NIR-PIT targeting epidermal growth factor receptor (EGFR) in osteosarcoma. The cytotoxic effects of NIR-PIT in osteosarcoma cell lines with different EGFR expression levels (MG63; high, Saos-2; low) were evaluated. NIR-PIT-induced cell death was dependent on the EGFR expression level. After NIR-PIT, swelling and bleb formation, the characteristic morphological changes induced by NIR-PIT associated with necrosis caused by the influx of extracellular fluid, were observed. In addition, the release of the ICD markers lactate dehydrogenase and ATP was detected after NIT-PIT. NIR-PIT significantly suppressed tumor growth in tumor-bearing mice. This study revealed that NIR-PIT targeting EGFR has therapeutic effects and induces ICD in osteosarcoma; thus, it is potentially a novel therapeutic strategy for primary and metastatic osteosarcoma.
Collapse
Affiliation(s)
- Motofumi Suzuki
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Research Institute at Kansai Medical University, 2-5-1, Shin-Machi, Hirakata, Osaka, 573-1010, Japan
| | - Hisataka Kobayashi
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1088, United States
| | - Hirofumi Hanaoka
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Research Institute at Kansai Medical University, 2-5-1, Shin-Machi, Hirakata, Osaka, 573-1010, Japan.
| |
Collapse
|
2
|
Young EP, Marinoff AE, Lopez-Fuentes E, Sweet-Cordero EA. Osteosarcoma through the Lens of Bone Development, Signaling, and Microenvironment. Cold Spring Harb Perspect Med 2024; 14:a041635. [PMID: 38565264 PMCID: PMC11444254 DOI: 10.1101/cshperspect.a041635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In this work, we review the multifaceted connections between osteosarcoma (OS) biology and normal bone development. We summarize and critically analyze existing research, highlighting key areas that merit further exploration. The review addresses several topics in OS biology and their interplay with normal bone development processes, including OS cell of origin, genomics, tumor microenvironment, and metastasis. We examine the potential cellular origins of OS and how their roles in normal bone growth may contribute to OS pathogenesis. We survey the genomic landscape of OS, highlighting the developmental roles of genes frequently altered in OS. We then discuss the OS microenvironment, emphasizing the transformation of the bone niche in OS to facilitate tumor growth and metastasis. The role of stromal and immune cells is examined, including their impact on tumor progression and therapeutic response. We further provide insights into potential development-informed opportunities for novel therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth P Young
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Amanda E Marinoff
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - Eunice Lopez-Fuentes
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| | - E Alejandro Sweet-Cordero
- Division of Pediatric Oncology, Department of Pediatrics, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
3
|
Orrapin S, Moonmuang S, Udomruk S, Yongpitakwattana P, Pruksakorn D, Chaiyawat P. Unlocking the tumor-immune microenvironment in osteosarcoma: insights into the immune landscape and mechanisms. Front Immunol 2024; 15:1394284. [PMID: 39359731 PMCID: PMC11444963 DOI: 10.3389/fimmu.2024.1394284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/19/2024] [Indexed: 10/04/2024] Open
Abstract
Osteosarcoma has a unique tumor microenvironment (TME), which is characterized as a complex microenvironment comprising of bone cells, immune cells, stromal cells, and heterogeneous vascular structures. These elements are intricately embedded in a mineralized extracellular matrix, setting it apart from other primary TMEs. In a state of normal physiological function, these cell types collaborate in a coordinated manner to maintain the homeostasis of the bone and hematopoietic systems. However, in the pathological condition, i.e., neoplastic malignancies, the tumor-immune microenvironment (TIME) has been shown to promote cancer cells proliferation, migration, apoptosis and drug resistance, as well as immune escape. The intricate and dynamic system of the TIME in osteosarcoma involves crucial roles played by various infiltrating cells, the complement system, and exosomes. This complexity is closely associated with tumor cells evading immune surveillance, experiencing uncontrolled proliferation, and facilitating metastasis. In this review, we elucidate the intricate interplay between diverse cell populations in the osteosarcoma TIME, each contributing uniquely to tumor progression. From chondroblastic and osteoblastic osteosarcoma cells to osteoclasts, stromal cells, and various myeloid and lymphoid cell subsets, the comprehensive single-cell analysis provides a detailed roadmap of the complex osteosarcoma ecosystem. Furthermore, we summarize the mutations, epigenetic mechanisms, and extracellular vesicles that dictate the immunologic landscape and modulate the TIME of osteosarcoma. The perspectives of the clinical implementation of immunotherapy and therapeutic approaches for targeting immune cells are also intensively discussed.
Collapse
Affiliation(s)
- Santhasiri Orrapin
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sutpirat Moonmuang
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Sasimol Udomruk
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Petlada Yongpitakwattana
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Dumnoensun Pruksakorn
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Parunya Chaiyawat
- Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Yu S, Yao X. Advances on immunotherapy for osteosarcoma. Mol Cancer 2024; 23:192. [PMID: 39245737 PMCID: PMC11382402 DOI: 10.1186/s12943-024-02105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024] Open
Abstract
Osteosarcoma is the most common primary bone cancer in children and young adults. Limited progress has been made in improving the survival outcomes in patients with osteosarcoma over the past four decades. Especially in metastatic or recurrent osteosarcoma, the survival rate is extremely unsatisfactory. The treatment of osteosarcoma urgently needs breakthroughs. In recent years, immunotherapy has achieved good therapeutic effects in various solid tumors. Due to the low immunogenicity and immunosuppressive microenvironment of osteosarcoma, immunotherapy has not yet been approved in osteosarcoma patients. However, immune-based therapies, including immune checkpoint inhibitors, chimeric antigen receptor T cells, and bispecfic antibodies are in active clinical development. In addition, other immunotherapy strategies including modified-NK cells/macrophages, DC vaccines, and cytokines are still in the early stages of research, but they will be hot topics for future study. In this review, we showed the functions of cell components including tumor-promoting and tumor-suppressing cells in the tumor microenvironment of osteosarcoma, and summarized the preclinical and clinical research results of various immunotherapy strategies in osteosarcoma, hoping to provide new ideas for future research in this field.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xudong Yao
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Gomez-Mascard A, Van Acker N, Cases G, Mancini A, Galanou S, Frenois FX, Brousset P, Sales de Gauzy J, Valentin T, Castex MP, Vérité C, Lorthois S, Quintard M, Swider P, Faruch M, Assemat P. Intratumoral Heterogeneity Assessment of the Extracellular Bone Matrix and Immune Microenvironment in Osteosarcoma Using Digital Imaging to Predict Therapeutic Response. J Transl Med 2024; 104:102122. [PMID: 39098628 DOI: 10.1016/j.labinv.2024.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
The assessment of chemotherapy response in osteosarcoma (OS) based on the average percentage of viable cells is limited, as it overlooks the spatial heterogeneity of tumor cell response (foci of resistant cells), immune microenvironment, and bone microarchitecture. Despite the resulting positive classification for response to chemotherapy, some patients experience early metastatic recurrence, demonstrating that our conventional tools for evaluating treatment response are insufficient. We studied the interactions between tumor cells, immune cells (lymphocytes, histiocytes, and osteoclasts), and bone extracellular matrix (ECM) in 18 surgical resection samples of OS using multiplex and conventional immunohistochemistry (IHC: CD8, CD163, CD68, and SATB2), combined with multiscale characterization approaches in territories of good and poor response (GRT/PRT) to treatment. GRT and PRT were defined as subregions with <10% and ≥10% of viable tumor cells, respectively. Local correlations between bone ECM porosity and density of immune cells were assessed in these territories. Immune cell density was then correlated to overall patient survival. Two patterns were identified for histiocytes and osteoclasts. In poor responder patients, CD68 osteoclast density exceeded that of CD163 histiocytes but was not related to bone ECM load. Conversely, in good responder patients, CD163 histiocytes were more numerous than CD68 osteoclasts. For both of them, a significant negative local correlation with bone ECM porosity was found (P < .01). Moreover, in PRT, multinucleated osteoclasts were rounded and intermingled with tumor cells, whereas in GRT, they were elongated and found in close contact with bone trabeculae. CD8 levels were always low in metastatic patients, and those initially considered good responders rapidly died from their disease. The specific recruitment of histiocytes and osteoclasts within the bone ECM, and the level of CD8 represent new features of OS response to treatment. The associated prognostic signatures should be integrated into the therapeutic stratification algorithm of patients after surgery.
Collapse
Affiliation(s)
- Anne Gomez-Mascard
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France.
| | - Nathalie Van Acker
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France; Department of Pathology, CHU, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
| | - Guillaume Cases
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France
| | - Anthony Mancini
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| | - Sofia Galanou
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France
| | - François Xavier Frenois
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France; Department of Pathology, CHU, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
| | - Pierre Brousset
- Department of Pathology, CHU, IUCT-Oncopole, University of Toulouse, Eq19. ONCOSARC CRCT, UMR 1037 Inserm/UT3, ERL 5294 CNRS, Toulouse, France; Department of Pathology, CHU, Imag'IN Platform, IUCT-Oncopole, Toulouse, France
| | | | - Thibaud Valentin
- Department of Medical Oncology, Sarcoma, IUCT-Oncopole, Toulouse, France
| | - Marie-Pierre Castex
- Department of Medical Oncology, Department of Pediatric Oncology, CHU Toulouse, France
| | - Cécile Vérité
- Department of Medical Oncology, Department of Pediatric Oncology, CHU Bordeaux, France
| | - Sylvie Lorthois
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| | - Michel Quintard
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| | - Pascal Swider
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| | - Marie Faruch
- Department of Osteoarticular Diagnostic and Interventional Imaging, CHU, Purpan, Toulouse, France
| | - Pauline Assemat
- Institut de Mécanique des Fluides de Toulouse, UMR 5502 CNRS, INPT, University of Toulouse, Toulouse, France
| |
Collapse
|
6
|
Tang Q, Zhang X, Zhu X, Xu H, Song G, Lu J, Wu H, Deng C, Ai F, Zhang Y, Wang J. Camrelizumab in combination with doxorubicin, cisplatin, ifosfamide, and methotrexate in neoadjuvant treatment of resectable osteosarcoma: A prospective, single-arm, exploratory phase II trial. Cancer Med 2024; 13:e70206. [PMID: 39324173 PMCID: PMC11424980 DOI: 10.1002/cam4.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
BACKGROUND The poor overall survival of osteosarcoma (OS) underscores the need to explore new therapeutic avenues. Tumor necrosis rate (TNR) after neoadjuvant chemotherapy predicts prognosis. AIMS The study was to investigate safety and activity of neoadjuvant chemotherapy with camrelizumab (a humanized antibody against PD-1) in patients with resectable OS. MATERIALS & METHODS We conducted a prospective, single-arm, exploratory phase II trial in OS patients. Eligible patients received camrelizumab combined with doxorubicin or liposomal doxorubicin, cisplatin, methotrexate, ifosfamide with mesna. Surgery was performed 12-14 days after neoadjuvant therapy and adjuvant therapy starting 2-3 weeks postoperatively. The primary endpoint was the rate of good tumor necrosis (TNR ≥90%) after neoadjuvant therapy, and the secondary outcomes were safety, 2-year progression free survival and 2-year overall survival. RESULTS Seventy-five patients were recruited to the study. Subsequently, 64 patients completed neoadjuvant therapy and underwent surgery. Thirty-one patients (48.4%) have a good TNR to neoadjuvant therapy. With a median follow-up of 22.4 months (range 2.2-44.9 months), the estimated 2-year PFS was 69.6% and the estimated 2-year overall survival was 89.4%. Grade 3 or 4 treatment-related adverse events were noticed in 62.7% of the patients. Frequent grade 3 or 4 adverse events were decreased platelet count (45.3%), decreased white blood cell count (36%). No immune-related serious adverse events were observed. DISCUSSION Our study had limitations. First, it was limited by its non-randomized design. Besides, stromal tumor-infiltrating lymphocytes was comprehensively analyzed in this study. CONCLUSIONS This study demonstrated that amrelizumab combined with adriamycin, cisplatin, methotrexate, and ifosfamide in the neoadjuvant treatment of resectable OS was safe and tolerable. This combined therapeutic strategy may not increase TNR, but the long-term survival benefit remains to be followed up.
Collapse
Affiliation(s)
- Qinglian Tang
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xinke Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of pathologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Xiaojun Zhu
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Huaiyuan Xu
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Guohui Song
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Jinchang Lu
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Hao Wu
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Chuangzhong Deng
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Fei Ai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of radiologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Yingchun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
- Department of pathologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Jin Wang
- Department of Musculoskeletal OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
7
|
Gao Y, Wang Z, Jin X, Wang X, Tao Y, Huang S, Wang Y, Hua Y, Guo X, Xu J, Cai Z. Enhanced Osteosarcoma Immunotherapy via CaCO 3 Nanoparticles: Remodeling Tumor Acidic and Immune Microenvironment for Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2400538. [PMID: 38759954 DOI: 10.1002/adhm.202400538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/10/2024] [Indexed: 05/19/2024]
Abstract
Osteosarcoma (OS) is a "cold" tumor enriched in noninflammatory M2 phenotype tumor-associated macrophages (TAMs), which limits the efficacy of immunotherapy. The acidic tumor microenvironment (TME), generated by factors such as excess hydrogen (H+) ions and high lactate levels, activates immunosuppressive cells, further promoting a suppressive tumor immune microenvironment (TIME). Therefore, a multitarget synergistic combination strategy that neutralizes the acidic TME and reprograms TAMs can be beneficial for OS therapy. Here, a calcium carbonate (CaCO3)/polydopamine (PDA)-based nanosystem (A-NPs@(SHK+Ce6)) is developed. CaCO3 nanoparticles are used to neutralize H+ ions and alleviate the suppressive TIME, and the loaded SHK not only synergizes with photodynamic therapy (PDT) but also inhibits lactate production, further reversing the acidic TME and repolarizing TAMs to consequently lead to enhanced PDT-induced tumor suppression and comprehensive beneficial effects on antitumor immune responses. Importantly, A-NPs@(SHK+Ce6), in combination with programmed cell death protein 1 (PD-1) checkpoint blockade, shows a remarkable ability to eliminate distant tumors and promote long-term immune memory function to protect against rechallenged tumors. This work presents a novel multiple-component combination strategy that coregulates the acidic TME and TAM polarization to reprogram the TIME.
