1
|
Zhang X, Zhang Y, Zeng M, Yu Q, Gan J, Wang Y, Jiang X. Sodium Danshensu Inhibits Macrophage Inflammation in Atherosclerosis via the miR-200a-3p/MEKK3/NF-κB Signaling Pathway. Mol Neurobiol 2024:10.1007/s12035-024-04626-2. [PMID: 39546119 DOI: 10.1007/s12035-024-04626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Macrophages are fundamental cellular components of atherosclerotic plaques, and inhibition of macrophage inflammation can delay the development of atherosclerotic plaques. Sodium danshensu (SDSS) can inhibit inflammatory responses and thus delay atherosclerosis, but the specific mechanism remains unclear. The effect of SDSS in inhibiting atherosclerosis was confirmed by observing and detecting atherosclerotic plaque area, morphology and lipid levels in the aorta. The mechanism by which SDSS attenuated atherosclerotic plaques was elucidated by in vivo and in vitro detection of inflammation-related mRNA and protein expression. In addition, bioinformatics analysis, RT-qPCR and dual-luciferase assays were used to predict and validate the potential miRNAs of SDSS to attenuate atherosclerosis. miR-200a-2p mimic and inhibitor were then compared for their effects on the efficacy of SDSS. SDSS inhibited atherosclerotic plaque formation and suppressed the expression of MEKK3, TNF-α, and IL-1β as well as nuclear factor-κB (NF-κB) phosphorylation and nuclear translocation to attenuate inflammatory responses. Bioinformatic predictions combined with RT-qPCR results and dual-luciferase assays indicated that miR-200a-3p negatively regulated MEKK3 expression by directly targeting the 3'UTR region of MEKK3, thereby blocking MEKK3. Further studies showed that miR-200a-3p inhibitor, but not miR-200a-3p mimic, reversed the beneficial effects of SDSS on inflammation. SDSS inhibited macrophage inflammation by modulating the miR-200a-3p/MEKK3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, P. R. China
| | - Yilin Zhang
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, P. R. China
| | - Miao Zeng
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, P. R. China
| | - Qun Yu
- School of Preclinical Medicine, Zunyi Medical University, 563000, Guizhou, P. R. China
| | - Jiali Gan
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, P. R. China
| | - Yijing Wang
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, P. R. China
| | - Xijuan Jiang
- Tianjin University of Traditional Chinese Medicine, 301617, Tianjin, P. R. China.
| |
Collapse
|
2
|
Piasecka A, Szcześniak M, Sekrecki M, Kajdasz A, Sznajder Ł, Baud A, Sobczak K. MBNL splicing factors regulate the microtranscriptome of skeletal muscles. Nucleic Acids Res 2024; 52:12055-12073. [PMID: 39258536 PMCID: PMC11514471 DOI: 10.1093/nar/gkae774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/12/2024] Open
Abstract
Muscleblind like splicing regulators (MBNLs) govern various RNA-processing steps, including alternative splicing, polyadenylation, RNA stability and mRNA intracellular localization. In myotonic dystrophy type 1 (DM1), the most common muscular dystrophy in adults, MBNLs are sequestered on toxic RNA containing expanded CUG repeats, which leads to disruption of MBNL-regulated processes and disease features of DM1. Herein, we show the significance of MBNLs in regulating microtranscriptome dynamics during the postnatal development of skeletal muscles and in microRNA (miRNA) misregulation observed in mouse models and patients with DM1. We identify multiple miRNAs sensitive to MBNL proteins insufficiency and reveal that many of them were postnatally regulated, which correlates with increases in the activity of these proteins during this process. In adult Mbnl1-knockout mice, miRNA expression exhibited an adult-to-newborn shift. We hypothesize that Mbnl1 deficiency influences miRNA levels through a combination of mechanisms. First, the absence of Mbnl1 protein results in alterations to the levels of pri-miRNAs. Second, MBNLs affect miRNA biogenesis by regulating the alternative splicing of miRNA primary transcripts. We propose that the expression of miR-23b, miR-27b and miR-24-1, produced from the same cluster, depends on the MBNL-sensitive inclusion of alternative exons containing miRNA sequences. Our findings suggest that MBNL sequestration in DM1 is partially responsible for altered miRNA activity. This study provides new insights into the biological roles and functions of MBNL proteins as regulators of miRNA expression in skeletal muscles.
Collapse
Affiliation(s)
- Agnieszka Piasecka
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał W Szcześniak
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Michał Sekrecki
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Arkadiusz Kajdasz
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Laboratory of Bioinformatics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704Poznań, Poland
| | - Łukasz J Sznajder
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV 89154, USA
| | - Anna Baud
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| | - Krzysztof Sobczak
- Laboratory of Gene Therapy, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Tomioka Y, Seki N, Suetsugu T, Hagihara Y, Sanada H, Goto Y, Kikkawa N, Mizuno K, Tanaka K, Inoue H. Identification of Tumor Suppressive miR-144-5p Targets: FAM111B Expression Accelerates the Malignant Phenotypes of Lung Adenocarcinoma. Int J Mol Sci 2024; 25:9974. [PMID: 39337462 PMCID: PMC11432174 DOI: 10.3390/ijms25189974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Accumulating evidence suggests that the passenger strands microRNAs (miRNAs) derived from pre-miRNAs are closely involved in cancer pathogenesis. Analysis of our miRNA expression signature of lung adenocarcinoma (LUAD) and The Cancer Genome Atlas (TCGA) data revealed that miR-144-5p (the passenger strand derived from pre-miR-144) was significantly downregulated in LUAD tissues. The aim of this study was to identify therapeutic target molecules controlled by miR-144-5p in LUAD cells. Ectopic expression assays demonstrated that miR-144-5p attenuated LUAD cell aggressiveness, e.g., inhibited cell proliferation, migration and invasion abilities, and induced cell cycle arrest and apoptotic cells. A total of 18 genes were identified as putative cancer-promoting genes controlled by miR-144-5p in LUAD cells based on our in silico analysis. We focused on a family with sequence similarity 111 member B (FAM111B) and investigated its cancer-promoting functions in LUAD cells. Luciferase reporter assay showed that expression of FAM111B was directly regulated by miR-144-5p in LUAD cells. FAM111B knockdown assays showed that LUAD cells significantly suppressed malignant phenotypes, e.g., inhibited cell proliferation, migration and invasion abilities, and induced cell cycle arrest and apoptotic cells. Furthermore, we investigated the FAM111B-mediated molecular networks in LUAD cells. Identifying target genes regulated by passenger strands of miRNAs may aid in the discovery of diagnostic markers and therapeutic targets for LUAD.
Collapse
Affiliation(s)
- Yuya Tomioka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Yoko Hagihara
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Yusuke Goto
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba 260-8670, Japan; (Y.G.); (N.K.)
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Kentaro Tanaka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.T.); (T.S.); (Y.H.); (H.S.); (K.M.); (K.T.); (H.I.)
| |
Collapse
|
4
|
Cao X, Hu X, Xu X, Zhu W, Lin Q, Le Y, Feng W, Xu Y, Lin S. Casticin suppresses self-renewal related stemness via miR-342-3p-mediated FoxM1 downregulation in cervical cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156036. [PMID: 39277988 DOI: 10.1016/j.phymed.2024.156036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/10/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Casticin (CAS), a natural flavonoid found in Viticis Fructus, Viticis Cannabifoliae Fructus, and Semen Euphorbiae, shows anti-inflammatory activity and efficacy against various cancers. However, its effect on stemness associated with self-renewal in cervical cancer (CC) cells remains unclear, as well as the underlying mechanism. PURPOSE The primary objective of this study was to examine the effect of CAS on CC stemness and to explore the underpinning regulatory mechanism. METHODS HeLa cells underwent treatment with varying concentrations of CAS (0, 10, 30, 100 nM). To evaluate the impacts of CAS on CC stemness and tumorigenicity, sphere- and colony-formation assays and a xenograft model were employed. The study involved screening for changes in miRNAs and their target genes. The miRNA array identified an upregulation in miRNAs, whereas the mRNA array detected a downregulation of specific target genes. The latter genes were found to regulate stem cell-related genes through miR-342-3p in HeLa cells administered CAS. Next, whether miR-342-3p directly targets FOXM1 when upregulated by CAS was assessed by the luciferase reporter assay. qRT-PCR was performed to analyze miR-342-3p expression. Additionally, immunoblotting was conducted to assess the protein amounts of FoxM1 and stemness-related factors (CD133, CD49f, Nanog, and Sox2). Function rescue experiments were conducted to determine the mechanism of CAS in stemness regulation. These experiments involved utilizing a miR-342-3p inhibitor and overexpressing FOXM1 in HeLa cells. RESULTS CAS decreased in vitro stemness, suppressing sphere- and colony-formation capabilities of CC. It also dose-dependently downregulated the expression of stemness-associated proteins, including CD133, CD49f, Nanog, and Sox2. Moreover, CAS inhibited in vivo carcinogenesis, remarkably reducing tumor growth in mice bearing HeLa cell xenografts. Analysis revealed downregulated FOXM1 expression in HeLa cells treated with CAS. In the luciferase reporter assay, miR-342-3p was found to directly target FOXM1 in CAS-treated HeLa cells. Additionally, miR-342-3p inhibitor transfection successfully rescued CAS' suppressive impact on stemness. Furthermore, overexpression of FOXM1 did not induce changes in miR-342-3p expression. However, it effectively rescued CAS' suppressive effects on stemness. Moreover, CAS also inhibited stemness, upregulated miR-342-3p, and lowered FOXM1 expression in the SiHa cell line. CONCLUSION CAS suppresses self-renewal-associated stemness by targeting FOXM1 via miR-342-3p upregulation. These findings suggest CAS is promising as a novel therapeutic candidate in CC.
Collapse
Affiliation(s)
- Xiaozheng Cao
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510062, China; Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Xiping Hu
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510062, China
| | - Xiaona Xu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, China
| | - Weiting Zhu
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510062, China
| | - Qinghua Lin
- Department of Obstetrics and Gynecology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong 528305, China
| | - Yijie Le
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha, Hunan 410081, China
| | - Weifeng Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Yong Xu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China.
| | - Shaoqiang Lin
- Guangdong Provincial Engineering Research Center for Esophageal Cancer Precise Therapy, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510062, China; Central Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong 528305, China.
| |
Collapse
|
5
|
Luo B, Zhou J, Zhan X, Ying B, Lan F, Wu Y. Visual and colorimetric detection of microRNA in clinical samples based on strand displacement amplification and nanozyme-mediated CRISPR-Cas12a system. Talanta 2024; 277:126310. [PMID: 38815319 DOI: 10.1016/j.talanta.2024.126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The sensitive and accurate detection of target microRNA is especially important for the diagnosis, staging, and treatment of hepatocellular carcinoma (HCC). Herein, we report a simple strand displacement and CRISPR-Cas12a amplification strategy with nanozymes as a signal reporter for the binary visual and colorimetric detection of the HCC related microRNA. Pt@Au nanozymes with excellent peroxidase enzyme activity were prepared and linked to magnetic beads via a single-stranded DNA (ssDNA) linker. The target microRNA was designed to trigger strand displacement amplification and release a DNA promoter to activate the CRISPR-Cas12a system. The activated CRISPR-Cas12a system efficiently cleaved the linker ssDNA and released Pt@Au nanozymes from magnetic beads to induce the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine. The strand displacement amplification converted the single microRNA input into abundant DNA promoter output, which improved the detection sensitivity by over two orders of magnitude. Through integration of strand displacement amplification and the nanozyme-mediated CRISPR-Cas12a system, limits of detection of 0.5 pM and 10 pM for miRNA-21 were achieved with colorimetric and visual readouts, respectively. The proposed strategy can achieve accurate quantitative detection of miRNA-21 in the range from 1 pM to 500 pM. The detection results for miRNA-21 using both colorimetric and visual readouts were validated in 40 clinical serum samples. Significantly, the proposed strategy achieved visual HCC diagnosis with the naked eye and could distinguish distinct Barcelona clinical HCC stages by colorimetric detection, showing good application prospects for sensitive and facile point-of-care testing for HCC.
