1
|
Zhao Y, Zhang T, Zhu Y, Yin J, Omer R, Hemu X, Li W, Bi X. Recent Toolboxes for Chemoselective Dual Modifications of Proteins. Chemistry 2024; 30:e202402272. [PMID: 39037007 DOI: 10.1002/chem.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple modifications of proteins are increasingly garnering attention, as it has been found that single modification of proteins is inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for dual functionalization of proteins. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.
Collapse
Affiliation(s)
- Yiping Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tianmeng Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Yujie Zhu
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, Zhejiang, China
| | - Rida Omer
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinya Hemu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wang C, Zhao Z, Ghadir R, Yang D, Zhang Z, Ding Z, Cao Y, Li Y, Fassler R, Reichmann D, Zhang Y, Zhao Y, Liu C, Bi X, Metanis N, Zhao J. Peptide and Protein Cysteine Modification Enabled by Hydrosulfuration of Ynamide. ACS CENTRAL SCIENCE 2024; 10:1742-1754. [PMID: 39345815 PMCID: PMC11428291 DOI: 10.1021/acscentsci.4c01148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Efficient functionalization of peptides and proteins has widespread applications in chemical biology and drug discovery. However, the chemoselective and site-selective modification of proteins remains a daunting task. Herein, a highly efficient chemo-, regio-, and stereoselective hydrosulfuration of ynamide was identified as an efficient method for the precise modification of peptides and proteins by uniquely targeting the thiol group of cysteine (Cys) residues. This novel method could be facilely operated in aqueous buffer and was fully compatible with a wide range of proteins, including small model proteins and large full-length antibodies, without compromising their integrity and functions. Importantly, this reaction provides the Z-isomer of the corresponding conjugates exclusively with superior stability, offering a precise approach to peptide and protein therapeutics. The potential application of this method in peptide and protein chemical biology was further exemplified by Cys-bioconjugation with a variety of ynamide-bearing functional molecules such as small molecule drugs, fluorescent/affinity tags, and PEG polymers. It also proved efficient in redox proteomic analysis through Cys-alkenylation. Overall, this study provides a novel bioorthogonal tool for Cys-specific functionalization, which will find broad applications in the synthesis of peptide/protein conjugates.
Collapse
Affiliation(s)
- Changliu Wang
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Zhenguang Zhao
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Reem Ghadir
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dechun Yang
- Collaborative
Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
& College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang P. R. China
| | - Zhenjia Zhang
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| | - Zhe Ding
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Yuan Cao
- Department
of Process Development, BeiGene Guangzhou
Biologics Manufacturing Co., Ltd., Guangzhou 510700, Guangdong P. R. China
| | - Yuqing Li
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Rosi Fassler
- The Alexander
Silberman Institute of Life Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Dana Reichmann
- The Alexander
Silberman Institute of Life Science, The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Yujie Zhang
- Department
of Process Development, BeiGene Guangzhou
Biologics Manufacturing Co., Ltd., Guangzhou 510700, Guangdong P. R. China
| | - Yongli Zhao
- National
Research Center for Carbohydrate Synthesis, College of Chemistry and
Chemical Engineering, Jiangxi Normal University, Nanchang 330022, Jiangxi P. R. China
| | - Can Liu
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| | - Xiaobao Bi
- Collaborative
Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
& College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang P. R. China
| | - Norman Metanis
- Institute
of Chemistry, The Alexander Silberman Institute of Life Science, The
Center for Nanoscience and Nanotechnology, Casali Center for Applied
Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Junfeng Zhao
- Affiliated
Cancer Hospital, Guangdong Provincial Key Laboratory of Major Obstetric
Diseases, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, Guangdong P. R. China
| |
Collapse
|
3
|
Ai H, Pan M, Liu L. Chemical Synthesis of Human Proteoforms and Application in Biomedicine. ACS CENTRAL SCIENCE 2024; 10:1442-1459. [PMID: 39220697 PMCID: PMC11363345 DOI: 10.1021/acscentsci.4c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024]
Abstract
Limited understanding of human proteoforms with complex posttranslational modifications and the underlying mechanisms poses a major obstacle to research on human health and disease. This Outlook discusses opportunities and challenges of de novo chemical protein synthesis in human proteoform studies. Our analysis suggests that to develop a comprehensive, robust, and cost-effective methodology for chemical synthesis of various human proteoforms, new chemistries of the following types need to be developed: (1) easy-to-use peptide ligation chemistries allowing more efficient de novo synthesis of protein structural domains, (2) robust temporary structural support strategies for ligation and folding of challenging targets, and (3) efficient transpeptidative protein domain-domain ligation methods for multidomain proteins. Our analysis also indicates that accurate chemical synthesis of human proteoforms can be applied to the following aspects of biomedical research: (1) dissection and reconstitution of the proteoform interaction networks, (2) structural mechanism elucidation and functional analysis of human proteoform complexes, and (3) development and evaluation of drugs targeting human proteoforms. Overall, we suggest that through integrating chemical protein synthesis with in vivo functional analysis, mechanistic biochemistry, and drug development, synthetic chemistry would play a pivotal role in human proteoform research and facilitate the development of precision diagnostics and therapeutics.
Collapse
Affiliation(s)
- Huasong Ai
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Man Pan
- Institute
of Translational Medicine, School of Pharmacy, School of Chemistry
and Chemical Engineering, National Center for Translational Medicine
(Shanghai), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Liu
- New
Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life
Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and
Chemical Biology, Center for Synthetic and Systems Biology, Department
of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Okon A, Yang J, Giancola JB, Molina OJ, Sayers J, Cheah KM, Li Y, Strieter ER, Raines RT. Facile Access to Branched Multispecific Proteins. Bioconjug Chem 2024; 35:954-962. [PMID: 38879814 PMCID: PMC11254548 DOI: 10.1021/acs.bioconjchem.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Approaches that leverage orthogonal chemical reactions to generate protein-protein conjugates have expanded access to bespoke chimeras. Although the literature is replete with examples of the semisynthesis of bispecific proteins, few methods exist for the semisynthesis of protein conjugates of higher complexity (i.e., greater than two-protein fusions). The recent emergence of trispecific cell engagers for immune cell redirection therapies necessitates the development of chemical methods for the construction of trispecific proteins that would otherwise be inaccessible via natural protein synthesis. Here, we demonstrate that 3-bromo-5-methylene pyrrolone (3Br-5MP) can be used to effect the facile chemical synthesis of trispecific peptides and proteins with exquisite control over the addition of each monomer. The multimeric complexes maintain epitope functionality both in human cells and upon immobilization. We anticipate that facile access to trispecific proteins using this 3Br-5MP will have broad utility in basic science research and will quicken the pace of research to establish novel, multimeric immune cell redirection therapies.
