1
|
Zhang Q, Song J, Sun M, Xu T, Li S, Fu X, Yin R. RNF113A as a poor prognostic factor promotes metastasis and invasion of cervical cancer through miR197/PRP19/P38MAPK signaling pathway. Arch Biochem Biophys 2024; 761:110139. [PMID: 39242014 DOI: 10.1016/j.abb.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
It has been discovered that aberrant expression of RNF113A plays a significant role in various diseases, including esophageal cancer, hepatocellular carcinoma, and X-linked trichothiodystrophy syndrome. Nevertheless, its functional implications in cervical cancer (CC) remain unclear. The objective of this study was to investigate the role of RNF113A in both the development and prognosis of CC. To achieve this objective, a total of sixty cases were included in the follow-up investigation. The findings revealed a significant up-regulation of RNF113A protein in CC tissues compared to paired paracancerous tissues, and a high expression level of RNF113A was strongly associated with malignant phenotypes such as lymph node metastasis, differentiation degree, depth of invasion, and FIGO stage. Meanwhile, RNF113A was found to be an independent prognostic risk factor, with its high expression significantly correlating with a reduced overall survival period in patients. To elucidate the underlying cause and mechanism of the unfavorable prognosis associated with RNF113A, comprehensive functional investigations were conducted both in vitro and in vivo.Interestingly, it was revealed that RNF113A promoted migration and invasion while inhibiting apoptosis of CC cells, thereby contributing to a poor prognosis. Mechanistically, RNF113A regulated the progression and prognosis of CC through the miR197/Prp19/p38Mark signaling pathway. Overall, our findings underscore the potential clinical significance of RNF113A as an unfavorable prognostic factor in CC.
Collapse
Affiliation(s)
- Qingwei Zhang
- The Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Jiayu Song
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China
| | - Mingzhen Sun
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China
| | - Tenghan Xu
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China; Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China
| | - Suhong Li
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China; Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China
| | - Xiuhong Fu
- Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China; Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China
| | - Rutie Yin
- The Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| |
Collapse
|
2
|
Yang G, Yang Y, Song Z, Chen L, Liu F, Li Y, Jiang S, Xue S, Pei J, Wu Y, He Y, Chu B, Wu H. Spliceosomal GTPase Eftud2 deficiency-triggered ferroptosis leads to Purkinje cell degeneration. Neuron 2024; 112:3452-3469.e9. [PMID: 39153477 DOI: 10.1016/j.neuron.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/20/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
Spliceosomal GTPase elongation factor Tu GTP binding domain containing 2 (EFTUD2) is a causative gene for mandibulofacial dysostosis with microcephaly (MFDM) syndrome comprising cerebellar hypoplasia and motor dysfunction. How EFTUD2 deficiency contributes to these symptoms remains elusive. Here, we demonstrate that specific ablation of Eftud2 in cerebellar Purkinje cells (PCs) in mice results in severe ferroptosis, PC degeneration, dyskinesia, and cerebellar atrophy, which recapitulates phenotypes observed in patients with MFDM. Mechanistically, Eftud2 promotes Scd1 and Gch1 expression, upregulates monounsaturated fatty acid phospholipids, and enhances antioxidant activity, thereby suppressing PC ferroptosis. Importantly, we identified transcription factor Atf4 as a downstream target to regulate anti-ferroptosis effects in PCs in a p53-independent manner. Inhibiting ferroptosis efficiently rescued cerebellar deficits in Eftud2 cKO mice. Our data reveal an important role of Eftud2 in maintaining PC survival, showing that pharmacologically or genetically inhibiting ferroptosis may be a promising therapeutic strategy for EFTUD2 deficiency-induced disorders.
Collapse
Affiliation(s)
- Guochao Yang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China
| | - Yinghong Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China
| | - Zhihong Song
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Liping Chen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Fengjiao Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Shaofei Jiang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Saisai Xue
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Jie Pei
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yan Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China
| | - Yuanlin He
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, 211166 Nanjing, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 250100 Jinan, China.
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, 100850 Beijing, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, 226019 Nantong, China; Chinese Institute for Brain Research, 102206 Beijing, China.
| |
Collapse
|
3
|
Shender VO, Anufrieva KS, Shnaider PV, Arapidi GP, Pavlyukov MS, Ivanova OM, Malyants IK, Stepanov GA, Zhuravlev E, Ziganshin RH, Butenko IO, Bukato ON, Klimina KM, Veselovsky VA, Grigorieva TV, Malanin SY, Aleshikova OI, Slonov AV, Babaeva NA, Ashrafyan LA, Khomyakova E, Evtushenko EG, Lukina MM, Wang Z, Silantiev AS, Nushtaeva AA, Kharlampieva DD, Lazarev VN, Lashkin AI, Arzumanyan LK, Petrushanko IY, Makarov AA, Lebedeva OS, Bogomazova AN, Lagarkova MA, Govorun VM. Therapy-induced secretion of spliceosomal components mediates pro-survival crosstalk between ovarian cancer cells. Nat Commun 2024; 15:5237. [PMID: 38898005 PMCID: PMC11187153 DOI: 10.1038/s41467-024-49512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Ovarian cancer often develops resistance to conventional therapies, hampering their effectiveness. Here, using ex vivo paired ovarian cancer ascites obtained before and after chemotherapy and in vitro therapy-induced secretomes, we show that molecules secreted by ovarian cancer cells upon therapy promote cisplatin resistance and enhance DNA damage repair in recipient cancer cells. Even a short-term incubation of chemonaive ovarian cancer cells with therapy-induced secretomes induces changes resembling those that are observed in chemoresistant patient-derived tumor cells after long-term therapy. Using integrative omics techniques, we find that both ex vivo and in vitro therapy-induced secretomes are enriched with spliceosomal components, which relocalize from the nucleus to the cytoplasm and subsequently into the extracellular vesicles upon treatment. We demonstrate that these molecules substantially contribute to the phenotypic effects of therapy-induced secretomes. Thus, SNU13 and SYNCRIP spliceosomal proteins promote therapy resistance, while the exogenous U12 and U6atac snRNAs stimulate tumor growth. These findings demonstrate the significance of spliceosomal network perturbation during therapy and further highlight that extracellular signaling might be a key factor contributing to the emergence of ovarian cancer therapy resistance.