Collapse
Affiliation(s)
- Yinghua Gao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou, 213200, China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
| | - Xinmeng Jin
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
| | - Xiaoli Wang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yining Tao
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
| | - Shandeng Huang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
| | - Yun Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
- Department of Orthopedics, Jinshan Hospital of Fudan University, Shanghai, 20023, China
| | - Xuran Guo
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated Jiao Tong University School of Medicine, Shanghai, 20023, China
| | - Jing Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Street, Shanghai, 200080, China
- Department of Orthopedics, Jintan Hospital Affiliated to Jiangsu University, Changzhou, 213200, China
| |
Collapse
|
8
|
Wu CC, Huang L, Zhang Z, Ju Z, Song X, Kolb EA, Zhang W, Gill J, Ha M, Smith MA, Houghton P, Morton CL, Kurmasheva R, Maris J, Mosse Y, Lu Y, Gorlick R, Futreal PA, Beird HC. Whole genome and reverse protein phase array landscapes of patient derived osteosarcoma xenograft models. Sci Rep 2024; 14:19891. [PMID: 39191826 PMCID: PMC11350124 DOI: 10.1038/s41598-024-69382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Osteosarcoma is the most common primary bone malignancy in children and young adults, and it has few treatment options. As a result, there has been little improvement in survival outcomes in the past few decades. The need for models to test novel therapies is especially great in this disease since it is both rare and does not respond to most therapies. To address this, an NCI-funded consortium has characterized and utilized a panel of patient-derived xenograft models of osteosarcoma for drug testing. The exomes, transcriptomes, and copy number landscapes of these models have been presented previously. This study now adds whole genome sequencing and reverse-phase protein array profiling data, which can be correlated with drug testing results. In addition, four additional osteosarcoma models are described for use in the research community.
Collapse
Affiliation(s)
- Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Licai Huang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhongting Zhang
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhenlin Ju
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Anders Kolb
- Nemours Center for Cancer and Blood Disorders, Alfred I. DuPont Hospital for Children, Wilmington, DE, USA
| | - Wendong Zhang
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jonathan Gill
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Min Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Health Informatics and Biostatistics, Yonsei University, Seoul, Korea
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peter Houghton
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | - John Maris
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yael Mosse
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yiling Lu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Gorlick
- Pediatric Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
9
|
Deb R, Torres MDT, Boudný M, Koběrská M, Cappiello F, Popper M, Dvořáková
Bendová K, Drabinová M, Hanáčková A, Jeannot K, Petřík M, Mangoni ML, Balíková Novotná G, Mráz M, de la Fuente-Nunez C, Vácha R. Computational Design of Pore-Forming Peptides with Potent Antimicrobial and Anticancer Activities. J Med Chem 2024; 67:14040-14061. [PMID: 39116273 PMCID: PMC11345766 DOI: 10.1021/acs.jmedchem.4c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Peptides that form transmembrane barrel-stave pores are potential alternative therapeutics for bacterial infections and cancer. However, their optimization for clinical translation is hampered by a lack of sequence-function understanding. Recently, we have de novo designed the first synthetic barrel-stave pore-forming antimicrobial peptide with an identified function of all residues. Here, we systematically mutate the peptide to improve pore-forming ability in anticipation of enhanced activity. Using computer simulations, supported by liposome leakage and atomic force microscopy experiments, we find that pore-forming ability, while critical, is not the limiting factor for improving activity in the submicromolar range. Affinity for bacterial and cancer cell membranes needs to be optimized simultaneously. Optimized peptides more effectively killed antibiotic-resistant ESKAPEE bacteria at submicromolar concentrations, showing low cytotoxicity to human cells and skin model. Peptides showed systemic anti-infective activity in a preclinical mouse model of Acinetobacter baumannii infection. We also demonstrate peptide optimization for pH-dependent antimicrobial and anticancer activity.
Collapse
Affiliation(s)
- Rahul Deb
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Marcelo D. T. Torres
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for Computational Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Miroslav Boudný
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department
of Internal Medicine, Hematology and Oncology, University Hospital
Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Markéta Koběrská
- Institute
of Microbiology, Czech Academy of Sciences,
BIOCEV, Vestec 252 50, Czech Republic
| | - Floriana Cappiello
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | - Miroslav Popper
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Kateřina Dvořáková
Bendová
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
| | - Martina Drabinová
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Adelheid Hanáčková
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
| | - Katy Jeannot
- University
of Franche-Comté, CNRS, Chrono-environment, Besançon 25030, France
- National Reference Centre for Antibiotic
Resistance, Besançon 25030, France
| | - Miloš Petřík
- Institute
of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Olomouc 779 00, Czech Republic
- Czech
Advanced Technology and Research Institute, Palacký University, Olomouc 779 00, Czech Republic
| | - Maria Luisa Mangoni
- Department
of Biochemical Sciences, Laboratory Affiliated to Istituto Pasteur
Italia-Fondazione Cenci Bolognetti, Sapienza
University of Rome, Rome 00185, Italy
| | | | - Marek Mráz
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- Department
of Internal Medicine, Hematology and Oncology, University Hospital
Brno and Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Cesar de la Fuente-Nunez
- Machine
Biology Group, Departments of Psychiatry and Microbiology, Institute
for Biomedical Informatics, Institute for Translational Medicine and
Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Departments
of Bioengineering and Chemical and Biomolecular Engineering, School
of Engineering and Applied Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn
Institute for Computational Science, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert Vácha
- CEITEC
− Central European Institute of Technology, Masaryk University, Brno 625 00, Czech Republic
- National
Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
- Department
of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno 611 37, Czech Republic
| |
Collapse
|
10
|
Liu X, Zhang S, Wang D, Lv K, Wang Y, Peng L. The expression and clinical significance of ARHGAP25 in osteosarcoma based on bioinformatics analysis. Sci Rep 2024; 14:18720. [PMID: 39134572 PMCID: PMC11319463 DOI: 10.1038/s41598-024-68318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
ARHGAP25, a member of the ARHGAP family, encodes a negative regulator of Rho-GTPase that is important for actin remodeling, cell polarity, and cell migration. ARHGAP25 is down-regulated in a variety of solid tumors and promotes cancer cell growth, migration, and invasion. However, nothing is understood about ARHGAP25's biological function in osteosarcoma. This work used qPCR and WB to confirm the expression of ARHGAP25 in osteosarcoma following the initial analysis of its expression in pan-cancer. For GO and KEGG analysis, we have chosen 300 genes from the TARGET osteosarcoma data that had the strongest positive correlation with ARHGAP25, and we created nomogram and calibration charts. We simultaneously overexpressed ARHGAP25 in osteosarcoma cells to examine its impact on apoptosis and proliferation. By using MSP, we determined their methylation status in osteosarcoma cells and normal bone cells. We observed that ARHGAP25 was significantly downregulated in a range of malignancies, including osteosarcoma, and was associated with poor patient outcomes. The decrease of ARHGAP25 expression in osteosarcoma is related to DNA methylation. Overexpression of ARHGAP25 induced apoptosis and inhibited the proliferation of osteosarcoma cells in vitro. In addition, ARHGAP25 is also associated with immune-related pathways in osteosarcoma. These findings suggest that ARHGAP25 is a valuable prognostic biomarker in osteosarcoma patients.
Collapse
Affiliation(s)
- Xiaoqian Liu
- First Affiliated Hospital Trauma Center, Hainan Medical University, Haikou, 570100, China
| | - Siyuan Zhang
- First Affiliated Hospital Trauma Center, Hainan Medical University, Haikou, 570100, China
| | - Dong Wang
- First Affiliated Hospital Trauma Center, Hainan Medical University, Haikou, 570100, China
| | - Kaili Lv
- Second Affiliated Hospital Gynecology Department, Hainan Medical University, Haikou, 570100, China
| | - Yonggui Wang
- First Affiliated Hospital Trauma Center, Hainan Medical University, Haikou, 570100, China.
| | - Lei Peng
- First Affiliated Hospital Trauma Center, Hainan Medical University, Haikou, 570100, China.
| |
Collapse
|
11
|
Li MP, Long SP, Liu WC, Long K, Gao XH. EMT-related gene classifications predict the prognosis, immune infiltration, and therapeutic response of osteosarcoma. Front Pharmacol 2024; 15:1419040. [PMID: 39170698 PMCID: PMC11335561 DOI: 10.3389/fphar.2024.1419040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Osteosarcoma (OS), a bone tumor with high ability of invasion and metastasis, has seriously affected the health of children and adolescents. Many studies have suggested a connection between OS and the epithelial-mesenchymal transition (EMT). We aimed to integrate EMT-Related genes (EMT-RGs) to predict the prognosis, immune infiltration, and therapeutic response of patients with OS. Methods We used consensus clustering to identify potential EMT-Related OS molecular subtypes. Somatic mutation, tumor immune microenvironment, and functional enrichment analyses were performed for each subtype. We next constructed an EMT-Related risk signature and evaluated it by Kaplan-Meier (K-M) analysis survival and receiver operating characteristic (ROC) curves. Moreover, we constructed a nomogram to more accurately predict OS patients' clinical outcomes. Response effects of immunotherapy in OS patients was analyzed by Tumor Immune Dysfunction and Exclusion (TIDE) analysis, while sensitivity for chemotherapeutic agents was analyzed using oncoPredict. Finally, the expression patterns of hub genes were investigated by single-cell RNA sequencing (scRNA-seq) data analysis. Results A total of 53 EMT-RDGs related to prognosis were identified, separating OS samples into two separate subgroups. The EMT-high subgroup showed favourable overall survival and more active immune response. Significant correlations were found between EMT-Related DEGs and functions as well as pathways linked to the development of OS. Additionally, a risk signature was established and OS patients were divided into two categories based on the risk scores. The signature presented a good predictive performance and could be recognized as an independent predictive factor for OS. Furthermore, patients with higher risk scores exhibited better sensitivity for five drugs, while no significant difference existed in immunotherapy response between the two risk subgroups. scRNA-seq data analysis displayed different expression patterns of the hub genes. Conclusion We developed a novel EMT-Related risk signature that can be considered as an independent predictor for OS, which may help improve clinical outcome prediction and guide personalized treatments for patients with OS.
Collapse
Affiliation(s)
- Meng-Pan Li
- Department of Orthopedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Si-Ping Long
- The Fourth Clinical Medical College of Nanchang University, Nanchang, China
| | - Wen-Cai Liu
- Department of Orthopedics, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Long
- The First Clinical Medical College of Nanchang University, Nanchang, China
| | - Xing-Hua Gao
- Department of Orthopedics, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Truong DD, Weistuch C, Murgas KA, Admane P, King BL, Lee JC, Lamhamedi-Cherradi SE, Swaminathan J, Daw NC, Gordon N, Gopalakrishnan V, Gorlick RG, Somaiah N, Deasy JO, Mikos AG, Tannenbaum A, Ludwig J. Mapping the Single-Cell Differentiation Landscape of Osteosarcoma. Clin Cancer Res 2024; 30:3259-3272. [PMID: 38775859 PMCID: PMC11293971 DOI: 10.1158/1078-0432.ccr-24-0563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
PURPOSE The genetic intratumoral heterogeneity observed in human osteosarcomas poses challenges for drug development and the study of cell fate, plasticity, and differentiation, which are processes linked to tumor grade, cell metastasis, and survival. EXPERIMENTAL DESIGN To pinpoint errors in osteosarcoma differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs mesenchymal stem cells toward adipogenic and osteoblastic fates. Incorporating preexisting chondrocyte data, we applied trajectory analysis and non-negative matrix factorization to generate the first human mesenchymal differentiation atlas. RESULTS This "roadmap" served as a reference to delineate the cellular composition of morphologically complex osteosarcoma tumors and quantify each cell's lineage commitment. Projecting a bulk RNA-sequencing osteosarcoma dataset onto this roadmap unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. CONCLUSIONS Our study quantifies osteosarcoma differentiation and lineage, a prerequisite to better understanding lineage-specific differentiation bottlenecks that might someday be targeted therapeutically.