Collapse
Affiliation(s)
- Aniekan Okon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinyi Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - JoLynn B. Giancola
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Oscar J. Molina
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jessica Sayers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keith M. Cheah
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yanfeng Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric R. Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Sharma V, Joo JU, Mottafegh A, Kim DP. Continuous and autonomous-flow separation of laccase enzyme utilizing functionalized aqueous two-phase system with computer vision control. BIORESOURCE TECHNOLOGY 2024; 403:130888. [PMID: 38788804 DOI: 10.1016/j.biortech.2024.130888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Downstream processing of biomolecules, particularly therapeutic proteins and enzymes, presents a formidable challenge due to intricate unit operations and high costs. This study introduces a novel cysteine (cys) functionalized aqueous two-phase system (ATPS) utilizing polyethylene glycol (PEG) and potassium phosphate, referred as PEG-K3PO4/cys, for selective extraction of laccase from complex protein mixtures. A 3D-baffle micro-mixer and phase separator was meticulously designed and equipped with computer vision controller, to enable precise mixing and continuous phase separation under automated-flow. Microfluidic-assisted ATPS exhibits substantial increase in partition coefficient (Kflow = 16.3) and extraction efficiency (EEflow = 88 %) for laccase compared to conventional batch process. Integrated and continuous-flow process efficiently partitioned laccase, even in low concentrations and complex crude extracts. Circular dichroism spectra of laccase confirm structural stability of enzyme throughout the purification process. Eventually, continuous-flow microfluidic bioseparation is highly useful for seamless downstream processing of target biopharmaceuticals in integrated and autonomous manner.
Collapse
Affiliation(s)
- Vikas Sharma
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong-Un Joo
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Amirreza Mottafegh
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea.
| |
Collapse
|
6
|
Escobar EE, Yang W, Lanzillotti MB, Juetten KJ, Shields S, Siegel D, Zhang YJ, Brodbelt JS. Tracking Inhibition of Human Small C-Terminal Domain Phosphatase 1 Using 193 nm Ultraviolet Photodissociation Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1330-1341. [PMID: 38662915 PMCID: PMC11384422 DOI: 10.1021/jasms.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Working in tandem with kinases via a dynamic interplay of phosphorylation and dephosphorylation of proteins, phosphatases regulate many cellular processes and thus represent compelling therapeutic targets. Here we leverage ultraviolet photodissociation to shed light on the binding characteristics of two covalent phosphatase inhibitors, T65 and rabeprazole, and their respective interactions with the human small C-terminal domain phosphatase 1 (SCP1) and its single-point mutant C181A, in which a nonreactive alanine replaces one key reactive cysteine. Top-down MS/MS analysis is used to localize the binding of T65 and rabeprazole on the two proteins and estimate the relative reactivities of each cysteine residue.
Collapse
Affiliation(s)
| | | | | | | | | | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, California 92093, United States
| | | | | |
Collapse
|
7
|
Hartmann P, Bohdan K, Hommrich M, Juliá F, Vogelsang L, Eirich J, Zangl R, Farès C, Jacobs JB, Mukhopadhyay D, Mengeler JM, Vetere A, Sterling MS, Hinrichs H, Becker S, Morgner N, Schrader W, Finkemeier I, Dietz KJ, Griesinger C, Ritter T. Chemoselective umpolung of thiols to episulfoniums for cysteine bioconjugation. Nat Chem 2024; 16:380-388. [PMID: 38123842 PMCID: PMC10914617 DOI: 10.1038/s41557-023-01388-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 10/27/2023] [Indexed: 12/23/2023]
Abstract
Cysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step. The reactivity profile can connect several nucleophiles to biomolecules through a short and stable ethylene linker, ideal for introduction of infrared labels, post-translational modifications or NMR probes. In the absence of reactive exogenous nucleophiles, nucleophilic amino acids can react with the episulfonium intermediate for native peptide stapling and protein-protein ligation. Ready synthetic access to isotopologues of vinyl thianthrenium salts enables applications in quantitative proteomics. Such diverse applications demonstrate the utility of vinyl-thianthrenium-based bioconjugation as a fast, selective and broadly applicable tool for chemical biology.
Collapse
Affiliation(s)
- Philipp Hartmann
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Kostiantyn Bohdan
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Moritz Hommrich
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Fabio Juliá
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Rene Zangl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Christophe Farès
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | | | | | - Alessandro Vetere
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | | | - Heike Hinrichs
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Stefan Becker
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt/Main, Frankfurt/Main, Germany
| | - Wolfgang Schrader
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | | | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| |
Collapse
|
8
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
9
|
Maes D, Nicque M, Iftikhar M, Winne JM. Phenylpropynones as Selective Disulfide Rebridging Bioconjugation Reagents. Org Lett 2024; 26:895-899. [PMID: 38259037 DOI: 10.1021/acs.orglett.3c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Simple 1-phenylpropynones undergo a selective double thia-Michael addition with thiols in buffered media, yielding an interesting dithioacetal linkage joining two thiols. The reactivity of various Michael-alkyne reagents is compared in this chemoselective, atom economical, and non-oxidative cross-linking of two thiols. The stability and chemical reactivity of the dithioacetal links are studied, and the utility of the disulfide targeting bioconjugation methodology is shown by the selective rebridging of native cyclic peptides after the reductive cleavage of their disulfide bridge.
Collapse
Affiliation(s)
- Diederick Maes
- Ghent University, Department of Organic and Macromolecular Chemistry, Organic Synthesis Group, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Marvin Nicque
- Ghent University, Department of Organic and Macromolecular Chemistry, Organic Synthesis Group, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Mehwish Iftikhar
- Ghent University, Department of Organic and Macromolecular Chemistry, Organic Synthesis Group, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| | - Johan M Winne
- Ghent University, Department of Organic and Macromolecular Chemistry, Organic Synthesis Group, Krijgslaan 281 (S4), 9000 Ghent, Belgium
| |
Collapse
|
10
|
Wan C, Zhang Y, Wang J, Xing Y, Yang D, Luo Q, Liu J, Ye Y, Liu Z, Yin F, Wang R, Li Z. Traceless Peptide and Protein Modification via Rational Tuning of Pyridiniums. J Am Chem Soc 2024; 146:2624-2633. [PMID: 38239111 DOI: 10.1021/jacs.3c11864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Herein, we report a versatile reaction platform for tracelessly cleavable cysteine-selective peptide/protein modification. This platform offers highly tunable and predictable conjugation and cleavage by rationally estimating the electron effect on the nucleophilic halopyridiniums. Cleavable peptide stapling, antibody conjugation, enzyme masking/de-masking, and proteome labeling were achieved based on this facile pyridinium-thiol-exchange protocol.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yichi Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jinpeng Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yun Xing
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510230, China
| | - Qinhong Luo
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jianbo Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Yuxin Ye
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
| |
Collapse
|
11
|
Chauhan P, V R, Kumar M, Molla R, Mishra SD, Basa S, Rai V. Chemical technology principles for selective bioconjugation of proteins and antibodies. Chem Soc Rev 2024; 53:380-449. [PMID: 38095227 DOI: 10.1039/d3cs00715d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Proteins are multifunctional large organic compounds that constitute an essential component of a living system. Hence, control over their bioconjugation impacts science at the chemistry-biology-medicine interface. A chemical toolbox for their precision engineering can boost healthcare and open a gateway for directed or precision therapeutics. Such a chemical toolbox remained elusive for a long time due to the complexity presented by the large pool of functional groups. The precise single-site modification of a protein requires a method to address a combination of selectivity attributes. This review focuses on guiding principles that can segregate them to simplify the task for a chemical method. Such a disintegration systematically employs a multi-step chemical transformation to deconvolute the selectivity challenges. It constitutes a disintegrate (DIN) theory that offers additional control parameters for tuning precision in protein bioconjugation. This review outlines the selectivity hurdles faced by chemical methods. It elaborates on the developments in the perspective of DIN theory to demonstrate simultaneous regulation of reactivity, chemoselectivity, site-selectivity, modularity, residue specificity, and protein specificity. It discusses the progress of such methods to construct protein and antibody conjugates for biologics, including antibody-fluorophore and antibody-drug conjugates (AFCs and ADCs). It also briefs how this knowledge can assist in developing small molecule-based covalent inhibitors. In the process, it highlights an opportunity for hypothesis-driven routes to accelerate discoveries of selective methods and establish new targetome in the precision engineering of proteins and antibodies.