Collapse
Affiliation(s)
- Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Georgij P Arapidi
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Irina K Malyants
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Grigory A Stepanov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Evgenii Zhuravlev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Rustam H Ziganshin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation
| | - Ivan O Butenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Olga N Bukato
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Ksenia M Klimina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vladimir A Veselovsky
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | | | | | - Olga I Aleshikova
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | - Andrey V Slonov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Nataliya A Babaeva
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | - Lev A Ashrafyan
- National Medical Scientific Centre of Obstetrics, Gynaecology and Perinatal Medicine named after V.I. Kulakov, Moscow, 117198, Russian Federation
- Russian Research Center of Roentgenology and Radiology, Moscow, 117997, Russian Federation
| | | | - Evgeniy G Evtushenko
- Faculty of Chemistry; Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Zixiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Cheeloo College of Medicine, Shandong University; Jinan, 250012, Shandong, China
| | - Artemiy S Silantiev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anna A Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russian Federation
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vassili N Lazarev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Arseniy I Lashkin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Lorine K Arzumanyan
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russian Federation
| | - Olga S Lebedeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Alexandra N Bogomazova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Maria A Lagarkova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Vadim M Govorun
- Research Institute for Systems Biology and Medicine, Moscow, 117246, Russian Federation
| |
Collapse
|
4
|
Zhang XY, Li SS, Gu YR, Xiao LX, Ma XY, Chen XR, Wang JL, Liao CH, Lin BL, Huang YH, Lian YF. CircPIAS1 promotes hepatocellular carcinoma progression by inhibiting ferroptosis via the miR-455-3p/NUPR1/FTH1 axis. Mol Cancer 2024; 23:113. [PMID: 38802795 PMCID: PMC11131253 DOI: 10.1186/s12943-024-02030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND The role of circRNAs in hepatocellular carcinoma (HCC) progression remains unclear. CircPIAS1 (circBase ID: hsa_circ_0007088) was identified as overexpressed in HCC cases through bioinformatics analysis. This study aimed to investigate the oncogenic properties and mechanisms of circPIAS1 in HCC development. METHODS Functional analyses were conducted to assess circPIAS1's impact on HCC cell proliferation, migration, and ferroptosis. Xenograft mouse models were employed to evaluate circPIAS1's effects on tumor growth and pulmonary metastasis in vivo. Bioinformatics analysis, RNA immunoprecipitation, and luciferase reporter assays were utilized to elucidate the molecular pathways influenced by circPIAS1. Additional techniques, including RNA pulldown, fluorescence in situ hybridization (FISH), chromatin immunoprecipitation (ChIP), qPCR, and western blotting, were used to further explore the underlying mechanisms. RESULTS CircPIAS1 expression was elevated in HCC tissues and cells. Silencing circPIAS1 suppressed HCC cell proliferation and migration both in vitro and in vivo. Mechanically, circPIAS1 overexpression inhibited ferroptosis by competitively binding to miR-455-3p, leading to upregulation of Nuclear Protein 1 (NUPR1). Furthermore, NUPR1 promoted FTH1 transcription, enhancing iron storage in HCC cells and conferring resistance to ferroptosis. Treatment with ZZW-115, an NUPR1 inhibitor, reversed the tumor-promoting effects of circPIAS1 and sensitized HCC cells to lenvatinib. CONCLUSION This study highlights the critical role of circPIAS1 in HCC progression through modulation of ferroptosis. Targeting the circPIAS1/miR-455-3p/NUPR1/FTH1 regulatory axis may represent a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shan-Shan Li
- Department of Medical Oncology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yu-Rong Gu
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le-Xin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Yi Ma
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xin-Ru Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jia-Liang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chun-Hong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bing-Liang Lin
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, China.
| | - Yue-Hua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Yi-Fan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Cho N, Kim YE, Lee Y, Choi DW, Park C, Kim JH, Kim KI, Kim KK. Effect of RNF113A deficiency on oxidative stress-induced NRF2 pathway. Anim Cells Syst (Seoul) 2024; 28:261-271. [PMID: 38741949 PMCID: PMC11089925 DOI: 10.1080/19768354.2024.2349758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024] Open
Abstract
The ring finger protein 113A (RNF113A) serves as an E3 ubiquitin ligase and a subunit of the spliceosome. Mutations in the RNF113A gene are associated with X-linked trichothiodystrophy (TTD). However, the cellular roles of RNF113A remain largely unknown. In this study, we performed transcriptome profiling of RNF113A knockout (KO) HeLa cells using RNA sequencing and revealed the upregulation of NRF2 pathway-associated genes. Further analysis confirmed that the KO of RNF113A promotes nuclear localization of the NRF2 protein and elevates the mRNA levels of NRF2 target genes. RNF113A KO cells showed high levels of intracellular reactive oxygen species (ROS) and decreased resistance to cell death following H2O2 treatment. Additionally, RNF113A KO cells more sensitively formed stress granules (SGs) under arsenite-induced oxidative stress. Moreover, RNF113A KO cells exhibited a decrease in glutathione levels, which could be attributed to a reduction in GLUT1 expression levels, leading to decreased glucose uptake reactions and lower intracellular glucose levels. These alterations potentially caused a reduction in ROS scavenging activity. Taken together, our findings suggest that the loss of RNF113A promotes oxidative stress-mediated activation of the NRF2 pathway, providing novel insights into RNF113A-associated human diseases.
Collapse
Affiliation(s)
- Namjoon Cho
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yong-Eun Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| | - Yunkyeong Lee
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Dong Wook Choi
- Division of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Chungoo Park
- School of Biological Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Jung-Hwan Kim
- Department of Pharmacology, School of Medicine, Institute of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun Il Kim
- Department of Biological Sciences, Sookmyung Women’s University, Seoul, Republic of Korea
| | - Kee K. Kim
- Department of Biochemistry, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
6
|
Zhang Q, Xia Y, Wang F, Yang D, Liang Z. Induction of ferroptosis by natural products in non-small cell lung cancer: a comprehensive systematic review. Front Pharmacol 2024; 15:1385565. [PMID: 38751790 PMCID: PMC11094314 DOI: 10.3389/fphar.2024.1385565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Lung cancer is one of the leading causes of cancer-related deaths worldwide that presents a substantial peril to human health. Non-Small Cell Lung Cancer (NSCLC) is a main subtype of lung cancer with heightened metastasis and invasion ability. The predominant treatment approaches currently comprise surgical interventions, chemotherapy regimens, and radiotherapeutic procedures. However, it poses significant clinical challenges due to its tumor heterogeneity and drug resistance, resulting in diminished patient survival rates. Therefore, the development of novel treatment strategies for NSCLC is necessary. Ferroptosis was characterized by iron-dependent lipid peroxidation and the accumulation of lipid reactive oxygen species (ROS), leading to oxidative damage of cells and eventually cell death. An increasing number of studies have found that exploiting the induction of ferroptosis may be a potential therapeutic approach in NSCLC. Recent investigations have underscored the remarkable potential of natural products in the cancer treatment, owing to their potent activity and high safety profiles. Notably, accumulating evidences have shown that targeting ferroptosis through natural compounds as a novel strategy for combating NSCLC holds considerable promise. Nevertheless, the existing literature on comprehensive reviews elucidating the role of natural products inducing the ferroptosis for NSCLC therapy remains relatively sparse. In order to furnish a valuable reference and support for the identification of natural products inducing ferroptosis in anti-NSCLC therapeutics, this article provided a comprehensive review explaining the mechanisms by which natural products selectively target ferroptosis and modulate the pathogenesis of NSCLC.