Collapse
Affiliation(s)
- Danh D. Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin A. Murgas
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY
| | - Prasad Admane
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bridgette L. King
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jes Chauviere Lee
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Salah-Eddine Lamhamedi-Cherradi
- McCombs Institute, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Najat C. Daw
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nancy Gordon
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vidya Gopalakrishnan
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Richard G. Gorlick
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Neeta Somaiah
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
- Department of Computer Science, Stony Brook University, Stony Brook, NY
| | - Joseph Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
13
|
Cristalli C, Scotlandi K. Targeting DNA Methylation Machinery in Pediatric Solid Tumors. Cells 2024; 13:1209. [PMID: 39056791 PMCID: PMC11275080 DOI: 10.3390/cells13141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
DNA methylation is a key epigenetic regulatory mechanism that plays a critical role in a variety of cellular processes, including the regulation of cell fate during development, maintenance of cell identity, and genome stability. DNA methylation is tightly regulated by enzymatic reactions and its deregulation plays an important role in the development of cancer. Specific DNA methylation alterations have been found in pediatric solid tumors, providing new insights into the development of these tumors. In addition, DNA methylation profiles have greatly contributed to tune the diagnosis of pediatric solid tumors and to define subgroups of patients with different risks of progression, leading to the reduction in unwanted toxicity and the improvement of treatment efficacy. This review highlights the dysregulated DNA methylome in pediatric solid tumors and how this information provides promising targets for epigenetic therapies, particularly inhibitors of DNMT enzymes (DNMTis). Opportunities and limitations are considered, including the ability of DNMTis to induce viral mimicry and immune signaling by tumors. Besides intrinsic action against cancer cells, DNMTis have the potential to sensitize immune-cold tumors to immunotherapies and may represent a remarkable option to improve the treatment of challenging pediatric solid tumors.
Collapse
Affiliation(s)
- Camilla Cristalli
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano, 1/10, 40136 Bologna, Italy
| |
Collapse
|
14
|
Fu Y, Xu Y, Liu W, Zhang J, Wang F, Jian Q, Huang G, Zou C, Xie X, Kim AH, Mathios D, Pang F, Li F, Wang K, Shen J, Yin J. Tumor-informed deep sequencing of ctDNA detects minimal residual disease and predicts relapse in osteosarcoma. EClinicalMedicine 2024; 73:102697. [PMID: 39022798 PMCID: PMC11252770 DOI: 10.1016/j.eclinm.2024.102697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
Background Current surveillance modalities of osteosarcoma relapse exhibit limited sensitivity and specificity. Although circulating tumor DNA (ctDNA) has been established as a biomarker of minimal residual disease (MRD) in many solid tumors, a sensitive ctDNA detection technique has not been thoroughly explored for longitudinal MRD detection in osteosarcoma. Methods From August 2019 to June 2023, 59 patients diagnosed with osteosarcoma at the First Affiliated Hospital of Sun Yat-sen University were evaluated in this study. Tumor-informed MRD panels were developed through whole exome sequencing (WES) of tumor tissues. Longitudinal blood samples were collected during treatment and subjected to multiplex PCR-based next-generation sequencing (NGS). Kaplan-Meier curves and Log-rank tests were used to compare outcomes, and Cox regression analysis was performed to identify prognostic factors. Findings WES analysis of 83 patients revealed substantial mutational heterogeneity, with non-recurrent mutated genes accounting for 58.1%. Tumor-informed MRD panels were successfully obtained for 85.5% of patients (71/83). Among 59 patients with successful MRD panel customization and available blood samples, 13 patients exhibited positive ctDNA detection after surgery. Patients with negative post-operative ctDNA had better event-free survival (EFS) compared to those with positive ctDNA, at 1-6 months after surgery, after adjuvant chemotherapy, and more than 6 months after surgery (p < 0.05). In both univariate and multivariate Cox regression analysis, ctDNA results emerged as a significant predictor of EFS (p < 0.05). ctDNA detection preceded positive imaging in 5 patients, with an average lead time of 92.6 days. Thirty-nine patients remained disease-free, with ctDNA results consistently negative or turning negative during follow-up. Interpretation Our study underscores the applicability of tumor-informed deep sequencing of ctDNA in osteosarcoma MRD surveillance and, to our knowledge, represents the largest cohort to date. ctDNA detection is a significant prognostic factor, enabling the early identification of tumor relapse and progression compared to standard imaging, thus offering valuable insights in guiding osteosarcoma patient management. Funding The Grants of National Natural Science Foundation of China (No. 82072964, 82072965, 82203798, 82203026), the Natural Science Foundation of Guangdong (No. 2023A1515012659, 2023A1515010302), and the Regional Combination Project of Basic and Applied Basic Research Foundation of Guangdong (No. 2020A1515110010).
Collapse
Affiliation(s)
- Yiwei Fu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Yu Xu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Weihai Liu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Jiajun Zhang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Fen Wang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Gang Huang
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Changye Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Dimitrios Mathios
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Fei Pang
- OrigiMed, Shanghai, 201124, China
| | - Feng Li
- OrigiMed, Shanghai, 201124, China
| | - Kai Wang
- OrigiMed, Shanghai, 201124, China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Junqiang Yin
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
15
|
Childs A, Gerrand C, Brennan B, Young R, Rankin KS, Parry M, Stevenson J, Flanagan AM, Taylor RM, Fern L, Heymann D, Vance F, Sherriff J, Singh S, Begum R, Forsyth SL, Reczko K, Sparksman K, Wilson W, Strauss SJ. A Prospective Observational Cohort Study for Newly Diagnosed Osteosarcoma Patients in the UK: ICONIC Study Initial Results. Cancers (Basel) 2024; 16:2351. [PMID: 39001413 PMCID: PMC11240498 DOI: 10.3390/cancers16132351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 07/16/2024] Open
Abstract
There has been little change to the standard treatment for osteosarcoma (OS) over the last 25 years and there is an unmet need to identify new biomarkers and novel therapeutic approaches if outcomes are to improve. Furthermore, there is limited evidence on the impact of OS treatment on patient-reported outcomes (PROs). ICONIC (Improving Outcomes through Collaboration in Osteosarcoma; NCT04132895) is a prospective observational cohort study recruiting newly diagnosed OS patients across the United Kingdom (UK) with matched longitudinal collection of clinical, biological, and PRO data. During Stage 1, which assessed the feasibility of recruitment and data collection, 102 patients were recruited at 22 sites with representation from patient groups frequently excluded in OS studies, including patients over 50 years and those with less common primary sites. The feasibility of collecting clinical and biological samples, in addition to PRO data, has been established and there is ongoing analysis of these data as part of Stage 2. ICONIC will provide a unique, prospective cohort of newly diagnosed OS patients representative of the UK patient population, with fully annotated clinical outcomes linked to molecularly characterised biospecimens, allowing for comprehensive analyses to better understand biology and develop new biomarkers and novel therapeutic approaches.
Collapse
Affiliation(s)
- Alexa Childs
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
| | - Craig Gerrand
- The Royal National Orthopaedic Hospital Trust, Brockley Hill, Stanmore HA7 4LP, UK
| | - Bernadette Brennan
- Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Robin Young
- Sheffield Teaching Hospitals NHS Foundation Trust, Weston Park Hospital, Whitham Road, Broomhall, Sheffield S10 2JF, UK
| | - Kenneth S Rankin
- Newcastle Centre Cancer, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4AD, UK
| | - Michael Parry
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham B31 2AP, UK
| | - Jonathan Stevenson
- The Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham B31 2AP, UK
| | - Adrienne M Flanagan
- The Royal National Orthopaedic Hospital Trust, Brockley Hill, Stanmore HA7 4LP, UK
- UCL Cancer Institute, London WC1E 6DD, UK
| | - Rachel M Taylor
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
| | - Lorna Fern
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
| | - Dominique Heymann
- Sarcoma Research Unit, Department of Oncology & Metabolism, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
- Nantes Université, CNRS, UMR6286, US2B, Institut de Cancérologie de l'Ouest, 44800 Saint-Herblain, France
| | | | - Jenny Sherriff
- Queen Elizabeth Hospital Birmingham, Mindelsohn Way, Edgbaston, Birmingham B15 2GW, UK
| | - Saurabh Singh
- Centre for Medical Imaging, University College London, London WC1E 6BT, UK
| | - Rubina Begum
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Sharon L Forsyth
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Krystyna Reczko
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Kate Sparksman
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - William Wilson
- CRUK & UCL Cancer Trials Centre, University College London, 90 Tottenham Court Road, London W1T 4TJ, UK
| | - Sandra J Strauss
- University College London Hospitals NHS Foundation Trust, 250 Euston Road, London NW1 2PG, UK
- UCL Cancer Institute, London WC1E 6DD, UK
| |
Collapse
|
16
|
Devarajan E, Davis RE, Beird HC, Wang WL, Jensen VB, Jayakumar A, Leung CH, Lin HY, Wu CC, Ihezie SA, Tsai JW, Futreal PA, Lewis VO. Targeting IL-11R/EZH2 signaling axis as a therapeutic strategy for osteosarcoma lung metastases. Discov Oncol 2024; 15:232. [PMID: 38886296 PMCID: PMC11183017 DOI: 10.1007/s12672-024-01056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Lung metastases are the primary cause of death for osteosarcoma (OS) patients. We recently validated interleukin-11 receptor α (IL-11Rα) as a molecular target for the inhibition of OS lung metastases. Since there is no clinically approved antibody against this receptor, we sought to identify downstream targets that mediate the effects of IL-11Rα signaling. We used shRNA to deplete IL-11Rα from OS cells; as a complementary approach, we added IL-11 exogenously to OS cells. The resulting changes in gene expression identified EZH2 as a downstream candidate. This was confirmed by knockdown of IL-11Rα in OS cells, which led to increased expression of genes repressed by histone methyltransferase EZH2, including members of the WNT pathway, a known target pathway of EZH2. Exogenous IL-11 increased the global levels of histone H3 lysine 27 trimethylation, evidence of EZH2 activation. Treatment with the EZH2 inhibitor GSK126 significantly reduced in vitro proliferation and increased cell-cycle arrest and apoptosis, which were partially mediated through the WNT pathway. In vivo, treatment of an orthotopic nude mouse model of OS with GSK126 inhibited lung metastatic growth and prolonged survival. In addition, significantly shorter recurrence-free survival was seen in OS patients with high levels of EZH2 in their primary tumors (P < .05). This suggests that IL-11Rα promotes OS lung metastasis via activation of EZH2. Thus, blocking EZH2 activity may be an effective strategy for inhibiting OS lung metastasis and improving prognosis.
Collapse
Affiliation(s)
- Eswaran Devarajan
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1448, Houston, TX, 77030, USA
| | - R Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - V Behrana Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arumugam Jayakumar
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheuk Hong Leung
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Heather Y Lin
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie A Ihezie
- McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jen-Wei Tsai
- Department of Anatomic Pathology, E-Da Hospital, Kaohsiung, Taiwan
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Valerae O Lewis
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 1448, Houston, TX, 77030, USA.
| |
Collapse
|
17
|
Mohr A, Marques Da Costa ME, Fromigue O, Audinot B, Balde T, Droit R, Abbou S, Khneisser P, Berlanga P, Perez E, Marchais A, Gaspar N. From biology to personalized medicine: Recent knowledge in osteosarcoma. Eur J Med Genet 2024; 69:104941. [PMID: 38677541 DOI: 10.1016/j.ejmg.2024.104941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/17/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
High-grade osteosarcoma is the most common paediatric bone cancer. More than one third of patients relapse and die of osteosarcoma using current chemotherapeutic and surgical strategies. To improve outcomes in osteosarcoma, two crucial challenges need to be tackled: 1-the identification of hard-to-treat disease, ideally from diagnosis; 2- choosing the best combined or novel therapies to eradicate tumor cells which are resistant to current therapies leading to disease dissemination and metastasize as well as their favorable microenvironment. Genetic chaos, tumor complexity and heterogeneity render this task difficult. The development of new technologies like next generation sequencing has led to an improvement in osteosarcoma oncogenesis knownledge. This review summarizes recent biological and therapeutical advances in osteosarcoma, as well as the challenges that must be overcome in order to develop personalized medicine and new therapeutic strategies and ultimately improve patient survival.