Collapse
Affiliation(s)
- Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Ragendu V
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Mohan Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Rajib Molla
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Surya Dev Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Sneha Basa
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| | - Vishal Rai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, 462 066, India.
| |
Collapse
|
12
|
Novak A, Kersaudy F, Berger S, Morisset-Lopez S, Lefoulon F, Pifferi C, Aucagne V. An efficient site-selective, dual bioconjugation approach exploiting N-terminal cysteines as minimalistic handles to engineer tailored anti-HER2 affibody conjugates. Eur J Med Chem 2023; 260:115747. [PMID: 37657270 DOI: 10.1016/j.ejmech.2023.115747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023]
Abstract
Site-selective, dual-conjugation approaches for the incorporation of distinct payloads are key for the development of molecularly targeted biomolecules, such as antibody conjugates, endowed with better properties. Combinations of cytotoxic drugs, imaging probes, or pharmacokinetics modulators enabled for improved outcomes in both molecular imaging, and therapeutic settings. We have developed an efficacious dual-bioconjugation strategy to target the N-terminal cysteine of a chemically-synthesized, third-generation anti-HER2 affibody. Such two-step, one-purification approach can be carried out under mild conditions (without chaotropic agents, neutral pH) by means of a slight excess of commercially available N-hydroxysuccinimidyl esters and maleimido-functionalized payloads, to generate dual conjugates displaying drugs (DM1/MMAE) or probes (sulfo-Cy5/biotin) in high yields and purity. Remarkably, the double drug conjugate exhibited an exacerbated cytoxicity against HER2-expressing cell lines as compared to a combination of two monoconjugates, demonstrating a potent synergistic effect. Consistently, affibody-drug conjugates did not decrease the viability of HER2-negative cells, confirming their specificity for the target.
Collapse
Affiliation(s)
- Ana Novak
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France
| | - Florian Kersaudy
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France
| | - Sylvie Berger
- Institut de Recherche Servier, 78290, Croissy sur Seine, France
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| | | | - Carlo Pifferi
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
13
|
Li J, Cui Z, Fan C, Zhou Y, Ren M, Zhou C. Photo-caged 2-butene-1,4-dial as an efficient, target-specific photo-crosslinker for covalent trapping of DNA-binding proteins. Chem Sci 2023; 14:10884-10891. [PMID: 37829010 PMCID: PMC10566456 DOI: 10.1039/d3sc03719c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Covalent trapping of DNA-binding proteins via photo-crosslinking is an advantageous method for studying DNA-protein interactions. However, traditional photo-crosslinkers generate highly reactive intermediates that rapidly and non-selectively react with nearby functional groups, resulting in low target-capture yields and high non-target background capture. Herein, we report that photo-caged 2-butene-1,4-dial (PBDA) is an efficient photo-crosslinker for trapping DNA-binding proteins. Photo-irradiation (360 nm) of PBDA-modified DNA generates 2-butene-1,4-dial (BDA), a small, long-lived intermediate that reacts selectively with Lys residues of DNA-binding proteins, leading in minutes to stable DNA-protein crosslinks in up to 70% yield. In addition, BDA exhibits high specificity for target proteins, leading to low non-target background capture. The high photo-crosslinking yield and target specificity make PBDA a powerful tool for studying DNA-protein interactions.
Collapse
Affiliation(s)
- Jiahui Li
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Zenghui Cui
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Department of Chemical Biology, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
14
|
Chen L, Xin X, Zhang Y, Li S, Zhao X, Li S, Xu Z. Advances in Biosynthesis of Non-Canonical Amino Acids (ncAAs) and the Methods of ncAAs Incorporation into Proteins. Molecules 2023; 28:6745. [PMID: 37764520 PMCID: PMC10534643 DOI: 10.3390/molecules28186745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The functional pool of canonical amino acids (cAAs) has been enriched through the emergence of non-canonical amino acids (ncAAs). NcAAs play a crucial role in the production of various pharmaceuticals. The biosynthesis of ncAAs has emerged as an alternative to traditional chemical synthesis due to its environmental friendliness and high efficiency. The breakthrough genetic code expansion (GCE) technique developed in recent years has allowed the incorporation of ncAAs into target proteins, giving them special functions and biological activities. The biosynthesis of ncAAs and their incorporation into target proteins within a single microbe has become an enticing application of such molecules. Based on that, in this study, we first review the biosynthesis methods for ncAAs and analyze the difficulties related to biosynthesis. We then summarize the GCE methods and analyze their advantages and disadvantages. Further, we review the application progress of ncAAs and anticipate the challenges and future development directions of ncAAs.
Collapse
Affiliation(s)
- Liang Chen
- College of Bioengineering, Beijing Polytechnic, Beijing 100176, China; (X.X.); (Y.Z.); (S.L.); (X.Z.); (S.L.); (Z.X.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Nisavic M, Wørmer GJ, Nielsen CS, Jeppesen SM, Palmfeldt J, Poulsen TB. oxSTEF Reagents Are Tunable and Versatile Electrophiles for Selective Disulfide-Rebridging of Native Proteins. Bioconjug Chem 2023. [PMID: 37201197 DOI: 10.1021/acs.bioconjchem.3c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Site-selective disulfide rebridging has emerged as a powerful strategy to modulate the structural and functional properties of proteins. Here, we introduce a novel class of electrophilic reagents, designated oxSTEF, that demonstrate excellent efficiency in disulfide rebridging via double thiol exchange. The oxSTEF reagents are prepared using an efficient synthetic sequence which may be diverted to obtain a range of derivatives allowing for tuning of reactivity or steric bulk. We demonstrate highly selective rebridging of cyclic peptides and native proteins, such as human growth hormone, and the absence of cross-reactivity with other nucleophilic amino acid residues. The oxSTEF conjugates undergo glutathione-mediated disintegration under tumor-relevant glutathione concentrations, which highlights their potential for use in targeted drug delivery. Finally, the α-dicarbonyl motif of the oxSTEF reagents enables "second phase" oxime ligation, which furthermore increases the thiol stability of the conjugates significantly.