Collapse
Affiliation(s)
| | | | | | | | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
7
|
Chen Q, Wang L, Wei Y, Xu X, Guo X, Liang Q. Ferroptosis as a Potential Therapeutic Target for Reducing Inflammation and Corneal Scarring in Bacterial Keratitis. Invest Ophthalmol Vis Sci 2024; 65:29. [PMID: 38381413 PMCID: PMC10893897 DOI: 10.1167/iovs.65.2.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
Purpose Bacterial keratitis (BK) is a serious ocular infection that can cause severe inflammation and corneal scarring, leading to vision loss. In this study, we aimed to investigate the involvement of ferroptosis in the pathogenesis of BK. Methods Transcriptome analysis was performed to evaluate ferroptosis-related gene expression in human BK corneas. Subsequently, the ferroptosis in mouse models of Pseudomonas aeruginosa keratitis and corneal stromal stem cells (CSSCs) were validated. The mice were treated with levofloxacin (LEV) or levofloxacin combined with ferrostatin-1 (LEV+Fer-1). CSSCs were treated with lipopolysaccharide (LPS) or LPS combined Fer-1. Inflammatory cytokines, α-SMA, and ferroptosis-related regulators were evaluated by RT-qPCR, immunostaining, and Western blot. Iron and reactive oxygen species (ROS) were measured. Results Transcriptome analysis revealed significant alterations in ferroptosis-related genes in human BK corneas. In the BK mouse models, the group treated with LEV+Fer-1 exhibited reduced inflammatory cytokines (MPO, TNF-α, and IFN-γ), decreased corneal scarring and α-SMA expression, and lower Fe3+ compared to the BK and LEV groups. Notably, the LEV+Fer-1 group showed elevated GPX4 and SLC7A11 in contrast to the BK and LEV group. In vitro, Fer-1 treatment effectively restored the alterations of ROS, Fe2+, GPX4, and SLC7A11 induced by LPS in CSSCs. Conclusions Ferroptosis plays a crucial role in the pathogenesis of BK. The inhibition of ferroptosis holds promise for mitigating inflammation, reducing corneal scarring, and ultimately enhancing the prognosis of BK. Consequently, this study provides a potential target for innovative therapeutic strategies for BK, which holds immense potential to transform the treatment of BK.
Collapse
Affiliation(s)
- Qiankun Chen
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Leying Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Yuan Wei
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Xizhan Xu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Xiaoyan Guo
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| | - Qingfeng Liang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing, China
| |
Collapse
|
8
|
Zhang H, Xie P. The mechanisms of microcystin-LR-induced genotoxicity and neurotoxicity in fish and mammals: Bibliometric analysis and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167018. [PMID: 37709090 DOI: 10.1016/j.scitotenv.2023.167018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a typical cyanobacterial toxin, and the threat of this toxin is increasing among organisms. Despite extensive toxicological studies on MC-LR, there is no comprehensive analysis based on previously published data. Therefore, we conducted bibliometric analysis and meta-analysis to identify research hotspots and to elucidate the key mechanism of the relationship between MC-LR and genotoxicity and neurotoxicity among fish and mammals. One of the hotspots is toxic mechanisms (indicated by the frequent appearance of oxidative stress, DNA damage, apoptosis, neurotoxicity, genotoxicity, ROS, comet assay, signalling pathway, and gene expression indicate as keywords). The density visualization shows a high frequency of "microcystin-LR" and "toxicology," and the overlay visualization emphasizes the prominence of "neurotoxicity" in recent years. These findings confirm the importance of studying MC-LR toxicity. Meta-analysis indicated that in both fish and mammals, MC-LR exposure increased ROS levels by 294 % and increased DNA damage biomarkers by 174 % but decreased neurotoxicity biomarkers by 9 %. Intergroup comparisons revealed that the exposure concentration of MC-LR was significantly correlated with genotoxicity and neurotoxicity levels in both fish and mammals (p < 0.05). Furthermore, the random forest (RF) model revealed that exposure concentration was the primary determinant associated with the induction of ROS, genotoxicity, and neurotoxicity induced by MC-LR. This is likely the dominant mechanism by which excessive ROS production induced by MC-LR causes oxidative stress, ultimately leading to genotoxicity and neurotoxicity in both fish and mammals.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
9
|
Cheng KP, Shen WX, Jiang YY, Chen Y, Chen YZ, Tan Y. Deep learning of 2D-Restructured gene expression representations for improved low-sample therapeutic response prediction. Comput Biol Med 2023; 164:107245. [PMID: 37480677 DOI: 10.1016/j.compbiomed.2023.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/24/2023]
Abstract
Clinical outcome prediction is important for stratified therapeutics. Machine learning (ML) and deep learning (DL) methods facilitate therapeutic response prediction from transcriptomic profiles of cells and clinical samples. Clinical transcriptomic DL is challenged by the low-sample sizes (34-286 subjects), high-dimensionality (up to 21,653 genes) and unordered nature of clinical transcriptomic data. The established methods rely on ML algorithms at accuracy levels of 0.6-0.8 AUC/ACC values. Low-sample DL algorithms are needed for enhanced prediction capability. Here, an unsupervised manifold-guided algorithm was employed for restructuring transcriptomic data into ordered image-like 2D-representations, followed by efficient DL of these 2D-representations with deep ConvNets. Our DL models significantly outperformed the state-of-the-art (SOTA) ML models on 82% of 17 low-sample benchmark datasets (53% with >0.05 AUC/ACC improvement). They are more robust than the SOTA models in cross-cohort prediction tasks, and in identifying robust biomarkers and response-dependent variational patterns consistent with experimental indications.
Collapse
Affiliation(s)
- Kai Ping Cheng
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, PR China
| | - Wan Xiang Shen
- Bioinformatics and Drug Design Group, Department of Pharmacy, Center for Computational Science and Engineering, National University of Singapore, 117543, Singapore
| | - Yu Yang Jiang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Yan Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Yu Zong Chen
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, 518132, PR China.
| | - Ying Tan
- The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China; The Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, PR China; Shenzhen Kivita Innovative Drug Discovery Institute, Shenzhen, 518110, PR China.
| |
Collapse
|
10
|
Townley BA, Buerer L, Tsao N, Bacolla A, Mansoori F, Rusanov T, Clark N, Goodarzi N, Schmidt N, Srivatsan SN, Sun H, Sample RA, Brickner JR, McDonald D, Tsai MS, Walter MJ, Wozniak DF, Holehouse AS, Pena V, Tainer JA, Fairbrother WG, Mosammaparast N. A functional link between lariat debranching enzyme and the intron-binding complex is defective in non-photosensitive trichothiodystrophy. Mol Cell 2023; 83:2258-2275.e11. [PMID: 37369199 PMCID: PMC10483886 DOI: 10.1016/j.molcel.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/25/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
The pre-mRNA life cycle requires intron processing; yet, how intron-processing defects influence splicing and gene expression is unclear. Here, we find that TTDN1/MPLKIP, which is encoded by a gene implicated in non-photosensitive trichothiodystrophy (NP-TTD), functionally links intron lariat processing to spliceosomal function. The conserved TTDN1 C-terminal region directly binds lariat debranching enzyme DBR1, whereas its N-terminal intrinsically disordered region (IDR) binds the intron-binding complex (IBC). TTDN1 loss, or a mutated IDR, causes significant intron lariat accumulation, as well as splicing and gene expression defects, mirroring phenotypes observed in NP-TTD patient cells. A Ttdn1-deficient mouse model recapitulates intron-processing defects and certain neurodevelopmental phenotypes seen in NP-TTD. Fusing DBR1 to the TTDN1 IDR is sufficient to recruit DBR1 to the IBC and circumvents the functional requirement for TTDN1. Collectively, our findings link RNA lariat processing with splicing outcomes by revealing the molecular function of TTDN1.