Collapse
Affiliation(s)
- Audrey Mohr
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | | | - Olivia Fromigue
- National Institute for Health and Medical Research (INSERM) U981, Gustave Roussy Institute, Villejuif, France
| | - Baptiste Audinot
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Thierno Balde
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Robin Droit
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Samuel Abbou
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Pierre Khneisser
- Department of medical Biology and Pathology, Gustave Roussy Institute, Villejuif, France
| | - Pablo Berlanga
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Esperanza Perez
- Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France
| | - Antonin Marchais
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France
| | - Nathalie Gaspar
- National Institute for Health and Medical Research (INSERM) U1015, Gustave Roussy Institute, Villejuif, France; Department of Oncology for Children and Adolescents, Gustave Roussy Institute, Villejuif, France.
| |
Collapse
|
18
|
Beird HC, Lin D, Lazar AJ, Futreal PA. Patterns of structural variants within TP53 introns and relocation of the TP53 promoter: a commentary †. J Pathol 2024; 263:131-134. [PMID: 38482738 DOI: 10.1002/path.6270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 05/12/2024]
Abstract
Gene disruption from double-strand DNA breaks within introns is a mechanism of inactivating the tumor suppressor TP53. This occurs more frequently in osteosarcoma and biliary adenocarcinoma compared with other cancer types. The patterns of intron breakpoints within TP53 do not correlate with prevalence, intron length, or overall genome-wide levels of rearrangements. Therefore, these breakpoints appear to be selected for reasons other than to disrupt TP53. A recent article published by Saba et al in The Journal of Pathology illustrates a benefit to having breakpoints within intron 1 using high-quality matched genomic and transcriptomic osteosarcoma sequencing data as well as in vitro validation. The authors describe how the rearrangement results in relocation of the TP53 promoter region to regions upstream of genes that encode members of cartilage, growth plate development, osteoclast formation, and other TP53-related pathways. The upregulation of these genes by the TP53 promoter are gain-of-function events that are likely to promote tumor development and growth. Therefore, this article presents a potential new paradigm in which a single mutation would result in both the loss of a tumor suppressor and the gain of an oncogenic program. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Hannah C Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dimitri Lin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
He XY, Que LY, Yang F, Feng Y, Ren D, Song X. Single-cell transcriptional profiling in osteosarcoma and the effect of neoadjuvant chemotherapy on the tumor microenvironment. J Bone Oncol 2024; 46:100604. [PMID: 38765702 PMCID: PMC11101886 DOI: 10.1016/j.jbo.2024.100604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
Osteosarcoma (OS), a malignant tumor, originates from the bone marrow. Currently, treatment for OS remains limited, making it urgent to understand the immune response in the tumor microenvironment of patients with OS. A comprehensive bioinformatics analysis was performed, including cell clustering subgroups, differential expression genes screening, proposed temporal order, and genomic variant analysis on single-cell RNA-sequencing data, from ten pre-chemotherapy patients and eleven post-chemotherapy patients. Subsequently, we analyzed the differentiation trajectories of osteoblasts, osteoclasts, fibroblasts, myeloid cells, and tumor-infiltrating lymphocytes (TILs) in detail to compare the changes in cell proportions and differential genes pre- and post-chemotherapy. The nine cell types were identified, including fibroblasts, myeloid cells, osteoblasts, TILs, osteoclasts, proliferative osteoblasts, pericytes, endothelial cells, and B cells. Post-chemotherapy treatment, the proportions of myeloid cells and TILs in OS were declined, while the number of osteoblasts was elevated. Besides, a decrease was observed in CD74, FTL, FTH1, MT1X and MT2A, and an increase in PTN, COL3A1, COL1A1, IGFBP7 and FN1. Meanwhile, EMT, DNA repair, G2M checkpoint, and E2F targets were highly enriched post-chemotherapy. Furthermore, there was a down-regulation in the proportions of CD14 monocytes, Tregs, NK cells and CD1C-/CD141-DCs, while an up-regulation was observed in the proportions of SELENOP macrophages, IL7R macrophages, COL1A1 macrophages, CD1C DCs, CD4+ T cells and CD8+ T cells. Overall, these findings revealed changes in the tumor microenvironment of OS post-chemotherapy treatment, providing a new direction for investigating OS treatment.
Collapse
Affiliation(s)
- Xiao-yu He
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Liu-yi Que
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Fan Yang
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yi Feng
- Department of Orthopedic Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Dong Ren
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiang Song
- Department of Oncology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| |
Collapse
|
20
|
Ammons DT, Hopkins LS, Cronise KE, Kurihara J, Regan DP, Dow S. Single-cell RNA sequencing reveals the cellular and molecular heterogeneity of treatment-naïve primary osteosarcoma in dogs. Commun Biol 2024; 7:496. [PMID: 38658617 PMCID: PMC11043452 DOI: 10.1038/s42003-024-06182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME). As such, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 41 transcriptomically distinct cell types including the characterization of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 tumor-associated macrophage (TAM) populations. Cell-cell interaction analysis predicted that mregDCs and TAMs play key roles in modulating T cell mediated immunity. Furthermore, we completed cross-species cell type gene signature homology analysis and found a high degree of similarity between human and canine OS. The data presented here act as a roadmap of canine OS which can be applied to advance translational immuno-oncology research.
Collapse
Affiliation(s)
- Dylan T Ammons
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Leone S Hopkins
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Kathryn E Cronise
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jade Kurihara
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel P Regan
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Steven Dow
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
- Flint Animal Cancer Center, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
21
|
Shen K, Yang L, Ke S, Gao W. Visual analysis of bone malignancies immunotherapy: A bibliometric analysis from 2010 to 2023. Medicine (Baltimore) 2024; 103:e37269. [PMID: 38552042 PMCID: PMC10977522 DOI: 10.1097/md.0000000000037269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/24/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Bone malignancies (BM), including osteosarcoma, Ewing's sarcoma, chondrosarcoma, and chordoma, are characterized by high rates of recurrence and mortality, despite the availability of diverse treatment approaches. Immunotherapy has gained increasing importance in cancer treatment. However, there is a lack of comprehensive studies that utilize bibliometric analysis to explore immunotherapy for BM. METHODS A literature search of English studies on BM and immunotherapy from 2010 to 2023 was conducted in the Web of Science Core Collection database. Bibliometric analysis tools such as VOSviewer, CiteSpace, and R Studio were utilized to examine global trends and research hotspots in this field. RESULTS A total of 719 eligible articles, including 528 original research articles and 191 reviews, were analyzed. The number of publications has shown an increasing trend over the past 14 years, particularly in the last 5 years. The majority of the published articles on this topic originated from China (284 articles), followed by the United States and Japan. The institution with the highest number of publications and citations was the University of Texas MD Anderson Cancer Center (30 articles; 1638 citations). Dean A. Lee (12 articles) and Richard Gorlick (576 citations) were the authors with the highest contribution in terms of article count and citation count, respectively. Among these journals, Frontiers in Oncology had the highest number of articles (39 articles), while the Journal of Clinical Oncology had the highest number of citations (1878 citations). Additionally, there has been a shift in the keywords from "antitumor activity" and "NK cells" to popular topics such as "PD-L1," "open label," and "single arm." CONCLUSION A better understanding of the current status and prospects of immunotherapy for BM is crucial for the rationale selection of appropriate BM patients for immunotherapy. This study is expected to help clinical physicians and researchers gain comprehensive insights into the developmental trends of BM immunotherapy, providing practical guidance for the application of immunotherapy in BM patients.
Collapse
Affiliation(s)
- Kaiyu Shen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liu Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuaiyi Ke
- Department of Internal Medicine, XianJu People’s Hospital, XianJu, China
| | - Wencang Gao
- Department of Oncology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
22
|
Liu B, Liu XY, Wang GP, Chen YX. The immune cell infiltration-associated molecular subtypes and gene signature predict prognosis for osteosarcoma patients. Sci Rep 2024; 14:5184. [PMID: 38431660 PMCID: PMC10908810 DOI: 10.1038/s41598-024-55890-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Host immune dysregulation involves in the initiation and development of osteosarcoma (OS). However, the exact role of immune cells in OS remains unknown. We aimed to distinguish the molecular subtypes and establish a prognostic model in OS patients based on immunocyte infiltration. The gene expression profile and corresponding clinical feature of OS patients were obtained from TARGET and GSE21257 datasets. MCP-counter and univariate Cox regression analyses were applied to identify immune cell infiltration-related molecular subgroups. Functional enrichment analysis and immunocyte infiltration analysis were performed between two subgroups. Furthermore, Cox regression and LASSO analyses were performed to establish the prognostic model for the prediction of prognosis and metastasis in OS patients. The subgroup with low infiltration of monocytic lineage (ML) was related to bad prognosis in OS patients. 435 DEGs were screened between the two subgroups. Functional enrichment analysis revealed these DEGs were involved in immune- and inflammation-related pathways. Three important genes (including TERT, CCDC26, and IL2RA) were identified to establish the prognostic model. The risk model had good prognostic performance for the prediction of metastasis and overall survival in OS patients. A novel stratification system was established based on ML-related signature. The risk model could predict the metastasis and prognosis in OS patients. Our findings offered a novel sight for the prognosis and development of OS.
Collapse
Affiliation(s)
- Bin Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Xiang-Yang Liu
- Department of Spine Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Guo-Ping Wang
- Department of Spine Surgery, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan, China
| | - Yi-Xin Chen
- Department of Rehabilitation Medicine, Xiangya Hospital of Central South University, No. 87, Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
23
|
Lin Z, Wu Z, Luo W. Bulk and single-cell sequencing identified a prognostic model based on the macrophage and lipid metabolism related signatures for osteosarcoma patients. Heliyon 2024; 10:e26091. [PMID: 38404899 PMCID: PMC10884844 DOI: 10.1016/j.heliyon.2024.e26091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
The introduction of multidrug combination chemotherapy has significantly advanced the long-term survival prospects for osteosarcoma (OS) patients over the past decades. However, the escalating prevalence of chemoresistance has emerged as a substantial impediment to further advancements, necessitating the formulation of innovative strategies. Our present study leveraged sophisticated bulk and single-cell sequencing techniques to scrutinize the OS immune microenvironment, unveiling a potential association between the differentiation state of macrophages and the efficacy of OS chemotherapy. Notably, we observed that a heightened presence of lipid metabolism genes and pathways in predifferentiated macrophages, constituting the major cluster of OS patients exhibiting a less favorable response to chemotherapy. Subsequently, we developed a robust Macrophage and Lipid Metabolism (MLMR) risk model and a nomogram, both of which demonstrated commendable prognostic predictive performance. Furthermore, a comprehensive investigation into the underlying mechanisms of the risk model revealed intricate associations with variations in the immune response among OS patients. Finally, our meticulous drug sensitivity analysis identified a spectrum of potential therapeutic agents for OS, including AZD2014, Sapitinib, Buparlisib, Afuresertib, MIRA-1, and BIBR-1532. These findings significantly augment the therapeutic arsenal available to clinicians managing OS, presenting a promising avenue for elevating treatment outcomes.
Collapse
Affiliation(s)
- Zili Lin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
| | - Ziyi Wu
- Department of Orthopaedics, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, PR China
- National Clinical Research Center for Geriatric Disorders,Xiangya Hospital, Changsha, Hunan, 410008, PR China
| |
Collapse
|
24
|
Saba KH, Difilippo V, Kovac M, Cornmark L, Magnusson L, Nilsson J, van den Bos H, Spierings DC, Bidgoli M, Jonson T, Sumathi VP, Brosjö O, Staaf J, Foijer F, Styring E, Nathrath M, Baumhoer D, Nord KH. Disruption of the TP53 locus in osteosarcoma leads to TP53 promoter gene fusions and restoration of parts of the TP53 signalling pathway. J Pathol 2024; 262:147-160. [PMID: 38010733 DOI: 10.1002/path.6219] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/29/2023]
Abstract
TP53 is the most frequently mutated gene in human cancer. This gene shows not only loss-of-function mutations but also recurrent missense mutations with gain-of-function activity. We have studied the primary bone malignancy osteosarcoma, which harbours one of the most rearranged genomes of all cancers. This is odd since it primarily affects children and adolescents who have not lived the long life thought necessary to accumulate massive numbers of mutations. In osteosarcoma, TP53 is often disrupted by structural variants. Here, we show through combined whole-genome and transcriptome analyses of 148 osteosarcomas that TP53 structural variants commonly result in loss of coding parts of the gene while simultaneously preserving and relocating the promoter region. The transferred TP53 promoter region is fused to genes previously implicated in cancer development. Paradoxically, these erroneously upregulated genes are significantly associated with the TP53 signalling pathway itself. This suggests that while the classical tumour suppressor activities of TP53 are lost, certain parts of the TP53 signalling pathway that are necessary for cancer cell survival and proliferation are retained. In line with this, our data suggest that transposition of the TP53 promoter is an early event that allows for a new normal state of genome-wide rearrangements in osteosarcoma. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Karim H Saba
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Valeria Difilippo
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Michal Kovac
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital and University of Basel, Basel, Switzerland
- Faculty of Informatics and Information Technologies, Slovak University of Technology, Bratislava, Slovakia
| | - Louise Cornmark
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Linda Magnusson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Jenny Nilsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Diana Cj Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Mahtab Bidgoli
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Medical Services, Skåne University Hospital, Lund, Sweden
| | - Tord Jonson
- Department of Clinical Genetics and Pathology, Laboratory Medicine, Medical Services, Skåne University Hospital, Lund, Sweden
| | - Vaiyapuri P Sumathi
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital, Birmingham, UK
| | - Otte Brosjö
- Department of Orthopedics, Karolinska University Hospital, Stockholm, Sweden
| | - Johan Staaf
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Emelie Styring
- Department of Orthopedics, Lund University, Skåne University Hospital, Lund, Sweden
| | - Michaela Nathrath
- Children's Cancer Research Centre and Department of Pediatrics, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany
| | - Daniel Baumhoer
- Bone Tumour Reference Centre at the Institute of Pathology, University Hospital and University of Basel, Basel, Switzerland
| | - Karolin H Nord
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Al-Ansari N, Samuel SM, Büsselberg D. Unveiling the Protective Role of Melatonin in Osteosarcoma: Current Knowledge and Limitations. Biomolecules 2024; 14:145. [PMID: 38397382 PMCID: PMC10886489 DOI: 10.3390/biom14020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
Melatonin, an endogenous neurohormone produced by the pineal gland, has received increased interest due to its potential anti-cancer properties. Apart from its well-known role in the sleep-wake cycle, extensive scientific evidence has shown its role in various physiological and pathological processes, such as inflammation. Additionally, melatonin has demonstrated promising potential as an anti-cancer agent as its function includes inhibition of tumorigenesis, induction of apoptosis, and regulation of anti-tumor immune response. Although a precise pathophysiological mechanism is yet to be established, several pathways related to the regulation of cell cycle progression, DNA repair mechanisms, and antioxidant activity have been implicated in the anti-neoplastic potential of melatonin. In the current manuscript, we focus on the potential anti-cancer properties of melatonin and its use in treating and managing pediatric osteosarcoma. This aggressive bone tumor primarily affects children and adolescents and is treated mainly by surgical and radio-oncological interventions, which has improved survival rates among affected individuals. Significant disadvantages to these interventions include disease recurrence, therapy-related toxicity, and severe/debilitating side effects that the patients have to endure, significantly affecting their quality of life. Melatonin has therapeutic effects when used for treating osteosarcoma, attributed to its ability to halt cancer cell proliferation and trigger apoptotic cell death, thereby enhancing chemotherapeutic efficacy. Furthermore, the antioxidative function of melatonin alleviates harmful side effects of chemotherapy-induced oxidative damage, aiding in decreasing therapeutic toxicities. The review concisely explains the many mechanisms by which melatonin targets osteosarcoma, as evidenced by significant results from several in vitro and animal models. Nevertheless, if further explored, human trials remain a challenge that could shed light and support its utility as an adjunctive therapeutic modality for treating osteosarcoma.