Collapse
Affiliation(s)
- Bin Luo
- Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
6
|
Peng C, Leng M, Gao Y, Feng Q, Miao X. DNA tetrahedral molecular sieve for size-selective fluorescence sensing of miRNA 21 in living cells. Talanta 2024; 276:126218. [PMID: 38759363 DOI: 10.1016/j.talanta.2024.126218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/09/2024] [Accepted: 05/05/2024] [Indexed: 05/19/2024]
Abstract
In situ monitoring of intracellular microRNAs (miRNAs) often encounters the challenges of surrounding complexity, coexistence of precursor miRNAs (pre-miRNAs) and the degradation of biological enzyme in living cells. Here, we designed a novel probe encapsulated DNA tetrahedral molecular sieve (DTMS) to realize the size-selective detection of intracellular miRNA 21 that can avoid the interference of pre-miRNAs. In such strategy, quencher (BHQ-1) labeled probe DNA (S6-BHQ 1) was introduced into the inner cavity of fluorophore (FAM) labeled DNA tetrahedral scaffolds (DTS) to prepare DTMS, making the FAM and BHQ-1 closely proximate, and resulting the sensor in a "signal-off" state. In the presence of miRNA 21, strand displacement reaction happened to form more stable DNA double-stranded structure, accompanied by the release of S6-BHQ 1 from the inner cavity of DTMS, making the sensor in a "signal-on" state. The DTMS based sensing platform can then realized the size-selective detection of miRNA 21 with a detection limit of 3.6 pM. Relying on the mechanical rigidity of DTS and the encapsulation of DNA probe using DTMS, such proposed method achieved preferable reproducibility and storage stability. Moreover, this sensing system exhibited good performance for monitoring the change of intracellular miRNA 21 level during the treatment with miRNA-related drugs, demonstrating great potential for biological studies and accurate disease diagnosis.
Collapse
Affiliation(s)
- Chenxu Peng
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingyu Leng
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Yongguang Gao
- Department of Radiology, Xuzhou Central Hospital, 199 Jiefang Road, Xuzhou, Jiangsu, China.
| | - Qiumei Feng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
7
|
Kashefi S, Mohammadi-Yeganeh S, Ghorbani-Bidkorpeh F, Shabani M, Koochaki A, Haji Molla Hoseini M. The anti-cancer properties of miR-340 plasmid-chitosan complexes (miR-340 CC) on murine model of breast cancer. J Drug Target 2024; 32:838-847. [PMID: 38805391 DOI: 10.1080/1061186x.2024.2361675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
MiRNA-340 (miR-340) has been found to have tumour-suppressing effects in breast cancer (BC). However, for clinical use, miRNAs need to be delivered safely and effectively to protect them from degradation. In our previous study, we used chitosan complexes as a safe carrier with anti-cancer properties to deliver miR-340 plasmid into 4T1 cells. This study explored further information concerning the anti-cancer impacts of both chitosan and miR-340 plasmid in a murine model of BC. Mice bearing 4T1 cells were intra-tumorally administered miR-340 plasmid-chitosan complexes (miR-340 CC). Afterwards, the potential of miR-340 CC in promoting anti-tumour immune responses was evaluated. MiR-340 CC significantly reduced tumour size, inhibited metastasis, and prolonged the survival of mice. MiR-340 CC up-regulates P-27 gene expression related to cancer cell apoptosis, and down-regulates gene expressions involved in angiogenesis and metastasis (breast regression protein-39 (BRP-39)) and CD163 as an anti-inflammatory macrophages (MQs) marker. Furthermore, CD47 expression as a MQs immune check-point was remarkably decreased after miR-340 CC treatment. The level of IL-12 in splenocytes of miR-340 CC treated mice increased, while the level of IL-10 decreased, indicating anti-cancer immune responses. Our findings display that miR-340 CC can be considered as a promising therapy in BC.
Collapse
Affiliation(s)
- Sarvenaz Kashefi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ameneh Koochaki
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Kim MW, Moon S, Lee S, Lee H, Kim Y, Kim JY, Kim JY, Kim SI. Exploring miRNA‑target gene profiles associated with drug resistance in patients with breast cancer receiving neoadjuvant chemotherapy. Oncol Lett 2024; 27:158. [PMID: 38426156 PMCID: PMC10902752 DOI: 10.3892/ol.2024.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Exosomal microRNAs (miRNAs) are closely related to drug resistance in patients with breast cancer (BC); however, only a few roles of the exosomal miRNA-target gene networks have been clinically implicated in drug resistance in BC. Therefore, the present study aimed to identify the differential expression of exosomal miRNAs associated with drug resistance and their target mRNAs. In vitro microarray analysis was used to verify differentially expressed miRNAs (DEMs) in drug-resistant BC. Next, tumor-derived exosomes (TDEs) were isolated. Furthermore, it was determined whether the candidate drug-resistant miRNAs were also significant in TDEs, and then putative miRNAs in TDEs were validated in plasma samples from 35 patients with BC (20 patients with BC showing no response and 15 patients with BC showing a complete response). It was confirmed that the combination of five exosomal miRNAs, including miR-125b-5p, miR-146a-5p, miR-484, miR-1246-5p and miR-1260b, was effective for predicting therapeutic response to neoadjuvant chemotherapy, with an area under the curve value of 0.95, sensitivity of 75%, and specificity of 95%. Public datasets were analyzed to identify differentially expressed genes (DEGs) related to drug resistance and it was revealed that BAK1, NOVA1, PTGER4, RTKN2, AGO1, CAP1, and ETS1 were the target genes of exosomal miRNAs. Networks between DEMs and DEGs were highly correlated with mitosis, metabolism, drug transport, and immune responses. Consequently, these targets could be used as predictive markers and therapeutic targets for clinical applications to enhance treatment outcomes for patients with BC.
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sol Moon
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Suji Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyojung Lee
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Young Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Joon Ye Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jee Ye Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
9
|
Kiel K, Król SK, Bronisz A, Godlewski J. MiR-128-3p - a gray eminence of the human central nervous system. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102141. [PMID: 38419943 PMCID: PMC10899074 DOI: 10.1016/j.omtn.2024.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
MicroRNA-128-3p (miR-128-3p) is a versatile molecule with multiple functions in the physiopathology of the human central nervous system. Perturbations of miR-128-3p, which is enriched in the brain, contribute to a plethora of neurodegenerative disorders, brain injuries, and malignancies, as this miRNA is a crucial regulator of gene expression in the brain, playing an essential role in the maintenance and function of cells stemming from neuronal lineage. However, the differential expression of miR-128-3p in pathologies underscores the importance of the balance between its high and low levels. Significantly, numerous reports pointed to miR-128-3p as one of the most depleted in glioblastoma, implying it is a critical player in the disease's pathogenesis and thus may serve as a therapeutic agent for this most aggressive form of brain tumor. In this review, we summarize the current knowledge of the diverse roles of miR-128-3p. We focus on its involvement in the neurogenesis and pathophysiology of malignant and neurodegenerative diseases. We also highlight the promising potential of miR-128-3p as an antitumor agent for the future therapy of human cancers, including glioblastoma, and as the linchpin of brain development and function, potentially leading to the development of new therapies for neurological conditions.
Collapse
Affiliation(s)
- Klaudia Kiel
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Sylwia Katarzyna Król
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Agnieszka Bronisz
- Tumor Microenvironment Laboratory, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| | - Jakub Godlewski
- Department of Neurooncology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Street, Warsaw, Poland
| |
Collapse
|
10
|
Maekawa S, Takata R, Obara W. Molecular Mechanisms of Prostate Cancer Development in the Precision Medicine Era: A Comprehensive Review. Cancers (Basel) 2024; 16:523. [PMID: 38339274 PMCID: PMC10854717 DOI: 10.3390/cancers16030523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
The progression of prostate cancer (PCa) relies on the activation of the androgen receptor (AR) by androgens. Despite efforts to block this pathway through androgen deprivation therapy, resistance can occur through several mechanisms, including the abnormal activation of AR, resulting in castration-resistant PCa following the introduction of treatment. Mutations, amplifications, and splicing variants in AR-related genes have garnered attention in this regard. Furthermore, recent large-scale next-generation sequencing analysis has revealed the critical roles of AR and AR-related genes, as well as the DNA repair, PI3K, and cell cycle pathways, in the onset and progression of PCa. Moreover, research on epigenomics and microRNA has increasingly become popular; however, it has not translated into the development of effective therapeutic strategies. Additionally, treatments targeting homologous recombination repair mutations and the PI3K/Akt pathway have been developed and are increasingly accessible, and multiple clinical trials have investigated the efficacy of immune checkpoint inhibitors. In this comprehensive review, we outline the status of PCa research in genomics and briefly explore potential future developments in the field of epigenetic modifications and microRNAs.
Collapse
Affiliation(s)
- Shigekatsu Maekawa
- Department of Urology, Iwate Medical University, Iwate 028-3694, Japan; (R.T.); (W.O.)
| | | | | |
Collapse
|
11
|
Zhang L, Zhang Z, Zheng X, Lu Y, Dai L, Li W, Liu H, Wen S, Xie Q, Zhang X, Wang P, Wu Y, Gao W. A novel microRNA panel exhibited significant potential in evaluating the progression of laryngeal squamous cell carcinoma. Noncoding RNA Res 2023; 8:550-561. [PMID: 37602318 PMCID: PMC10432973 DOI: 10.1016/j.ncrna.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Background Laryngeal squamous cell carcinoma (LSCC) is a common cancer of the head and neck in humans. The 5-years survival rate of patients with LSCC have declined in the past four decades. microRNAs (miRNAs) has been reported to be capable of predicting the prognosis outcomes of patients with different cancers. However, there are no reports on the usage of multi-miRNAs model as signature for the diagnosis or prognosis of LSCC. Methods To establish the miRNAs expression-associated model for diagnosis, prognosis prediction and aided therapy of patients with LSCC, the present study enrolled 107 patients with LSCC in clinic and obtained 117 LSCC samples data from TCGA database for evaluation, respectively. Next generation sequencing (NGS), raw data processing, the least absolute shrinkage and selection operator algorithm, Cox regression analysis, construction of nomogram and cell function assays (including proliferation, migration and invasion assays) were sequentially performed. Results There were massively dysregulated miRNAs in the LSCC compared to normal tissues. A six-miRNAs signature consists of miR-137-3p, miR-3934-5p, miR-1276, miR-129-5p, miR-7-5p and miR-105-5p was built for prognosis prediction of LSCC patients. The six-miRNAs signature is strongly associated with the poor overall survival (OS, p = 2.5e-05, HR: 4.30 [2.20-8.50]), progression free interval (PFI, p = 0.025, HR: 1.94 [1.08-3.46]) and disease specific survival (DSS, p = 1.1e-05, HR: 5.00 [2.50-10.00]). A nomogram for prediction of 2-, 3- and 5-years OS was also developed based on the six-miRNAs signature and clinical features. Furthermore, blocking the function of each of the six miRNAs inhibited proliferation, invasion and migration of LSCC cells. Conclusions The performance of six-miRNAs signature described in the current study demonstrated remarkable potential for progression assessment of LSCC. Moreover, the six-miRNAs signature may serve as predictive tool for prognosis and therapeutic targets of LSCC in clinic.