Collapse
Affiliation(s)
- Brittany A Townley
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Luke Buerer
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Ning Tsao
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Fadhel Mansoori
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timur Rusanov
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathanial Clark
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Negar Goodarzi
- Mechanisms and Regulation of Splicing Research Group, The Institute of Cancer Research, London, UK
| | - Nicolas Schmidt
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Hua Sun
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Reilly A Sample
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua R Brickner
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Drew McDonald
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miaw-Sheue Tsai
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew J Walter
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO 63110-1093, USA
| | - Alex S Holehouse
- Department of Biochemistry & Molecular Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA; Center for Science and Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Vladimir Pena
- Mechanisms and Regulation of Splicing Research Group, The Institute of Cancer Research, London, UK
| | - John A Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - William G Fairbrother
- Center for Computational Molecular Biology, Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02912, USA; Hassenfeld Child Health Innovation Institute of Brown University, Providence, RI 02912, USA.
| | - Nima Mosammaparast
- Department of Pathology & Immunology, Center for Genome Integrity, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
11
|
Zhang Q, Song J, Cao L, Sun M, Xu T, Yang S, Li S, Wang H, Fu X. RNF113A targeted by miR-197 promotes proliferation and inhibits autophagy via CXCR4/CXCL12/AKT/ERK/Beclin1 axis in cervical cancer. Exp Cell Res 2023; 428:113632. [PMID: 37164050 DOI: 10.1016/j.yexcr.2023.113632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/12/2023]
Abstract
Ring Finger Protein 113 (RNF113A), an ubiquitin E3 ligase, is genetically associated with many biological processes, including proliferation, differentiation, cell death, and neurogenesis. Recently, RNF113A has been found to be an abnormal expression in many diseases, such as X-linked trichothiodystrophy syndrome and esophageal cancer. Here, we explore the potential mechanism of RNF113A in the progression of cervical cancer (CC). In this study, we evaluated the expression level and biological function of RNF113A in CC both in vitro and in vivo by bioinformatic prediction, DIA proteomic analysis, compensation experiment, Co-IP, dual-luciferase reporter assay and nude mouse xenograft to identify the RNF113A-associated autophagy pathways involved with tumorigenesis. Consistent with the prediction from biological information analysis, we found that RNF113A was highly expressed in human CC tissues and cells. In addition, this study illustrated that the high expression of RNF113A dramatically promoted proliferation and suppressed autophagy both in vitro and in vivo. In contrast, low expression of RNF113A enhanced autophagy activities and inhibited tumor growth in CC. We also found that miRNA-197, the level of which (negative correlation with RNF113A) declined in human CC, directly restrained the expression of RNF113A. Mechanistically, proteomic and mechanistic assays uncovered that RNF113A confirmed as the direct downstream target of miR-197, promoted proliferation and restrained autophagy in CC not through direct ubiquitination degradation of autophagy marker Beclin1 but via CXCR4/CXCL12/AKT/ERK/Beclin1 signal transduction axis. In summary, we found a new miR-197/RNF113 A/CXCR4/CXCL12/AKT/ERK/Beclin1 regulation pathway that plays an important part in the survival and progression of CC.
Collapse
Affiliation(s)
- Qingwei Zhang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Jiayu Song
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China; School of Pharmaceutical Science, Shanxi Medical University, Taiyuan, 030001, China.
| | - Liejia Cao
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Mingzheng Sun
- Department of Pharmacology, Luohe Medical College, Luohe, 462000, Henan, China
| | - Tenghan Xu
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Shaozhe Yang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Suhong Li
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Huifen Wang
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China
| | - Xiuhong Fu
- Department of Obstetrics and Gynaecology, Luohe Central Hospital, Luohe, 462000, Henan, China; Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe, 462000, China.
| |
Collapse
|
12
|
Kim K, Yoon H. Gamma-Aminobutyric Acid Signaling in Damage Response, Metabolism, and Disease. Int J Mol Sci 2023; 24:ijms24054584. [PMID: 36902014 PMCID: PMC10003236 DOI: 10.3390/ijms24054584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) plays a crucial role in signal transduction and can function as a neurotransmitter. Although many studies have been conducted on GABA in brain biology, the cellular function and physiological relevance of GABA in other metabolic organs remain unclear. Here, we will discuss recent advances in understanding GABA metabolism with a focus on its biosynthesis and cellular functions in other organs. The mechanisms of GABA in liver biology and disease have revealed new ways to link the biosynthesis of GABA to its cellular function. By reviewing what is known about the distinct effects of GABA and GABA-mediated metabolites in physiological pathways, we provide a framework for understanding newly identified targets regulating the damage response, with implications for ameliorating metabolic diseases. With this review, we suggest that further research is necessary to develop GABA's beneficial and toxic effects on metabolic disease progression.
Collapse
|
13
|
Ivanova OM, Anufrieva KS, Kazakova AN, Malyants IK, Shnaider PV, Lukina MM, Shender VO. Non-canonical functions of spliceosome components in cancer progression. Cell Death Dis 2023; 14:77. [PMID: 36732501 PMCID: PMC9895063 DOI: 10.1038/s41419-022-05470-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 02/04/2023]
Abstract
Dysregulation of pre-mRNA splicing is a common hallmark of cancer cells and it is associated with altered expression, localization, and mutations of the components of the splicing machinery. In the last few years, it has been elucidated that spliceosome components can also influence cellular processes in a splicing-independent manner. Here, we analyze open source data to understand the effect of the knockdown of splicing factors in human cells on the expression and splicing of genes relevant to cell proliferation, migration, cell cycle regulation, DNA repair, and cell death. We supplement this information with a comprehensive literature review of non-canonical functions of splicing factors linked to cancer progression. We also specifically discuss the involvement of splicing factors in intercellular communication and known autoregulatory mechanisms in restoring their levels in cells. Finally, we discuss strategies to target components of the spliceosome machinery that are promising for anticancer therapy. Altogether, this review greatly expands understanding of the role of spliceosome proteins in cancer progression.
Collapse
Affiliation(s)
- Olga M Ivanova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Institute for Regenerative Medicine, Sechenov University, Moscow, 119991, Russian Federation.
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, 141701, Russian Federation
| | - Irina K Malyants
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Chemical-Pharmaceutical Technologies and Biomedical Drugs, Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russian Federation
| | - Maria M Lukina
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation
| | - Victoria O Shender
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russian Federation.