Collapse
Affiliation(s)
- Marija Nisavic
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
- Department of Clinical Medicine─Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus N, Denmark
| | - Gustav J Wørmer
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Cecilie S Nielsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Sofie M Jeppesen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine─Research Unit for Molecular Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 82, DK-8200 Aarhus N, Denmark
| | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
17
|
Thoreau F, Rochet LNC, Baker JR, Chudasama V. Enabling the formation of native mAb, Fab' and Fc-conjugates using a bis-disulfide bridging reagent to achieve tunable payload-to-antibody ratios (PARs). Chem Sci 2023; 14:3752-3762. [PMID: 37035695 PMCID: PMC10074397 DOI: 10.1039/d2sc06318b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Either as full IgGs or as fragments (Fabs, Fc, etc.), antibodies have received tremendous attention in the development of new therapeutics such as antibody-drug conjugates (ADCs). The production of ADCs involves the grafting of active payloads onto an antibody, which is generally enabled by the site-selective modification of native or engineered antibodies via chemical or enzymatic methods. Whatever method is employed, controlling the payload-antibody ratio (PAR) is a challenge in terms of multiple aspects including: (i) obtaining homogeneous protein conjugates; (ii) obtaining unusual PARs (PAR is rarely other than 2, 4 or 8); (iii) using a single method to access a range of different PARs; (iv) applicability to various antibody formats; and (v) flexibility for the production of heterofunctional antibody-conjugates (e.g. attachment of multiple types of payloads). In this article, we report a single pyridazinedione-based trifunctional dual bridging linker that enables, in a two-step procedure (re-bridging/click), the generation of either mAb-, Fab'-, or Fc-conjugates from native mAb, (Fab')2 or Fc formats, respectively. Fc and (Fab')2 formats were generated via enzymatic digestion of native mAbs. Whilst the same reduction and re-bridging protocols were applied to all three of the protein formats, the subsequent click reaction(s) employed to graft payload(s) drove the generation of a range of PARs, including heterofunctional PARs. As such, exploiting click reactivity and/or orthogonality afforded mAb-conjugates with PARs of 6, 4, 2 or 4 + 2, and Fab'- and Fc-conjugates with a PAR of 3, 2, 1 or 2 + 1 on-demand. We believe that the homogeneity, novelty and variety in accessible PARs, as well as the applicability to various antibody-conjugate formats enabled by our non-recombinant method could be a suitable tool for antibody-drug conjugates optimisation (optimal PAR value, optimal payloads combination) and boost the development of new antibody therapeutics (Fab'- and Fc-conjugates).
Collapse
Affiliation(s)
- Fabien Thoreau
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Léa N C Rochet
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - James R Baker
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Vijay Chudasama
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
18
|
O WY, Cui JF, Yu Q, Kung KKY, Chung SF, Leung YC, Wong MK. Isoindolium-Based Allenes: Reactivity Studies and Applications in Fluorescence Temperature Sensing and Cysteine Bioconjugation. Angew Chem Int Ed Engl 2023; 62:e202218038. [PMID: 36670048 DOI: 10.1002/anie.202218038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The reaction of a series of electron-deficient isoindolium-based allenes with sulfhydryl compounds has been studied, leading to the formation of isoindolium-based vinyl sulfides. The vinyl sulfides generated could be readily converted into the corresponding indanones and amines upon heating at 30-70 °C with good yields up to 61 %. The thermal cleavage reaction of vinyl sulfides was further studied for developing temperature-sensitive systems. Notably, a novel FRET-based fluorescent temperature sensor was designed and synthesized for temperature sensing at 50 °C, giving a 6.5-fold blue fluorescence enhancement. Moreover, chemoselective bioconjugation of cysteine-containing peptides with the isoindolium-based allenes for the construction of multifunctional peptide bioconjugates was investigated. Thermal cleavage of isoindoliums on the modified peptides at 35-70 °C gave indanone bioconjugates with up to >99 % conversion. These results indicated the biocompatibility of this novel temperature-sensitive reaction.
Collapse
Affiliation(s)
- Wa-Yi O
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jian-Fang Cui
- Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, 518055, China
| | - Qiong Yu
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Karen Ka-Yan Kung
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Sai-Fung Chung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yun-Chung Leung
- Henry Cheng Research Laboratory for Drug Development, Lo Ka Chung Centre for Natural Anti-Cancer Drug Development, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
19
|
Chauhan P, V. R, Kumar M, Molla R, V. B. U, Rai V. Dis integrate (DIN) Theory Enabling Precision Engineering of Proteins. ACS CENTRAL SCIENCE 2023; 9:137-150. [PMID: 36844488 PMCID: PMC9951294 DOI: 10.1021/acscentsci.2c01455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 06/18/2023]
Abstract
The chemical toolbox for the selective modification of proteins has witnessed immense interest in the past few years. The rapid growth of biologics and the need for precision therapeutics have fuelled this growth further. However, the broad spectrum of selectivity parameters creates a roadblock to the field's growth. Additionally, bond formation and dissociation are significantly redefined during the translation from small molecules to proteins. Understanding these principles and developing theories to deconvolute the multidimensional attributes could accelerate the area. This outlook presents a disintegrate (DIN) theory for systematically disintegrating the selectivity challenges through reversible chemical reactions. An irreversible step concludes the reaction sequence to render an integrated solution for precise protein bioconjugation. In this perspective, we highlight the key advancements, unsolved challenges, and potential opportunities.
Collapse
|
20
|
Jin GQ, Wang JX, Lu J, Zhang H, Yao Y, Ning Y, Lu H, Gao S, Zhang JL. Two birds one stone: β-fluoropyrrolyl-cysteine S NAr chemistry enabling functional porphyrin bioconjugation. Chem Sci 2023; 14:2070-2081. [PMID: 36845938 PMCID: PMC9944650 DOI: 10.1039/d2sc06209g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/16/2023] [Indexed: 01/18/2023] Open
Abstract
Bioconjugation, a synthetic tool that endows small molecules with biocompatibility and target specificity through covalent attachment of a biomolecule, holds promise for next-generation diagnosis or therapy. Besides the establishment of chemical bonding, such chemical modification concurrently allows alteration of the physicochemical properties of small molecules, but this has been paid less attention in designing novel bioconjugates. Here, we report a "two birds one stone" methodology for irreversible porphyrin bioconjugation based on β-fluoropyrrolyl-cysteine SNAr chemistry, in which the β-fluorine of porphyrin is selectively replaced by a cysteine in either peptides or proteins to generate novel β-peptidyl/proteic porphyrins. Notably, due to the distinct electronic nature between fluorine and sulfur, such replacement makes the Q band red-shift to the near-infrared region (NIR, >700 nm). This facilitates intersystem crossing (ISC) to enhance the triplet population and thus singlet oxygen production. This new methodology features water tolerance, a fast reaction time (15 min), good chemo-selectivity, and broad substrate scope, including various peptides and proteins under mild conditions. To demonstrate its potential, we applied porphyrin β-bioconjugates in several scenarios, including (1) cytosolic delivery of functional proteins, (2) metabolic glycan labeling, (3) caspase-3 detection, and (4) tumor-targeting phototheranostics.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jing-Xiang Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jianhua Lu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Hang Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Yuhang Yao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Hua Lu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China .,Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China.,Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology Guangzhou 510641 China
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China .,Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| |
Collapse
|
21
|
Upadhyay C, Ojha U. Stress-Induced Shape-Shifting Materials Possessing Autonomous Self-Healing and Scratch-Resistant Ability. Chem Asian J 2023; 18:e202201082. [PMID: 36637865 DOI: 10.1002/asia.202201082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/28/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Covalent adaptable networks (CANs) capable of both shape-shifting and self-healing ability offer a viable alternative to 4D printing technology to gain access to various complex shapes in a simplified manner. However, most of the reported CANs exhibit shape-shifting ability in the presence of temperature, light or chemical stimuli, which restricts their further utilization as realization of such a controlled environment is not feasible under complex scenarios. Herewith, we report a set of CANs based on a room-temperature exchangeable thia-Michael adduct, which undergoes rearrangement in network topology on application of external stress. These CANs with tensile strength (≤6 MPa) and modulus (≤71.4 MPa) adopt to any programmed shape under application of nominal stress. The CANs also exhibit stress-induced recyclability, self-welding and self-healing ability under ambient conditions. The transparency and ambient condition self-healing ability render these CANs to be utilized as scratch-resistant coatings on display items.