Collapse
Affiliation(s)
- Linshi Zhang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Zhe Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Shenzhen, 518040, Guangdong, PR China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Jinzhou Medical University, Jinzhou, 121011, Liaoning, PR China
| | - Li Dai
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, PR China
| | - Wenqi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, 518055, Guangdong, PR China
| | - Shuxin Wen
- Department of Otolaryngology Head & Neck Surgery, Shanxi Bethune Hospital, Taiyuan, 030032, Shanxi, PR China
| | - Qiuping Xie
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Xiangmin Zhang
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| | - Ping Wang
- Department of Thyroid Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Ear-Nose-Throat Hospital, Shenzhen, 518172, Guangdong, PR China
| |
Collapse
|
12
|
Kozłowska-Masłoń J, Guglas K, Kolenda T, Lamperska K, Makałowska I. miRNA in head and neck squamous cell carcinomas: promising but still distant future of personalized oncology. Rep Pract Oncol Radiother 2023; 28:681-697. [PMID: 38179293 PMCID: PMC10764040 DOI: 10.5603/rpor.96666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/24/2023] [Indexed: 01/06/2024] Open
Abstract
Head and neck squamous cell carcinoma is one of the most common and fatal cancers worldwide. Lack of appropriate preventive screening tests, late detection, and high heterogeneity of these tumors are the main reasons for the unsatisfactory effects of therapy and, consequently, unfavorable outcomes for patients. An opportunity to improve the quality of diagnostics and treatment of this group of cancers are microRNAs (miRNAs) - molecules with a great potential both as biomarkers and therapeutic targets. This review aims to present the characteristics of these short non-coding RNAs (ncRNAs) and summarize the current reports on their use in oncology focused on medical strategies tailored to patients' needs.
Collapse
Affiliation(s)
- Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater oland Cancer Centre, Poznan, Poland
- Research and Implementation Unit, Greater Poland Cancer Centre, Poznan, Poland
| | - Izabela Makałowska
- Institute of Human Biology and Evolution, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| |
Collapse
|
13
|
Yu H, Zhang B, Qi L, Han J, Guan M, Li J, Meng Q. AP003352.1/miR-141-3p axis enhances the proliferation of osteosarcoma by LPAR3. PeerJ 2023; 11:e15937. [PMID: 37727685 PMCID: PMC10506581 DOI: 10.7717/peerj.15937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/31/2023] [Indexed: 09/21/2023] Open
Abstract
Osteosarcoma (OS) is a highly malignant tumor with a poor prognosis and a growing incidence. LncRNAs and microRNAs control the occurrence and development process of osteosarcoma through ceRNA patterns. The LPAR3 gene is important in cancer cell proliferation, apoptosis and disease development. However, the regulatory mechanism of the ceRNA network through which LPAR3 participates in osteosarcoma has not been clarified. Herein, our study demonstrated that the AP003352.1/miR-141-3p axis drives LPAR3 expression to induce the malignant progression of osteosarcoma. First, the expression of LPAR3 is regulated by the changes in AP003352.1 and miR-141-3p. Similar to the ceRNA of miR-141-3p, AP003352.1 regulates the expression of LPAR3 through this mechanism. In addition, the regulation of AP003352.1 in malignant osteosarcoma progression depends to a certain degree on miR-141-3p. Importantly, the AP003352.1/miR-141-3p/LPAR3 axis can better serve as a multi-gene diagnostic marker for osteosarcoma. In conclusion, our research reveals a new ceRNA regulatory network, which provides a novel potential target for the diagnosis and treatment of osteosarcoma.
Collapse
Affiliation(s)
- Hongde Yu
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Bolun Zhang
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Lin Qi
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jian Han
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Mingyang Guan
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Jiaze Li
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| | - Qingtao Meng
- Department of Orthopedics, Dalian NO.3 People’s Hospital, Dalian, China
| |
Collapse
|
14
|
Chen D, Ji Q, Liu J, Cheng F, Zheng J, Ma Y, He Y, Zhang J, Song T. MicroRNAs in the Regulation of RIG-I-like Receptor Signaling Pathway: Possible Strategy for Viral Infection and Cancer. Biomolecules 2023; 13:1344. [PMID: 37759744 PMCID: PMC10526236 DOI: 10.3390/biom13091344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) play a crucial role as pattern-recognition receptors within the innate immune system. These receptors, present in various cell and tissue types, serve as essential sensors for viral infections, enhancing the immune system's capacity to combat infections through the induction of type I interferons (IFN-I) and inflammatory cytokines. RLRs are involved in a variety of physiological and pathological processes, including viral infections, autoimmune disorders, and cancer. An increasing body of research has examined the possibility of RLRs or microRNAs as therapeutic targets for antiviral infections and malignancies, despite the fact that few studies have focused on the regulatory function of microRNAs on RLR signaling. Consequently, our main emphasis in this review is on elucidating the role of microRNAs in modulating the signaling pathways of RLRs in the context of cancer and viral infections. The aim is to establish a robust knowledge base that can serve as a basis for future comprehensive investigations into the interplay between microRNAs and RIG-I, while also facilitating the advancement of therapeutic drug development.
Collapse
Affiliation(s)
- Dengwang Chen
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Qinglu Ji
- School of Pharmacy, Zunyi Medical University, Zunyi 563002, China; (Q.J.); (Y.H.)
| | - Jing Liu
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Feng Cheng
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Jishan Zheng
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Yunyan Ma
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi 563002, China; (Q.J.); (Y.H.)
| | - Jidong Zhang
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563002, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563002, China
| | - Tao Song
- Department of Immunology, Zunyi Medical University, Zunyi 563002, China; (D.C.); (J.L.); (F.C.); (J.Z.); (Y.M.)
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi 563002, China
- Special Key Laboratory of Gene Detection & Therapy of Guizhou Province, Zunyi Medical University, Zunyi 563002, China
| |
Collapse
|
15
|
Ma H, Xing F, Zhou Y, Yu P, Luo R, Xu J, Xiang Z, Rommens PM, Duan X, Ritz U. Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. J Mater Chem B 2023; 11:7873-7912. [PMID: 37551112 DOI: 10.1039/d3tb01008b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.
Collapse
Affiliation(s)
- Hong Ma
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Ludwigstraße 23, 35392 Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
16
|
Tomioka Y, Suetsugu T, Seki N, Tanigawa K, Hagihara Y, Shinmura M, Asai S, Kikkawa N, Inoue H, Mizuno K. The Molecular Pathogenesis of Tumor-Suppressive miR-486-5p and miR-486-3p Target Genes: GINS4 Facilitates Aggressiveness in Lung Adenocarcinoma. Cells 2023; 12:1885. [PMID: 37508549 PMCID: PMC10378275 DOI: 10.3390/cells12141885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/14/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023] Open
Abstract
The involvement of passenger strands of miRNAs in the molecular pathogenesis of human cancers is a recent concept in miRNA research, and it will broaden our understanding of the molecular mechanisms of miRNA-mediated cancer. The analysis of our miRNA signature of LUAD revealed that both strands of pre-miR-486 (miR-486-5p and miR-486-3p) were downregulated in LUAD tissues. Ectopic expression of both miRNAs induced cell cycle arrest in LUAD cells, suggesting both strands of miRNAs derived from pre-miR-486 were tumor suppressive. Our in silico analysis showed a total of 99 genes may be under the control of both miRNAs in LUAD cells. Importantly, among these targets, the high expression of seven genes (MKI67, GINS4, RRM2, HELLS, MELK, TIMELESS, and SAPCD2) predicted a poorer prognosis of LUAD patients (p < 0.05). We focused on GINS4, a DNA replication complex GINS protein that plays an essential role in the initiation of DNA replication. Our functional assays showed that GINS4 was directly controlled by both strands of pre-miR-486, and its aberrant expression facilitated the aggressive behavior of LUAD cells. GINS4 is attractive as a therapeutic target for this disease. MiRNA analysis, including passenger strands, will further improve our understanding of the molecular pathogenesis of LUAD.
Collapse
Affiliation(s)
- Yuya Tomioka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Kengo Tanigawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoko Hagihara
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masahiro Shinmura
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shunichi Asai
- Head and Neck Surgery, Chiba Cancer Center, Nitona, Chiba 260-8717, Japan
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| |
Collapse
|
17
|
Wong SHD, Yin B, Li Z, Yuan W, Zhang Q, Xie X, Tan Y, Wong N, Zhang K, Bian L. Mechanical manipulation of cancer cell tumorigenicity via heat shock protein signaling. SCIENCE ADVANCES 2023; 9:eadg9593. [PMID: 37418519 PMCID: PMC10328411 DOI: 10.1126/sciadv.adg9593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/01/2023] [Indexed: 07/09/2023]
Abstract
Biophysical cues of rigid tumor matrix play a critical role in cancer cell malignancy. We report that stiffly confined cancer cells exhibit robust growth of spheroids in the stiff hydrogel that exerts substantial confining stress on the cells. The stressed condition activated Hsp (heat shock protein)-signal transducer and activator of transcription 3 signaling via the transient receptor potential vanilloid 4-phosphatidylinositol 3-kinase/Akt axis, thereby up-regulating the expression of the stemness-related markers in cancer cells, whereas these signaling activities were suppressed in cancer cells cultured in softer hydrogels or stiff hydrogels with stress relief or Hsp70 knockdown/inhibition. This mechanopriming based on three-dimensional culture enhanced cancer cell tumorigenicity and metastasis in animal models upon transplantation, and pharmaceutically inhibiting Hsp70 improved the anticancer efficacy of chemotherapy. Mechanistically, our study reveals the crucial role of Hsp70 in regulating cancer cell malignancy under mechanically stressed conditions and its impacts on cancer prognosis-related molecular pathways for cancer treatments.
Collapse
Affiliation(s)
- Siu Hong Dexter Wong
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
- Research Institute for Sports Science and Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, P. R. China
| | - Bohan Yin
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Weihao Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Qin Zhang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Xian Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Youhua Tan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Nathalie Wong
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong 999077, P. R. China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
18
|
Enguita JM, Díaz I, García D, Cubiella T, Chiara MD, Valdés N. Visual analytics identifies key miRNAs for differentiating peripancreatic paraganglioma and pancreatic neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1162725. [PMID: 37383401 PMCID: PMC10299733 DOI: 10.3389/fendo.2023.1162725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Paragangliomas (PGL), a type of neuroendocrine tumor, pose a significant diagnostic challenge due to their potential for unpredictable locations and asymptomatic presentation. Misdiagnosis of peripancreatic PGLs, particularly as pancreatic neuroendocrine tumors (PANNETs), is a pressing issue as it can negatively impact both pre- and post-treatment decision-making. The aim of our study was to identify microRNA markers for the reliable differential diagnosis of peripancreatic PGLs and PANNETs, addressing a crucial unmet need in the field and advancing the standard of care for these patients. Methods Morphing projections tool was used to analyze miRNA data from PGL and PANNET tumors present in the TCGA database. The findings were validated using two additional databases: GSE29742 and GSE73367. Results Our research uncovered substantial differences in the miRNA expression profiles of PGL and PANNET, leading to the identification of 6 key miRNAs (miR-10b-3p, miR-10b-5p, and the miRNA families miR-200c/141 and miR-194/192) that can effectively differentiate between the two types of tumors. Discussion These miRNA levels hold potential as biomarkers for improved diagnosis, offering a solution to the diagnostic challenge posed by these tumors and potentially improving the standard of care for patients.