Collapse
Affiliation(s)
- Nojoud Al-Ansari
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar;
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| |
Collapse
|
26
|
Guo C, Yang X, Li L. Pyroptosis-Related Gene Signature Predicts Prognosis and Response to Immunotherapy and Medication in Pediatric and Young Adult Osteosarcoma Patients. J Inflamm Res 2024; 17:417-445. [PMID: 38269108 PMCID: PMC10807455 DOI: 10.2147/jir.s440425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024] Open
Abstract
Purpose Pyroptosis, a new form of inflammatory programmed cell death, has recently gained attention. However, the impact of the expression levels of pyroptosis-related genes (PRGs) on the overall survival (OS) of osteosarcoma patients remains unclear. This study aims to investigate the impact of the expression levels of PRGs on the OS of pediatric and young adult patients with osteosarcoma. Patients and Methods Transcriptome matrix datasets of normal muscle or skeletal tissues from the Genotype-Tissue Expression (GTEx) project and osteosarcoma specimen the National Cancer Institute's (NCI) Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database were used to identify pyroptosis-related genes (PRGs) associated with prognosis. The National Center for Biotechnology Information's (NCBI) GSE21257 dataset was employed to validate the predictive value of the pyroptosis-related signature (PRS). Additionally, reverse transcription polymerase chain reaction (RT-qPCR) experiment was performed in normal and osteosarcoma cell lines. Results The study identified 18 differentially expressed PRGs (DEPRGs) between normal muscle or skeletal tissues and tumor samples. Multiple machine learning techniques were used to select PRGs, resulting in the identification of four hub PRGs. A PRS-score was calculated for each sample based on the expression of these four hub PRGs, and samples were categorized into low and high PRS-score level groups. It was confirmed that metastatic status and PRS-score level are independent prognostic predictors. A nomogram model for predicting OS of osteosarcoma patients was constructed. Single-cell RNA-sequencing data display the expression patterns of the hub PRGs. RT-qPCR data results were found to be consistent with the differential expression analysis performed on TARGET and GTEx samples. Conclusion The study developed a novel pyroptosis-related gene signature that can stratify pediatric and young adult osteosarcoma patients into different risk groups, thus predicting their response to immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Chaofan Guo
- Department of Orthopedics, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi Province, People’s Republic of China
- Department of Spine Surgery, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| | - Xin Yang
- Department of Neurosurgery, Chongqing Fourth People’s Hospital, Chongqing, People’s Republic of China
| | - Lijun Li
- Department of Orthopedics, Shanxi Provincial People’s Hospital, Taiyuan, Shanxi Province, People’s Republic of China
- Department of Spine Surgery, Fifth Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, People’s Republic of China
| |
Collapse
|
27
|
Yu B, Geng C, Wu Z, Zhang Z, Zhang A, Yang Z, Huang J, Xiong Y, Yang H, Chen Z. A CIC-related-epigenetic factors-based model associated with prediction, the tumor microenvironment and drug sensitivity in osteosarcoma. Sci Rep 2024; 14:1308. [PMID: 38225273 PMCID: PMC10789798 DOI: 10.1038/s41598-023-49770-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
Osteosarcoma is generally considered a cold tumor and is characterized by epigenetic alterations. Although tumor cells are surrounded by many immune cells such as macrophages, T cells may be suppressed, be inactivated, or not be presented due to various mechanisms, which usually results in poor prognosis and insensitivity to immunotherapy. Immunotherapy is considered a promising anti-cancer therapy in osteosarcoma but requires more research, but osteosarcoma does not currently respond well to this therapy. The cancer immunity cycle (CIC) is essential for anti-tumor immunity, and is epigenetically regulated. Therefore, it is possible to modulate the immune microenvironment of osteosarcoma by targeting epigenetic factors. In this study, we explored the correlation between epigenetic modulation and CIC in osteosarcoma through bioinformatic methods. Based on the RNA data from TARGET and GSE21257 cohorts, we identified epigenetic related subtypes by NMF clustering and constructed a clinical prognostic model by the LASSO algorithm. ESTIMATE, Cibersort, and xCell algorithms were applied to analyze the tumor microenvironment. Based on eight epigenetic biomarkers (SFMBT2, SP140, CBX5, HMGN2, SMARCA4, PSIP1, ACTR6, and CHD2), two subtypes were identified, and they are mainly distinguished by immune response and cell cycle regulation. After excluding ACTR6 by LASSO regression, the prognostic model was established and it exhibited good predictive efficacy. The risk score showed a strong correlation with the tumor microenvironment, drug sensitivity and many immune checkpoints. In summary, our study sheds a new light on the CIC-related epigenetic modulation mechanism of osteosarcoma and helps search for potential drugs for osteosarcoma treatment.
Collapse
Affiliation(s)
- Bin Yu
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Chengkui Geng
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongxiong Wu
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhongzi Zhang
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Aili Zhang
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Ze Yang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Jiazheng Huang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Ying Xiong
- Department of Orthopedics of Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Huiqin Yang
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Zhuoyuan Chen
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
28
|
Hu J, Lazar AJ, Ingram D, Wang WL, Zhang W, Jia Z, Ragoonanan D, Wang J, Xia X, Mahadeo K, Gorlick R, Li S. Cell membrane-anchored and tumor-targeted IL-12 T-cell therapy destroys cancer-associated fibroblasts and disrupts extracellular matrix in heterogenous osteosarcoma xenograft models. J Immunother Cancer 2024; 12:e006991. [PMID: 38199607 PMCID: PMC10806671 DOI: 10.1136/jitc-2023-006991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND The extracellular matrix (ECM) and cancer-associated fibroblasts (CAFs) play major roles in tumor progression, metastasis, and the poor response of many solid tumors to immunotherapy. CAF-targeted chimeric antigen receptor-T cell therapy cannot infiltrate ECM-rich tumors such as osteosarcoma. METHOD In this study, we used RNA sequencing to assess whether the recently invented membrane-anchored and tumor-targeted IL-12-armed (attIL12) T cells, which bind cell-surface vimentin (CSV) on tumor cells, could destroy CAFs to disrupt the ECM. We established an in vitro model of the interaction between osteosarcoma CAFs and attIL12-T cells to uncover the underlying mechanism by which attIL12-T cells penetrate stroma-enriched osteosarcoma tumors. RESULTS RNA sequencing demonstrated that attIL12-T cell treatment altered ECM-related gene expression. Immunohistochemistry staining revealed disruption or elimination of high-density CAFs and ECM in osteosarcoma xenograft tumors following attIL12-T cell treatment, and CAF/ECM density was inversely correlated with T-cell infiltration. Other IL12-armed T cells, such as wild-type IL-12-targeted or tumor-targeted IL-12-T cells, did not disrupt the ECM because this effect depended on the engagement between CSV on the tumor cell and its ligand on the attIL12-T cells. Mechanistic studies found that attIL12-T cell treatment elevated IFNγ production on interacting with CSV+ tumor cells, suppressing transforming growth factor beta secretion and in turn upregulating FAS-mediated CAF apoptosis. CAF destruction reshaped the tumor stroma to favor T-cell infiltration and tumor inhibition. CONCLUSIONS This study unveiled a novel therapy-attIL12-T cells-for targeting CAFs/ECM. These findings are highly relevant to humans because CAFs are abundant in human osteosarcoma.
Collapse
Affiliation(s)
- Jiemiao Hu
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Genomic Medicine, The Universiy of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Davis Ingram
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wendong Zhang
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zhiliang Jia
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Dristhi Ragoonanan
- Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xueqing Xia
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kris Mahadeo
- Department of Pediatric Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Gorlick
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shulin Li
- Department of Pediatrics-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
29
|
Chen Y, Zeng C, Zhang X, Hua Q. ALOX5AP is an Indicator for High CD8 Lymphocyte Infiltration and "Hot" Tumor Microenvironment in Osteosarcoma: A Bioinformatic Study. Biochem Genet 2023; 61:2363-2381. [PMID: 37041365 DOI: 10.1007/s10528-023-10374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/29/2023] [Indexed: 04/13/2023]
Abstract
Little progress has been made in the treatment and prognosis of osteosarcoma in the past 40 years. Tumor microenvironment (TME) plays a critical role in the progression of osteosarcoma. This study aims to determine immune-associated prognostic biomarkers for osteosarcoma patients. With the help of analytical tools including ESTIMATE, differential gene expression, LASSO, and univariate cox and multivariate cox regression analysis, osteosarcoma gene expression data from Gene Expression Omnibus (GEO) databases were investigated. Following the establishment of a prognostic risk score model, internal and external validations using the GEO and TARGET databases were carried out. A total of 44 and 55 samples respectively in the GSE21257 and the TARGET databases were included. Our analysis found 93 differentially expressed genes (DEGs) between the high and low-ImmuneScore groups. Through univariate cox and LASSO analysis, ALOX5AP was identified as an indicator of TME in osteosarcomas. ALOX5AP was then used to construct a prognostic risk model. Internal and external verification revealed that higher expression of ALOX5AP was correlated with lower risk. Through the CIBERSORT algorithm, the level of CD8 T cells was found to negatively correlate with the risk score. This study revealed that ALOX5AP is an indicator for predicting high CD8 lymphocyte infiltration and "hot" tumor microenvironment in osteosarcomas. Thus, ALOX5AP has the potential to act as a biomarker for effective immunotherapies in osteosarcoma patients.
Collapse
Affiliation(s)
- Yongjun Chen
- Department of Spine Surgery, Zhongshan Hospital Xiamen University, Xiamen University, 201-209 Hubin South Road, Xiamen, Fujian, 361004, People's Republic of China
| | - Cheng Zeng
- Shanghai Synyi Medical Technology Co., Ltd, Shanghai, 201203, People's Republic of China
| | - Xue Zhang
- Shanghai Synyi Medical Technology Co., Ltd, Shanghai, 201203, People's Republic of China
| | - Qiang Hua
- Department of Spine Surgery, Zhongshan Hospital Xiamen University, Xiamen University, 201-209 Hubin South Road, Xiamen, Fujian, 361004, People's Republic of China.
| |
Collapse
|
30
|
Welch DL, Fridley BL, Cen L, Teer JK, Yoder SJ, Pettersson F, Xu L, Cheng CH, Zhang Y, Alexandrow MG, Xiang S, Robertson-Tessi M, Brown JS, Metts J, Brohl AS, Reed DR. Modeling phenotypic heterogeneity towards evolutionarily inspired osteosarcoma therapy. Sci Rep 2023; 13:20125. [PMID: 37978271 PMCID: PMC10656496 DOI: 10.1038/s41598-023-47412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
Osteosarcoma is the most common bone sarcoma in children and young adults. While universally delivered, chemotherapy only benefits roughly half of patients with localized disease. Increasingly, intratumoral heterogeneity is recognized as a source of therapeutic resistance. In this study, we develop and evaluate an in vitro model of osteosarcoma heterogeneity based on phenotype and genotype. Cancer cell populations vary in their environment-specific growth rates and in their sensitivity to chemotherapy. We present the genotypic and phenotypic characterization of an osteosarcoma cell line panel with a focus on co-cultures of the most phenotypically divergent cell lines, 143B and SAOS2. Modest environmental (pH, glutamine) or chemical perturbations dramatically shift the success and composition of cell lines. We demonstrate that in nutrient rich culture conditions 143B outcompetes SAOS2. But, under nutrient deprivation or conventional chemotherapy, SAOS2 growth can be favored in spheroids. Importantly, when the simplest heterogeneity state is evaluated, a two-cell line coculture, perturbations that affect the faster growing cell line have only a modest effect on final spheroid size. Thus the only evaluated therapies to eliminate the spheroids were by switching therapies from a first strike to a second strike. This extensively characterized, widely available system, can be modeled and scaled to allow for improved strategies to anticipate resistance in osteosarcoma due to heterogeneity.