Collapse
Affiliation(s)
- Chandan Upadhyay
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Jais, Bahadurpur, UP, 229304, India
| | - Umaprasana Ojha
- Department of Chemistry, Rajiv Gandhi Institute of Petroleum Technology, Jais, Bahadurpur, UP, 229304, India
| |
Collapse
|
22
|
Wan C, Hou Z, Yang D, Zhou Z, Xu H, Wang Y, Dai C, Liang M, Meng J, Chen J, Yin F, Wang R, Li Z. The thiol-sulfoxonium ylide photo-click reaction for bioconjugation. Chem Sci 2023; 14:604-612. [PMID: 36741507 PMCID: PMC9847666 DOI: 10.1039/d2sc05650j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
Visible-light-mediated methods were heavily studied as a useful tool for cysteine-selective bio-conjugation; however, many current methods suffer from bio-incompatible reaction conditions and slow kinetics. To address these challenges, herein, we report a transition metal-free thiol-sulfoxonium ylide photo-click reaction that enables bioconjugation under bio-compatible conditions. The reaction is highly cysteine-selective and generally finished within minutes with naturally occurring riboflavin derivatives as organic photocatalysts. The catalysts and substrates are readily accessible and bench stable and have satisfactory water solubility. As a proof-of-concept study, the reaction was smoothly applied in chemo-proteomic analysis, which provides efficient tools to explore the druggable content of the human proteome.
Collapse
Affiliation(s)
- Chuan Wan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Zhanfeng Hou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Dongyan Yang
- College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering Guangzhou 510225 P. R. China
| | - Ziyuan Zhou
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen 518116 P. R. China
| | - Hongkun Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Yuena Wang
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Chuan Dai
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
| | - Mingchan Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Jun Meng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen 518116 P. R. China
| | - Jiean Chen
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 P. R. China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 P. R. China
| |
Collapse
|
23
|
Abstract
Cysteine bioconjugation serves as a powerful tool in biological research and has been widely used for chemical modification of proteins, constructing antibody-drug conjugates, and enabling cell imaging studies. Cysteine conjugation reactions with fast kinetics and exquisite selectivity have been under heavy pursuit as they would allow clean protein modification with just stoichiometric amounts of reagents, which minimizes side reactions, simplifies purification and broadens functional group tolerance. In this concept, we summarize the recent advances in fast cysteine bioconjugation, and discuss the mechanism and chemical principles that underlie the high efficiencies of the newly developed cysteine reactive reagents.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
24
|
Heide F, Stetefeld J. A Structural Analysis of Proteinaceous Nanotube Cavities and Their Applications in Nanotechnology. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4080. [PMID: 36432365 PMCID: PMC9698212 DOI: 10.3390/nano12224080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Protein nanotubes offer unique properties to the materials science field that allow them to fulfill various functions in drug delivery, biosensors and energy storage. Protein nanotubes are chemically diverse, modular, biodegradable and nontoxic. Furthermore, although the initial design or repurposing of such nanotubes is highly complex, the field has matured to understand underlying chemical and physical properties to a point where applications are successfully being developed. An important feature of a nanotube is its ability to bind ligands via its internal cavities. As ligands of interest vary in size, shape and chemical properties, cavities have to be able to accommodate very specific features. As such, understanding cavities on a structural level is essential for their effective application. The objective of this review is to present the chemical and physical diversity of protein nanotube cavities and highlight their potential applications in materials science, specifically in biotechnology.
Collapse
Affiliation(s)
- Fabian Heide
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| | - Jörg Stetefeld
- Correspondence: (F.H.); (J.S.); Tel.: +1-(204)-332-0853 (F.H.); +1-(204)-474-9731 (J.S.)
| |
Collapse
|
25
|
Hauptstein N, Pouyan P, Wittwer K, Cinar G, Scherf-Clavel O, Raschig M, Licha K, Lühmann T, Nischang I, Schubert US, Pfaller CK, Haag R, Meinel L. Polymer selection impacts the pharmaceutical profile of site-specifically conjugated Interferon-α2a. J Control Release 2022; 348:881-892. [PMID: 35764249 DOI: 10.1016/j.jconrel.2022.05.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/12/2022] [Accepted: 05/15/2022] [Indexed: 12/15/2022]
Abstract
Conjugation of poly(ethylene glycol) (PEG) to biologics is a successful strategy to favorably impact the pharmacokinetics and efficacy of the resulting bioconjugate. We compare bioconjugates synthesized by strain-promoted azide-alkyne cycloaddition (SPAAC) using PEG and linear polyglycerol (LPG) of about 20 kDa or 40 kDa, respectively, with an azido functionalized human Interferon-α2a (IFN-α2a) mutant. Site-specific PEGylation and LPGylation resulted in IFN-α2a bioconjugates with improved in vitro potency compared to commercial Pegasys. LPGylated bioconjugates had faster disposition kinetics despite comparable hydrodynamic radii to their PEGylated analogues. Overall exposure of the PEGylated IFN-α2a with a 40 kDa polymer exceeded Pegasys, which, in return, was similar to the 40 kDa LPGylated conjugates. The study points to an expanded polymer design space through which the selected polymer class may result in a different distribution of the studied bioconjugates.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Paria Pouyan
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Kevin Wittwer
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Gizem Cinar
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Oliver Scherf-Clavel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Martina Raschig
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kai Licha
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christian K Pfaller
- Paul-Ehrlich-Institute, Division of Veterinary Medicine, Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), 97080 Würzburg, Germany.