Collapse
Affiliation(s)
- Jose María Enguita
- Department of Electrical Engineering, University of Oviedo, Gijón, Spain
| | - Ignacio Díaz
- Department of Electrical Engineering, University of Oviedo, Gijón, Spain
| | - Diego García
- Department of Electrical Engineering, University of Oviedo, Gijón, Spain
| | - Tamara Cubiella
- Department of Cancer, Health Research Institute of the Principality of Asturias, Oviedo, Spain
- Respiratory Tract Tumors, CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain
- Institute of Oncology of the Principality of Asturias, University of Oviedo, Oviedo, Spain
| | - María-Dolores Chiara
- Department of Cancer, Health Research Institute of the Principality of Asturias, Oviedo, Spain
- Respiratory Tract Tumors, CIBERONC (Network of Biomedical Research in Cancer), Madrid, Spain
- Institute of Oncology of the Principality of Asturias, University of Oviedo, Oviedo, Spain
| | - Nuria Valdés
- Department of Cancer, Health Research Institute of the Principality of Asturias, Oviedo, Spain
- Department of Internal Medicine, Section of Endocrinology and Nutrition, Cabueñes University Hospital, Gijón, Spain
| |
Collapse
|
19
|
Abstract
miRNAs in circulating blood have been regarded as promising biomarkers for the diagnosis of a series of diseases. Development of ultrasensitive, reliable, and convenient methods for miRNA assay is of great significance. Herein, we present a novel electrochemical sensing strategy. The assembly of DNA walker strands on membrane-coated nanomaterials, target-mediated recycling activation, and electrochemical signal enrichment are integrated. Multipedal DNA walking with magnetic cores and a catalytic hairpin assembly at the electrode lead to the increase of electrochemical response, which can be used to probe initial target miRNA. This DNA walking nanomachine shows enhanced signal amplification efficiency and facile magnetic separation steps. It enables rapid analysis of miRNA at the attomole level and performs satisfactorily in samples of human circulating blood. Given the powerful sensitivity, facile operation, and excellent specificity, this magnetic multipedal DNA walker provides a promising way to determine miRNA level for biomedical applications.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, People's Republic of China
| |
Collapse
|
20
|
Liu X, Xie F, Ding J, Li S, Li J. Systematic pan-cancer analysis identifies gasdermin B as an immunological and prognostic biomarker for kidney renal clear cell carcinoma. Front Oncol 2023; 13:1164214. [PMID: 37064151 PMCID: PMC10101337 DOI: 10.3389/fonc.2023.1164214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Gasdermin (GSDM)-mediated cell lytic death plays an essential role in immunity and tumorigenesis. Despite the association of gasdermin B (GSDMB) with the tumorigenesis of various cancers, whether GSDMB functions as a prognostic biomarker in renal cell carcinoma remains poorly understood. Here, we explored the potential immunological functions and the prognostic value of GSDMB across multiple tumors with The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, including analyzing the relationship between GSDMB expression and prognosis, tumor–immune system interactions, immunomodulators, and immune cell infiltration of different tumors. Importantly, elevated expression of GSDMB is an essential factor for the poor prognosis of kidney renal clear cell carcinoma (KIRC) patients, suggesting that it might be helpful to predict a survival benefit from a clinical therapy regimen. Furthermore, GSDMB expression promoted the level of CD4+ T-cell infiltration of the tumors but is significantly negatively associated with immature dendritic cells (iDCs) in KIRC. Additionally, we identified TNFRSF25 and TNFSF14 as immunostimulators highly correlated with GSDMB expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses showed that GSDMB and its interacting proteins might affect tumor growth through the serine metabolism pathway. Our current results demonstrate a promising therapeutic strategy targeting GSDMB and provide new insights into GSDMB as an immunological and prognostic biomarker for KIRC.
Collapse
Affiliation(s)
- Xuehe Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, Fudan University, Shanghai, China
| | - Feiyan Xie
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, Fudan University, Shanghai, China
| | - Jin Ding
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
| | - Suhua Li
- Division of Natural Science, Duke Kunshan University, Jiangsu, China
- *Correspondence: Jixi Li, ; Suhua Li,
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Huashan Hospital, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, Fudan University, Shanghai, China
- Clinical Cancer Institute, Center for Translational Medicine, Naval Medical University, Shanghai, China
- *Correspondence: Jixi Li, ; Suhua Li,
| |
Collapse
|
21
|
Jabeer A, Temiz M, Bakir-Gungor B, Yousef M. miRdisNET: Discovering microRNA biomarkers that are associated with diseases utilizing biological knowledge-based machine learning. Front Genet 2023; 13:1076554. [PMID: 36712859 PMCID: PMC9877296 DOI: 10.3389/fgene.2022.1076554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023] Open
Abstract
During recent years, biological experiments and increasing evidence have shown that microRNAs play an important role in the diagnosis and treatment of human complex diseases. Therefore, to diagnose and treat human complex diseases, it is necessary to reveal the associations between a specific disease and related miRNAs. Although current computational models based on machine learning attempt to determine miRNA-disease associations, the accuracy of these models need to be improved, and candidate miRNA-disease relations need to be evaluated from a biological perspective. In this paper, we propose a computational model named miRdisNET to predict potential miRNA-disease associations. Specifically, miRdisNET requires two types of data, i.e., miRNA expression profiles and known disease-miRNA associations as input files. First, we generate subsets of specific diseases by applying the grouping component. These subsets contain miRNA expressions with class labels associated with each specific disease. Then, we assign an importance score to each group by using a machine learning method for classification. Finally, we apply a modeling component and obtain outputs. One of the most important outputs of miRdisNET is the performance of miRNA-disease prediction. Compared with the existing methods, miRdisNET obtained the highest AUC value of .9998. Another output of miRdisNET is a list of significant miRNAs for disease under study. The miRNAs identified by miRdisNET are validated via referring to the gold-standard databases which hold information on experimentally verified microRNA-disease associations. miRdisNET has been developed to predict candidate miRNAs for new diseases, where miRNA-disease relation is not yet known. In addition, miRdisNET presents candidate disease-disease associations based on shared miRNA knowledge. The miRdisNET tool and other supplementary files are publicly available at: https://github.com/malikyousef/miRdisNET.
Collapse
Affiliation(s)
- Amhar Jabeer
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Mustafa Temiz
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Burcu Bakir-Gungor
- Department of Computer Engineering, Faculty of Engineering, Abdullah Gul University, Kayseri, Turkey
| | - Malik Yousef
- Department of Information Systems, Zefat Academic College, Zefat, Israel
- Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel
| |
Collapse
|
22
|
Ma Y, Lin H, Wang P, Yang H, Yu J, Tian H, Li T, Ge S, Wang Y, Jia R, Leong KW, Ruan J. A miRNA-based gene therapy nanodrug synergistically enhances pro-inflammatory antitumor immunity against melanoma. Acta Biomater 2023; 155:538-553. [PMID: 36400349 DOI: 10.1016/j.actbio.2022.11.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
MicroRNA (miRNA)-based gene therapy is a robust approach to treating human cancers. However, the low target specificity and safety issues associated with viral vectors have limited the clinical use of miRNA therapeutics. In the present study, we aimed to develop a biocompatible nanocarrier to deliver the tumor suppressor miR-30a-5p for gene therapy of ocular melanoma. The quasi-mesoporous magnetic nanospheres (MMNs) were prepared by polyelectrolytes-mediated self-assembling Fe3O4 nanocrystals; the cationic polymer capped quasi-mesoporous inner tunnels of the MMNs facilitate high miRNA loading and protect from nuclease degradation. Then, the outer layer of the MMNs was modified with a disulfide bond bridged very low molecular weight polyethyleneimine (PEI) network to form redox-responsive nanospheres (rMMNs) that enhance the miRNA payload and enable miRNA release under glutathione-dominant tumor microenvironment. The miR-30a-5p loaded rMMNs nanodrug (miR-30a-5p@rMMNs) upregulated miR-30a-5p level and inhibited malignant phenotypes of ocular melanoma by targeting the transcription factor E2F7 both in vitro and in vivo. Additionally, rMMNs act as an enhancer to increase cancer cell apoptosis by modulating M1-like macrophage polarization and activating Fenton reaction. Thus, the rMMNs is a promising miRNA carrier for gene therapy and could enhance pro-inflammatory immunity in melanoma and other cancers. STATEMENT OF SIGNIFICANCE: • miR-30a-5p@rMMNs inhibited malignant phenotypes of ocular melanoma both in vitro and in vivo. • The rMMNs promoted M1 macrophage polarization thus synergistically enhancing pro-inflammatory anti-tumor immunity against melanoma. • The rMMNs showed no obvious toxicity under the injection dose.
Collapse
Affiliation(s)
- Yawen Ma
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Huimin Lin
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Peng Wang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Haocheng Yang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jie Yu
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Tianyu Li
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yilong Wang
- The Institute for translational nanomedicine, Shanghai East Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jing Ruan
- Department of Ophthalmology, Ninth People's Hospital of Shanghai, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China; Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
23
|
Minemura C, Asai S, Koma A, Kikkawa N, Kato M, Kasamatsu A, Uzawa K, Hanazawa T, Seki N. Identification of Antitumor miR-30e-5p Controlled Genes; Diagnostic and Prognostic Biomarkers for Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2022; 13:genes13071225. [PMID: 35886008 PMCID: PMC9322981 DOI: 10.3390/genes13071225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 01/27/2023] Open
Abstract
Analysis of microRNA (miRNA) expression signatures in head and neck squamous cell carcinoma (HNSCC) has revealed that the miR-30 family is frequently downregulated in cancer tissues. The Cancer Genome Atlas (TCGA) database confirms that all members of the miR-30 family (except miR-30c-5p) are downregulated in HNSCC tissues. Moreover, low expression of miR-30e-5p and miR-30c-1-3p significantly predicts shorter survival of HNSCC patients (p = 0.0081 and p = 0.0224, respectively). In this study, we focused on miR-30e-5p to investigate its tumor-suppressive roles and its control of oncogenic genes in HNSCC cells. Transient expression of miR-30e-5p significantly attenuated cancer cell migration and invasive abilities in HNSCC cells. Nine genes (DDIT4, FOXD1, FXR1, FZD2, HMGB3, MINPP1, PAWR, PFN2, and RTN4R) were identified as putative targets of miR-30e-5p control. Their expression levels significantly predicted shorter survival of HNSCC patients (p < 0.05). Among those targets, FOXD1 expression appeared to be an independent factor predicting patient survival according to multivariate Cox regression analysis (p = 0.049). Knockdown assays using siRNAs corresponding to FOXD1 showed that malignant phenotypes (e.g., cell proliferation, migration, and invasive abilities) of HNSCC cells were significantly suppressed. Overexpression of FOXD1 was confirmed by immunostaining of HNSCC clinical specimens. Our miRNA-based approach is an effective strategy for the identification of prognostic markers and therapeutic target molecules in HNSCC. Moreover, these findings led to insights into the molecular pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.); (M.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (A.K.); (K.U.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.); (M.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.); (M.K.)
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (A.K.); (K.U.)
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.); (M.K.)
- Correspondence: ; Tel.: +81-43-226-2971; Fax: +81-43-227-3442
| |
Collapse
|
24
|
Mitra R, Adams CM, Eischen CM. Systematic lncRNA mapping to genome-wide co-essential modules uncovers cancer dependency on uncharacterized lncRNAs. eLife 2022; 11:e77357. [PMID: 35695878 PMCID: PMC9191893 DOI: 10.7554/elife.77357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/17/2022] [Indexed: 12/03/2022] Open
Abstract
Quantification of gene dependency across hundreds of cell lines using genome-scale CRISPR screens has revealed co-essential pathways/modules and critical functions of uncharacterized genes. In contrast to protein-coding genes, robust CRISPR-based loss-of-function screens are lacking for long noncoding RNAs (lncRNAs), which are key regulators of many cellular processes, leaving many essential lncRNAs unidentified and uninvestigated. Integrating copy number, epigenetic, and transcriptomic data of >800 cancer cell lines with CRISPR-derived co-essential pathways, our method recapitulates known essential lncRNAs and predicts proliferation/growth dependency of 289 poorly characterized lncRNAs. Analyzing lncRNA dependencies across 10 cancer types and their expression alteration by diverse growth inhibitors across cell types, we prioritize 30 high-confidence pan-cancer proliferation/growth-regulating lncRNAs. Further evaluating two previously uncharacterized top proliferation-suppressive lncRNAs (PSLR-1, PSLR-2) showed they are transcriptionally regulated by p53, induced by multiple cancer treatments, and significantly correlate to increased cancer patient survival. These lncRNAs modulate G2 cell cycle-regulating genes within the FOXM1 transcriptional network, inducing a G2 arrest and inhibiting proliferation and colony formation. Collectively, our results serve as a powerful resource for exploring lncRNA-mediated regulation of cellular fitness in cancer, circumventing current limitations in lncRNA research.