Collapse
Affiliation(s)
- Darcy L Welch
- Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | - Brooke L Fridley
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ling Cen
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jamie K Teer
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sean J Yoder
- Molecular Genomics Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fredrik Pettersson
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Liping Xu
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chia-Ho Cheng
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yonghong Zhang
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mark G Alexandrow
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shengyan Xiang
- Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mark Robertson-Tessi
- Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Joel S Brown
- Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jonathan Metts
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew S Brohl
- Sarcoma Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Damon R Reed
- Adolescent and Young Adult Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
- Integrative Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
- Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
31
|
Nirala BK, Yamamichi T, Petrescu DI, Shafin TN, Yustein JT. Decoding the Impact of Tumor Microenvironment in Osteosarcoma Progression and Metastasis. Cancers (Basel) 2023; 15:5108. [PMID: 37894474 PMCID: PMC10605493 DOI: 10.3390/cancers15205108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, highly metastatic bone malignancy in children and adolescents. Despite advancements in multimodal treatment strategies, the prognosis for patients with metastatic or recurrent disease has not improved significantly in the last four decades. OS is a highly heterogeneous tumor; its genetic background and the mechanism of oncogenesis are not well defined. Unfortunately, no effective molecular targeted therapy is currently available for this disease. Understanding osteosarcoma's tumor microenvironment (TME) has recently gained much interest among scientists hoping to provide valuable insights into tumor heterogeneity, progression, metastasis, and the identification of novel therapeutic avenues. Here, we review the current understanding of the TME of OS, including different cellular and noncellular components, their crosstalk with OS tumor cells, and their involvement in tumor progression and metastasis. We also highlight past/current clinical trials targeting the TME of OS for effective therapies and potential future therapeutic strategies with negligible adverse effects.
Collapse
Affiliation(s)
| | | | | | | | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA; (B.K.N.); (T.Y.); (D.I.P.); (T.N.S.)
| |
Collapse
|
32
|
Kim C, Davis LE, Albert CM, Samuels B, Roberts JL, Wagner MJ. Osteosarcoma in Pediatric and Adult Populations: Are Adults Just Big Kids? Cancers (Basel) 2023; 15:5044. [PMID: 37894411 PMCID: PMC10604996 DOI: 10.3390/cancers15205044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant bone tumors are commonly classified as pediatric or adolescent malignancies, and clinical trials for these diseases have generally focused on these populations. Of primary bone cancers, osteosarcoma is among the most common. Osteosarcoma has a bimodal age distribution, with the first peak occurring in patients from 10 to 14 years old, and the second peak occurring in patients older than 65, with about 25% of cases occurring in adults between 20 and 59 years old. Notably, adult osteosarcoma patients have worse outcomes than their pediatric counterparts. It remains unclear whether age itself is a poor prognostic factor, or if inherent differences in tumor biology exist between age groups. Despite these unknowns, current treatment strategies for adults are largely extrapolated from pediatric studies since the majority of clinical trials for osteosarcoma treatments are based on younger patient populations. In light of the different prognoses observed in pediatric and adult osteosarcoma, we summarize the current understanding of the molecular etiology of osteosarcoma and how it may differ between age groups, hypothesizing why adult patients have worse outcomes compared to children.
Collapse
Affiliation(s)
- Caleb Kim
- Division of Hematology and Oncology, University of Washington, Spokane, WA 99202, USA;
| | - Lara E. Davis
- Division of Hematology/Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Catherine M. Albert
- Division of Pediatric Hematology, Oncology, Bone Marrow Transplant and Cellular Therapy, Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | - Jesse L. Roberts
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98109, USA
| | - Michael J. Wagner
- Division of Hematology and Oncology, University of Washington, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
33
|
Tang S, Roberts RD, Cheng L, Li L. Osteosarcoma Multi-Omics Landscape and Subtypes. Cancers (Basel) 2023; 15:4970. [PMID: 37894336 PMCID: PMC10605601 DOI: 10.3390/cancers15204970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy that exhibits remarkable histologic diversity and genetic heterogeneity. The complex nature of osteosarcoma has confounded precise molecular categorization, prognosis, and prediction for this disease. In this study, we performed a comprehensive multiplatform analysis on 86 osteosarcoma tumors, including somatic copy-number alteration, gene expression and methylation, and identified three molecularly distinct and clinically relevant subtypes of osteosarcoma. The subgrouping criteria was validated on another cohort of osteosarcoma tumors. Previously unappreciated osteosarcoma-type-specific changes in specific genes' copy number, expression and methylation were revealed based on the subgrouping. The subgrouping and novel gene signatures provide insights into refining osteosarcoma therapy and relationships to other types of cancer.
Collapse
Affiliation(s)
- Shan Tang
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Ryan D. Roberts
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Lijun Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Lang Li
- College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
34
|
Beird HC, Wu CC, Nakazawa M, Ingram D, Daniele JR, Lazcano R, Little L, Davies C, Daw NC, Wani K, Wang WL, Song X, Gumbs C, Zhang J, Rubin B, Conley A, Flanagan AM, Lazar AJ, Futreal PA. Complete loss of TP53 and RB1 is associated with complex genome and low immune infiltrate in pleomorphic rhabdomyosarcoma. HGG ADVANCES 2023; 4:100224. [PMID: 37593416 PMCID: PMC10428123 DOI: 10.1016/j.xhgg.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/14/2023] [Indexed: 08/19/2023] Open
Abstract
Rhabdomyosarcoma accounts for roughly 1% of adult sarcomas, with pleomorphic rhabdomyosarcoma (PRMS) as the most common subtype. Survival outcomes remain poor for patients with PRMS, and little is known about the molecular drivers of this disease. To better characterize PRMS, we performed a broad array of genomic and immunostaining analyses on 25 patient samples. In terms of gene expression and methylation, PRMS clustered more closely with other complex karyotype sarcomas than with pediatric alveolar and embryonal rhabdomyosarcoma. Immune infiltrate levels in PRMS were among the highest observed in multiple sarcoma types and contrasted with low levels in other rhabdomyosarcoma subtypes. Lower immune infiltrate was associated with complete loss of both TP53 and RB1. This comprehensive characterization of the genetic, epigenetic, and immune landscape of PRMS provides a roadmap for improved prognostications and therapeutic exploration.
Collapse
Affiliation(s)
- Hannah C. Beird
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Chin Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michael Nakazawa
- Department of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Davis Ingram
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph R. Daniele
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rossana Lazcano
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Latasha Little
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher Davies
- Research Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Najat C. Daw
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Khalida Wani
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei-Lien Wang
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Curtis Gumbs
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brian Rubin
- Institute Chair, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Anthony Conley
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Adrienne M. Flanagan
- Research Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- Royal National Orthopaedic Hospital NHS Trust, Stanmore, Middlesex HA7 4LP, UK
| | - Alexander J. Lazar
- Department of Translational and Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - P. Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
35
|
Ma L, Zhou J, Wu Q, Luo G, Zhao M, Zhong G, Zheng Y, Meng X, Cheng S, Zhang Y. Multifunctional 3D-printed scaffolds eradiate orthotopic osteosarcoma and promote osteogenesis via microwave thermo-chemotherapy combined with immunotherapy. Biomaterials 2023; 301:122236. [PMID: 37506512 DOI: 10.1016/j.biomaterials.2023.122236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 06/04/2023] [Accepted: 07/02/2023] [Indexed: 07/30/2023]
Abstract
Tumor recurrence and a lack of bone-tissue integration are two critical concerns in the surgical treatment of osteosarcoma. Thus, an advanced multifunctional therapeutic platform capable of simultaneously eliminating residual tumor cells and promoting bone regeneration is urgently needed for efficient osteosarcoma treatment. Herein, to thoroughly eliminate tumors and simultaneously promote bone regeneration, an intelligent multifunctional therapeutic scaffold has been engineered by integrating microwave-responsive zeolitic imidazolate framework 8 (ZIF-8) nanomaterials loaded with a chemotherapeutic drug and an immune checkpoint inhibitor onto 3D-printed titanium scaffolds. The constructed scaffold features distinct microwave-thermal sensitization and tumor microenvironment-responsive characteristics, which can induce tumor immunogenic death by microwave hyperthermia and chemotherapy. Orthotopic implantation of the nanocomposite scaffold results in an enhanced immune response against osteosarcoma that may effectively inhibit tumor recurrence through synergistic immunotherapy. During long-term implantation, the zinc ions released from the degradation of ZIF-8 can induce the osteogenic differentiation of stem cells. The porous structure and mechanical properties of the 3D-printed titanium scaffolds provide a structural microenvironment for bone regeneration. This study provides a paradigm for the design of multifunctional microwave-responsive composite scaffolds for use as a therapy for osteosarcoma, which could lead to improved strategies for the treatment of the disease.
Collapse
Affiliation(s)
- Limin Ma
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Jielong Zhou
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Qiong Wu
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Guowen Luo
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Manzhi Zhao
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Guoqing Zhong
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Shi Cheng
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China.
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
36
|
Patkar S, Mannheimer J, Harmon S, Mazcko C, Choyke P, Brown GT, Turkbey B, LeBlanc A, Beck J. Large Scale Comparative Deconvolution Analysis of the Canine and Human Osteosarcoma Tumor Microenvironment Uncovers Conserved Clinically Relevant Subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559797. [PMID: 37808704 PMCID: PMC10557692 DOI: 10.1101/2023.09.27.559797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Osteosarcoma is a relatively rare but aggressive cancer of the bones with a shortage of effective biomarkers. Although less common in humans, Osteosarcomas are fairly common in adult pet dogs and have been shown to share many similarities with their human analogs. In this work, we analyze bulk transcriptomic data of 213 primary and 100 metastatic Osteosarcoma samples from 210 pet dogs enrolled in nation-wide clinical trials to uncover three Tumor Microenvironment (TME)-based subtypes: Immune Enriched (IE), Immune Enriched Dense Extra-Cellular Matrix-like (IE-ECM) and Immune Desert (ID) with distinct cell type compositions, oncogenic pathway activity and chromosomal instability. Furthermore, leveraging bulk transcriptomic data of canine primary tumors and their matched metastases from different sites, we characterize how the Osteosarcoma TME evolves from primary to metastatic disease in a standard of care clinical setting and assess its overall impact on clinical outcomes of canines. Most importantly, we find that TME-based subtypes of canine Osteosarcomas are conserved in humans and predictive of progression free survival outcomes of human patients, independently of known prognostic biomarkers such as presence of metastatic disease at diagnosis and percent necrosis following chemotherapy. In summary, these results demonstrate the power of using canines to model the human Osteosarcoma TME and discover novel biomarkers for clinical translation.
Collapse
Affiliation(s)
- Sushant Patkar
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Josh Mannheimer
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie Harmon
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Christina Mazcko
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter Choyke
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - G Tom Brown
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Baris Turkbey
- Artificial Intelligence Resource, Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amy LeBlanc
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jessica Beck
- Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
37
|
Xie L, Liang X, Xu J, Sun X, Liu K, Sun K, Li Y, Tang X, Li X, Zhan X, Niu X, Guo W. Exploratory study of an anti-PD-L1/TGF-β antibody, TQB2858, in patients with refractory or recurrent osteosarcoma and alveolar soft part sarcoma: a report from Chinese sarcoma study group (TQB2858-Ib-02). BMC Cancer 2023; 23:868. [PMID: 37715133 PMCID: PMC10503089 DOI: 10.1186/s12885-023-11390-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND Novel and effective immunotherapies are required for refractory or recurrent sarcomas. Transforming growth factor-beta (TGF-β) is a diverse regulatory and fibrogenic protein expressed in multiple sarcoma tumors that promotes epithelial-mesenchymal transition and excessive deposition of extracellular matrix. This study evaluated the efficacy and safety of the anti-PD-L1/TGF-β antibody TQB2858 in patients with refractory osteosarcoma and alveolar soft part sarcoma (ASPS). METHODS This single-arm phase 1b exploratory study included patients with refractory osteosarcoma or ASPS who had previously undergone at least two lines of systemic therapy. Patients were administered 1200 mg of TQB2858 once every 3 weeks. The primary endpoint was objective response rate (ORR), with null and alternative hypotheses of ORR ≤5% and ≥20%, respectively. Exploratory biomarker analyses using immunohistochemistry (IHC) staining (for PD-L1 and TGF-β) were performed on pre-treatment tumor samples. RESULTS Eleven eligible patients were included in this study. TQB2858 did not demonstrate evidence of efficacy as 0/5 osteosarcomas had any objective response, while 2/6 ASPS showed a partial response. The median progression-free survivals were 1.51 (1.38, Not Evaluable) and 2.86 (1.38, Not Evaluable) months for the osteosarcoma and ASPS groups, respectively. None of the administered cycles met the criteria for unacceptable toxicity. Other Grade 3 toxicities included abnormal liver function and elevation of γ-glutamyl transferase. IHC analysis revealed that functional enrichment in the TGF-β pathway or PD-L1 was not associated with treatment outcomes. CONCLUSIONS The combination of PD-L1 and TQB2858 did not significantly improve the ORR in patients with recurrent osteosarcoma. However, it improved immunogenic responses in ASPS, even after progression upon anti-PD-1/PD-L1 therapy, with an acceptable safety profile. IHC profiling with pathway enrichment analysis may not have any predictive value for survival outcomes. TRIAL REGISTRATION Prospectively registered in the Ethical Review Committee of Peking University People's Hospital. The trial registration number is 2021PHA105-001 and 2021PHA140-001 and the registration date was March 2, 2022. CLINICALTRIALS gov Identifier CTR20213001 and CTR20220390.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xin Liang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China
| | - Kunkun Sun
- Pathology Department, Peking University People's Hospital, Beijing, 100044, China
| | - Yuan Li
- Radiology Department and Nuclear Medicine Department, Peking University People's Hospital, Beijing, 100044, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China.
| | - Xianan Li
- Orthopedic Oncology Department, Hunan Cancer Hospital, Changsha, 410013, China
| | - Xing Zhan
- Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaohui Niu
- Orthopedic Oncology Department, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, 100044, China.
| |
Collapse
|
38
|
Truong DD, Weistuch C, Murgas KA, Deasy JO, Mikos AG, Tannenbaum A, Ludwig J. Mapping the Single-cell Differentiation Landscape of Osteosarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.555156. [PMID: 37745374 PMCID: PMC10515803 DOI: 10.1101/2023.09.13.555156] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The genetic and intratumoral heterogeneity observed in human osteosarcomas (OS) poses challenges for drug development and the study of cell fate, plasticity, and differentiation, processes linked to tumor grade, cell metastasis, and survival. To pinpoint errors in OS differentiation, we transcriptionally profiled 31,527 cells from a tissue-engineered model that directs MSCs toward adipogenic and osteoblastic fates. Incorporating pre-existing chondrocyte data, we applied trajectory analysis and non-negative matrix factorization (NMF) to generate the first human mesenchymal differentiation atlas. This 'roadmap' served as a reference to delineate the cellular composition of morphologically complex OS tumors and quantify each cell's lineage commitment. Projecting these signatures onto a bulk RNA-seq OS dataset unveiled a correlation between a stem-like transcriptomic phenotype and poorer survival outcomes. Our study takes the critical first step in accurately quantifying OS differentiation and lineage, a prerequisite to better understanding global differentiation bottlenecks that might someday be targeted therapeutically.