- Federal Research and Clinical Center of Physical-Chemical Medicine of the Federal Medical and Biological Agency, Moscow, 119435, Russian Federation.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russian Federation.
| |
Collapse
|
14
|
Yan Q, Zheng W, Jiang Y, Zhou P, Lai Y, Liu C, Wu P, Zhuang H, Huang H, Li G, Zhan S, Lao Z, Liu X. Transcriptomic reveals the ferroptosis features of host response in a mouse model of Zika virus infection. J Med Virol 2023; 95:e28386. [PMID: 36477858 DOI: 10.1002/jmv.28386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) is a neurotropic flavivirus. The outbreak of ZIKV in 2016 created a global health emergency. However, the underlying pathogenic mechanisms remain elusive. We investigated the host response features of in vivo replication in a mouse model of ZIKV infection, by performing a series of transcriptomic and bioinformatic analyses of ZIKV and mock-infected brain tissue. Tissue damage, inflammatory cells infiltration and high viral replication were observed in the brain tissue of ZIKV infected mice. RNA-Seq of the brain indicated the activation of ferroptosis pathways. Enrichment analysis of ferroptosis regulators revealed their involvement in pathways such as mineral absorption, fatty acid biosynthesis, fatty acid degradation, PPAR signaling pathway, peroxidase, and adipokinesine signalling pathway. We then identified 12 interacted hub ferroptosis regulators (CYBB, HMOX1, CP, SAT1, TF, SLC39A14, FTL, LPCAT3, FTH1, SLC3A2, TP53, and SLC40A1) that were related to the differential expression of CD8+ T cells, microglia and monocytes. CYBB, HMOX1, SALT, and SLAC40A1 were selected as potential biomarkers of ZIKV infection. Finally, we validated our results using RT-qPCR and outside available datasets. For the first time, we proposed a possible mechanism of ferroptosis in brain tissue infected by ZIKV in mice and identified the four key ferroptosis regulators.
Collapse
Affiliation(s)
- Qian Yan
- Department of Internal Medicine of Traditional Chinese Medicine (TCM), The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine (PCCM), The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Animal Biosafety Level 2 laboratory (ABSL-2), Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjiang Zheng
- Department of Internal Medicine of Traditional Chinese Medicine (TCM), The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine (PCCM), The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Animal Biosafety Level 2 laboratory (ABSL-2), Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Jiang
- Traditional Chinese Medicine Innovation Research Center and Department of Respiratory Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Peiwen Zhou
- Animal Biosafety Level 3 laboratory (ABSL-3), Foshan Institute of Medical Microbiology, Foshan, China
| | - Yanni Lai
- Department of Diagnostics of Traditional Chinese Medicine (TCM), Basic Medical Sciences School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengxin Liu
- Department of Internal Medicine of Traditional Chinese Medicine (TCM), The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Wu
- Department of Internal Medicine of Traditional Chinese Medicine (TCM), The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfa Zhuang
- Department of Pulmonary and Critical Care Medicine (PCCM), The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huiting Huang
- Department of Pulmonary and Critical Care Medicine (PCCM), The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Geng Li
- Animal Biosafety Level 2 laboratory (ABSL-2), Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaofeng Zhan
- Department of Internal Medicine of Traditional Chinese Medicine (TCM), The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine (PCCM), The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zizhao Lao
- Animal Biosafety Level 2 laboratory (ABSL-2), Animal Laboratory Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Traditional Chinese Medicine Innovation Research Center and Department of Respiratory Medicine, Shenzhen Hospital of Integrated Traditional Chinese and Western Medicine, Shenzhen, China
| | - Xiaohong Liu
- Department of Internal Medicine of Traditional Chinese Medicine (TCM), The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pulmonary and Critical Care Medicine (PCCM), The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Lukinović V, Hausmann S, Roth GS, Oyeniran C, Ahmad T, Tsao N, Brickner JR, Casanova AG, Chuffart F, Benitez AM, Vayr J, Rodell R, Tardif M, Jansen PW, Couté Y, Vermeulen M, Hainaut P, Mazur PK, Mosammaparast N, Reynoird N. SMYD3 Impedes Small Cell Lung Cancer Sensitivity to Alkylation Damage through RNF113A Methylation-Phosphorylation Cross-talk. Cancer Discov 2022; 12:2158-2179. [PMID: 35819319 PMCID: PMC9437563 DOI: 10.1158/2159-8290.cd-21-0205] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/16/2022] [Accepted: 07/07/2022] [Indexed: 01/07/2023]
Abstract
Small cell lung cancer (SCLC) is the most fatal form of lung cancer, with dismal survival, limited therapeutic options, and rapid development of chemoresistance. We identified the lysine methyltransferase SMYD3 as a major regulator of SCLC sensitivity to alkylation-based chemotherapy. RNF113A methylation by SMYD3 impairs its interaction with the phosphatase PP4, controlling its phosphorylation levels. This cross-talk between posttranslational modifications acts as a key switch in promoting and maintaining RNF113A E3 ligase activity, essential for its role in alkylation damage response. In turn, SMYD3 inhibition restores SCLC vulnerability to alkylating chemotherapy. Our study sheds light on a novel role of SMYD3 in cancer, uncovering this enzyme as a mediator of alkylation damage sensitivity and providing a rationale for small-molecule SMYD3 inhibition to improve responses to established chemotherapy. SIGNIFICANCE SCLC rapidly becomes resistant to conventional chemotherapy, leaving patients with no alternative treatment options. Our data demonstrate that SMYD3 upregulation and RNF113A methylation in SCLC are key mechanisms that control the alkylation damage response. Notably, SMYD3 inhibition sensitizes cells to alkylating agents and promotes sustained SCLC response to chemotherapy. This article is highlighted in the In This Issue feature, p. 2007.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Simone Hausmann
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gael S. Roth
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
- Clinique universitaire d'Hépato-gastroentérologie et Oncologie digestive, CHU Grenoble Alpes, Grenoble, France
| | - Clement Oyeniran
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Tanveer Ahmad
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Ning Tsao
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Joshua R. Brickner
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Alexandre G. Casanova
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Florent Chuffart
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Ana Morales Benitez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jessica Vayr
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Rebecca Rodell
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Marianne Tardif
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Pascal W.T.C. Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Yohann Couté
- Univ. Grenoble Alpes, CEA, INSERM, IRIG, BGE, Grenoble, France
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Pierre Hainaut
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
| | - Pawel K. Mazur
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Corresponding Authors: Nicolas Reynoird, Institute for Advanced Biosciences, INSERM U1209—CNRS UMR5309—Université Grenoble Alpes, Site santé, Allée des Alpes, 38700 La Tronche, France. 33 4 76 54 95 76; E-mail: ; Pawel K. Mazur, The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Zayed Building Room Z7.2024, 6565 MD Anderson Boulevard, Houston, TX 77030-4009. Phone: 832-751-9825; E-mail: ; and Nima Mosammaparast, Washington University School of Medicine, Department of Pathology and Immunology, Clinical Sciences Research Building (CSRB), 7th Floor, Room 7730, 4940 Parkview Place, St. Louis, MO 63110. Phone: 314-747-5472; E-mail:
| | - Nima Mosammaparast