Collapse
Affiliation(s)
- Ramkrishna Mitra
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Clare M Adams
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
25
|
Wang W, Li X, Liu C, Zhang X, Wu Y, Diao M, Tan S, Huang S, Cheng Y, You T. MicroRNA-21 as a diagnostic and prognostic biomarker of lung cancer: a systematic review and meta-analysis. Biosci Rep 2022; 42:BSR20211653. [PMID: 35441676 PMCID: PMC9093699 DOI: 10.1042/bsr20211653] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The relationship between microRNA-21 (miRNA-21) and pathogenesis of lung cancer is a considerable focus of research interest. However, to our knowledge, no in-depth meta-analyses based on existing evidence to ascertain the value of miRNA-21 in diagnosis and clinical prognosis of lung cancer have been documented. METHODS We comprehensively searched all the literature pertaining to 'miRNA-21' and 'lung cancer' from four databases from the period of inception of each database until May 2020. Using specific inclusion and exclusion criteria, the literature for inclusion was identified and the necessary data extracted. RESULTS In total, 46 articles were included in the meta-analysis, among which 31 focused on diagnostic value and 15 on prognostic value. Combined sensitivity (SEN) of miRNA-21 in diagnosis of lung cancer was 0.77 (95% confidence interval (CI): 0.72-0.81), specificity (SPE) was 0.86 (95% CI: 0.80-0.90), diagnostic odds ratio (DOR) was (95% CI: 12-33), and area under the SROC curve (AUC) was 0.87 (95% CI: 0.84-0.90). No significant correlations were observed between abnormal expression of miRNA-21 and gender, smoking habits, pathological type and clinical stage of lung cancer (P>0.05). In terms of overall survival (OS), univariate analysis (hazards ratio (HR) = 1.49, 95% CI: 1.22-1.82) revealed high expression of miRNA-21 as an influencing factor for lung cancer. MiRNA-21 was confirmed as an independent risk factor for poor prognosis in multivariate analysis (HR = 1.65, 95% CI: 1.24-2.19). CONCLUSION MiRNA-21 has potential clinical value in the diagnosis and prognosis of lung cancer and may serve as an effective diagnostic marker and therapeutic target in the future.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cardiac Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyao Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Chengfei Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Xin Zhang
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Ying Wu
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Mingxin Diao
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Siyu Tan
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Shubin Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yin Cheng
- The First Clinical Medical College of Anhui Medical University, Hefei, Anhui, China
| | - Tao You
- Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Department of Cardiovascular Surgery, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
26
|
Gulhane P, Nimsarkar P, Kharat K, Singh S. Deciphering miR-520c-3p as a probable target for immunometabolism in non-small cell lung cancer using systems biology approach. Oncotarget 2022; 13:725-746. [PMID: 35634241 PMCID: PMC9131939 DOI: 10.18632/oncotarget.28233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is considered to have more than 80% of all lung cancer cases, making it the leading cause of cancer-related deaths globally. MicroRNA (miRNA) deregulation has been seen often in NSCLC and has been linked to the disease’s genesis, progression, and metastasis via affecting their target genes. Materials and Methods: Our study focused on the functionality of down-regulated miRNAs in NSCLC. For this study, we used 91 miRNAs reported to be down-regulated in NSCLC. The targets of these miRNAs were chosen from miRNA databases with functionality in NSCLC, including miRBase, miRDB, miRTV, and others. Inter-regulatory miRNA-NSCLC networks were generated. Simulated annealing was used to improve the network’s resilience and understandability. GSEA was used to examine 24607 genes reported experimentally in order to gain physiologically relevant information about the target miR-520c-3p. Results: The study revealed functional prominence on miR-520c-3p, down-regulated during NSCLC. The involvement of miR-520c-3p in the PI3K/AKT/mTOR signaling pathway was recognized. Conclusions: The therapeutic usage by designing a synthetic circuit of miR-520c-3p was explored, which may help in suppressing tumors in NSCLC. Our study holds promise for the successful deployment of currently proposed miRNA-based therapies for malignant disorders, which are still in the early pre-clinical stages of development.
Collapse
Affiliation(s)
- Pooja Gulhane
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Prajakta Nimsarkar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Komal Kharat
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| |
Collapse
|
27
|
Minemura C, Asai S, Koma A, Kase-Kato I, Tanaka N, Kikkawa N, Kasamatsu A, Yokoe H, Hanazawa T, Uzawa K, Seki N. Identification of Tumor-Suppressive miR-30e-3p Targets: Involvement of SERPINE1 in the Molecular Pathogenesis of Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23073808. [PMID: 35409173 PMCID: PMC8998321 DOI: 10.3390/ijms23073808] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/13/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023] Open
Abstract
Recently, our studies revealed that some passenger strands of microRNAs (miRNAs) were closely involved in cancer pathogenesis. Analysis of miRNA expression signatures showed that the expression of miR-30e-3p (the passenger strand of pre-miR-30e) was significantly downregulated in cancer tissues. In this study, we focused on miR-30e-3p (the passenger strand of pre-miR-30e). We addressed target genes controlled by miR-30e-3p that were closely associated with the molecular pathogenesis of head and neck squamous cell carcinoma (HNSCC). Ectopic expression assays demonstrated that the expression of miR-30e-3p attenuated cancer cell malignant phenotypes (e.g., cell proliferation, migration, and invasive abilities). Our analysis of miR-30e-3p targets revealed that 11 genes (ADA, CPNE8, C14orf126, ERGIC2, HMGA2, PLS3, PSMD10, RALB, SERPINE1, SFXN1, and TMEM87B) were expressed at high levels in HNSCC patients. Moreover, they significantly predicted the short survival of HNSCC patients based on 5-year overall survival rates (p < 0.05) in The Cancer Genome Atlas (TCGA). Among these targets, SERPINE1 was found to be an independent prognostic factor for patient survival (multivariate Cox regression; hazard ratio = 1.6078, p < 0.05). Aberrant expression of SERPINE1 was observed in HNSCC clinical samples by immunohistochemical analysis. Functional assays by targeting SERPINE1 expression revealed that the malignant phenotypes (e.g., proliferation, migration, and invasion abilities) of HNSCC cells were suppressed by the silencing of SERPINE1 expression. Our miRNA-based approach will accelerate our understanding of the molecular pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Tokorozawa 359-8513, Japan;
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Ikuko Kase-Kato
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Nozomi Tanaka
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Tokorozawa 359-8513, Japan;
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (C.M.); (A.K.); (I.K.-K.); (N.T.); (A.K.); (K.U.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (N.K.)
- Correspondence: ; Tel.: +81-43-226-2971; Fax: +81-43-227-3442
| |
Collapse
|
28
|
MiR-4652-5p Targets RND1 to Regulate Cell Adhesion and Promote Lung Squamous Cell Carcinoma Progression. Appl Biochem Biotechnol 2022; 194:3031-3043. [PMID: 35334070 DOI: 10.1007/s12010-022-03897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/14/2022] [Indexed: 11/02/2022]
Abstract
Lung squamous cell carcinoma (LUSC) is one subtype of non-small-cell lung cancer, whose pathogenesis has not been fully understood. Exploring molecular mechanisms of LUSC helps a lot with the development of LUSC novel therapy. Hence, our study aims to investigate novel molecular mechanisms. Differentially expressed miRNAs and mRNAs were acquired from The Cancer Genome Atlas database. A series of assays were applied to test cell functions, including qRT-PCR to analyze RND1 and miR-4652-5p expression, dual-luciferase reporter gene assay to verify the targeting relationship between these two genes, cell counting kit-8 and colony formation assays to evaluate the ability of LUSC cells to proliferate, transwell to examine the migratory and invasive abilities, and western blot to test expression of RND1 and cell adhesion-related proteins. RND1 was lowly expressed while miR-4652-5p was highly expressed in LUSC cells. The correlation between these two genes was significantly negative and miR-4652-5p could downregulate RND1 expression. Additionally, cellular function assays validated that RND1 suppressed LUSC cells to proliferate, migrate, and invade. Besides, this gene might also affect cell adhesion. Furthermore, rescue assay suggested that miR-4652-5p downregulated RND1 expression to promote the progression of LUSC cells. Together, miR-4652-5p targeted RND1 to modulate cell adhesion and the progression of LUSC cells.
Collapse
|
29
|
Yang W, Tan S, Yang L, Chen X, Yang R, Oyang L, Lin J, Xia L, Wu N, Han Y, Tang Y, Su M, Luo X, Yang Y, Huang L, Hu Z, Tao Y, Liu L, Jin Y, Wang H, Liao Q, Zhou Y. Exosomal miR-205-5p enhances angiogenesis and nasopharyngeal carcinoma metastasis by targeting desmocollin-2. Mol Ther Oncolytics 2022; 24:612-623. [PMID: 35284624 PMCID: PMC8892032 DOI: 10.1016/j.omto.2022.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/03/2022] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate whether and how exosomal miR-205-5p regulated angiogenesis and nasopharyngeal carcinoma (NPC) metastasis. We found that up-regulated serum exosomal miR-205-5p levels were associated with NPC progression and worse overall survival of NPC patients. miR-205-5p over-expression significantly increased tube formation, wound healing, migration and invasion of NPC cells, and lung metastasis of NPC tumors, whereas miR-205-5p inhibition had opposite effects. Exosomal miR-205-5p from NPC cells promoted the migration, tube formation, and microvessel density (MVD) of HUVECs in vitro and in vivo. Furthermore, bioinformatics-, luciferase reporter-, and biotinylated miR-205-5p-based pull-down assays indicated that miR-205-5p directly bound to the 3′ UTR of desmocollin-2 (DSC2). Exosomal miR-205-5p targeted DSC2 to enhance the EGFR/ERK signaling and MMP2/MMP9 expression, promoting angiogenesis and NPC metastasis, which was abrogated by DSC2 over-expression. Finally, the levels of miR-205-5p transcripts were positively correlated with MVD but negatively with DSC2 expression in NPC tissues, and patients with miR-205high/DSC2low NPC had worse overall survival. In conclusion, exosomal miR-205-5p promotes angiogenesis and NPC metastasis by targeting DSC2 to enhance EGFR/ERK signaling and MMP expression. This exosomal/miR-205-5p/EGFR/ERK axis may be a new therapeutic target for intervention of NPC metastasis.