Collapse
Affiliation(s)
- Danh D. Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Kevin A. Murgas
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | - Allen Tannenbaum
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY
- Department of Computer Science, Stony Brook University, Stony Brook, NY
| | - Joseph Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
39
|
Ammons D, Hopkins L, Cronise K, Kurihara J, Regan D, Dow S. Single-cell RNA sequencing reveals the cellular and molecular heterogeneity of treatment-naïve primary osteosarcoma in dogs. RESEARCH SQUARE 2023:rs.3.rs-3232360. [PMID: 37609233 PMCID: PMC10441479 DOI: 10.21203/rs.3.rs-3232360/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Osteosarcoma (OS) is a heterogeneous, aggressive malignancy of the bone that disproportionally affects children and adolescents. Therapeutic interventions for OS are limited, which is in part due to the complex tumor microenvironment (TME) that has proven to be refractory to immunotherapies. Thus, there is a need to better define the complexity of the OS TME. To address this need, we used single-cell RNA sequencing (scRNA-seq) to describe the cellular and molecular composition of the TME in 6 treatment-naïve dogs with spontaneously occurring primary OS. Through analysis of 35,310 cells, we identified 30 distinct immune cell types, 9 unique tumor populations, 1 cluster of fibroblasts, and 1 cluster of endothelial cells. Independent reclustering of major cell types revealed the presence of follicular helper T cells, mature regulatory dendritic cells (mregDCs), and 8 transcriptomically distinct macrophage/monocyte populations. Cell-cell interaction inference analysis predicted that mregDCs and tumor-associated macrophages (TAMs) play key roles in modulating T cell mediate immunity. Furthermore, we used publicly available human OS scRNA-seq data to complete a cross-species cell type gene signature homology analysis. The analysis revealed a high degree of cell type gene signature homology between species, suggesting the cellular composition of OS is largely conserved between humans and dogs. Our findings provide key new insights into the biology of canine OS and highlight the conserved features of OS across species. Generally, the data presented here acts as a cellular and molecular roadmap of canine OS which can be applied to advance the translational immuno-oncology research field.
Collapse
|
40
|
Tarone L, Giacobino D, Camerino M, Maniscalco L, Iussich S, Parisi L, Giovannini G, Dentini A, Bolli E, Quaglino E, Merighi IF, Morello E, Buracco P, Riccardo F, Cavallo F. A chimeric human/dog-DNA vaccine against CSPG4 induces immunity with therapeutic potential in comparative preclinical models of osteosarcoma. Mol Ther 2023; 31:2342-2359. [PMID: 37312451 PMCID: PMC10421998 DOI: 10.1016/j.ymthe.2023.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/24/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023] Open
Abstract
The high mortality rate of osteosarcoma (OSA) patients highlights the requirement of alternative strategies. The young age of patients, as well as the rarity and aggressiveness of the disease, limits opportunities for the robust testing of novel therapies, suggesting the need for valuable preclinical systems. Having previously shown the overexpression of the chondroitin sulfate proteoglycan (CSPG)4 in OSA, herein the functional consequences of its downmodulation in human OSA cells were evaluated in vitro, with a significant impairment of cell proliferation, migration, and osteosphere generation. The potential of a chimeric human/dog (HuDo)-CSPG4 DNA vaccine was explored in translational comparative OSA models, including human xenograft mouse models and canine patients affected by spontaneous OSA. The adoptive transfer of HuDo-CSPG4 vaccine-induced CD8+ T cells and sera in immunodeficient human OSA-bearing mice delayed tumor growth and metastasis development. HuDo-CSPG4 vaccination resulted safe and effective in inducing anti-CSPG4 immunity in OSA-affected dogs, which displayed prolonged survival as compared to controls. Finally, HuDo-CSPG4 was also able to induce a cytotoxic response in a human surrogate setting in vitro. On the basis of these results and the high predictive value of spontaneous OSA in dogs, this study paves the way for a possible translation of this approach to humans.
Collapse
Affiliation(s)
- Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Davide Giacobino
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Mariateresa Camerino
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Lorella Maniscalco
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Selina Iussich
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Lorenza Parisi
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | | | | | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Irene Fiore Merighi
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy
| | - Emanuela Morello
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Paolo Buracco
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco (TO), Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
41
|
Osei-Hwedieh DO, Sedlacek AL, Hernandez LM, Yamoah AA, Iyer SG, Weiss KR, Binder RJ. Immunosurveillance shapes the emergence of neo-epitope landscapes of sarcomas, revealing prime targets for immunotherapy. JCI Insight 2023; 8:e170324. [PMID: 37427594 PMCID: PMC10371341 DOI: 10.1172/jci.insight.170324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
T cells recognize tumor-derived mutated peptides presented on MHC by tumors. The recognition of these neo-epitopes leads to rejection of tumors, an event that is critical for successful cancer immunosurveillance. Determination of tumor-rejecting neo-epitopes in human tumors has proved difficult, though recently developed systems approaches are becoming increasingly useful at evaluating their immunogenicity. We have used the differential aggretope index to determine the neo-epitope burden of sarcomas and observed a conspicuously titrated antigenic landscape, ranging from the highly antigenic osteosarcomas to the low antigenic leiomyosarcomas and liposarcomas. We showed that the antigenic landscape of the tumors inversely reflected the historical T cell responses in the tumor-bearing patients. We predicted that highly antigenic tumors with poor antitumor T cell responses, such as osteosarcomas, would be responsive to T cell-based immunotherapy regimens and demonstrated this in a murine osteosarcoma model. Our study presents a potentially novel pipeline for determining antigenicity of human tumors, provides an accurate predictor of potential neo-epitopes, and will be an important indicator of which cancers to target with T cell-enhancing immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Kurt R. Weiss
- Department of Orthopaedic Surgery, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
42
|
Seraphin G, Rieger S, Hewison M, Capobianco E, Lisse TS. The impact of vitamin D on cancer: A mini review. J Steroid Biochem Mol Biol 2023; 231:106308. [PMID: 37054849 PMCID: PMC10330295 DOI: 10.1016/j.jsbmb.2023.106308] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
In this review, we summarize the most recent advances in vitamin D cancer research to provide molecular clarity, as well as its translational trajectory across the cancer landscape. Vitamin D is well known for its role in regulating mineral homeostasis; however, vitamin D deficiency has also been linked to the development and progression of a number of cancer types. Recent epigenomic, transcriptomic, and proteomic studies have revealed novel vitamin D-mediated biological mechanisms that regulate cancer cell self-renewal, differentiation, proliferation, transformation, and death. Tumor microenvironmental studies have also revealed dynamic relationships between the immune system and vitamin D's anti-neoplastic properties. These findings help to explain the large number of population-based studies that show clinicopathological correlations between circulating vitamin D levels and risk of cancer development and death. The majority of evidence suggests that low circulating vitamin D levels are associated with an increased risk of cancers, whereas supplementation alone or in combination with other chemo/immunotherapeutic drugs may improve clinical outcomes even further. These promising results still necessitate further research and development into novel approaches that target vitamin D signaling and metabolic systems to improve cancer outcomes.
Collapse
Affiliation(s)
- Gerbenn Seraphin
- University of Miami, Department of Biology, Coral Gables, FL, USA
| | - Sandra Rieger
- University of Miami, Department of Biology, Coral Gables, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Martin Hewison
- University of Birmingham, Institute of Metabolism and Systems Research, Birmingham, UK
| | | | - Thomas S Lisse
- University of Miami, Department of Biology, Coral Gables, FL, USA; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA; iCURA LLC, Malvern, PA, USA.
| |
Collapse
|
43
|
Lu B, Curtius K, Graham TA, Yang Z, Barnes CP. CNETML: maximum likelihood inference of phylogeny from copy number profiles of multiple samples. Genome Biol 2023; 24:144. [PMID: 37340508 PMCID: PMC10283241 DOI: 10.1186/s13059-023-02983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Phylogenetic trees based on copy number profiles from multiple samples of a patient are helpful to understand cancer evolution. Here, we develop a new maximum likelihood method, CNETML, to infer phylogenies from such data. CNETML is the first program to jointly infer the tree topology, node ages, and mutation rates from total copy numbers of longitudinal samples. Our extensive simulations suggest CNETML performs well on copy numbers relative to ploidy and under slight violation of model assumptions. The application of CNETML to real data generates results consistent with previous discoveries and provides novel early copy number events for further investigation.
Collapse
Affiliation(s)
- Bingxin Lu
- Department of Cell and Developmental Biology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| | - Kit Curtius
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Trevor A Graham
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| |
Collapse
|
44
|
Panez-Toro I, Muñoz-García J, Vargas-Franco JW, Renodon-Cornière A, Heymann MF, Lézot F, Heymann D. Advances in Osteosarcoma. Curr Osteoporos Rep 2023:10.1007/s11914-023-00803-9. [PMID: 37329384 PMCID: PMC10393907 DOI: 10.1007/s11914-023-00803-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/05/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE OF REVIEW This article gives a brief overview of the most recent developments in osteosarcoma treatment, including targeting of signaling pathways, immune checkpoint inhibitors, drug delivery strategies as single or combined approaches, and the identification of new therapeutic targets to face this highly heterogeneous disease. RECENT FINDINGS Osteosarcoma is one of the most common primary malignant bone tumors in children and young adults, with a high risk of bone and lung metastases and a 5-year survival rate around 70% in the absence of metastases and 30% if metastases are detected at the time of diagnosis. Despite the novel advances in neoadjuvant chemotherapy, the effective treatment for osteosarcoma has not improved in the last 4 decades. The emergence of immunotherapy has transformed the paradigm of treatment, focusing therapeutic strategies on the potential of immune checkpoint inhibitors. However, the most recent clinical trials show a slight improvement over the conventional polychemotherapy scheme. The tumor microenvironment plays a crucial role in the pathogenesis of osteosarcoma by controlling the tumor growth, the metastatic process and the drug resistance and paved the way of new therapeutic options that must be validated by accurate pre-clinical studies and clinical trials.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Javier Muñoz-García
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
| | - Jorge W Vargas-Franco
- University of Antioquia, Department of Basic Studies, Faculty of Odontology, Medellin, Colombia
| | - Axelle Renodon-Cornière
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Marie-Françoise Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France
| | - Frédéric Lézot
- Sorbonne Université, INSERM UMR933, Hôpital Trousseau (AP-HP), 75012, Paris, France
| | - Dominique Heymann
- Nantes Université, CNRS, UMR6286, US2B, Biological Sciences and Biotechnologies unit, 44322, Nantes, France.
- Institut de Cancérologie de l'Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, 44805, Saint-Herblain, France.
- University of Sheffield, Medical School, Department of Oncology and Metabolism, S10 2RX, Sheffield, UK.
| |
Collapse
|
45
|
He M, Jiang X, Miao J, Feng W, Xie T, Liao S, Qin Z, Tang H, Lin C, Li B, Xu J, Liu Y, Mo Z, Wei Q. A new insight of immunosuppressive microenvironment in osteosarcoma lung metastasis. Exp Biol Med (Maywood) 2023; 248:1056-1073. [PMID: 37439349 PMCID: PMC10581164 DOI: 10.1177/15353702231171900] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/08/2023] [Indexed: 07/14/2023] Open
Abstract
The lung is the primary organ for the metastasis of osteosarcoma. Although the application of neoadjuvant chemotherapy and surgery has remarkably improved the survival rate of patients with osteosarcoma, prognosis is still poor for those patients with metastasis. In this study, we performed further bioinformatics analysis on single-cell RNA sequencing (scRNA-seq) data published before, containing 75,317 cells from two osteosarcoma lung metastasis and five normal lung tissues. First, we classified 17 clusters, including macrophages, T cells, endothelial cells, and so on, indicating highly intratumoral heterogeneity in osteosarcoma lung metastasis. Next, we found macrophages in osteosarcoma lung metastasis did not have significant M1 or M2 polarizations. Then, we identified that T cells occupied the most abundant among all cell clusters, and found CD8+ T cells exhibited a low expression level of immune checkpoints in osteosarcoma lung metastasis. What is more, we identified C2_Malignant cells, and found CD63 might play vital roles in determining the infiltration of T cells and malignant cells in conventional-type osteosarcoma lung metastasis. Finally, we unveiled C1_Therapeutic cluster, a subcluster of malignant cells, was sensitive to oxfendazole and mevastatin, and the potential hydrogen-bond position and binding energy of oxfendazole-KIAA0907 and mevastatin-KIAA0907 were unveiled, respectively. Our results highlighted the power of scRNA-seq technique in identifying the complex tumor microenvironment of osteosarcoma lung metastasis, making it possible to devise precision therapeutic approaches.