| |
Collapse
|
26
|
Ren M, Greenberg MM, Zhou C. Participation of Histones in DNA Damage and Repair within Nucleosome Core Particles: Mechanism and Applications. Acc Chem Res 2022; 55:1059-1073. [PMID: 35271268 PMCID: PMC8983524 DOI: 10.1021/acs.accounts.2c00041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
DNA is damaged by various endogenous and exogenous sources, leading to a diverse group of reactive intermediates that yield a complex mixture of products. The initially formed products are often metastable and can react to yield lesions that are more biologically deleterious. Mechanistic studies are frequently carried out on free DNA as the substrate. The observations do not necessarily reflect the reaction environment inside human cells where genomic DNA is condensed as chromatin in the nucleus. Chromatin is made up of monomeric structural units called nucleosomes, which are comprised of DNA wrapped around an octameric core of histone proteins (two copies each of histones H2A, H2B, H3, and H4).This account presents a summary of our work in the past decade on the mechanistic studies of DNA damage and repair in reconstituted nucleosome core particles (NCPs). A series of metastable lesions and reactive intermediates, such as abasic sites (AP), N7-methyl-2'-deoxyguanosine (MdG), and 2'-deoxyadenosin-N6-yl radical (dA•), have been independently generated in a site-specific manner in bottom-up-synthesized NCPs. Detailed mechanistic studies on these NCPs revealed that histones actively participate in DNA damage and repair processes in diverse ways. For instance, nucleophilic residues in the flexible histone N-terminal tails, such as Lys and N-terminal α-amine, react with electrophilic DNA damage and reactive intermediates. In some cases, transient intermediates are produced, leading to the promotion or suppression of damage and repair processes. In other examples, reactions with histones yield reversible or stable DNA-protein cross-links (DPCs). Histones also utilize acidic and basic residues, such as histidine and aspartic acid, to catalyze DNA strand cleavage through general acid/base catalysis. Alternatively, a Tyr in histone plays a vital role in nucleosomal DNA damage and repair via radical transfer. Finally, the reactivity discovered during the mechanistic studies has facilitated the development of new reagents and methods with applications in biotechnology.This research has enriched our knowledge of the roles of histone proteins in DNA damage and repair and their contributions to epigenetics and may have significant biological implications. The residues in histone N-terminal tails that react with DNA lesions also play pivotal roles in regulating the structure and function of chromatin, indicating that there may be cross-talk between DNA damage and repair in eukaryotic cells and epigenetic regulation. Also, in view of the biased amino acid composition of histones, these results provide hints about how the proteins have evolved to minimize their deleterious effects but maximize beneficial ones for maintaining genome integrity. Finally, previously unreported DPCs and histone post-translational modifications have been discovered through this research. The effects of these newly identified lesions on the structure and function of chromatin and their fates inside cells remain to be elucidated.
Collapse
Affiliation(s)
- Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
27
|
Hauptstein N, Meinel L, Lühmann T. Bioconjugation strategies and clinical implications of Interferon-bioconjugates. Eur J Pharm Biopharm 2022; 172:157-167. [PMID: 35149191 DOI: 10.1016/j.ejpb.2022.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 02/08/2023]
Abstract
Interferons (IFN) are immunomodulating, antiviral and antiproliferative cytokines for treatment of multiple indications, including cancer, hepatitis, and autoimmune disease. The first IFNs were discovered in 1957, first approved in 1986, and are nowadays listed in the WHO model list of essential Medicines. Three classes of IFNs are known; IFN-α2a and IFN-β belonging to type-I IFNs, IFN-γ a type-II IFN approved for some hereditary diseases and IFN-λs, which form the newest class of type-III IFNs. IFN-λs were discovered in the last decade with fascinating yet under discovered pharmaceutical potential. This article reviews available IFN drugs, their field and route of application, while also outlining available and future strategies for bioconjugation to further optimize pharmaceutical and clinical performances of all three available IFN classes.
Collapse
Affiliation(s)
- Niklas Hauptstein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany; Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), DE-97080 Würzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, DE-97074, Würzburg, Germany.
| |
Collapse
|
28
|
Wang C, Zhao Y, Zhao J. Recent Advances in Chemical Protein Modification via Cysteine. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
29
|
Protein Modifications: From Chemoselective Probes to Novel Biocatalysts. Catalysts 2021. [DOI: 10.3390/catal11121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chemical reactions can be performed to covalently modify specific residues in proteins. When applied to native enzymes, these chemical modifications can greatly expand the available set of building blocks for the development of biocatalysts. Nucleophilic canonical amino acid sidechains are the most readily accessible targets for such endeavors. A rich history of attempts to design enhanced or novel enzymes, from various protein scaffolds, has paved the way for a rapidly developing field with growing scientific, industrial, and biomedical applications. A major challenge is to devise reactions that are compatible with native proteins and can selectively modify specific residues. Cysteine, lysine, N-terminus, and carboxylate residues comprise the most widespread naturally occurring targets for enzyme modifications. In this review, chemical methods for selective modification of enzymes will be discussed, alongside with examples of reported applications. We aim to highlight the potential of such strategies to enhance enzyme function and create novel semisynthetic biocatalysts, as well as provide a perspective in a fast-evolving topic.
Collapse
|
30
|
Kang MS, Kong TWS, Khoo JYX, Loh TP. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody-drug conjugates. Chem Sci 2021; 12:13613-13647. [PMID: 34760149 PMCID: PMC8549674 DOI: 10.1039/d1sc02973h] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Many fields in chemical biology and synthetic biology require effective bioconjugation methods to achieve their desired functions and activities. Among such biomolecule conjugates, antibody-drug conjugates (ADCs) need a linker that provides a stable linkage between cytotoxic drugs and antibodies, whilst conjugating in a biologically benign, fast and selective fashion. This review focuses on how the development of novel organic synthesis can solve the problems of traditional linker technology. The review shall introduce and analyse the current developments in the modification of native amino acids on peptides or proteins and their applicability to ADC linker. Thereafter, the review shall discuss in detail each endogenous amino acid's intrinsic reactivity and selectivity aspects, and address the research effort to construct an ADC using each conjugation method.
Collapse
Affiliation(s)
- Min Sun Kang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Theresa Wai See Kong
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Joycelyn Yi Xin Khoo
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Teck-Peng Loh
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
31
|
Xu L, Silva MJSA, Gois PMP, Kuan SL, Weil T. Chemoselective cysteine or disulfide modification via single atom substitution in chloromethyl acryl reagents. Chem Sci 2021; 12:13321-13330. [PMID: 34777751 PMCID: PMC8528048 DOI: 10.1039/d1sc03250j] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022] Open
Abstract
The development of bioconjugation chemistry has enabled the combination of various synthetic functionalities to proteins, giving rise to new classes of protein conjugates with functions well beyond what Nature can provide. Despite the progress in bioconjugation chemistry, there are no reagents developed to date where the reactivity can be tuned in a user-defined fashion to address different amino acid residues in proteins. Here, we report that 2-chloromethyl acryl reagents can serve as a simple yet versatile platform for selective protein modification at cysteine or disulfide sites by tuning their inherent electronic properties through the amide or ester linkage. Specifically, the 2-chloromethyl derivatives (acrylamide or acrylate) can be obtained via a simple and easily implemented one-pot reaction based on the coupling reaction between commercially available starting materials with different end-group functionalities (amino group or hydroxyl group). 2-Chloromethyl acrylamide reagents with an amide linkage favor selective modification at the cysteine site with fast reaction kinetics and near quantitative conversations. In contrast, 2-chloromethyl acrylate reagents bearing an ester linkage can undergo two successive Michael reactions, allowing the selective modification of disulfides bonds with high labeling efficiency and good conjugate stability. 2-Chloromethyl acryl derivatives (acrylamides and acrylates) can serve as simple and versatile bioconjugation reagents to achieve site-selective cysteine and disulfide modification on demand and with high efficiency.![]()
Collapse
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany .,Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Maria J S A Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa 1649-003 Lisbon Portugal
| | - Pedro M P Gois
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa 1649-003 Lisbon Portugal
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany .,Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany .,Institute of Inorganic Chemistry I, Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
32
|
Yang B, Kwon I. Chemical Modification of Cysteine with 3-Arylpropriolonitrile Improves the In Vivo Stability of Albumin-Conjugated Urate Oxidase Therapeutic Protein. Biomedicines 2021; 9:biomedicines9101334. [PMID: 34680451 PMCID: PMC8533278 DOI: 10.3390/biomedicines9101334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
3-arylpropiolonitriles (APN) are promising alternatives to maleimide for chemo-selective thiol conjugation, because the reaction product has a remarkably hydrolytic stability compared with that of thiol-maleimide reactions in vitro. However, whether cysteine modification with APN enhances stability in vivo compared to thiol-maleimide reactions remains unclear, probably due to the too short in vivo serum half-life of a protein to observe significant cleavage of thiol-maleimide/-APN reaction products. The conjugation of human serum albumin (HSA) to a therapeutic protein reportedly prolongs the in vivo serum half-life. To evaluate the in vivo stability of the thiol-APN reaction product, we prepared HSA-conjugated Arthrobacter globiformis urate oxidase (AgUox), a therapeutic protein for gout treatment. Site-specific HSA conjugation to AgUox was achieved by combining site-specific incorporation of tetrazine containing an amino acid (frTet) into AgUox and a crosslinker containing trans-cyclooctene and either thiol-maleimide (AgUox-MAL-HSA) or -APN chemistry (AgUox-APN-HSA). Substantial cleavage of the thioester of AgUox-MAL-HSA was observed in vitro, whereas no cleavage of the thiol-APN product of AgUox-APN-HSA was observed. Furthermore, the in vivo serum half-life of AgUox-APN-HSA in the late phase was significantly longer than that of AgUox-MAL-HSA. Overall, these results demonstrate that the thiol-APN chemistry enhanced the in vivo stability of the HSA-conjugated therapeutic protein.