Collapse
Affiliation(s)
- Wenjuan Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Lixia Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xiaohui Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, West Changsheng Road, Hengyang 421001, Hunan, China
| | - Ruiqian Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,University of South China, West Changsheng Road, Hengyang 421001, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Lisheng Huang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Zifan Hu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yi Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Lin Liu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yi Jin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 283 Tongzipo Road, Changsha 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
30
|
Gao B, Li X, Li S, Wang S, Wu J, Li J. Pan-cancer analysis identifies RNA helicase DDX1 as a prognostic marker. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:33-49. [PMID: 36939765 PMCID: PMC9590584 DOI: 10.1007/s43657-021-00034-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
The DEAD-box RNA helicase (DDX) family plays a critical role in the growth and development of multiple organisms. DDX1 is involved in mRNA/rRNA processing and mature, virus replication and transcription, hormone metabolism, tumorigenesis, and tumor development. However, how DDX1 functions in various cancers remains unclear. Here, we explored the potential oncogenic roles of DDX1 across 33 tumors with The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. DDX1 is highly expressed in breast cancer (BRCA), cholangiocarcinoma (CHOL), and colon adenocarcinoma (COAD), but it is lowly expressed in renal cancers, including kidney renal clear cell carcinoma (KIRC), kidney chromophobe (KICH), and kidney renal papillary cell carcinoma (KIRP). Low expression of DDX1 in KIRC is correlated with a good prognosis of overall survival (OS) and disease-free survival (DFS). Highly expressed DDX1 is linked to a poor prognosis of OS for adrenocortical carcinoma (ACC), bladder urothelial carcinoma (BLCA), KICH, and liver hepatocellular carcinoma (LIHC). Also, the residue Ser481 of DDX1 had an enhanced phosphorylation level in BRCA and ovarian cancer (OV) but decreased in KIRC. Immune infiltration analysis exhibited that DDX1 expression affected CD8+ T cells, and it was significantly associated with MSI (microsatellite instability), TMB (tumor mutational burden), and ICT (immune checkpoint blockade therapy) in tumors. In addition, the depletion of DDX1 dramatically affected the cell viability of human tumor-derived cell lines. DDX1 could affect the DNA repair pathway and the RNA transport/DNA replication processes during tumorigenesis by analyzing the CancerSEA database. Thus, our pan-cancer analysis revealed that DDX1 had complicated impacts on different cancers and might act as a prognostic marker for cancers such as renal cancer. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-021-00034-x.
Collapse
Affiliation(s)
- Baocai Gao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Xiangnan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Shujie Li
- Kunming Institute of Physics, Kunming, 650223 China
| | - Sen Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jiaxue Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| | - Jixi Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, MOE Engineering Research Center of Gene Technology, Shanghai Engineering Research Center of Industrial Microorganisms, Fudan University, Shanghai, 200438 China
| |
Collapse
|
31
|
Mao C, Zhuang S, Xia Z, Xiao Z, Huang C, Su Q, Chen J, Liao J. Pan‐cancer analysis of GALNTs expression identifies a prognostic of GALNTs feature in low grade glioma. J Leukoc Biol 2022; 112:887-899. [PMID: 35075694 DOI: 10.1002/jlb.5ma1221-468r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Chengzhou Mao
- Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong China
| | - Shi‐Min Zhuang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
| | - Zijin Xia
- Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong China
| | - Zhi‐Wen Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
| | - Chun‐Xia Huang
- Guangdong Institute of Gastroenterology The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
| | - Qiang Su
- Beijing Friendship Hospital, Capital Medical University Beijing Beijing China
| | - Jun Chen
- Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Engineering & Technology Research Center for Disease‐Model Animals, Laboratory Animal Center, Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong China
- Center for Precision Medicine Sun Yat‐sen University Guangzhou Guangdong China
| | - Jing Liao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
32
|
Gordino G, Costa‐Pereira S, Corredeira P, Alves P, Costa L, Gomes AQ, Silva‐Santos B, Ribot JC. MicroRNA-181a restricts human γδ T cell differentiation by targeting Map3k2 and Notch2. EMBO Rep 2022; 23:e52234. [PMID: 34821000 PMCID: PMC8728617 DOI: 10.15252/embr.202052234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
γδ T cells are a conserved population of lymphocytes that contributes to anti-tumor responses through its overt type 1 inflammatory and cytotoxic properties. We have previously shown that human γδ T cells acquire this profile upon stimulation with IL-2 or IL-15, in a differentiation process dependent on MAPK/ERK signaling. Here, we identify microRNA-181a as a key modulator of human γδ T cell differentiation. We observe that miR-181a is highly expressed in patients with prostate cancer and that this pattern associates with lower expression of NKG2D, a critical mediator of cancer surveillance. Interestingly, miR-181a expression negatively correlates with an activated type 1 effector profile obtained from in vitro differentiated γδ T cells and miR-181a overexpression restricts their levels of NKG2D and TNF-α. Upon in silico analysis, we identify two miR-181a candidate targets, Map3k2 and Notch2, which we validate via overexpression coupled with luciferase assays. These results reveal a novel role for miR-181a as critical regulator of human γδ T cell differentiation and highlight its potential for manipulation of γδ T cells in next-generation immunotherapies.
Collapse
Affiliation(s)
- Gisela Gordino
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Sara Costa‐Pereira
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Patrícia Corredeira
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Patrícia Alves
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Luís Costa
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Medical Oncology DivisionHospital de Santa MariaCentro Hospitalar Universitário Lisboa NorteLisbonPortugal
| | - Anita Q Gomes
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Escola Superior de Tecnologia da Saúde de LisboaLisbonPortugal
| | - Bruno Silva‐Santos
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Julie C Ribot
- Instituto de Medicina Molecular João Lobo AntunesFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
33
|
Tomaszewska W, Kozłowska-Masłoń J, Baranowski D, Perkowska A, Szałkowska S, Kazimierczak U, Severino P, Lamperska K, Kolenda T. miR-154 Influences HNSCC Development and Progression through Regulation of the Epithelial-to-Mesenchymal Transition Process and Could Be Used as a Potential Biomarker. Biomedicines 2021; 9:1894. [PMID: 34944712 PMCID: PMC8698850 DOI: 10.3390/biomedicines9121894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs and their role in cancer have been extensively studied for the past decade. Here, we analyzed the biological role and diagnostic potential of miR-154-5p and miR-154-3p in head and neck squamous cell carcinoma (HNSCC). miRNA expression analyses were performed using The Cancer Genome Atlas (TCGA) data accessed from cBioPortal, UALCAN, Santa Cruz University, and Gene Expression Omnibus (GEO). The expression data were correlated with clinicopathological parameters. The functional enrichment was assessed with Gene Set Enrichment Analysis (GSEA). The immunological profiles were assessed using the ESTIMATE tool and RNAseq data from TCGA. All statistical analyses were performed with GraphPad Prism and Statistica. The study showed that both miR-154-5p and miR-154-3p were downregulated in the HNSCC samples and their expression levels correlated with tumor localization, overall survival, cancer stage, tumor grade, and HPV p16 status. GSEA indicated that individuals with the increased levels of miR-154 had upregulated AKT-MTOR, CYCLIN D1, KRAS, EIF4E, RB, ATM, and EMT gene sets. Finally, the elevated miR-154 expression correlated with better immune response. This study showed that miR-154 is highly involved in HNSCC pathogenesis, invasion, and immune response. The implementation of miR-154 as a biomarker may improve the effectiveness of HNSCC treatment.
Collapse
Affiliation(s)
- Weronika Tomaszewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Joanna Kozłowska-Masłoń
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
- Faculty of Biology, Institute of Human Biology and Evolution, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Dawid Baranowski
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Anna Perkowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Sandra Szałkowska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Urszula Kazimierczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 8 Rokietnicka Street, 60-806 Poznan, Poland; (D.B.); (A.P.); (S.S.); (U.K.)
| | - Patricia Severino
- Centro de Pesquisa Experimental, Albert Einstein Research and Education Institute, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627-Jardim Leonor, São Paulo 05652-900, SP, Brazil;
| | - Katarzyna Lamperska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| | - Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland; (J.K.-M.); (K.L.)
- Research and Implementation Unit, Greater Poland Cancer Centre, Garbary 15, 61-866 Poznan, Poland
| |
Collapse
|
34
|
Wen R, Chen C, Zhong X, Hu C. PAX6 upstream antisense RNA (PAUPAR) inhibits colorectal cancer progression through modulation of the microRNA (miR)-17-5p / zinc finger protein 750 (ZNF750) axis. Bioengineered 2021; 12:3886-3899. [PMID: 34288812 PMCID: PMC8806802 DOI: 10.1080/21655979.2021.1940071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Researchers have demonstrated that long non-coding RNAs (lncRNAs) are vital in colorectal cancer (CRC) progression. Here, we aimed to explore the function of lncRNA PAX6 upstream antisense RNA (PAUPAR) in the development of CRC. In the present study, PAUPAR and microRNA (miR)-17-5p expression levels in CRC tissues and cells were examined using quantitative real-time polymerase chain reaction (qRT-PCR). Western blot analysis was adopted to examine ZNF750 expression at the protein level in CRC cells. CRC cell proliferation was examined by colony formation experiment and 5-Bromo-2-deoxyUridine (BrdU) experiment. CRC cell migration and invasion were assessed by Transwell experiments. Apoptosis was measured using the TUNEL experiment. The targeting relationship between PAUPAR and miR-17-5p was confirmed using dual-luciferase reporter gene and RNA immunoprecipitation (RIP) experiments. We demonstrated that PAUPAR was markedly down-modulated in CRC, and its low expression was significantly related to increased T stage and local lymph node metastasis. Knockdown of PAUPAR enhanced CRC cell proliferation, migration and invasion, and restrained apoptosis relative to controls, whereas PAUPAR overexpression caused the opposite effects. Moreover, rescue experiments showed that miR-17-5p inhibitor could reverse the role of PAUPAR knockdown on the malignant phenotypes of CRC cells. Additionally, PAUPAR could positively regulate the expression of ZNF750 via repressing miR-17-5p. Taken together, these findings suggest that PAUPAR/miR-17-5p/ZNF750 axis is a novel mechanism implicated in CRC progression.
Collapse
Affiliation(s)
- Ruhui Wen
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
- CONTACT Ruhui Wen Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, NO. 41 Erling North Road, Huicheng District, Huizhou, Guangdong516000, China
| | - Chao Chen
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Xiaohua Zhong
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| | - Chen Hu
- Department of Gastrointestinal Surgery, Huizhou Municipal Central Hospital, Huizhou, Guangdong, China
| |
Collapse
|
35
|
Identification of miR-199-5p and miR-199-3p Target Genes: Paxillin Facilities Cancer Cell Aggressiveness in Head and Neck Squamous Cell Carcinoma. Genes (Basel) 2021; 12:genes12121910. [PMID: 34946859 PMCID: PMC8701835 DOI: 10.3390/genes12121910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 12/28/2022] Open
Abstract
Our previous study revealed that the miR-199 family (miR-199a-5p/-3p and miR-199b-5p/-3p) acts as tumor-suppressive miRNAs in head and neck squamous cell carcinoma (HNSCC). Furthermore, recent studies have indicated that the passenger strands of miRNAs are involved in cancer pathogenesis. The aim of this study was to identify cancer-promoting genes commonly regulated by miR-199-5p and miR-199-3p in HNSCC cells. Our in silico analysis and luciferase reporter assay identified paxillin (PXN) as a direct target of both miR-199-5p and miR-199-3p in HNSCC cells. Analysis of the cancer genome atlas (TCGA) database showed that expression of PXN significantly predicted a worse prognosis (5-year overall survival rate; p = 0.0283). PXN expression was identified as an independent factor predicting patient survival according to multivariate Cox regression analyses (p = 0.0452). Overexpression of PXN was detected in HNSCC clinical specimens by immunostaining. Functional assays in HNSCC cells showed that knockdown of PXN expression attenuated cancer cell migration and invasion, suggesting that aberrant expression of PXN contributed to HNSCC cell aggressiveness. Our miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.