Collapse
Affiliation(s)
- Mingwei He
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Xiaohong Jiang
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jifeng Miao
- Orthopedics Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530005, China
| | - Wenyu Feng
- Orthopedics Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530005, China
| | - Tianyu Xie
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Shijie Liao
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhaojie Qin
- Department of Orthopedic, The People’s Hospital of Hechi, Hechi 547600, China
| | - Haijun Tang
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chengsen Lin
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Boxiang Li
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Yun Liu
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
- Department of Spinal Bone Disease, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning 530021, China
| | - Qingjun Wei
- Department of Trauma Orthopedic and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
46
|
Ji T, Shi Q, Mei S, Xu J, Liang H, Xie L, Ren T, Sun K, Li D, Tang X, Zhang P, Guo W. Integrated analysis of single-cell and bulk RNA sequencing data reveals an immunostimulatory microenvironment in tumor thrombus of osteosarcoma. Oncogenesis 2023; 12:31. [PMID: 37244923 DOI: 10.1038/s41389-023-00474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/29/2023] Open
Abstract
Tumor thrombus of bone sarcomas represents a unique reservoir for various types of cancer and immune cells, however, the investigation of tumor thrombus at a single-cell level is very limited. And it is still an open question to identify the thrombus-specific tumor microenvironment that is associated with the tumor-adaptive immune response. Here, by analyzing bulk tissue and single-cell level transcriptome from the paired thrombus and primary tumor samples of osteosarcoma (OS) patients, we define the immunostimulatory microenvironment in tumor thrombus of OS with a higher proportion of tumor-associated macrophages with M1-like states (TAM-M1) and TAM-M1 with high expression of CCL4. OS tumor thrombus is found to have upregulated IFN-γ and TGF-β signalings that are related to immune surveillance of circulating tumor cells in blood circulation. Further multiplexed immunofluorescence staining of the CD3/CD4/CD8A/CD68/CCL4 markers validates the immune-activated state in the tumor thrombus samples. Our study first reports the transcriptome differences at a single-cell level between tumor thrombus and primary tumor in sarcoma.
Collapse
Affiliation(s)
- Tao Ji
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Qianyu Shi
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Song Mei
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiuhui Xu
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Haijie Liang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Lu Xie
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Tingting Ren
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Kunkun Sun
- Department of Pathology, People's Hospital, Peking University, Beijing, 100044, China
| | - Dasen Li
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Xiaodong Tang
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, MOE Key Laboratory of Major Diseases in Children, Rare Disease Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Wei Guo
- Department of Musculoskeletal Tumor, People's Hospital, Peking University, Beijing, 100044, China.
| |
Collapse
|
47
|
Ferrena A, Wang J, Zhang R, Karadal-Ferrena B, Al-Hardan W, Singh S, Borjihan H, Schwartz E, Zhao H, Yang R, Geller D, Hoang B, Zheng D. SKP2 knockout in Rb1/p53 deficient mouse models of osteosarcoma induces immune infiltration and drives a transcriptional program with a favorable prognosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.540053. [PMID: 37214958 PMCID: PMC10197654 DOI: 10.1101/2023.05.09.540053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Purpose Osteosarcoma (OS) is an aggressive bone malignancy with a poor prognosis. One putative proto-oncogene in OS is SKP2, encoding a substrate recognition factor of the SCF E3 ubiquitin ligase. We previously demonstrated that SKP2 knockout in murine OS improved survival and delayed tumorigenesis. Here we aim to define the SKP2 drives transcriptional program and its clinical implication in OS. Experimental Design We performed RNA-sequencing (RNA-seq) on tumors from a transgenic OS mouse model with conditional Trp53 and Rb1 knockouts in the osteoblast lineage ("DKO": Osx1-Cre;Rb1lox/lox;p53lox/lox) and a triple-knockout model with additional Skp2 germline knockout ("TKO": Osx1-Cre;Rb1lox/lox;p53lox/lox;SKP2-/-). We validated our RNA-seq findings using qPCR and immunohistochemistry. To investigate the clinical implications of our results, we analyzed a human OS patient cohort ("NCI-TARGET OS") with RNA-seq and clinical data. Results We found large differences in gene expression after SKP2 knockout. Strikingly, we observed increased expression of genes related to immune microenvironment infiltration in TKO tumors. We observed significant increases in signature genes for macrophages and to a lesser extent, T cells, B cells and vascular cells. We also uncovered a set of relevant transcription factors that may mediate the changes. In OS patient cohorts, high expression of genes upregulated in TKO was correlated with favorable overall survival, which was largely explained by the macrophage gene signatures. This relationship was further supported by our finding that SKP2 expression was negatively correlated with macrophage infiltration in the NCI-TARGET OS and the TCGA Sarcoma cohort. Conclusion Our findings indicate that SKP2 may mediate immune exclusion from the OS tumor microenvironment, suggesting that SKP2 modulation in OS may induce anti-tumor immune activation.
Collapse
Affiliation(s)
- Alexander Ferrena
- Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jichuan Wang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ranxin Zhang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Waleed Al-Hardan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Swapnil Singh
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hasibagan Borjihan
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Schwartz
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hongling Zhao
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rui Yang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - David Geller
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bang Hoang
- Department of Orthopedic Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
48
|
Capobianco E, McGaughey V, Seraphin G, Heckel J, Rieger S, Lisse TS. Vitamin D inhibits osteosarcoma by reprogramming nonsense-mediated RNA decay and SNAI2-mediated epithelial-to-mesenchymal transition. Front Oncol 2023; 13:1188641. [PMID: 37228489 PMCID: PMC10203545 DOI: 10.3389/fonc.2023.1188641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/20/2023] [Indexed: 05/27/2023] Open
Abstract
Osteosarcomas are immune-resistant and metastatic as a result of elevated nonsense-mediated RNA decay (NMD), reactive oxygen species (ROS), and epithelial-to-mesenchymal transition (EMT). Although vitamin D has anti-cancer effects, its effectiveness and mechanism of action against osteosarcomas are poorly understood. In this study, we assessed the impact of vitamin D and its receptor (VDR) on NMD-ROS-EMT signaling in in vitro and in vivo osteosarcoma animal models. Initiation of VDR signaling facilitated the enrichment of EMT pathway genes, after which 1,25(OH)2D, the active vitamin D derivative, inhibited the EMT pathway in osteosarcoma subtypes. The ligand-bound VDR directly downregulated the EMT inducer SNAI2, differentiating highly metastatic from low metastatic subtypes and 1,25(OH)2D sensitivity. Moreover, epigenome-wide motif and putative target gene analysis revealed the VDR's integration with NMD tumorigenic and immunogenic pathways. In an autoregulatory manner, 1,25(OH)2D inhibited NMD machinery genes and upregulated NMD target genes implicated in anti-oncogenic activity, immunorecognition, and cell-to-cell adhesion. Dicer substrate siRNA knockdown of SNAI2 revealed superoxide dismutase 2 (SOD2)-mediated antioxidative responses and 1,25(OH)2D sensitization via non-canonical SOD2 nuclear-to-mitochondrial translocalization leading to overall ROS suppression. In a mouse xenograft metastasis model, the therapeutically relevant vitamin D derivative calcipotriol inhibited osteosarcoma metastasis and tumor growth shown for the first time. Our results uncover novel osteosarcoma-inhibiting mechanisms for vitamin D and calcipotriol that may be translated to human patients.
Collapse
Affiliation(s)
| | - Vanessa McGaughey
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Gerbenn Seraphin
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - John Heckel
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Sandra Rieger
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Thomas S. Lisse
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
- iCURA DX, Malvern, PA, United States
| |
Collapse
|
49
|
Wood GE, Graves LA, Rubin EM, Reed DR, Riedel RF, Strauss SJ. Bad to the Bone: Emerging Approaches to Aggressive Bone Sarcomas. Am Soc Clin Oncol Educ Book 2023; 43:e390306. [PMID: 37220319 DOI: 10.1200/edbk_390306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bone sarcomas are rare heterogeneous tumors that affect patients of all ages including children, adolescent young adults, and older adults. They include many aggressive subtypes and patient groups with poor outcomes, poor access to clinical trials, and lack of defined standard therapeutic strategies. Conventional chondrosarcoma remains a surgical disease, with no defined role for cytotoxic therapy and no approved targeted systemic therapies. Here, we discuss promising novel targets and strategies undergoing evaluation in clinical trials. Multiagent chemotherapy has greatly improved outcomes for patients with Ewing sarcoma (ES) and osteosarcoma, but management of those with high-risk or recurrent disease remains challenging and controversial. We describe the impact of international collaborative trials, such as the rEECur study, that aim to define optimal treatment strategies for those with recurrent, refractory ES, and evidence for high-dose chemotherapy with stem-cell support. We also discuss current and emerging strategies for other small round cell sarcomas, such as CIC-rearranged, BCOR-rearranged tumors, and the evaluation of emerging novel therapeutics and trial designs that may offer a new paradigm to improve survival in these aggressive tumors with notoriously bad (to the bone) outcomes.
Collapse
Affiliation(s)
- Georgina E Wood
- Department of Oncology, University College London Hospitals NHS Trust, UCL Cancer Institute, London, United Kingdom
| | - Laurie A Graves
- Division of Hematology/Oncology, Department of Pediatrics, Duke University, Durham, NC
| | - Elyssa M Rubin
- Division of Oncology, Children's Hospital of Orange County, Orange, CA
| | - Damon R Reed
- Department of Individualized Cancer Management, Moffitt Cancer Center, Tampa, FL
| | - Richard F Riedel
- Division of Medical Oncology, Department of Medicine, Duke Cancer Institute, Durham, NC
| | - Sandra J Strauss
- Department of Oncology, University College London Hospitals NHS Trust, UCL Cancer Institute, London, United Kingdom
| |
Collapse
|
50
|
Xie L, Cai Z, Lu H, Meng F, Zhang X, Luo K, Su X, Lei Y, Xu J, Lou J, Wang H, Du Z, Wang Y, Li Y, Ren T, Xu J, Sun X, Tang X, Guo W. Distinct genomic features between osteosarcomas firstly metastasing to bone and to lung. Heliyon 2023; 9:e15527. [PMID: 37205995 PMCID: PMC10189180 DOI: 10.1016/j.heliyon.2023.e15527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/26/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Background Osteosarcoma initially metastasing to bone only shows distinct biological features compared to osteosarcoma that firstly metastasizes to the lung, which suggests us underlying different genomic pathogenetic mechanism. Methods We analyzed whole-exome sequencing (WES) data for 38 osteosarcoma with paired samples in different relapse patterns. We also sought to redefine disease subclassifications for osteosarcoma based on genetic alterations and correlate these genetic profiles with clinical treatment courses to elucidate potential evolving cladograms. Results We investigated WES of 12/38 patients with high-grade osteosarcoma (31.6%) with initial bone metastasis (group A) and 26/38 (68.4%) with initial pulmonary metastasis (group B), of whom 15/38 (39.5%) had paired samples of primary lesions and metastatic lesions. We found that osteosarcoma in group A mainly carries single-nucleotide variations displaying higher tumor mutation burden and neoantigen load and more tertiary lymphoid structures, while those in group B mainly exhibits structural variants. High conservation of reported genetic sequencing over time in their evolving cladograms. Conclusions Osteosarcoma with mainly single-nucleotide variations other than structural variants might exhibit biological behavior predisposing toward bone metastases as well as better immunogenicity in tumor microenvironment.
Collapse
Affiliation(s)
- Lu Xie
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Zhenyu Cai
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, No. A3 Datun Road, Chaoyang District, Beijing 100101, China
| | - Fanfei Meng
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Xin Zhang
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Kun Luo
- Shanghai OrigiMed Co., Ltd, Shanghai, No. 3576 Zhaolou Road, Minhang District, Shanghai, 201112, China
| | - Xiaoxing Su
- Berry Oncology Corporation, Fuzhou, 350200, China
| | - Yan Lei
- Berry Oncology Corporation, Fuzhou, 350200, China
| | - Jiuhui Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Han Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Zhiye Du
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Yunfan Wang
- Pathology Department, Peking University Shougang Hospital, No. 9 Jinyuanzhuang Road, Shijingshan District, Beijing, 100144, China
| | - Yuan Li
- Radiology Department & Nuclear Medicine Department, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 100044, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Jie Xu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Xin Sun
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Xiaodong Tang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Corresponding author.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
- Corresponding author.
| |
Collapse
|