- Department of Pathology and Immunology and Department of Medicine, Center for Genome Integrity, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Corresponding Authors: Nicolas Reynoird, Institute for Advanced Biosciences, INSERM U1209—CNRS UMR5309—Université Grenoble Alpes, Site santé, Allée des Alpes, 38700 La Tronche, France. 33 4 76 54 95 76; E-mail: ; Pawel K. Mazur, The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Zayed Building Room Z7.2024, 6565 MD Anderson Boulevard, Houston, TX 77030-4009. Phone: 832-751-9825; E-mail: ; and Nima Mosammaparast, Washington University School of Medicine, Department of Pathology and Immunology, Clinical Sciences Research Building (CSRB), 7th Floor, Room 7730, 4940 Parkview Place, St. Louis, MO 63110. Phone: 314-747-5472; E-mail:
| | - Nicolas Reynoird
- Institute for Advanced Biosciences, Grenoble Alpes University, CNRS UMR5309, INSERM U1209, Grenoble, France
- Corresponding Authors: Nicolas Reynoird, Institute for Advanced Biosciences, INSERM U1209—CNRS UMR5309—Université Grenoble Alpes, Site santé, Allée des Alpes, 38700 La Tronche, France. 33 4 76 54 95 76; E-mail: ; Pawel K. Mazur, The University of Texas MD Anderson Cancer Center, Department of Experimental Radiation Oncology, Zayed Building Room Z7.2024, 6565 MD Anderson Boulevard, Houston, TX 77030-4009. Phone: 832-751-9825; E-mail: ; and Nima Mosammaparast, Washington University School of Medicine, Department of Pathology and Immunology, Clinical Sciences Research Building (CSRB), 7th Floor, Room 7730, 4940 Parkview Place, St. Louis, MO 63110. Phone: 314-747-5472; E-mail:
| |
Collapse
|
16
|
Ioannidis AD, Khan SG, Tamura D, DiGiovanna JJ, Rizza E, Kraemer KH, Rice RH. Trichothiodystrophy hair shafts display distinct ultrastructural features. Exp Dermatol 2022; 31:1270-1275. [PMID: 35615778 PMCID: PMC10575343 DOI: 10.1111/exd.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022]
Abstract
Hair shafts from three trichothiodystrophy (TTD) patients with mutations in the ERCC2 (XPD) gene were examined by transmission electron microscopy. TTD is a rare, recessive disorder with mutations in several genes in the DNA repair/transcription pathway, including ERCC2. Unlike previous studies, the hair shafts were examined after relaxation of their structure by partial disulphide bond reduction in the presence of sodium dodecyl sulphate, permitting improved visualization. Compared with hair shafts of normal phenotype, TTD cuticle cells displayed aberrant marginal bands and exocuticle layers. Clusters of cells stained differently (light versus dark) in the cortex of aberrant shafts, and the keratin macrofibrils appeared much shorter in the cytoplasm. Considerable heterogeneity in these properties was evident among samples and even along the length of single hair shafts. The results are consistent with not only a paucity of high sulphur components, such as keratin-associated proteins, but also a profound imbalance in protein content and organization.
Collapse
Affiliation(s)
- Angeliki-Diotima Ioannidis
- Department of Environmental Toxicology and Forensic Science Program, University of California, Davis, California, USA
| | - Sikandar G. Khan
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Deborah Tamura
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - John J. DiGiovanna
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Elizabeth Rizza
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Kenneth H. Kraemer
- DNA Repair Section, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Robert H. Rice
- Department of Environmental Toxicology and Forensic Science Program, University of California, Davis, California, USA
| |
Collapse
|
17
|
Tsampoula M, Tarampoulous I, Manolakou T, Ninou E, Politis PK. The neurodevelopmental disorders associated gene Rnf113a regulates survival and differentiation properties of neural stem cells. Stem Cells 2022; 40:678-690. [DOI: 10.1093/stmcls/sxac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/23/2022] [Indexed: 11/15/2022]
Abstract
Abstract
RNF113A (Ring Finger Protein 113A) is genetically associated with autism spectrum disorders and X-linked trichothiodystrophy (TTD) syndrome. Loss-of-function mutations in human RNF113A are causally linked to TTD, which is characterized by abnormal development of central nervous system (CNS) and mental retardation. How loss of RNF113A activity affects brain development is not known. Here we identify Rnf113a1 as a critical regulator of cell death and neurogenesis during mouse brain development. Rnf113a1 gene exhibits widespread expression in the embryonic CNS. Knockdown studies in embryonic cortical neural stem/progenitor cells (NSCs) and the mouse cortex suggest that Rnf113a1 controls survival, proliferation and differentiation properties of progenitor cells. Importantly, Rnf113a1 deficiency triggers cell apoptosis via a combined action on essential regulators of cell survival, including p53, Nupr1 and Rad51. Collectively, these observations establish Rnf113a1 as a regulatory factor in CNS development and provide insights for its role in neurodevelopmental defects associated with TTD and autism.
Collapse
Affiliation(s)
- Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Isaak Tarampoulous
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Theodora Manolakou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Elpinickie Ninou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
- School of Medicine, European University Cyprus, Nicosia, Cyprus
| |
Collapse
|
18
|
Liu J, Hong M, Li Y, Chen D, Wu Y, Hu Y. Programmed Cell Death Tunes Tumor Immunity. Front Immunol 2022; 13:847345. [PMID: 35432318 PMCID: PMC9005769 DOI: 10.3389/fimmu.2022.847345] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
The demise of cells in various ways enables the body to clear unwanted cells. Studies over the years revealed distinctive molecular mechanisms and functional consequences of several key cell death pathways. Currently, the most intensively investigated programmed cell death (PCD) includes apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, and autophagy, which has been discovered to play crucial roles in modulating the immunosuppressive tumor microenvironment (TME) and determining clinical outcomes of the cancer therapeutic approaches. PCD can play dual roles, either pro-tumor or anti-tumor, partly depending on the intracellular contents released during the process. PCD also regulates the enrichment of effector or regulatory immune cells, thus participating in fine-tuning the anti-tumor immunity in the TME. In this review, we focused primarily on apoptosis, necroptosis, pyroptosis, ferroptosis, PANoptosis, and autophagy, discussed the released molecular messengers participating in regulating their intricate crosstalk with the immune response in the TME, and explored the immunological consequence of PCD and its implications in future cancer therapy developments.
Collapse
Affiliation(s)
- Jing Liu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Minjing Hong
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yijia Li
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Dan Chen
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yangzhe Wu
- Guangdong Provincial Key Laboratory of Tumour Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People’s Hospital Affiliated with Jinan University, Jinan University, Zhuhai, China
| | - Yi Hu
- Microbiology and Immunology Department, School of Medicine, Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
19
|
Tabnak P, HajiEsmailPoor Z, Soraneh S. Ferroptosis in Lung Cancer: From Molecular Mechanisms to Prognostic and Therapeutic Opportunities. Front Oncol 2021; 11:792827. [PMID: 34926310 PMCID: PMC8674733 DOI: 10.3389/fonc.2021.792827] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the second commonly diagnosed malignancy worldwide and has the highest mortality rate among all cancers. Tremendous efforts have been made to develop novel strategies against lung cancer; however, the overall survival of patients still is low. Uncovering underlying molecular mechanisms of this disease can open up new horizons for its treatment. Ferroptosis is a newly discovered type of programmed cell death that, in an iron-dependent manner, peroxidizes unsaturated phospholipids and results in the accumulation of radical oxygen species. Subsequent oxidative damage caused by ferroptosis contributes to cell death in tumor cells. Therefore, understanding its molecular mechanisms in lung cancer appears as a promising strategy to induce ferroptosis selectively. According to evidence published up to now, significant numbers of research have been done to identify ferroptosis regulators in lung cancer. Therefore, this review aims to provide a comprehensive standpoint of molecular mechanisms of ferroptosis in lung cancer and address these molecules’ prognostic and therapeutic values, hoping that the road for future studies in this field will be paved more efficiently.