Collapse
|
33
|
Bechtler C, Lamers C. Macrocyclization strategies for cyclic peptides and peptidomimetics. RSC Med Chem 2021; 12:1325-1351. [PMID: 34447937 PMCID: PMC8372203 DOI: 10.1039/d1md00083g] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Peptides are a growing therapeutic class due to their unique spatial characteristics that can target traditionally "undruggable" protein-protein interactions and surfaces. Despite their advantages, peptides must overcome several key shortcomings to be considered as drug leads, including their high conformational flexibility and susceptibility to proteolytic cleavage. As a general approach for overcoming these challenges, macrocyclization of a linear peptide can usually improve these characteristics. Their synthetic accessibility makes peptide macrocycles very attractive, though traditional synthetic methods for macrocyclization can be challenging for peptides, especially for head-to-tail cyclization. This review provides an updated summary of the available macrocyclization chemistries, such as traditional lactam formation, azide-alkyne cycloadditions, ring-closing metathesis as well as unconventional cyclization reactions, and it is structured according to the obtained functional groups. Keeping peptide chemistry and screening in mind, the focus is given to reactions applicable in solution, on solid supports, and compatible with contemporary screening methods.
Collapse
Affiliation(s)
- Clément Bechtler
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| | - Christina Lamers
- Department Pharmaceutical Sciences, University of Basel Klingelbergstr. 50 4056 Basel Switzerland
| |
Collapse
|
34
|
Stieger CE, Franz L, Körlin F, Hackenberger CPR. Diethynyl Phosphinates for Cysteine-Selective Protein Labeling and Disulfide Rebridging. Angew Chem Int Ed Engl 2021; 60:15359-15364. [PMID: 34080747 PMCID: PMC8362001 DOI: 10.1002/anie.202100683] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/17/2021] [Indexed: 12/18/2022]
Abstract
Diethynyl phosphinates were developed as bisfunctional electrophiles for the site-selective modification of peptides, proteins and antibodies. One of their electron-deficient triple bonds reacts selectively with a thiol and positions an electrophilic moiety for a subsequent intra- or intermolecular reaction with another thiol. The obtained conjugates were found to be stable in human plasma and in the presence of small thiols. We further demonstrate that this method is suitable for the generation of functional protein conjugates for intracellular delivery. Finally, this reagent class was used to generate functional homogeneously rebridged antibodies that remain specific for their target. Their modular synthesis, thiol selectivity and conjugate stability make diethynyl phosphinates ideal candidates for protein conjugation for biological and pharmaceutical applications.
Collapse
Affiliation(s)
- Christian E. Stieger
- Chemical Biology DepartmentLeibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Roessle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Luise Franz
- Chemical Biology DepartmentLeibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Roessle-Strasse 1013125BerlinGermany
| | - Frieder Körlin
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| | - Christian P. R. Hackenberger
- Chemical Biology DepartmentLeibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP)Campus Berlin-Buch, Robert-Roessle-Strasse 1013125BerlinGermany
- Department of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Strasse 212489BerlinGermany
| |
Collapse
|
35
|
Stieger CE, Franz L, Körlin F, Hackenberger CPR. Diethinylphosphinate für die Cystein‐selektive Proteinmarkierung und Disulfid‐Verbrückung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christian E. Stieger
- Department Chemische Biologie II Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch Robert-Roessle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Luise Franz
- Department Chemische Biologie II Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch Robert-Roessle-Straße 10 13125 Berlin Deutschland
| | - Frieder Körlin
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| | - Christian P. R. Hackenberger
- Department Chemische Biologie II Leibniz-Forschungsinstitut für Molekulare Pharmakologie, im Forschungsverbund Berlin e.V. (FMP) Campus Berlin-Buch Robert-Roessle-Straße 10 13125 Berlin Deutschland
- Institut für Chemie Humboldt-Universität zu Berlin Brook-Taylor-Straße 2 12489 Berlin Deutschland
| |
Collapse
|
36
|
Xu L, Kuan SL, Weil T. Contemporary Approaches for Site-Selective Dual Functionalization of Proteins. Angew Chem Int Ed Engl 2021; 60:13757-13777. [PMID: 33258535 PMCID: PMC8248073 DOI: 10.1002/anie.202012034] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/16/2022]
Abstract
Site-selective protein functionalization serves as an invaluable tool for investigating protein structures and functions in complicated cellular environments and accomplishing semi-synthetic protein conjugates such as traceable therapeutics with improved features. Dual functionalization of proteins allows the incorporation of two different types of functionalities at distinct location(s), which greatly expands the features of native proteins. The attachment and crosstalk of a fluorescence donor and an acceptor dye provides fundamental insights into the folding and structural changes of proteins upon ligand binding in their native cellular environments. Moreover, the combination of drug molecules with different modes of action, imaging agents or stabilizing polymers provides new avenues to design precision protein therapeutics in a reproducible and well-characterizable fashion. This review aims to give a timely overview of the recent advancements and a future perspective of this relatively new research area. First, the chemical toolbox for dual functionalization of proteins is discussed and compared. The strengths and limitations of each strategy are summarized in order to enable readers to select the most appropriate method for their envisaged applications. Thereafter, representative applications of these dual-modified protein bioconjugates benefiting from the synergistic/additive properties of the two synthetic moieties are highlighted.