Collapse
|
36
|
Impact of Oncogenic Targets by Tumor-Suppressive miR-139-5p and miR-139-3p Regulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22189947. [PMID: 34576110 PMCID: PMC8469660 DOI: 10.3390/ijms22189947] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
We newly generated an RNA-sequencing-based microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Analysis of the signature revealed that both strands of some miRNAs, including miR-139-5p (the guide strand) and miR-139-3p (the passenger strand) of miR-139, were downregulated in HNSCC tissues. Analysis of The Cancer Genome Atlas confirmed the low expression levels of miR-139 in HNSCC. Ectopic expression of these miRNAs attenuated the characteristics of cancer cell aggressiveness (e.g., cell proliferation, migration, and invasion). Our in silico analyses revealed a total of 28 putative targets regulated by pre-miR-139 (miR-139-5p and miR-139-3p) in HNSCC cells. Of these, the GNA12 (guanine nucleotide-binding protein subunit alpha-12) and OLR1 (oxidized low-density lipoprotein receptor 1) expression levels were identified as independent factors that predicted patient survival according to multivariate Cox regression analyses (p = 0.0018 and p = 0.0104, respectively). Direct regulation of GNA12 and OLR1 by miR-139-3p in HNSCC cells was confirmed through luciferase reporter assays. Moreover, overexpression of GNA12 and OLR1 was detected in clinical specimens of HNSCC through immunostaining. The involvement of miR-139-3p (the passenger strand) in the oncogenesis of HNSCC is a new concept in cancer biology. Our miRNA-based strategy will increase knowledge on the molecular pathogenesis of HNSCC.
Collapse
|
37
|
Hozaka Y, Kita Y, Yasudome R, Tanaka T, Wada M, Idichi T, Tanabe K, Asai S, Moriya S, Toda H, Mori S, Kurahara H, Ohtsuka T, Seki N. RNA-Sequencing Based microRNA Expression Signature of Colorectal Cancer: The Impact of Oncogenic Targets Regulated by miR-490-3p. Int J Mol Sci 2021; 22:ijms22189876. [PMID: 34576039 PMCID: PMC8469425 DOI: 10.3390/ijms22189876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
To elucidate novel aspects of the molecular pathogenesis of colorectal cancer (CRC), we have created a new microRNA (miRNA) expression signature based on RNA-sequencing. Analysis of the signature showed that 84 miRNAs were upregulated, and 70 were downregulated in CRC tissues. Interestingly, our signature indicated that both guide and passenger strands of some miRNAs were significantly dysregulated in CRC tissues. These findings support our earlier data demonstrating the involvement of miRNA passenger strands in cancer pathogenesis. Our study focused on downregulated miR-490-3p and investigated its tumor-suppressive function in CRC cells. We successfully identified a total of 38 putative oncogenic targets regulated by miR-490-3p in CRC cells. Among these targets, the expression of three genes (IRAK1: p = 0.0427, FUT1: p = 0.0468, and GPRIN2: p = 0.0080) significantly predicted 5-year overall survival of CRC patients. Moreover, we analyzed the direct regulation of IRAK1 by miR-490-3p, and its resultant oncogenic function in CRC cells. Thus, we have clarified a part of the molecular pathway of CRC based on the action of tumor-suppressive miR-490-3p. This new miRNA expression signature of CRC will be a useful tool for elucidating new molecular pathogenesis in this disease.
Collapse
Affiliation(s)
- Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
38
|
Sindhu KJ, Venkatesan N, Karunagaran D. MicroRNA Interactome Multiomics Characterization for Cancer Research and Personalized Medicine: An Expert Review. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:545-566. [PMID: 34448651 DOI: 10.1089/omi.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) that are mutually modulated by their interacting partners (interactome) are being increasingly noted for their significant role in pathogenesis and treatment of various human cancers. Recently, miRNA interactome dissected with multiomics approaches has been the subject of focus since individual tools or methods failed to provide the necessary comprehensive clues on the complete interactome. Even though single-omics technologies such as proteomics can uncover part of the interactome, the biological and clinical understanding still remain incomplete. In this study, we present an expert review of studies involving multiomics approaches to identification of miRNA interactome and its application in mechanistic characterization, classification, and therapeutic target identification in a variety of cancers, and with a focus on proteomics. We also discuss individual or multiple miRNA-based interactome identification in various pathological conditions of relevance to clinical medicine. Various new single-omics methods that can be integrated into multiomics cancer research and the computational approaches to analyze and predict miRNA interactome are also highlighted in this review. In all, we contextulize the power of multiomics approaches and the importance of the miRNA interactome to achieve the vision and practice of predictive, preventive, and personalized medicine in cancer research and clinical oncology.
Collapse
Affiliation(s)
- K J Sindhu
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Nalini Venkatesan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
39
|
Mangiferin Inhibits Human Lung Adenocarcinoma by Suppressing MiR-27b and MiR-92a. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2822950. [PMID: 34335801 PMCID: PMC8292060 DOI: 10.1155/2021/2822950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/17/2021] [Accepted: 06/30/2021] [Indexed: 12/30/2022]
Abstract
Lung adenocarcinoma (LUAD) is one of the most prevalent malignancies. However, its mechanism and therapeutic strategy remain to be clarified. Mangiferin is a flavonoid derived from the leaves of mango trees of the lacquer family that has many pharmacological and physiological effects. This research aimed to elucidate the biological effect of mangiferin in LUAD cell lines and clarify the in vitro mechanism of mangiferin. Mangiferin was shown to significantly restrain the proliferation of LUAD cells (A549, H1299, and H2030 cells) in a dose- and time-dependent manner. Furthermore, mangiferin was capable of stimulating apoptosis, and more cells were blocked in G1 and S phase in the mangiferin-treated cells than in those not treated with mangiferin. Microarrays and micro-RNA sequencing data suggested that there is a higher level of miR-27b and miR-92a in LUAD tissues than in non-LUAD tissues. Additional experiments indicated that mangiferin may be related to the downregulated levels of miR-92a and miR-27b. In conclusion, mangiferin likely regulates proliferation and apoptosis in LUAD cells by reducing the expression levels of miR-92a and miR-27b.
Collapse
|
40
|
Xue C, Luo M, Wang L, Li C, Hu S, Yu X, Yuan P, Wu ZS. Stimuli-Responsive Autonomous-Motion Molecular Machine for Sensitive Simultaneous Fluorescence Imaging of Intracellular MicroRNAs. Anal Chem 2021; 93:9869-9877. [PMID: 34232018 DOI: 10.1021/acs.analchem.1c01856] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
DNAzymes with enzymatic activity identified from random DNA pools by in vitro selection have recently attracted considerable attention. In this work, a DNAzyme-based autonomous-motion (AM) molecular machine is demonstrated for sensitive simultaneous imaging of different intracellular microRNAs (miRNAs). The AM molecular machine consists of two basic elements, one of which is a target-analogue-embedded double-stem hairpin substrate (TDHS) and the other is a locking-strand-silenced DNAzyme (LSDz). LSDz can be activated by target miRNA and catalytically cleave TDHS, generating Clv-TDHS and releasing free target analogue capable of triggering the next round of cleavage reaction. As such, the molecular machine can exert sustainable autonomous operation, producing an enhanced signal. Because the active target analogue comes from the machine itself and offers cyclical stimulation in a feedback manner, this target-induced autonomous cleavage circuit is termed a self-feedback circuit (SFC). The SFC-based molecular machine can be used to quantify miRNA-21 down to 10 pM without interference from nontarget miRNAs, indicating a substantial improvement in assay performance compared with its counterpart system without an SFC effect. Moreover, due to the enzyme-free process, the AM molecular machine is suitable for miRNA imaging in living cells, and the quantitative results are consistent with the gold standard PCR assay. More interestingly, the AM molecular machine can be used for the simultaneous fluorescence imaging of several intracellular miRNAs, enabling the accurate discrimination of cancerous cells (e.g., HeLa and MCF-7) from healthy cells. The SFC-based autonomous-motion machine is expected to be a promising tool for the research of molecular biology and early diagnosis of human diseases.
Collapse
Affiliation(s)
- Chang Xue
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Mengxue Luo
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lei Wang
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Congcong Li
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Shuyao Hu
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xin Yu
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Pei Yuan
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zai-Sheng Wu
- College of Chemical Engineering, Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
41
|
Miao P, Tang Y. Cascade Strand Displacement and Bipedal Walking Based DNA Logic System for miRNA Diagnostics. ACS CENTRAL SCIENCE 2021; 7:1036-1044. [PMID: 34235264 PMCID: PMC8228592 DOI: 10.1021/acscentsci.1c00277] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 05/05/2023]
Abstract
DNA logic gated operations empower the highly efficient analysis of multiplex nucleic acid inputs, which have attracted extensive attention. However, the integration of DNA logic gates with abundant computational functions and signal amplification for biomedical diagnosis is far from being fully achieved. Herein, we develop a bipedal DNA walker based amplified electrochemical method for miRNA detection, which is then used as the basic unit for the construction of various logic circuits, enabling the analysis of multiplex miRNAs. In the bipedal walking process, target triggered strand displacement polymerization is able to produce a large number of strands for the fabrication of three-way junction-structured bipedal walkers. The following catalytic hairpin assembly ensures the walking event and the immobilization of signal probes for output. Ultrahigh sensitivity is realized due to the integration of dual signal amplification. In addition, under logic function controls by input triggered cascade strand displacement reactions, NOT, AND, OR, NAND, NOR, XOR, and XNOR logic gates are successfully established. The as-developed DNA logic system can also be extended to multi-input modes, which holds great promise in the fields of DNA computing, multiplex analysis, and clinical diagnosis.
Collapse
Affiliation(s)
- Peng Miao
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, People’s Republic
of China
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Yuguo Tang
- Suzhou
Institute of Biomedical Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, People’s Republic
of China
| |
Collapse
|
42
|
Oshima S, Asai S, Seki N, Minemura C, Kinoshita T, Goto Y, Kikkawa N, Moriya S, Kasamatsu A, Hanazawa T, Uzawa K. Identification of Tumor Suppressive Genes Regulated by miR-31-5p and miR-31-3p in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:6199. [PMID: 34201353 PMCID: PMC8227492 DOI: 10.3390/ijms22126199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
| | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Takashi Kinoshita
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| |
Collapse
|
43
|
Khazei K, Mohajeri N, Bonabi E, Turk Z, Zarghami N. New Insights Toward Nanostructured Drug Delivery of Plant-Derived Polyphenol Compounds: Cancer Treatment and Gene Expression Profiles. Curr Cancer Drug Targets 2021; 21:689-701. [PMID: 34036921 DOI: 10.2174/1568009621666210525152802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
The increasing prevalence of cancer has led to the expansion of traditional medicine objectives for developing novel drug delivery systems. A wide range of plant-derived polyphenol bioactive substances have been investigated in order to explore anti-cancer effects of these natural compounds and to promote effective treatment of cancer through apoptosis induction. In this regard, plant-derived polyphenol compounds including curcumin, silibinin, quercetin, and resveratrol have been the subject of intense interest for anti-cancer applications due to their ability in regulating apoptotic genes. However, some limitations of pure polyphenol compounds, such as poor bioavailability, short-term stability, low-cellular uptake, and insufficient solubility, have restricted their efficiency. Nanoscale formulations of bioactive agents have provided a novel platform to address these limitations. This paper reviews recent advances in nanoformulation approaches of polyphenolic drugs, and their effects on improving the delivery of chemotherapy agents to cancer cells.