Collapse
Affiliation(s)
- Peyman Tabnak
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Soroush Soraneh
- Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
20
|
Wu S, Zhu C, Tang D, Dou QP, Shen J, Chen X. The role of ferroptosis in lung cancer. Biomark Res 2021; 9:82. [PMID: 34742351 PMCID: PMC8572460 DOI: 10.1186/s40364-021-00338-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world. Although medical treatment has made impressive progress in recent years, it is still one of the leading causes of cancer-related deaths in men and women. Ferroptosis is a type of non-apoptotic cell death modality, usually characterized by iron-dependent lipid peroxidation, rather than caspase-induced protein cleavage. Excessive or lack of ferroptosis is associated with a variety of diseases, including cancer and ischaemia-reperfusion injury. Recent preclinical evidence suggests that targeting ferroptotic pathway is a potential strategy for the treatment of lung cancer. In this review, we summarize the core mechanism and regulatory network of ferroptosis in lung cancer cells, and highlight ferroptosis induction-related tumor therapies. The reviewed information may provide new insights for targeted lung cancer therapy.
Collapse
Affiliation(s)
- Sikai Wu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Chengchu Zhu
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Q Ping Dou
- Department of Oncology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
- Departments of Pharmacology & Pathology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Jianfei Shen
- Department of Thoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, China.
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
21
|
Tang SC, Lion Q, Peulen O, Chariot P, Lavergne A, Mayer A, Fuster PA, Close P, Klein S, Florin A, Büttner R, Nemazanyy I, Shostak K, Chariot A. The E3 ligase COP1 promotes ERα signaling and suppresses EMT in breast cancer. Oncogene 2021; 41:173-190. [PMID: 34716429 DOI: 10.1038/s41388-021-02038-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 01/22/2023]
Abstract
ERα signaling drives proliferation, survival and cancer initiation in the mammary gland. Therefore, it is critical to elucidate mechanisms by which ERα expression is regulated. We show that the tumor suppressor E3 ligase COP1 promotes the degradative polyubiquitination of the microtubule-associated protein HPIP. As such, COP1 negatively regulates estrogen-dependent AKT activation in breast cancer cells. However, COP1 also induces ERα expression and ERα-dependent gene transcription, at least through c-Jun degradation. COP1 and ERα levels are positively correlated in clinical cases of breast cancer. COP1 also supports the metabolic reprogramming by estrogens, including glycolysis. On the other hand, COP1 suppresses EMT in breast cancer cells. COP1 deficiency also contributes to Tamoxifen resistance, at least through protective autophagy. Therefore, COP1 acts as an oncogenic E3 ligase by promoting ERα signaling but also acts as a tumor suppressor candidate by preventing EMT, which reflects a dual role of COP1 in breast cancer.
Collapse
Affiliation(s)
- Seng Chuan Tang
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Medical Chemistry, GIGA Stem Cells, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Quentin Lion
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Medical Chemistry, GIGA Stem Cells, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Olivier Peulen
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Metastasis Research Laboratory, GIGA Cancer, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Philippe Chariot
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Medical Chemistry, GIGA Stem Cells, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Arnaud Lavergne
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,GIGA Genomics Platform, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Alice Mayer
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,GIGA Genomics Platform, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Paula Allepuz Fuster
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Medical Chemistry, GIGA Stem Cells, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Cancer Signaling, GIGA Stem Cells, University of Liege, CHU, Sart-Tilman, 4000, Liège, Belgium.,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium
| | - Sebastian Klein
- Institute for Pathology-University Hospital of Cologne, Cologne, Germany
| | - Alexandra Florin
- Institute for Pathology-University Hospital of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute for Pathology-University Hospital of Cologne, Cologne, Germany
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium.,Laboratory of Medical Chemistry, GIGA Stem Cells, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liege, CHU, Sart-Tilman, Liège, Belgium. .,Laboratory of Medical Chemistry, GIGA Stem Cells, University of Liege, CHU, Sart-Tilman, Liège, Belgium. .,Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wavres, Belgium.
| |
Collapse
|
22
|
Huang C, Santofimia-Castaño P, Iovanna J. NUPR1: A Critical Regulator of the Antioxidant System. Cancers (Basel) 2021; 13:cancers13153670. [PMID: 34359572 PMCID: PMC8345110 DOI: 10.3390/cancers13153670] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Nuclear protein 1 (NUPR1) is activated in cellular stress and is expressed at high levels in cancer cells. Much evidence has been gathered supporting its critical role in regulating the antioxidant system. Our review aims to summarize the literature data on the impact of NUPR1 on the oxidative stress response via such a regulatory role and how its inhibition induces reactive oxygen species-mediated cell death, such as ferroptosis. Abstract Nuclear protein 1 (NUPR1) is a small intrinsically disordered protein (IDP) activated in response to various types of cellular stress, including endoplasmic reticulum (ER) stress and oxidative stress. Reactive oxygen species (ROS) are mainly produced during mitochondrial oxidative metabolism, and directly impact redox homeostasis and oxidative stress. Ferroptosis is a ROS-dependent programmed cell death driven by an iron-mediated redox reaction. Substantial evidence supports a maintenance role of the stress-inducible protein NUPR1 on cancer cell metabolism that confers chemotherapeutic resistance by upregulating mitochondrial function-associated genes and various antioxidant genes in cancer cells. NUPR1, identified as an antagonist of ferroptosis, plays an important role in redox reactions. This review summarizes the current knowledge on the mechanism behind the observed impact of NUPR1 on mitochondrial function, energy metabolism, iron metabolism, and the antioxidant system. The therapeutic potential of genetic or pharmacological inhibition of NUPR1 in cancer is also discussed. Understanding the role of NUPR1 in the antioxidant system and the mechanisms behind its regulation of ferroptosis may promote the development of more efficacious strategies for cancer therapy.
Collapse
|
23
|
Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and immunity. Protein Cell 2021; 13:559-579. [PMID: 34196950 PMCID: PMC9232692 DOI: 10.1007/s13238-021-00856-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/08/2021] [Indexed: 12/19/2022] Open
Abstract
Precursor messenger RNA (pre-mRNA) splicing is catalyzed by an intricate ribonucleoprotein complex called the spliceosome. Although the spliceosome is considered to be general cell “housekeeping” machinery, mutations in core components of the spliceosome frequently correlate with cell- or tissue-specific phenotypes and diseases. In this review, we expound the links between spliceosome mutations, aberrant splicing, and human cancers. Remarkably, spliceosome-targeted therapies (STTs) have become efficient anti-cancer strategies for cancer patients with splicing defects. We also highlight the links between spliceosome and immune signaling. Recent studies have shown that some spliceosome gene mutations can result in immune dysregulation and notable phenotypes due to mis-splicing of immune-related genes. Furthermore, several core spliceosome components harbor splicing-independent immune functions within the cell, expanding the functional repertoire of these diverse proteins.