Collapse
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tanja Weil
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Institute of Inorganic Chemistry IUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
37
|
Asiimwe N, Al Mazid MF, Murale DP, Kim YK, Lee J. Recent advances in protein modifications techniques for the targeting
N‐terminal
cysteine. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Nicholas Asiimwe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | | | | | - Yun Kyung Kim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST) Seoul Korea
- Bio‐Med Program, KIST‐School UST Seoul Korea
| | - Jun‐Seok Lee
- Department of Pharmacology Korea University College of Medicine Seoul Korea
| |
Collapse
|
38
|
De Geyter E, Antonatou E, Kalaitzakis D, Smolen S, Iyer A, Tack L, Ongenae E, Vassilikogiannakis G, Madder A. 5-Hydroxy-pyrrolone based building blocks as maleimide alternatives for protein bioconjugation and single-site multi-functionalization. Chem Sci 2021; 12:5246-5252. [PMID: 34163760 PMCID: PMC8179572 DOI: 10.1039/d0sc05881e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
Recent dramatic expansion in potential uses of protein conjugates has fueled the development of a wide range of protein modification methods; however, the desirable single-site multi-functionalization of proteins has remained a particularly intransigent challenge. Herein, we present the application of 5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones (5HP2Os) as advantageous alternatives to widely used maleimides for the chemo- and site-selective labeling of cysteine residues within proteins. A variety of 5HP2O building blocks have been synthesized using a one-pot photooxidation reaction starting from simple and readily accessible furans and using visible light and oxygen. These novel reagents display excellent cysteine selectivity and also yield thiol conjugates with superior stability. 5HP2O building blocks offer a unique opportunity to introduce multiple new functionalities into a protein at a single site and in a single step, thus, significantly enhancing the resultant conjugate's properties.
Collapse
Affiliation(s)
- Ewout De Geyter
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Eirini Antonatou
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete Vasilika Vouton 71003 Iraklion Crete Greece
| | - Sabina Smolen
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Abhishek Iyer
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Laure Tack
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | - Emiel Ongenae
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| | | | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group OBCR, Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University Krijgslaan 281 S4 9000 Ghent Belgium
| |
Collapse
|
39
|
Xu L, Kuan SL, Weil T. Contemporary Approaches for Site‐Selective Dual Functionalization of Proteins. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lujuan Xu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Seah Ling Kuan
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Institute of Inorganic Chemistry I Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
40
|
Li J, Deng JJ, Yin Z, Hu QL, Ge Y, Song Z, Zhang Y, Chan ASC, Li H, Xiong XF. Cleavable and tunable cysteine-specific arylation modification with aryl thioethers. Chem Sci 2021; 12:5209-5215. [PMID: 34168774 PMCID: PMC8179606 DOI: 10.1039/d0sc06576e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 12/29/2022] Open
Abstract
Cysteine represents an attractive target for peptide/protein modification due to the intrinsic high nucleophilicity of the thiol group and low natural abundance. Herein, a cleavable and tunable covalent modification approach for cysteine containing peptides/proteins with our newly designed aryl thioethers via a S N Ar approach was developed. Highly efficient and selective bioconjugation reactions can be carried out under mild and biocompatible conditions. A series of aryl groups bearing different bioconjugation handles, affinity or fluorescent tags are well tolerated. By adjusting the skeleton and steric hindrance of aryl thioethers slightly, the modified products showed a tunable profile for the regeneration of the native peptides.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jun-Jie Deng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhibin Yin
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Qi-Long Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Zhendong Song
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ying Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Albert S C Chan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Huilin Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
41
|
Abstract
Bispecific antibodies (bsAbs) target two different epitopes. These are an up-and-coming class of biologics, with two such therapeutics (emicizumab and blinatumomab) FDA approved and on the market, and many more in clinical trials. While the first reported bsAbs were constructed by chemical methods, this approach has fallen out of favour with the advent of modern genetic engineering techniques and, nowadays, the vast majority of bsAbs are produced by protein engineering. However, in recent years, relying on innovations in the fields of bioconjugation and bioorthogonal click chemistry, new chemical methods have appeared that have the potential to be competitive with protein engineering techniques and, indeed, hold some advantages. These approaches offer modularity, reproducibility and batch-to-batch consistency, as well as the integration of handles, whereby additional cargo molecules can be attached easily, e.g. to generate bispecific antibody-drug conjugates. The linker between the antibodies/antibody fragments can also be easily varied, and new formats (types, defined by structural properties or by construction methodology) can be generated rapidly. These attributes offer the potential to revolutionize the field. Here, we review chemical methods for the generation of bsAbs, showing that the newest examples of these techniques are worthy competitors to the industry-standard expression-based strategies.
Collapse
|
42
|
Matsuda Y, Mendelsohn BA. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2020; 21:963-975. [PMID: 33141625 DOI: 10.1080/14712598.2021.1846714] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: We discuss chemical conjugation strategies for antibody-drug conjugates (ADCs) from an industrial perspective and compare three promising chemical conjugation technologies to produce site-specific ADCs.Areas covered: Currently, nine ADCs are commercially approved and all are produced by chemical conjugation technology. However, seven of these ADCs contain a relatively broad drug distribution, potentially limiting their therapeutic indices. In 2019, the first site-specific ADC was launched on the market by Daiichi-Sankyo. This achievement, and an analysis of clinical trials over the last decade, indicates that current industrial interest in the ADC field is shifting toward site-specific conjugation technologies. From an industrial point of view, we aim to provide guidance regarding established conjugation methodologies that have already been applied to scale-up stages. With an emphasis on highly productive, scalable, and synthetic process robustness, conjugation methodologies for ADC production is discussed herein.Expert opinion: All three chemical conjugation technologies described in this review have various advantages and disadvantages, therefore drug developers can utilize these depending on their biological and/or protein targets. The future landscape of the ADC field is also discussed.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Brian A Mendelsohn
- Process Development & Tech Transfer, Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA 92121, United States
| |
Collapse
|
43
|
Structural and physical analysis of underwater silk from housing nest composites of a tropical chironomid midge. Int J Biol Macromol 2020; 163:934-942. [DOI: 10.1016/j.ijbiomac.2020.07.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/04/2023]
|
44
|
Choi H, Kim M, Jang J, Hong S. Visible‐Light‐Induced Cysteine‐Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angew Chem Int Ed Engl 2020; 59:22514-22522. [DOI: 10.1002/anie.202010217] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Myojeong Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Jaebong Jang
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
45
|
Choi H, Kim M, Jang J, Hong S. Visible‐Light‐Induced Cysteine‐Specific Bioconjugation: Biocompatible Thiol–Ene Click Chemistry. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hangyeol Choi
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Myojeong Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Jaebong Jang
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
46
|
Huang R, Sheng Y, Wei D, Lu W, Xu Z, Chen H, Jiang B. Divinylsulfonamides enable the construction of homogeneous antibody-drug conjugates. Bioorg Med Chem 2020; 28:115793. [PMID: 33039798 DOI: 10.1016/j.bmc.2020.115793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/24/2023]
Abstract
Methods that site-specifically attach payloads to an antibody with controlled DAR (Drug-Antibody Ratio) are highly desirable for the generation of homogeneous antibody-drug conjugates (ADCs). We describe the use of N-phenyl-divinylsulfonamide scaffold as a linker platform to site-specifically construct homogeneous DAR four ADCs through a disulfide re-bridging approach. Several monomethyl auristatin E (MMAE)-linkers were synthesized and the drug-linkers that contain electron-donating groups on the phenyl of the linker showed high stability. Her2-targeted MMAE-linker-herceptin and EGFR targeted MMAE-linker-cetuximab conjugates were prepared. The conjugates demonstrated high efficacy and selectivity for killing target-positive cancer cells in vitro. The EGFR-targeted conjugates also showed significant antitumor activities in vivo.
Collapse
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yao Sheng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Ding Wei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China; Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Wenwen Lu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Zili Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| |
Collapse
|