Collapse
Affiliation(s)
- Keyvan Khazei
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Mohajeri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Esat Bonabi
- Department of Medical Microbiology Faculty of Medicine, Istanbul Aydin University, Istanbul. Turkey
| | - Zeynep Turk
- Center for Applied and Theoretical Research on Higher Education, İstanbul Aydın University, Istanbul. Turkey
| | - Nosratollah Zarghami
- Department of Persian Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
44
|
Yousef M, Goy G, Mitra R, Eischen CM, Jabeer A, Bakir-Gungor B. miRcorrNet: machine learning-based integration of miRNA and mRNA expression profiles, combined with feature grouping and ranking. PeerJ 2021; 9:e11458. [PMID: 34055490 PMCID: PMC8140596 DOI: 10.7717/peerj.11458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/25/2021] [Indexed: 11/20/2022] Open
Abstract
A better understanding of disease development and progression mechanisms at the molecular level is critical both for the diagnosis of a disease and for the development of therapeutic approaches. The advancements in high throughput technologies allowed to generate mRNA and microRNA (miRNA) expression profiles; and the integrative analysis of these profiles allowed to uncover the functional effects of RNA expression in complex diseases, such as cancer. Several researches attempt to integrate miRNA and mRNA expression profiles using statistical methods such as Pearson correlation, and then combine it with enrichment analysis. In this study, we developed a novel tool called miRcorrNet, which performs machine learning-based integration to analyze miRNA and mRNA gene expression profiles. miRcorrNet groups mRNAs based on their correlation to miRNA expression levels and hence it generates groups of target genes associated with each miRNA. Then, these groups are subject to a rank function for classification. We have evaluated our tool using miRNA and mRNA expression profiling data downloaded from The Cancer Genome Atlas (TCGA), and performed comparative evaluation with existing tools. In our experiments we show that miRcorrNet performs as good as other tools in terms of accuracy (reaching more than 95% AUC value). Additionally, miRcorrNet includes ranking steps to separate two classes, namely case and control, which is not available in other tools. We have also evaluated the performance of miRcorrNet using a completely independent dataset. Moreover, we conducted a comprehensive literature search to explore the biological functions of the identified miRNAs. We have validated our significantly identified miRNA groups against known databases, which yielded about 90% accuracy. Our results suggest that miRcorrNet is able to accurately prioritize pan-cancer regulating high-confidence miRNAs. miRcorrNet tool and all other supplementary files are available at https://github.com/malikyousef/miRcorrNet.
Collapse
Affiliation(s)
- Malik Yousef
- Galilee Digital Health Research Center (GDH), Zefat Academic College, Zefat, Israel.,Department of Information Systems, Zefat Academic College, Zefat, Israel
| | - Gokhan Goy
- Department of Computer Engineering, Abdullah Gül University, Kayseri, Turkey
| | - Ramkrishna Mitra
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Christine M Eischen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Amhar Jabeer
- Department of Computer Engineering, Abdullah Gül University, Kayseri, Turkey
| | - Burcu Bakir-Gungor
- Department of Computer Engineering, Abdullah Gül University, Kayseri, Turkey
| |
Collapse
|
45
|
Peixoto da Silva S, Caires HR, Bergantim R, Guimarães JE, Vasconcelos MH. miRNAs mediated drug resistance in hematological malignancies. Semin Cancer Biol 2021; 83:283-302. [PMID: 33757848 DOI: 10.1016/j.semcancer.2021.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/11/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Despite improvements in the therapeutic approaches for hematological malignancies in the last decades, refractory disease still occurs, and cancer drug resistance still remains a major hurdle in the clinical management of these cancer patients. The investigation of this problem has been extensive and different mechanism and molecules have been associated with drug resistance. MicroRNAs (miRNAs) have been described as having an important action in the emergence of cancer, including hematological tumors, and as being major players in their progression, aggressiveness and response to treatments. Moreover, miRNAs have been strongly associated with cancer drug resistance and with the modulation of the sensitivity of cancer cells to a wide array of anticancer drugs. Furthermore, this role has also been reported for miRNAs packaged into extracellular vesicles (EVs-miRNAs), which in turn have been described as essential for the horizontal transfer of drug resistance to sensitive cells. Several studies have been suggesting the use of miRNAs as biomarkers for drug response and clinical outcome prediction, as well as promising therapeutic tools in hematological diseases. Indeed, the combination of miRNA-based therapeutic tools with conventional drugs contributes to overcome drug resistance. This review addresses the role of miRNAs in the pathogenesis of hematological malignances, namely multiple myeloma, leukemias and lymphomas, highlighting their important action (either in their cell-free circulating form or within circulating EVs) in drug resistance and their potential clinical applications.
Collapse
Affiliation(s)
- Sara Peixoto da Silva
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Hugo R Caires
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal
| | - Rui Bergantim
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, Hospital São João, 4200-319, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
| | - José E Guimarães
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Clinical Hematology, FMUP - Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal; Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário, IUCSCESPU, 4585-116, Gandra, Paredes, Portugal
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
46
|
Mukhopadhyay S, Bhutia SK. Trends in CRISPR-Cas9 technology application in cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 178:175-192. [PMID: 33685596 DOI: 10.1016/bs.pmbts.2020.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The evolution of the CRISPR-Cas9 technology in cancer research has tremendous potential to shape the future of oncology. Although this gene-editing tool's pre-clinical progress is into its nascent stage, there are many unanswered questions regarding health benefits and therapy precision using CRISPR. The application of CRISPR is highly specific, economically sustainable, and is a high throughput technique, but on the other hand, its application involves measured risk of countering the toxic immune response of Cas protein, off-target effects, limitation of delivering the edited cells back into cancer patients. The current chapter highlights the possibilities and perils of the present-day CRISPR engineering in cancer that should highlight CRISPR translation to therapy.
Collapse
Affiliation(s)
- Subhadip Mukhopadhyay
- Department of Radiation Oncology, Laura and Isaac Perlmutter Cancer Center, NYU Medical School, New York, NY, United States.
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
47
|
Li Y, Dong YP, Qian YW, Yu LX, Wen W, Cui XL, Wang HY. Identification of important genes and drug repurposing based on clinical-centered analysis across human cancers. Acta Pharmacol Sin 2021; 42:282-289. [PMID: 32555508 DOI: 10.1038/s41401-020-0451-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/30/2020] [Indexed: 01/19/2023] Open
Abstract
Identification of the functional impact of mutated and altered genes in cancer is critical for implementing precision oncology and drug repurposing. In recent years, the emergence of multiomics data from large, well-characterized patient cohorts has provided us with an unprecedented opportunity to address this problem. In this study, we investigated survival-associated genes across 26 cancer types and found that these genes tended to be hub genes and had higher K-core values in biological networks. Moreover, the genes associated with adverse outcomes were mainly enriched in pathways related to genetic information processing and cellular processes, while the genes with favorable outcomes were enriched in metabolism and immune regulation pathways. We proposed using the number of survival-related neighbors to assess the impact of mutations. In addition, by integrating other databases including the Human Protein Atlas and the DrugBank database, we predicted novel targets and anticancer drugs using the drug repurposing strategy. Our results illustrated the significance of multidimensional analysis of clinical data in important gene identification and drug development.
Collapse
|
48
|
Sima M, Rossnerova A, Simova Z, Rossner P. The Impact of Air Pollution Exposure on the MicroRNA Machinery and Lung Cancer Development. J Pers Med 2021; 11:60. [PMID: 33477935 PMCID: PMC7833364 DOI: 10.3390/jpm11010060] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Small non-coding RNA molecules (miRNAs) play an important role in the epigenetic regulation of gene expression. As these molecules have been repeatedly implicated in human cancers, they have been suggested as biomarkers of the disease. Additionally, miRNA levels have been shown to be affected by environmental pollutants, including airborne contaminants. In this review, we searched the current literature for miRNAs involved in lung cancer, as well as miRNAs deregulated as a result of exposure to air pollutants. We then performed a synthesis of the data and identified those molecules commonly deregulated under both conditions. We detected a total of 25 miRNAs meeting the criteria, among them, miR-222, miR-21, miR-126-3p, miR-155 and miR-425 being the most prominent. We propose these miRNAs as biomarkers of choice for the identification of human populations exposed to air pollution with a significant risk of developing lung cancer.
Collapse
Affiliation(s)
- Michal Sima
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Zuzana Simova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (M.S.); (Z.S.)
| |
Collapse
|
49
|
Okada R, Goto Y, Yamada Y, Kato M, Asai S, Moriya S, Ichikawa T, Seki N. Regulation of Oncogenic Targets by the Tumor-Suppressive miR-139 Duplex ( miR-139-5p and miR-139-3p) in Renal Cell Carcinoma. Biomedicines 2020; 8:biomedicines8120599. [PMID: 33322675 PMCID: PMC7764717 DOI: 10.3390/biomedicines8120599] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
We previously found that both the guide and passenger strands of the miR-139 duplex (miR-139-5p and miR-139-3p, respectively) were downregulated in cancer tissues. Analysis of TCGA datasets revealed that low expression of miR-139-5p (p < 0.0001) and miR-139-3p (p < 0.0001) was closely associated with 5-year survival rates of patients with renal cell carcinoma (RCC). Ectopic expression assays showed that miR-139-5p and miR-139-3p acted as tumor-suppressive miRNAs in RCC cells. Here, 19 and 22 genes were identified as putative targets of miR-139-5p and miR-139-3p in RCC cells, respectively. Among these genes, high expression of PLXDC1, TET3, PXN, ARHGEF19, ELK1, DCBLD1, IKBKB, and CSF1 significantly predicted shorter survival in RCC patients according to TCGA analyses (p < 0.05). Importantly, the expression levels of four of these genes, PXN, ARHGEF19, ELK1, and IKBKB, were independent prognostic factors for patient survival (p < 0.05). We focused on PXN (paxillin) and investigated its potential oncogenic role in RCC cells. PXN knockdown significantly inhibited cancer cell migration and invasion, possibly by regulating epithelial-mesenchymal transition. Involvement of the miR-139-3p passenger strand in RCC molecular pathogenesis is a new concept. Analyses of tumor-suppressive-miRNA-mediated molecular networks provide important insights into the molecular pathogenesis of RCC.
Collapse
Affiliation(s)
- Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Tomohiko Ichikawa
- Department of Urology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (R.O.); (Y.G.); (Y.Y.); (M.K.); (S.A.)
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
50
|
Wang S, Su W, Zhong C, Yang T, Chen W, Chen G, Liu Z, Wu K, Zhong W, Li B, Mao X, Lu J. An Eight-CircRNA Assessment Model for Predicting Biochemical Recurrence in Prostate Cancer. Front Cell Dev Biol 2020; 8:599494. [PMID: 33363156 PMCID: PMC7758402 DOI: 10.3389/fcell.2020.599494] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (PCa) is a high morbidity malignancy in males, and biochemical recurrence (BCR) may appear after the surgery. Our study is designed to build up a risk score model using circular RNA sequencing data for PCa. The dataset is from the GEO database, using a cohort of 144 patients in Canada. We removed the low abundance circRNAs (FPKM < 1) and obtained 546 circRNAs for the next step. BCR-related circRNAs were selected by Logistic regression using the “survival” and “survminer” R package. Least absolute shrinkage and selector operation (LASSO) regression with 10-fold cross-validation and penalty was used to construct a risk score model by “glmnet” R software package. In total, eight circRNAs (including circ_30029, circ_117300, circ_176436, circ_112897, circ_112897, circ_178252, circ_115617, circ_14736, and circ_17720) were involved in our risk score model. Further, we employed differentially expressed mRNAs between high and low risk score groups. The following Gene Ontology (GO) analysis were visualized by Omicshare Online tools. As per the GO analysis results, tumor immune microenvironment related pathways are significantly enriched. “CIBERSORT” and “ESTIMATE” R package were used to detect tumor-infiltrating immune cells and compare the level of microenvironment scores between high and low risk score groups. What’s more, we verified two of eight circRNA’s (circ_14736 and circ_17720) circular characteristics and tested their biological function with qPCR and CCK8 in vitro. circ_14736 and circ_17720 were detected in exosomes of PCa patients’ plasma. This is the first bioinformatics study to establish a prognosis model for prostate cancer using circRNA. These circRNAs were associated with CD8+ T cell activities and may serve as a circRNA-based liquid biopsy panel for disease prognosis.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wei Su
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Chuanfan Zhong
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Wenbin Chen
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zezhen Liu
- Guangdong Key Laboratory of Urology, Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Urology Research Institute, Guangzhou, China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Weibo Zhong
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Bingkun Li
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jianming Lu
- Department of Urology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|