Collapse
Affiliation(s)
- Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Jimeno S, Balestra FR, Huertas P. The Emerging Role of RNA Modifications in DNA Double-Strand Break Repair. Front Mol Biosci 2021; 8:664872. [PMID: 33996910 PMCID: PMC8116738 DOI: 10.3389/fmolb.2021.664872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/08/2021] [Indexed: 11/14/2022] Open
Abstract
The correct repair of DNA double-strand breaks is essential for maintaining the stability of the genome, thus ensuring the survival and fitness of any living organism. Indeed, the repair of these lesions is a complicated affair, in which several pathways compete for the DNA ends in a complex balance. Thus, the fine-tuning of the DNA double-strand break repair pathway choice relies on the different regulatory layers that respond to environmental cues. Among those different tiers of regulation, RNA modifications have just emerged as a promising field.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Fernando R. Balestra
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Seville, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
25
|
Botta E, Theil AF, Raams A, Caligiuri G, Giachetti S, Bione S, Accadia M, Lombardi A, Smith DEC, Mendes MI, Swagemakers SMA, van der Spek PJ, Salomons GS, Hoeijmakers JHJ, Yesodharan D, Nampoothiri S, Ogi T, Lehmann AR, Orioli D, Vermeulen W. Protein instability associated with AARS1 and MARS1 mutations causes Trichothiodystrophy. Hum Mol Genet 2021; 30:1711-1720. [PMID: 33909043 PMCID: PMC8411986 DOI: 10.1093/hmg/ddab123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.
Collapse
Affiliation(s)
- Elena Botta
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Arjan F Theil
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Giuseppina Caligiuri
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Sarah Giachetti
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Silvia Bione
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Maria Accadia
- Medical Genetics Service, Hospital "Cardinale G. Panico", Via San Pio X Tricase, Italy
| | - Anita Lombardi
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Desiree E C Smith
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands
| | - Marisa I Mendes
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands
| | - Sigrid M A Swagemakers
- Department of Pathology and Clinical Bioinformatics Unit, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics Unit, Erasmus University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Gajja S Salomons
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology & Metabolism, 1081 HZ Amsterdam, The Netherlands.,Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jan H J Hoeijmakers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Oncode Institute, 3584 CS Utrecht, the Netherlands.,Institute for Genome Stability in Ageing and Disease, CECAD Forschungszentrum, University of Cologne, 50931 Cologne, Germany
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS Ponekkara PO, Cochin 682041, Kerala, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, AIMS Ponekkara PO, Cochin 682041, Kerala, India
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, Japan/Department of Human Genetics and Molecular Biology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Alan R Lehmann
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK
| | - Donata Orioli
- Istituto di Genetica Molecolare "Luigi Luca Cavalli-Sforza" (IGM) CNR, Via Abbiategrasso 207, 27100 Pavia, Italy
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
26
|
Abbasi S, Schild-Poulter C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021; 10:cells10030646. [PMID: 33799447 PMCID: PMC8001828 DOI: 10.3390/cells10030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022] Open
Abstract
Since its inception, proximity-dependent biotin identification (BioID), an in vivo biochemical screening method to identify proximal protein interactors, has seen extensive developments. Improvements and variants of the original BioID technique are being reported regularly, each expanding upon the existing potential of the original technique. While this is advancing our capabilities to study protein interactions under different contexts, we have yet to explore the full potential of the existing BioID variants already at our disposal. Here, we used BioID2 in an innovative manner to identify and map domain-specific protein interactions for the human Ku70 protein. Four HEK293 cell lines were created, each stably expressing various BioID2-tagged Ku70 segments designed to collectively identify factors that interact with different regions of Ku70. Historically, although many interactions have been mapped to the C-terminus of the Ku70 protein, few have been mapped to the N-terminal von Willebrand A-like domain, a canonical protein-binding domain ideally situated as a site for protein interaction. Using this segmented approach, we were able to identify domain-specific interactors as well as evaluate advantages and drawbacks of the BioID2 technique. Our study identifies several potential new Ku70 interactors and validates RNF113A and Spindly as proteins that contact or co-localize with Ku in a Ku70 vWA domain-specific manner.
Collapse
|
27
|
Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res 2021; 31:107-125. [PMID: 33268902 PMCID: PMC8026611 DOI: 10.1038/s41422-020-00441-1] [Citation(s) in RCA: 1918] [Impact Index Per Article: 479.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Cell death can be executed through different subroutines. Since the description of ferroptosis as an iron-dependent form of non-apoptotic cell death in 2012, there has been mounting interest in the process and function of ferroptosis. Ferroptosis can occur through two major pathways, the extrinsic or transporter-dependent pathway and the intrinsic or enzyme-regulated pathway. Ferroptosis is caused by a redox imbalance between the production of oxidants and antioxidants, which is driven by the abnormal expression and activity of multiple redox-active enzymes that produce or detoxify free radicals and lipid oxidation products. Accordingly, ferroptosis is precisely regulated at multiple levels, including epigenetic, transcriptional, posttranscriptional and posttranslational layers. The transcription factor NFE2L2 plays a central role in upregulating anti-ferroptotic defense, whereas selective autophagy may promote ferroptotic death. Here, we review current knowledge on the integrated molecular machinery of ferroptosis and describe how dysregulated ferroptosis is involved in cancer, neurodegeneration, tissue injury, inflammation, and infection.
Collapse
Affiliation(s)
- Daolin Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation; The Third Affiliated Hospital; Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Guido Kroemer
- Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, 94800, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, 75015, France.
- Suzhou Institute for Systems Biology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, 17176, Sweden.
| |
Collapse
|
28
|
Tsao N, Schärer OD, Mosammaparast N. The complexity and regulation of repair of alkylation damage to nucleic acids. Crit Rev Biochem Mol Biol 2021; 56:125-136. [PMID: 33430640 DOI: 10.1080/10409238.2020.1869173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA damaging agents have been a cornerstone of cancer therapy for nearly a century. The discovery of many of these chemicals, particularly the alkylating agents, are deeply entwined with the development of poisonous materials originally intended for use in warfare. Over the last decades, their anti-proliferative effects have focused on the specific mechanisms by which they damage DNA, and the factors involved in the repair of such damage. Due to the variety of aberrant adducts created even for the simplest alkylating agents, numerous pathways of repair are engaged as a defense against this damage. More recent work has underscored the role of RNA damage in the cellular response to these agents, although the understanding of their role in relation to established DNA repair pathways is still in its infancy. In this review, we discuss the chemistry of alkylating agents, the numerous ways in which they damage nucleic acids, as well as the specific DNA and RNA repair pathways which are engaged to counter their effects.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|